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Abstract
In cross-domain few-shot classification, nearest
centroid classifier (NCC) aims to learn represen-
tations to construct a metric space where few-shot
classification can be performed by measuring the
similarities between samples and the prototype of
each class. An intuition behind NCC is that each
sample is pulled closer to the class centroid it be-
longs to while pushed away from those of other
classes. However, in this paper, we find that there
exist high similarities between NCC-learned rep-
resentations of two samples from different classes.
In order to address this problem, we propose a
bi-level optimization framework, maximizing op-
timized kernel dependence (MOKD) to learn a set
of class-specific representations that match the
cluster structures indicated by labeled data of the
given task. Specifically, MOKD first optimizes
the kernel adopted in Hilbert-Schmidt indepen-
dence criterion (HSIC) to obtain the optimized
kernel HSIC (opt-HSIC) that can capture the de-
pendence more precisely. Then, an optimiza-
tion problem regarding the opt-HSIC is addressed
to simultaneously maximize the dependence be-
tween representations and labels and minimize
the dependence among all samples. Extensive
experiments on Meta-Dataset demonstrate that
MOKD can not only achieve better generalization
performance on unseen domains in most cases
but also learn better data representation clusters.
The project repository of MOKD is available at:
https://github.com/tmlr-group/MOKD.
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1. Introduction
Cross-domain few-shot classification (Dvornik et al., 2020;
Li et al., 2021a; Liu et al., 2021a; Triantafillou et al., 2020),
also known as CFC, is a learning paradigm which aims at
learning to perform classification on tasks sampled from
previously unseen data or domains with only a few labeled
data available. Compared with conventional few-shot classi-
fication (Finn et al., 2017; Ravi & Larochelle, 2017; Snell
et al., 2017; Vinyals et al., 2016) which learns to adapt to
new tasks sampled from unseen data with the same distri-
bution as seen data, cross-domain few-shot classification
is a much more challenging learning task since there exist
discrepancies between the distributions of source and target
domains (Chi et al., 2021; Kuzborskij & Orabona, 2013).

Due to its simplicity and scalability, nearest centroid clas-
sifier (NCC) (Snell et al., 2017) has been widely applied
in recent works (Doersch et al., 2020; Li et al., 2021a; Liu
et al., 2021a; Triantafillou et al., 2020) regarding cross-
domain few-shot classification. The goal of NCC is to learn
representations to construct a metric space where few-shot
classification can be performed by measuring the similarities
between samples and the prototype of each class. Intuitively,
the learning process via NCC is pulling each sample closer
to the class centroid it belongs to while pushing it away from
other class centroids. Thus, the learned representations are
expected to be specific enough to be distinguished from
other classes while identified by the class they belong to.

However, in this paper, we find that there exist high similar-
ities between NCC-learned representations of two samples
coming from different classes. For example, as shown in
Fig. 1(a), the heatmap of the similarity matrix, which depicts
the similarities among support data representations, reveals
that the NCC-learned representations of each sample not
only resemble the samples that belong to the same class but
also have high similarities with samples from other classes.
Such undesirable high similarities among samples may in-
duce uncertainty and further result in misclassification of
samples. Thus, learning a set of class-specific representa-
tions, where similarities among samples within the same
class are maximized while similarities between samples
from different classes are minimized, is crucial for CFC.
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(a) NCC-based Loss (ImageNet with 13 classes)
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(b) MOKD (ImageNet with 13 classes)

Figure 1. Heatmaps of similarity matrices of representations respectively learned with NCC-based loss and MOKD. The left of
each figure describes the similarities among all support data representations and the right side describes the similarities between query
data and support data representations. As shown in (a), NCC-learned representations of samples are not only similar to samples belonging
to their own class but also similar to samples from other classes. (b) shows that the undesirable high similarities existing between samples
from different classes are significantly alleviated and the cluster structures of the given set of data are well explored by applying MOKD.

To this end, we propose an efficient and effective approach,
maximizing optimized kernel dependence (MOKD), to learn
a set of class-specific representations, where the similari-
ties among samples belonging to the same class are maxi-
mized while the similarities between samples from differ-
ent classes are minimized, with optimized kernel HSIC
measures, where test power is maximized. In general,
MOKD is formulated as a bi-level optimization problem
for dependence optimization based on optimized kernel
measures. Specifically, MOKD first optimizes the kernel
used in Hilbert-Schmidt Independence Criterion (HSIC) by
maximizing its test power to obtain a powerful kernel de-
pendence measure, the optimized kernel HSIC (opt-HSIC).
The goal of this step is to increase the sensitivity of the ker-
nel HSIC to dependence. Then, an optimization objective
with respect to the opt-HSIC is optimized to simultaneously
maximize the dependence between the kernelized represen-
tations and labels and minimize the dependence among all
sample representations. In this way, a set of class-specific
representations is learned. As shown in Fig 1(b), MOKD
does help alleviate the undesirable high similarities between
samples from different classes and learn better data clusters.

Extensive experiments on Meta-Dataset (Triantafillou et al.,
2020) benchmark under several task settings and further
analysis results demonstrate that MOKD is an efficient and
effective algorithm. On the one side, numerical results
indicate that MOKD can achieve better generalization per-
formance than previous baselines on unseen domains. On
the other side, analysis results further reveal that test power
maximization is essential for achieving good performance
and our proposed MOKD method can mitigate the unde-
sirable high similarities between data representations from
different classes and in turn learn better sample clusters.

Our Contribution. In this paper, we find that there ex-
ist high similarities between NCC-learned representations
of data from different classes, which may further induce

uncertainty and in turn result in misclassification. To ad-
dress this problem, we first provide a new perspective of the
NCC-based loss from dependence measure and reveal that
NCC-based loss can be expressed in the format of Hilbert-
Schmidt Independence Measure (HSIC). Based on this, we
further propose a new method, maximizing optimized ker-
nel dependence (MOKD), to learn class-specific represen-
tations, where the similarities among samples within the
same class are maximized while the similarities between
samples from different classes are minimized. Extensive
experimental results demonstrate that our proposed MOKD
not only achieves better generalization performance without
increasing running time but also learns better data clusters.

2. Preliminary
Dataset Structure. Let S denote a meta dataset that con-
tains n sub-datasets with different distributions, i.e. S =
{S1,S2, ...,S|S|}. For each sub-dataset Si, three disjoint
subsets, which are training set Dtr

Si
, validation set Dval

Si
and

test set Dtest
Si

, are included, i.e. Si = {Dtr
Si
,Dval

Si
,Dtest

Si
}.

In the context of cross-domain few-shot classification, a
feature encoder is trained on the training sets of a portion of
sub-datasets of S . Thus, the sub-datasets whose training sets
are observed by the feature encoder during the pre-training
phase are called seen domains and denoted as Sseen while
the remaining datasets are called unseen domains and de-
noted as Sunseen. Note that Sseen and Sunseen are disjoint.

Task Generation. A task T = {DT ,QT }, where DT =

{Xs, Y s} = {(xs
i , y

s
i )}

|DT |
i=1 denotes the support data pairs

and QT = {Xq, Y q} = {(xq
j , y

q
j )}

|QT |
j=1 denotes query

data pairs, is randomly sampled from the specific dataset
at the beginning of each episode. The sampling of vary-
way vary-shot cross-domain few-shot classification tasks
follows the rules proposed in Triantafillou et al. (2020). The
sampling process can be roughly divided into two steps.
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Firstly, the number of classes N is randomly sampled from
the interval [5, Nmax], whereNmax denotes the maximum of
the number of classes and is either 50 or as many classes as
available. Then, the number of shots of each class, Kn, for
n = {1, 2, ..., N}, in support set is determined with specific
rules (refer to Triantafillou et al. (2020) or Appendix D.4 for
details). Thus, in the support set of a task, each datapoint
belonging to class n can be treated as being independently
sampled from the given dataset with the probability 1

NKn
.

Pre-training Few-shot Classification Pipeline. Consider
a pre-trained backbone fϕ∗ parameterized with the optimal
pre-trained parameters ϕ∗ and a linear transformation head
hθ parameterized with θ. Given a support set DT , the corre-
sponding representations can be obtained by applying the
pre-trained backbone fϕ∗ and the linear transformation head
hθ: Z = {zs

i}
|DT |
i=1 = {hθ ◦ fϕ∗(xs

i)}
|DT |
i=1 . Then, accord-

ing to URL (Li et al., 2021a), the learning problem can be
solved by minimizing the following NCC-based loss (Snell
et al., 2017) on the given support set DT :

LNCC(θ,DT ) = −
1

|DT |

|DT |∑
i=1

log (p(y = ysi |zs
i , θ)) , (1)

where p(y = c|z, θ) = ek(z,cc)∑NC
i=1 ek(z,ci)

denotes the likelihood

of a given sample z belonging to class c, k(·, ·) denotes a
kernel function which is formulated as a cosine similarity
function in URL, cc denotes the prototype of class c and is
calculated as cc = 1

|Cc|
∑

z∈Cc
z, Cc = {zj |yj = c}.

Hilbert-Schmidt Independence Criterion. Given separa-
ble reproducing kernel Hilbert spaces (RKHSs) F , G and
two feature spaces X , Y , HSIC (Gretton et al., 2005a) mea-
sures the dependence between two random variablesX ∈ X
and Y ∈ Y by evaluating the norm of the cross-variance
between the features that are respectively transformed by
non-linear kernels: φ : X → F and ψ : Y → G:

HSIC(X,Y ) = ||E[φ(X)ψ(Y )⊤]−E[φ(X)]E[ψ(Y )]⊤||2HS ,
(2)

where || · ||HS is the Hilbert-Schmidt norm which is the
Frobenius norm in finite dimensions. Further, let (X

′
, Y

′
)

and (X
′′
, Y

′′
) be the independent copies of (X,Y ), the

HSIC can be formulated as:

HSIC(X,Y ) =EXX
′
Y Y

′ [k(X,X
′
)l(Y, Y

′
)]

+ EXX
′ [k(X,X

′
)]EY Y

′ [l(Y, Y
′
)]

− 2EXY [EX
′ [k(X,X

′
)]EY

′ [l(Y, Y
′′
)]],

(3)

where k(x, x
′
) = ⟨φ(x), φ(x′

)⟩F and l(y, y
′
) =

⟨ψ(y), ψ(y′
)⟩G are kernel functions which are defined as in-

ner product operations in reproducing kernel Hilbert space.
Note that HSIC takes zero if and only if X and Y are mutu-
ally independent (Gretton et al., 2005a; Song et al., 2012).

Test power of HSIC. In this paper, test power is used to
measure the probability that, for particular two dependent
distributions and the number of samples m, the null hypoth-
esis that the two distributions are independent is correctly
rejected. Consider a ĤSICu as an unbiased HSIC estima-
tor (e.g., U-statistic estimator), under the hypothesis that
the two distributions are dependent, the central limit theo-
rem (Serfling, 2009) holds:

√
m(ĤSICu −HSIC)

d−→ N (0, v2),

where v2 denotes the variance, d−→ denotes convergence
in distribution. The CLT implies that test power can be
formulated as:

Pr
(
mĤSICu > r

)
→ Φ

(√
mHSIC

v
− r√

mv

)
,

where r denotes a rejection threshold and Φ denotes the
standard normal CDF. Since the rejection threshold r will
converge to a constant, and HSIC, v are constants, for rea-
sonably large m, the test power is dominated by the first
term. Thus, a feasible way to maximize the test power is to
find a kernel function to maximize HSIC/v. The intuition
of test power maximization is increasing the sensitivity of
the estimated kernel to the dependence among data samples.

3. Motivation: Theoretically Understand NCC
via the Kernel HSIC Measure

In this section, we provide an understanding of NCC-based
loss from the perspective of HSIC. Specifically, we first
reveal two insights behind NCC-based loss. Then, inspired
by Li et al. (2021b), we bridge a connection between NCC-
based loss and kernel HSIC and find that the upper bound of
NCC-based loss can be treated as the surrogate loss under
mild assumptions. All proofs are available in Appendix B.

3.1. A Lower Bound of NCC-based Loss

Assumption 3.1 (Li et al. (2021b)). Given a kernel function
k(·, ·), for arbitrary two data representations z and z

′
from

support data set Z = {zi}|DT |
i=1 , we assume that k(z, z

′
)

does not deviate much from
∑

z′∈Z
1

|DT |e
k(z,z

′
).

Such an assumption is adopted by Li et al. (2021b) to ensure
k(z, z

′
) ≈

∑
z′∈Z

1
|DT |e

k(z,z
′
) so that Taylor expansion

can be conducted on exponent in the InfoNCE loss (Oord
et al., 2018). It can also be adopted in our following analysis
results without having to add any other assumption.

Theorem 3.2 (Lower bound of NCC-based loss). Given a
set of normalized support representations Z = {zi}|DT |

i=1 =

{hθ ◦ fϕ∗(xi)}|DT |
i=1 and the corresponding labels {yi}|DT |

i=1

that includes NC classes from a support set DT . Let k(·, ·)

3



MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence

be the cosine similarity function. Then, with Assumption 3.1,
the NCC-based loss (Eq. (1)) owns a lower bound:

L(θ) ≥− 1

|DT |

|DT |∑
i=1

1

|C|
∑
z+∈C

k(zi,z
+)

+
1

|DT |

|DT |∑
i=1

∑
z
′∈Z

k(zi,z
′
)

|DT | +O
(
k(z,z

′
)
)
+ const,

where z+ denotes the data samples belonging to the
same class as zi, C denotes the class that zi belongs to,
O
(
k(z, z

′
)
)

denotes a high-order moment term. In addi-
tion, const = logαeNC , where NC denotes the number of
classes in task, αe is a constant.

For convenience, we define the distance function as the co-
sine similarity function, though it was defined as Euclidean
or Mahalanobias distance functions in previous works (Snell
et al., 2017; Requeima et al., 2019). Cosine similarity has
been widely used as distance function (Liu et al., 2021a; Li
et al., 2021a; 2022) since it approximates the Euclidean dis-
tance function when data are normalized and can be treated
as a generalization of Mahalanobis distance computation
by decomposing the inverse of the covariance matrix into a
lower triangular matrix and its conjugate transpose (Li et al.,
2021a). More discussions are available in Appendix A.

The lower bound in Theorem 3.2 reveals two key insights
adopted in the NCC-based loss. On the one hand, the sim-
ilarities among samples belonging to the same class are
maximized via the first term, which facilitates learning
class-specific representations for each class in the given
task. On the other hand, the similarities between arbitrary
two data samples are minimized through the second term.
Ideally, the second term potentially helps reduce the simi-
larities derived from trivial information, such as common
backgrounds. This further contributes to focusing on the
discriminative feature areas. Compared to Li et al. (2021b),
our analysis is conducted on both samples and prototypes in-
stead of samples only. This introduces difficulty in our anal-
ysis work. Thus, we propose Lemma B.1 to overcome such
a problem and then provide a more precise lower bound.

3.2. HSIC as a Lower Bound of NCC-based Loss

In this section, we follow Li et al. (2021b) to bridge a con-
nection between NCC-based loss and kernel HSIC measure.

Definition 3.3 (Label kernel (Li et al., 2021b)). Given a
support set DT that includes NC classes and Kn shots for
each class n = {1, 2, ..., NC}, we assume that the label
of each data point is a one-hot vector, and each datapoint
belonging to class n is sampled from the given support set
with the probability 1

|DT | . Then, any kernel that is a function

of y⊤i yj or ||yi − yj || have the form

l(yi, yj) =

{
l1, yi = yj ,
l0, otherwise

≡ ∆lI(yi = yj) + l0, (4)

where ∆l = l1 − l0.

Theorem 3.4. Given a support representation set Z =

{zi}|DT |
i=1 = {hθ ◦ fϕ∗(xi)}|DT |

i=1 where NC classes are in-
cluded, let k(·, ·) be a linear kernel function on data rep-
resentations and l(·, ·) be a label kernel defined in Eq. (4),
then HSIC(Z, Y ) owns a lower bound:

HSIC(Z, Y ) ≥ λ∆l

|DT |2

|DT |∑
i=1

∑
z+∈C

k(zi,z
+)−

λ∆l

|DT |2

|DT |∑
i=1

∑
z
′∈Z

1

|DT |k(zi,z
′
),

where z+ denotes the data samples belonging to the same
class as zi, C denotes the class that zi belongs to, z

′
is an

independent copy of z, λ is a scale constant.

Remark 3.5. Under the setting of few-shot classifica-
tion task with varied ways and shots, the lower bound of
HSIC(Z, Y ) obtained in Theorem 3.4 shares a similar struc-
ture to the lower bound of NCC-based loss obtained in
Theorem 3.2. Such a phenomenon mainly results from
both NCC-based loss and HSIC(Z, Y ) leveraging the la-
bel information. Specifically, NCC-based loss implicitly
takes advantage of label information in the prototypes while
HSIC(Z, Y ) explicitly measures the dependence between
representations and labels. In addition, an explicit intuition
of HSIC(Z, Y ) is that maximizing HSIC(Z, Y ) is equiva-
lent to guiding models to explore class-specific representa-
tions that match the cluster structure indicated by labels.

Since the constant scaling does not affect the optimization
and it is easy to obtain that the high-order moment term sat-
isfies O(k(z, z′

)) ≥ γHSIC(Z,Z), where γ = |DT |
2NCCmax

,
Cmax is a constant that satisfies Cmax ≥ |Cc| for ∀c ∈
{1, 2, ..., NC} (see Appendix B.4 for more details), we then
can build a connection between NCC-based loss and HSIC
measure via omitting the scale constants as following:

L(θ) ≥ −HSIC(Z, Y ) + γHSIC(Z,Z) + const.

The new lower bound of NCC-based loss is further ex-
pressed as a combination of HSIC(Z, Y ) and HSIC(Z,Z).
As revealed in Theorem 3.4, the lower bound of
HSIC(Z, Y ) owns the similar structure to that of NCC-
based loss and plays the same role to simultaneously maxi-
mizes the similarities among samples belonging to the same
class and minimizes the similarities between samples from
different classes. Moreover, the HSIC(Z,Z) term measures
the dependence among all data samples in the given task.
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In this case, we can control the dependence between sam-
ple representations via scaling HSIC(Z,Z) term. Based
on these, a spontaneous insight into the NCC-based loss is
that the lower bound can be adopted as a surrogate loss of
NCC-based loss to perform few-shot classification tasks.

3.3. Perform CFC Tasks with HSIC

Comparison to NCC. Compared with NCC-based loss, the
surrogate loss mentioned above owns the following two de-
sirable merits. First of all, different from NCC-based loss
which implicitly and simply leverages label information via
class centroids to learn a data cluster for each class, the
first term of the surrogate loss explicitly measures the de-
pendence between support data representations and labels
that contain cluster structure information of the given set
to explore the class-specific representations for each class.
Moreover, due to the scarce labeled data for adaptation in
few-shot classification tasks, the model usually overfits the
data and in turn obtains poor generalization performance.
However, such an undesirable phenomenon can be miti-
gated through scaling HSIC(Z,Z) term which measures
the dependence among all data samples in a given task.

Challenges When Using HSIC. A challenge of applying
HSIC to perform cross-domain few-shot classification tasks
is that kernel HSIC may fail to accurately measure the de-
pendence between two data samples. For example, as shown
in Fig. 1(a), although the similarities among samples within
the same class are evidently higher, there still exist high sim-
ilarities between two samples from different classes. This
phenomenon implies that NCC-based loss may fail to accu-
rately measure the dependence between representations and
labels, and in turn, fails to learn a set of class-specific rep-
resentations that match the cluster structure of the support
set. Such a phenomenon may potentially induce undesir-
able uncertainty and further result in the misclassification
of samples. To address this problem, a feasible way is im-
proving the capability of the kernel HSIC such that a set of
discriminative class-specific representations can be learned.

4. Maximizing Optimized Kernel Dependence
In order to solve the above problem, we propose maximizing
optimized kernel dependence (MOKD) to perform cross-
domain few-shot classification with kernel HSIC measures
in which the kernels are optimized to accurately measure
the dependence. Specifically, we first maximize the test
power of the kernels used in HSIC to improve its capability
in dependence detection, and then optimize the dependence
respectively between representations and labels, and among
representations with the optimized kernel HSIC measures.
Intuitively, test power maximization facilitates increasing
the sensitivity of kernel HSIC measures to the dependence.
In this way, the dependence among samples can be more

accurately measured and effectively optimized. In turn, we
can learn a set of class-specific and discriminative represen-
tations where the similarities among samples belonging to
the same class are maximized while the similarities between
two samples belonging to different classes are minimized.

4.1. Backbone Pre-training

In this paper, we follow URL (Li et al., 2021a) and adopt
ResNet-18 as the backbone. The pre-training strategy is
consistent with that in URL. Specifically, we first pre-train
8 domain-specific backbones respectively for the 8 seen do-
main datasets. Specifically, in the “train on ImageNet only”
setting, the backbone pre-trained on the ImageNet dataset is
adopted for embedding extraction. Then, a universal back-
bone is distilled from all domain-specific backbones. Specif-
ically, assume that Dtr

Sseen
τ

, where τ ∈ {1, 2, ..., |Sseen|},
denotes the training set of the dataset Sseenτ , the distillation
of the universal backbone can be formulated as:

min
ϕ,ω

|Sseen|∑
τ=1

1

|Dtr
Sseen
τ

|

|Dtr
Sseen
τ

|∑
i=1

ℓ (gωτ ◦ fϕ(xi), yi) + ζR(ϕ, ωτ ),

where fϕ is the universal backbone parameterized with ϕ,
gωτ

is the classifier for domain Sseenτ parameterized with
ωτ ,R(·, ·) is the regularization and ζ is the coefficient. To
be specific, in URL (Li et al., 2021a), the regularization is
composed of two losses that respectively aim at minimizing
the distance between the predictions and maximizing the
similarity of representations between the distilled universal
backbone and the corresponding domain-specific backbone.

4.2. Problem Formulation for MOKD

Consider a set of support representations pairs {(zi, yi)}mi=1,
where m denotes the size of the set, the ultimate goal of
MOKD is to learn a set of optimal task-specific parameters
θ∗ from the given data by performing optimization on the
optimized kernel HSIC measures where the test power is
maximized to increase their sensitivity to dependence. Thus,
MOKD is formulated as a bi-level optimization problem:

min
θ

−HSIC(Z, Y ;σ∗
ZY , θ) + γHSIC(Z,Z;σ∗

ZZ , θ),

s.t.max
σZY

HSIC(Z, Y ;σZY , θ)√
vZY + ϵ

,max
σZZ

HSIC(Z,Z;σZZ , θ)√
vZZ + ϵ

,

(5)
where σZY and σZZ are the bandwidths of Gaussian kernels
respectively calculated in HSIC(Z, Y ) and HSIC(Z,Z),
vZY and vZZ are the variances of estimated HSIC(Z, Y )
and HSIC(Z,Z), γ is the scalar coefficient of HSIC(Z,Z)
term and ϵ is a scalar that is used to avoid the case v ≤ 0.

Since the true distribution of support data features is un-
known, in this paper, we follow Song et al. (2012) and
estimate the kernel HSIC, ĤSIC(Z, Y ), with a set of finite
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Table 1. Results on Meta-Dataset (Trained on ImageNet Only). Mean accuracy and 95% confidence interval are reported.

Datasets Finetune ProtoNets ProtoNets(large) BOHB FP-MAML ALFA+FP-MAML FLUTE SSL-HSIC URL MOKD(Ours)

ImageNet 45.8±1.1 50.5±1.1 53.7±1.1 51.9±1.1 49.5±1.1 52.8±1.1 46.9±1.1 55.5±1.1 57.3±1.1 57.3±1.1

Omniglot 60.9±1.6 60.0±1.4 68.5±1.3 67.6±1.2 63.4±1.3 61.9±1.5 61.6±1.4 66.4±1.2 69.4±1.2 70.9±1.3
Aircraft 68.7±1.3 53.1±1.0 58.0±1.0 54.1±0.9 56.0±1.0 63.4±1.1 48.5±1.0 49.5±0.9 57.6±1.0 59.8±1.0
Birds 57.3±1.3 68.8±1.0 74.1±0.9 70.7±0.9 68.7±1.0 69.8±1.1 47.9±1.0 71.6±0.9 72.9±0.9 73.6±0.9
Textures 69.0±0.9 66.6±0.8 68.8±0.8 68.3±0.8 66.5±0.8 70.8±0.9 63.8±0.8 72.2±0.7 75.2±0.7 76.1±0.7
Quick Draw 42.6±1.2 49.0±1.1 53.3±1.0 50.3±1.0 51.5±1.0 59.2±1.2 57.5±1.0 54.2±1.0 57.9±1.0 61.2±1.0
Fungi 38.2±1.0 39.7±1.1 40.7±1.2 41.4±1.1 40.0±1.1 41.5±1.2 31.8±1.0 43.4±1.1 46.2±1.0 47.0±1.1
VGG Flower 85.5±0.7 85.3±0.8 87.0±0.7 87.3±0.6 87.2±0.7 86.0±0.8 80.1±0.9 85.5±0.7 86.9±0.6 88.5±0.6
Traffic Sign 66.8±1.3 47.1±1.1 58.1±1.1 51.8±1.0 48.8±1.1 60.8±1.3 46.5±1.1 50.5±1.1 61.2±1.2 61.6±1.1
MSCOCO 34.9±1.0 41.0±1.1 41.7±1.1 48.0±1.0 43.7±1.1 48.1±1.1 41.4±1.0 51.4±1.0 53.0±1.0 55.3±1.0
MNIST - - - - - - 80.8±0.8 77.0±0.7 86.2±0.7 88.3±0.7
CIFAR-10 - - - - - - 65.4±0.8 71.0±0.8 69.5±0.8 72.2±0.8
CIFAR-100 - - - - - - 52.7±1.1 59.0±1.0 62.0±1.0 63.1±1.0

Average Seen 45.8 50.5 53.7 51.9 49.5 52.8 46.9 55.5 57.3 57.3
Average Unseen - - - - - - 56.5 62.5 66.6 68.1
Average All - - - - - - 55.8 62.0 65.9 67.3

Average Rank 7.1 8.4 4.6 5.5 6.8 4.4 8.9 4.9 2.8 1.4
1 The results on URL and MOKD are the average of 5 reproductions with different random seeds.

Table 2. Results on Meta-Dataset (Trained on All Datasets). Mean accuracy and 95% confidence interval are reported.
Datasets ProtoMAML CNAPS S-CNAPS SUR URT Tri-M FLUTE 2LM SSL-HSIC URL MOKD

ImageNet 46.5± 1.1 50.8±1.1 58.4 ±1.1 56.2 ± 1.0 56.8 ± 1.1 58.6 ± 1.0 51.8 ± 1.1 58.0 ± 3.6 56.5 ± 1.2 57.3 ± 1.1 57.3 ± 1.1
Omniglot 82.7± 1.0 91.7±0.5 91.6 ± 0.6 94.1 ± 0.4 94.2 ± 0.4 92.0 ± 0.6 93.2 ± 0.5 95.3 ± 1.0 92.0 ± 0.9 94.1 ± 0.4 94.2 ± 0.5
Aircraft 75.2± 0.8 83.7±0.6 82.0 ± 0.7 85.5 ± 0.5 85.8 ± 0.5 82.8 ± 0.7 87.2 ± 0.5 88.2 ± 0.5 87.3 ± 0.7 88.2 ± 0.5 88.4 ± 0.5
Birds 69.9± 1.0 73.6±0.9 74.8 ± 0.9 71.0 ± 1.0 76.2 ± 0.8 75.3 ± 0.8 79.2 ± 0.8 81.8 ± 0.6 78.1 ± 1.1 80.2 ± 0.7 80.4 ± 0.8
Textures 68.2± 1.0 59.5±0.7 68.8 ± 0.9 71.0 ± 0.8 71.6 ± 0.7 71.2 ± 0.8 68.8 ± 0.8 76.3 ± 2.4 75.2 ± 0.8 76.2 ± 0.7 76.5 ± 0.7
Quick Draw 66.8± 0.9 74.7±0.8 76.5 ±0.8 81.8 ± 0.6 82.4 ± 0.6 77.3 ± 0.7 79.5 ± 0.7 78.3 ± 0.7 81.4 ± 0.7 82.2 ± 0.6 82.2 ± 0.6
Fungi 42.0±1.2 50.2±1.1 46.6 ± 1.0 64.3 ± 0.9 64.0 ± 1.0 48.5 ± 1.0 58.1 ± 1.1 69.6 ± 1.5 63.5 ± 1.2 68.7 ± 1.0 68.6 ± 1.0
VGG Flower 88.7± 0.7 88.9±0.5 90.5 ± 0.5 82.9 ± 0.8 87.9 ± 0.6 90.5 ± 0.5 91.6 ± 0.6 90.3 ± 0.8 90.9 ± 0.8 91.9 ± 0.5 92.5 ± 0.5

Traffic Sign 52.4 ± 1.1 56.5 ±1.1 57.2 ± 1.0 51.0 ± 1.1 48.2 ± 1.1 63.0 ± 1.0 58.4 ± 1.1 63.6 ± 1.5 59.7 ± 1.3 63.3 ± 1.2 64.5 ± 1.1
MSCOCO 41.7 ± 1.1 39.4 ±1.0 48.9 ± 1.1 52.0 ± 1.1 51.5 ± 1.1 52.8 ± 1.1 50.0 ± 1.0 57.0 ± 1.1 51.4 ± 1.1 54.2 ± 1.0 55.5 ± 1.0
MNIST - - 94.6 ± 0.4 94.3 ± 0.4 90.6 ± 0.5 96.2 ± 0.3 95.6 ± 0.5 94.7 ± 0.5 93.4 ± 0.6 94.7 ± 0.4 95.1 ± 0.4
CIFAR-10 - - 74.9 ± 0.7 66.5 ± 0.9 67.0 ± 0.8 75.4 ± 0.8 78.6 ± 0.7 71.5 ± 0.9 70.0 ± 1.1 71.9 ± 0.8 72.8 ± 0.8
CIFAR-100 - - 61.3 ± 1.1 56.9 ± 1.1 57.3 ± 1.0 62.0 ± 1.0 67.1 ± 1.0 60.0 ± 1.1 61.8 ± 1.1 62.9 ± 1.0 63.9 ±1.0

Average Seen 67.5 71.6 73.7 75.9 77.4 76.2 76.2 79.7 76.5 79.9 80.0
Average Unseen - - 67.4 64.1 62.9 69.9 69.9 69.4 68.2 69.4 70.3
Average All - - 71.2 71.3 71.8 73.8 73.8 75.7 74.6 75.8 76.3

Average Rank - - 7.2 7.3 6.4 5.2 5.2 3.4 5.5 3.1 2.2
1 Results of URL are the average of 5 reproductions with different random seeds. The reproductions are consistent with the results reported on their website. The results of our method are the average of

5 random reproduction experiments. The ranks considers all 13 datasets and are calculated only with the methods in the table.

data samples in an unbiased way:

1

m(m− 3)

[
tr
(
K̃L̃

)
+

1⊤K̃11⊤L̃1

(m− 1)(m− 2)
− 21⊤K̃L̃1

m− 2

]
,

(6)
where K̃ and L̃ are kernel matrices where K̃i,j = (1 −
δi,j)k(zi, zj) and L̃i,j = (1 − δi,j)l(yi, yj), m denotes
the number of samples in support set. In practice, the time
complexity of the calculation of ĤSIC(Z, Y ) is O(m2).

The bi-level optimization problem proposed in Eq. (5)
mainly contains two aspects: inner optimization for test
power maximization and outer optimization for dependence
optimization. To be specific, during the inner optimization
phase, MOKD performs optimization on the kernel HSIC to
maximize its test power via maximizing HSIC(·,·;σ,θ)√

v+ϵ
. In this

way, the optimized kernel HSIC measures are more sensi-
tive to dependence and in turn, the dependence among data
samples can be more precisely measured. Moreover, during
the outer optimization, with the optimized kernel HSIC mea-
sures, MOKD maximizes the dependence between represen-
tations and labels to explore a set of class-specific representa-
tions, where the similarities among samples within the same

class are maximized while the similarities between samples
belonging to different classes are minimized, to match the
cluster structures of the given support set. Meanwhile, the
dependence among all representations is minimized as a
regularization to penalize the high-variance representations
for alleviating the overfitting derived from scarce data.

Differences between SSL-HSIC and MOKD. We notice
that the outer optimization objective in Eq. (5) shares the
similar format as that in SSL-HSIC (Li et al., 2021b). From
our perspective, in fact, there are two major differences be-
tween them. Firstly, the most obvious difference between
SSL-HSIC and MOKD is that MOKD takes the test power
into consideration. This facilitates increasing the sensitivity
of the kernel HSIC to the dependence and further contributes
to the dependence optimization. In addition, SSL-HSIC is
derived from unsupervised contrastive learning and focuses
on learning discriminative features by contrasting two dif-
ferent views of a sample. However, MOKD is derived from
supervised few-shot classification and aims at learning a set
of class-specific features where similarities among samples
within the same class are maximized while similarities be-
tween samples from different classes are minimized. More
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Table 3. Comparisons of MOKD with different characteristic kernels.
Datasets ImageNet Omniglot Aircraft Birds DTD QuickDraw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR10 CIFAR100

Gaussian 57.3±1.1 94.2±0.5 88.4±0.5 80.4±0.8 76.5±0.7 82.2±0.6 68.6±1.0 92.5±0.5 64.5±1.1 55.5±1.0 95.1±0.4 72.8±0.8 63.9±1.0
IMQ 57.3±1.1 94.3±0.5 88.0±0.5 80.5±0.8 76.2±0.7 82.3±0.6 67.7±1.0 92.1±0.5 63.8±1.1 54.8±1.0 95.4±0.4 72.7±0.8 63.7±1.0

details and empirical results are available in Appendix C.

4.3. Bandwidth Selection for Test Power Maximization

In our proposed MOKD method, since dependence opti-
mization significantly depends on the kernels’ capability
of precise dependence measuring, we first propose to opti-
mize the kernel HSIC measures to improve their capability
of detecting dependence between two variables by maxi-
mizing their test power. According to the definition of the
test power mentioned above, maximizing the test power
of a kernel HSIC measure is equivalent to maximizing the
HSIC(·,·;σ,θ)√

v+ϵ
term. In practice, we adopt a Gaussian kernel,

which contains a bandwidth σ, as the kernel function in the
Problem (5). Thus, test power maximization can be further
reformulated as finding an optimal bandwidth σ∗ for the
Gaussian kernel function to maximize the HSIC(·,·;σ,θ)√

v+ϵ
term.

A key step of performing test power maximization is estimat-
ing the variance of HSIC(·, ·, σ, θ) with the given bandwidth
σ. According to Theorem 5 proposed by Song et al. (2012),
ĤSIC, which is estimated in an unbiased way following
Eq. (6), converges in distribution to a Gaussian random
variable with the mean HSIC and the estimated variance:

v =
16

m

(
R− ĤSIC

2)
, R = (4m)−1(m−1)−2

3 h⊤h, (7)

where m denotes the number of samples, (m− 1)3 denotes
the Pochhammer symbols (m−1)!

(m−4)! , and h is a basic vector
for the calculation of R, and can be calculated as:

h =(m− 2)2
(
K̃ ◦ L̃

)
1−m(K̃1) ◦ (L̃1)

+ (1⊤L̃1)K̃1+ (1⊤K̃1)L̃1− (1⊤K̃L̃1)1

+ (m− 2)
(
(trK̃L̃)1− K̃L̃1− L̃K̃1

)
,

(8)

where ◦ denotes elementwise multiplication on matrices,
1 ∈ Rm×1 denotes the vector where all elements are 1.

The maximization of test power can be performed by any
optimizer, such as gradient-based optimizers. However, in
practice, we perform test power maximization via selecting
the optimal bandwidth from a list of candidates in the way
of grid search (Jitkrittum et al., 2016) since optimizing the
bandwidth with optimizers requires extra hyperparameter
selection (e.g., learning rate) and gradient steps, which are
time-consuming and may negatively affect the efficiency.
To some extent, the grid search can be treated as a vari-
ant version of the typical bi-level optimization framework
(Eq. (5)). Specifically, selecting bandwidth with grid search
resembles performing “stop gradient” on the Problem (5).

Although the typical bi-level optimization facilitates explor-
ing higher-order information, such as the Hessian matrix, it
will consume more computational resources. Meanwhile, as
demonstrated by previous works (e.g. MAML (Finn et al.,
2017)) first-order information is sufficient to achieve good
performance without hurting the efficiency of the algorithm.

Generally, the bandwidth selection of kernel HSIC mainly
includes two steps. Firstly, the bandwidth σ is initialized
as the median of the non-zero elements of a kernel matrix.
Meanwhile, a list of coefficients, which covers as many po-
tential values as possible, is manually set to scale the median.
Then, the bandwidth selection is respectively performed for
both HSIC(Z, Y ) and HSIC(Z,Z) by selecting the optimal
scale coefficient to generate a scaled bandwidth that is able
to maximize HSIC(·,·;σ,θ)√

v+ϵ
. In practice, we directly apply

the optimal coefficient of HSIC(Z, Y ) to HSIC(Z,Z). A
complete process of MOKD is summarized in Algorithm 1.

5. Experiments
In this section, we evaluate our proposed MOKD method on
the representative mainstream benchmark Meta-Dataset (Tri-
antafillou et al., 2020) under several task settings in order to
answer the following questions: (1). Does MOKD achieve
better empirical performance on Meta-Dataset under dif-
ferent task settings? (2). What roles do test power maxi-
mization and HSIC(Z,Z) play in MOKD? (3). Is MOKD
efficient? (4). Does MOKD facilitate alleviating the high
similarity problem and further learning better clusters?

In this paper, we follow most settings in URL (Li et al.,
2021a) to train a simple linear head on top of a pre-trained
ResNet-18 backbone by initializing it as an identity ma-
trix for each adaptation episode and optimizing it with
Adadelta (Zeiler, 2012). In order to validate the perfor-
mance of MOKD, we compare MOKD with existing state-
of-the-art approaches, including Proto-MAML (Triantafil-
lou et al., 2020), fo-Proto-MAML (Triantafillou et al., 2020),
ALFA+fo-Proto-MAML (Baik et al., 2020) CNAPS (Re-
queima et al., 2019), SimpleCNAPS (S-CNAPS) (Bateni
et al., 2020), SUR (Dvornik et al., 2020), URT (Liu et al.,
2021a), FLUTE (Triantafillou et al., 2021), Tri-M (Liu et al.,
2021b), 2LM (Qin et al., 2023) and URL (Li et al., 2021a).
More details are available in Appendix D and E.

5.1. Main Results

In this section, we evaluate MOKD on vary-way vary-shot
tasks under both “train on all datasets” and “train on Ima-
geNet only” settings. To be clear, we mark seen domains
with green while unseen domains with red. More details
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Figure 2. Results of analysis on MOKD. (a). Comparison results
of running time between MOKD and URL. (b). Accuracy gaps
between MOKD with and without test power maximization.

about task settings are available in Appendix D.2 and D.4.

Train on ImageNet Only. The results under “train on
ImageNet only” settings are reported in Table 1. As shown
in the table, MOKD outperforms other baselines on 10
out of 13 datasets and ranks 1.4 on average. Compared
with URL, which MOKD is based on, MOKD outperforms
on almost all domains with an average improvement of
1.4%. In particular, we find that MOKD performs better on
unseen domains (all datasets except ImageNet in this case)
compared with the performance on seen domains. MOKD
roughly achieves about 1.5% improvements on average on
unseen domains. Due to large gaps between seen and unseen
domains, performing classification on unseen domains is
more challenging. Such a phenomenon further reveals that
MOKD can generalize well on previously unseen domains.

Train on All Datasets. The results under the “train on all
datasets” settings are reported in Table 2. As shown in the
table, MOKD achieves the best performance on average and
ranks 2.2 among all methods. Compared with URL, which
MOKD is based on, MOKD achieves better generalization
performance on 10 out of 13 datasets. In addition, consistent
with that under “train on ImageNet only” settings, MOKD
performs better on unseen domains as well and achieves
nearly 1% improvements on average compared with URL.

However, although MOKD achieves better results under the
“train on all datasets” settings, we still notice that there exist
some failure cases. For example, MOKD fails to outper-
form URT on Quick Draw. On the one side, URT contains
an attention head that is more powerful in capturing fine-
grained features. On the other side, Quick Draw is a dataset
composed of doodling created by different individuals, and
thus sometimes it is hard to recognize the common features
between data within the same class. Besides, we also notice
that MOKD also fails on Fungi. According to the curve
(Fig. 5(g)), such a failure may be derived from overfitting.

MOKD v.s. SSL-HSIC. Due to the similarity between
MOKD and SSL-HSIC, we further evaluate SSL-HSIC on
CFC tasks under both task settings to compare the two
approaches empirically. To be fair, we estimate HSIC mea-

sures in SSL-HSIC in the same way as MOKD and use
the same bandwidth. According to the results reported in
Table 1 and 2, MOKD outperforms SSL-HSIC under both
settings. The complete analysis is available in Appendix C.

We can observe that the main difference between the two ob-
jectives is the HSIC(Z,Z) term. Specifically, in SSL-HSIC
loss, the term is HSIC(Z,Z) is modified to

√
HSIC(Z,Z)

for achieving better performance in practice. However, ac-
cording to the original theoretical results of SSL-HSIC, the
term should be HSIC(Z,Z). In this paper, since we pro-
pose to maximize the test power through HSIC(·, ·), the
modification may result in a mismatch of test power.

5.2. Experimental Analysis

Effect of Kernel Type. HSIC is a valid statistical measure
with characteristic kernels (e.g., Gaussian kernel). In order
to study the effect of kernel type, we further run MOKD
with inverse multiquadric kernel (IMQ) under “train on all
datasets” settings with the same random seeds. Since linear
kernels, such as cosine similarity, are not characteristic ker-
nels, we do not consider them in this study. The results are
reported in Table 3. According to the table, it is easy to ob-
serve that MOKD with Gaussian kernel generally achieves
better generalization performance than MOKD with IMQ.

Running Time. To discuss the efficiency of MOKD, we
assume that the number of data in the given support set is m,
the length of the bandwidth list is k and the number of adap-
tation steps is s. Then, in each adaptation episode, the time
complexity can be roughly expressed as (4k + 2s)O(m2)
according to Algorithm 1. To further quantitatively evaluate
the efficiency of MOKD, empirical results are reported in
Fig. 2(a) and Table 9. We run the experiment on the same
NVIDIA RTX 3090 GPU with the same seeds for fairness.

According to the results, we find that the time that MOKD
consumes for each adaptation is acceptable. In some cases,
such as datasets like Omniglot and Fungi, MOKD is even
more efficient compared with URL. The main reason for
such a phenomenon is that MOKD explicitly leverages the
label information via label kernel instead of prototypes. In
this way, MOKD does not have to calculate the prototypes
repeatedly during adaptation. Thus, although MOKD is
a bi-level optimization algorithm that includes HSIC and
variance estimations, the algorithm is still efficient in total.
In addition, we also notice that MOKD fails to consume
less time in some cases, such as ImageNet, Aircraft, and
CU Birds. The main reason here is that the estimations of
HSIC measures and variances depend on the size of the
support data. Since the size of support data varies among
tasks during adaptation, the time consumption also changes.

Ablation Study: Test Power. In order to highlight the
importance of test power maximization proposed in MOKD,
we perform an ablation study on it. Fig. 2(b) shows the
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Figure 3. Quantitative analysis of γ. (a). Effect of γ on accuracy of ImageNet dataset; (b). Effect of γ on accuracy of MNIST dataset;
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Figure 4. Heatmap visualization of representation similarity on
Omniglot.. The results indicate that MOKD does help learn more
discriminative sample clusters than those learned with NCC loss.

performance gaps between MOKD with and without test
power maximization (TPM) on Meta-dataset benchmark. As
shown in the figure, MOKD with test power maximization
performs better. Besides, MOKD with TPM performs better
on unseen domains and complicated datasets like Fungi.

Analysis of γ. In order to figure out how datasets in Meta-
Dataset react to γ, we propose to run MOKD on all datasets
of Meta-Dataset with different γ values under the “train
on all datasets” settings. According to the results, we
can observe that complicated datasets, such as ImageNet
(Fig. 3(a)), prefer large γ while simple datasets, such as
MNIST (Fig. 3(b)), prefer small γ. A potential reason for
such a phenomenon is the semantic information contained
in the images of different datasets. For complicated datasets,
due to the huge amounts of semantic information, large γ is
required to simultaneously learn discriminative features and
penalize high-variance representations. In contrast, since
simple datasets, such as MNIST, own evident and definite
semantic areas, small γ is enough to focus on the correct se-
mantic areas and achieve better generalization performance.

In addition, an interesting case is that it is equivalent to
performing an ablation study on the HSIC(Z,Z) term when
γ is set to zero. According to Fig. 3(c), when HSIC(Z,Z)
is removed, the performance of MOKD drops significantly.
According to Fig. 3(d) and 6, it is easy to find that the
reason for the performance drop is overfitting. Thus, these
results demonstrate that HSIC(Z,Z) facilitates alleviating
overfitting and improving the generalization performance.

Visualization Results. Fig. 4 visualizes the heatmap of

the similarity matrices of support data representations re-
spectively learned with NCC-based loss and our proposed
MOKD on Omniglot dataset. According to the figure,
MOKD learns more definite and clear data clusters com-
pared with those learned with NCC-based loss (URL), which
demonstrates that MOKD facilitates capturing the cluster
structures of the given support set and learning better class-
specific features. Meanwhile, the visualization results on
other datasets, such as Fig. 1(b) and Fig. 9(c), further re-
veal that MOKD is able to alleviate the undesirable high
similarities between two samples from different classes.

6. Conclusion
In this paper, we propose an efficient bi-level framework,
maximizing optimized kernel dependence, to perform clas-
sification on cross-domain few-shot tasks. Specifically,
MOKD first maximizes the test power of kernel HSIC to
maximize its sensitivity to dependence and then optimizes
the optimized kernel HSIC to learn class-specific represen-
tations. Extensive experimental results on the Meta-Dataset
benchmark demonstrate that MOKD can simultaneously
achieve good generalization performance and mitigate the
undesirable high similarities for better data clusters.

Impact Statement
In this paper, we provide a new interpretation of NCC-based
loss from the perspective of dependence measure and pro-
pose to solve cross-domain few-shot classification tasks
with the dependence measures where the test power is maxi-
mized so that the dependence between samples can be more
accurately detected. Two advantages are worth noticing in
the MOKD framework. For one thing, such a framework is
efficient though it is a bi-level optimization problem. For
another thing, by defining an appropriate label kernel, more
information, such as cluster structure, can be utilized for
model adaptation. Thus, such a framework can be gener-
alized or specified to any other existing pipelines, where
cross-entropy loss with softmax function is adopted, to learn
more class-specific features where the similarity among sam-
ples within the same class is maximized while the similarity
between samples from different classes is minimized. There
are many potential societal consequences of our work, none
of which we feel must be specifically highlighted here.
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Jitkrittum, W., Szabó, Z., Chwialkowski, K. P., and Gret-
ton, A. Interpretable distribution features with maximum
testing power. NIPS, 2016.

Jongejan, J., Henry, R., Takashi, K., Kim, J., and
Nick, F.-G. The quick, draw! a.i. experiment.
https://quickdraw.withgoogle.com/, 2016.

Koyama, K., Kiritoshi, K., Okawachi, T., and Izumitani,
T. Effective nonlinear feature selection method based on
hsic lasso and with variational inference. In AISTATS,
2022.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Technical Report, 2009.

Kumagai, A., Iwata, T., Ida, Y., and Fujiwara, Y. Few-
shot learning for feature selection with hilbert-schmidt
independence criterion. In NeurIPS, 2022.

Kuzborskij, I. and Orabona, F. Stability and hypothesis
transfer learning. In ICML, 2013.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332–1338, 2015.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Li, W.-H., Liu, X., and Bilen, H. Universal representation
learning from multiple domains for few-shot classifica-
tion. In ICCV, 2021a.

10



MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence

Li, W.-H., Liu, X., and Bilen, H. Cross-domain few-shot
learning with task-specific adapters. In CVPR, 2022.

Li, Y., Pogodin, R., Sutherland, D. J., and Gretton, A. Self-
supervised learning with kernel dependence maximiza-
tion. In NeurIPS, 2021b.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft
coco: Common objects in context. In ECCV, 2014.

Liu, L., Hamilton, W., Long, G., Jiang, J., and Larochelle, H.
A universal representation transformer layer for few-shot
image classification. In ICLR, 2021a.

Liu, X., Zhang, J., Hu, T., Cao, H., Yao, Y., and Pan, L. In-
ducing neural collapse in deep long-tailed learning. 2023.

Liu, Y., Lee, J., Zhu, L., Chen, L., Shi, H., and Yang, Y. A
multi-mode modulator for multi-domain few-shot classi-
fication. In CVPR, 2021b.

Maji, S., Rahtu, E., Kannala, J., Blaschko, M., and Vedaldi,
A. Fine-grained visual classification of aircraft. arXiv
preprint arXiv:1306.5151, 2013.

Nichol, A., Achiam, J., and Schulman, J. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

Nilsback, M.-E. and Zisserman, A. Automated flower clas-
sification over a large number of classes. In 2008 Sixth
Indian Conference on Computer Vision, Graphics & Im-
age Processing, pp. 722–729. IEEE, 2008.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and
Courville, A. Film: Visual reasoning with a general
conditioning layer. In AAAI, 2018.

Qin, X., Song, X., and Jiang, S. Bi-level meta-learning for
few-shot domain generalization. In CVPR, 2023.

Raghu, A., Raghu, M., Bengio, S., and Vinyals, O. Rapid
learning or feature reuse? towards understanding the
effectiveness of maml. ICLR, 2019.

Ravi, S. and Larochelle, H. Optimization as a model for
few-shot learning. ICLR, 2017.

Requeima, J., Gordon, J., Bronskill, J., Nowozin, S., and
Turner, R. E. Fast and flexible multi-task classification
using conditional neural adaptive processes. NeurIPS,
2019.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision, 115(3):
211–252, 2015.

Schroeder, B. and Cui, Y. Fgvcx fungi classification chal-
lenge. github.com/visipedia/fgvcx fungi comp, 2018.

Serfling, R. J. Approximation theorems of mathematical
statistics. John Wiley & Sons, 2009.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks
for few-shot learning. In NIPS, 2017.

Song, L., Smola, A., Gretton, A., Bedo, J., and Borgwardt,
K. Feature selection via dependence maximization. Jour-
nal of Machine Learning Research (JMLR), 13:1393–
1434, 2012.

Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J. B., and
Isola, P. Rethinking few-shot image classification: a good
embedding is all you need? In ECCV, 2020.

Triantafillou, E., Zhu, T., Dumoulin, V., Lamblin, P., Evci,
U., Xu, K., Goroshin, R., Gelada, C., Swersky, K., Man-
zagol, P.-A., et al. Meta-dataset: A dataset of datasets for
learning to learn from few examples. In ICLR, 2020.

Triantafillou, E., Larochelle, H., Zemel, R., and Dumoulin,
V. Learning a universal template for few-shot dataset
generalization. In ICML, 2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
is all you need. NIPS, 2017.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.
Matching networks for one shot learning. NIPS, 2016.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie,
S. The caltech-ucsd birds-200-2011 dataset. Technical
Report CNS-TR-2011-001, 2011.

Wang, T. and Isola, P. Understanding contrastive represen-
tation learning through alignment and uniformity on the
hypersphere. 2020.

Yamada, M., Jitkrittum, W., Sigal, L., Xing, E. P., and
Sugiyama, M. High-dimensional feature selection by
feature-wise kernelized lasso. Neural computation, 26(1):
185–207, 2014.

Yang, Z., Xu, Q., Bao, S., Cao, X., and Huang, Q. Learning
with multiclass auc: Theory and algorithms. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 44
(11):7747–7763, 2021.

Zeiler, M. D. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

11



MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence

Appendix

A More Related Work 13

B Proof Results 14

B.1 A Necessary Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B.2 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B.3 Proof of Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

B.4 Relation between HSIC(Z,Z) and High-order Moment Term . . . . . . . . . . . . . . . . . . . . . . . . 17

C Differences between SSL-HSIC and MOKD 18

D More Settings for CFC 19

D.1 Introduction to Meta-Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

D.2 Task Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

D.3 Split Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

D.4 Vary-way Vary-shot Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

E More Experimental Settings 21

E.1 Pre-trained Backbone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

E.2 More Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

E.3 Adaptive Bandwidth Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

F Detailed Experimental Results 22

F.1 Results Under Vary-way Vary-shot Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

F.1.1 Results under Train on ImageNet Only Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

F.1.2 Results Under Train on All datasets Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

F.1.3 Discussion about Why MOKD Generalizes Well on Unseen Domains . . . . . . . . . . . . . . . 23

F.2 Effect of More Trainable Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

F.3 Further Studies on Vary-way 5-shot and 5-way 1-shot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

F.4 Analyses on Gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

F.5 Comparisons of Different Bandwidth Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

12



MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence

A. More Related Work
Cross-domain Few-shot Classification. Cross-domain few-shot classification aims to perform few-shot classification on
tasks that are sampled from not only previously unseen data sets with the same distribution of seen domains (e.g. test set) but
also previously unseen domains with different distributions. Compared with conventional few-shot classification (Vinyals
et al., 2016; Ravi & Larochelle, 2017; Finn et al., 2017; Snell et al., 2017; Nichol et al., 2018; Tian et al., 2020), CFC is
much more challenging mainly due to two aspects. First of all, the distribution gaps between source and target domains are
sometimes quite large. For example, the distribution of ImageNet (i.e. nature scenes) is quite different from that of Omniglot
(i.e. handwritings). Thus, since the feature patterns of ImageNet has never been observed by the model, the model may fail
to achieve good generalization performance if it was pre-trained on Omniglot dataset (Lake et al., 2015) but evaluated on
ImageNet (Russakovsky et al., 2015). On the other side, the task setting of CFC is more difficult (Yang et al., 2021). For
example, under the vary-way vary-shot setting, the number of classes and the number of shots for each class are randomly
determined at the beginning of each episode.

Generally, although many works have been done in this field, existing methods are built in the way of typical meta-learning
frameworks (Finn et al., 2017; Snell et al., 2017) and can be mainly divided into two genres according to the ways of
training feature encoders. One of the genres trains the feature encoder and the classifier from scratch. For example,
Triantafillou et al. (2020) proposes Proto-MAML which combines Prototypical Nets (Snell et al., 2017) and MAML (Finn
et al., 2017) by treating the prototypes obtained from the feature encoder as the parameters of the linear classification
layer to perform cross-domain few-shot classification. Based on Proto-MAML, ALFA+fo-Proto-MAML (Baik et al., 2020)
further proposes to adaptively generate task-specific hyperparameters, such as learning rate and weight decay, from a
small model for each task. Besides, CNAPS (Requeima et al., 2019) proposes to leverage the FiLM (Perez et al., 2018)
module to adapt the parameters of both the feature encoder and classifier to new tasks. Further, SimpleCNAPS proposes to
substitute the parametric classifier used in CNAPS with a class-covariance-based distance metric to improve the efficiency
and generalization performance with fewer parameters. Currently, as far as we know, the state-of-the-art method in this genre
is CrossTransformer (Doersch et al., 2020) which proposes to learn spatial correspondence with a self-attention module
from tasks sampled from ImageNet and generalize the prior knowledge to other unseen domains.

The other genre in cross-domain few-shot classification aims to transfer the prior knowledge of a pre-trained backbone
to tasks sampled from previously unseen domains by further training or fine-tuning a module on top of the frozen
backbone. An intuition behind these methods is that a pre-trained backbone is able to extract good representations from
the given new tasks sampled from previously unseen domains since it has been well-trained on some large datasets, such
as ImageNet (Russakovsky et al., 2015)). Statistically, such an intuition can be further explained by an assumption that
the distribution learned by a pre-trained model is similar to the distribution where downstream tasks are sampled. To
some extent, this assumption can be demonstrated by Raghu et al. (2019) that the success of meta-learning ought to be
attributed to feature reuse. Thus, the semantic feature space embedded in the pre-trained model can partially or fully cover
the feature space of target domains and recognize as many feature patterns as possible. Specifically, SUR (Dvornik et al.,
2020) proposes to learn a weight vector to select features from the output of several pre-trained backbones and combine
these features in a linear way with the corresponding weights. Later, URT (Liu et al., 2021a) proposes to train a universal
representation Transformer (Vaswani et al., 2017) to select features from the embeddings extracted from 8 pre-trained
domain-specific backbones. Besides, FLUTE (Triantafillou et al., 2021) proposes to treat the convolutional layers of a model
as universal templates which will be frozen during the test phase while training specific batch normalization layers for each
of the 8 seen domain datasets. Then, a ‘Blender’ model is trained to learn to combine the statistical information from all
specific BN layers. During meta-test, a new specific BN is generated by feeding the support data in the Blender model.
However, since the forward passes of several backbones consume too much time during the test phase, Li et al. (2021a)
proposes URL to learn a universal multi-domain backbone from the 8 pre-trained backbones via knowledge distillation.
During the test phase, URL fine-tunes a simple linear transformation head on top of the distilled backbone for adaptation of
the new tasks. As a further version of URL, TSA (Li et al., 2022), which is the state-of-the-art method in this genre, plugs
additional learning modules into the backbone so that more task-specific features can be learned.

Distance Function. Distance function is an essential component of approaches that are based on the prototypes. Originally,
the distance function adopted is Euclidean distance function (Triantafillou et al., 2020; Requeima et al., 2019). However,
Bateni et al. (2020) points out that the Euclidean distance function, which corresponds to the square Mahalanobis distance,
implicitly assumes each cluster is distributed according to a unit norm. Based on this, squared Mahalanobias distance is
adopted in SimpleCNAPs (Bateni et al., 2020) to consider cluster covariance when computing distances to the cluster centers.
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In addition, in most pre-training based pipelines (Liu et al., 2021a; Li et al., 2021a; 2022), the cosine similarity function
is adopted. On the one side, when data sampled are normalized to a unit sphere, the cosine similarity is approximately
equivalent to the Euclidean distance function and the relationship can be expressed as (x−y)⊤(x−y) = 2(1−cos(x, y)). It
also has been demonstrated that directly matching uniformly sampled points on the unit hypersphere contributes to learning
good representations (Liu et al., 2023; Wang & Isola, 2020). In addition, as argued by Li et al. (2021a), the cosine similarity
function can be treated as a generalization of the Mahalanobis distance computation via decomposing the inverse of the
covariance matrix into a product of a lower triangle matrix and its conjugate transpose.

Feature Selection via Dependence Measures Dependence measure has been well studied in statistics, and a series of
measures have been proposed in previous works, such as constrained covariance (COCO) (Gretton et al., 2005b), kernel
canonical correlation (Bach & Jordan, 2002) and Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005a).
Recently, these tools, especially HSIC, have been widely applied in deep learning. Specifically, Song et al. (2012) firstly
proposed to select features by maximizing the dependence between the selected features and the labels. Kumagai et al.
(2022) follows previous works (Yamada et al., 2014; Freidling et al., 2021; Koyama et al., 2022) and propose to select
relevant features and remove the redundant features by solving an ℓ1-regularized regression problem. Besides, Li et al.
(2021b) proposes to replace InfoNCE (Oord et al., 2018) with SSL-HSIC to directly optimize statistical dependence.

B. Proof Results
B.1. A Necessary Lemma

Lemma B.1. Suppose that ai ∈ [0, 1] for ∀i ∈ {1, 2, ..., n}, then 1
n

∑n
i=1 e

ai and e
1
n

∑n
i=1 ai satisfy that

e
1
n

∑n
i=1 ai ≥ 1

n

n∑
i=1

eai − (e+ (e− 1) log(e− 1)) .

Proof. Since exp(·) is a convex function, according to Jesen’s Inequality, we have e
1
n

∑n
i=1 ai ≤ 1

n

∑n
i=1 e

ai . In addition, in
the interval [0, 1], exp(x) can be approximated to a linear function (e− 1)x+ 1. Thus, in this way, we have 1

n

∑n
i=1 e

ai =

(e− 1)( 1n
∑n

i=1 ai) + 1 ≥ e 1
n

∑n
i=1 ai .

Then, let b =
∑n

i=1 ai, we have a function f(b) = (e − 1)b + 1 − ex. By computing df
db = 0, we can obtain that

f(b) achieves its maximum e + (e − 1) log(e − 1) at b = log(e − 1). Thus, we have e
1
n

∑n
i=1 ai ≥ 1

n

∑n
i=1 e

ai −
(e+ (e− 1) log(e− 1)).

B.2. Proof of Theorem 3.2

Proof. We first unfold the NCC-based loss as follows:

− 1

|DT |

|DT |∑
i=1

log (p(y = yi|zi, θ)) = −
1

|DT |

|DT |∑
i=1

log
exp(k(zi, c))∑NC

j=1 exp(k(zi, cj))

= − 1

|DT |

|DT |∑
i=1

k(zi, c) +
1

|DT |

|DT |∑
i=1

log

NC∑
j=1

exp(k(zi, cj))

= − 1

|DT |

|DT |∑
i=1

(
z⊤
i

1

|C|
∑
z+∈C

z+

)
+

1

|DT |

|DT |∑
i=1

log

NC∑
j=1

exp

z⊤
i

1

|Cj |
∑
z′∈Cj

z
′


(1)

≥ − 1

|DT |

|DT |∑
i=1

1

|C|
∑
z+∈C

z⊤
i z

+ +
1

|DT |

|DT |∑
i=1

log

NC∑
j=1

1

|Cj |
∑
z′∈Cj

exp
(
z⊤
i z

′
)
+ logαe

= − 1

|DT |

|DT |∑
i=1

1

|C|
∑
z+∈C

z⊤
i z

+ +
1

|DT |

|DT |∑
i=1

log

NC∑
j=1

∑
z′∈Cj

1

NC |Cj |
exp

(
z⊤
i z

′
)
+ logαeNC ,

(9)

14



MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence

where (1) follows Lemma B.1 and αe ∈ R+ is a real constant that satisfies that αe
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)
, c denote the class centroid representations zi belonging to,

cj denotes the j-th class centroid, Cj denotes the j-th class sets.

Then, we perform Taylor expansion on the second term of Eq. (9) around µ =
∑
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1

|DT |k
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ziz
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. Based on Assump-
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) ≈ µ. Then, we have:

1

|DT |

|DT |∑
i=1

log

NC∑
j=1

∑
z′∈Cj

1

NC |Cj |
exp

(
z⊤
i z

′
)
=

1

|DT |

|DT |∑
i=1

log

NC∑
j=1

∑
z′∈Cj

eµ

[
1 +

(
k(z,z

′
)−µ

)2

2

]
NC |Cj |

(2)

≥ 1

|DT |

|DT |∑
i=1

∑
z′∈Z

1

|DT |
k
(
zi, z

′
)
+O

(
k(z, z

′
)
)

where (2) follows Jesen’s Inequality for the convex function − log(·) the expansion of log(1 + x) around x = 0,
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′
). In this way, we conclude that Problem 1 owns a lower bound:
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B.3. Proof of Theorem 3.4

Proof. Following (Li et al., 2021b), we compute HSIC by directly calculating the three terms in Eq. (3) under cross-domain
few-shot classification setting respectively. Given a set of support representations Z = {zi}|DT |

i=1 = {hθ ◦ fϕ∗(xi)}|DT |
i=1 ,

each data sample in Z is randomly sampled with the probability 1
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where C denotes the class set that yi belongs to.

Then, due to the independence between Z
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, the second term can be calculated as:

E
[
k(Z,Z

′
)l(Y, Y

′′
)
]
= EZY

[
EZ′ [k(Z,Z

′
)]EY ′′ [l(Y, Y

′′
)]
]

=

|DT |∑
i=1

EZ|yi

[
EZ′k(Z,Z

′
)

(
∆l|Cyi |
|DT |2

+ l0

)]

=

|DT |∑
i=1

∆l|Cyi
|

|DT |2

|Cyi
|∑

m=1

1

|Cyi
|

|DT |∑
n=1

1

|DT |

[
k(zm, z

′

n)
]
+ l0EZ,Z′

[
k(Z,Z

′
)
]

=
∆l

|DT |

NC∑
c=1

|Cc|2

|DT |

|Cc|∑
m=1

1

|Cc|

|DT |∑
n=1

1

|DT |
k(zm, z

′

n) + l0EZ,Z′

[
k(Z,Z

′
)
]

=
∆l

|DT |2
NC∑
c=1

|Cc|∑
m=1

|DT |∑
n=1

|Cc|
|DT |

k(zm, z
′

n) + l0EZ,Z′

[
k(Z,Z

′
)
]

=
∆l

|DT |2

|DT |∑
i=1

NC∑
j=1

∑
z′∈Cj

|Cj |
|DT |

k(zi, z
′
) + l0EZ,Z′

[
k(Z,Z

′
)
]

=
∆l

|DT |2

|DT |∑
i=1

∑
z′∈Z

1

|DT |
k(zi, z

′
) +

∆l

|DT |2

|DT |∑
i=1

NC∑
j=1

∑
z′∈Cj

|Cc| − 1

|DT |
k(zi, z

′
) + l0EZ,Z′

[
k(Z,Z

′
)
]

For the third part, we can obtain:
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Thus, HSIC(Z, Y ) can be specifically reformulated as:

HSIC(Z, Y ) = E[k(Z,Z
′
)l(Y, Y

′
)]− 2E[k(Z,Z

′
)l(Y, Y

′′
)] + E[k(Z,Z

′
)]E[l(Y, Y

′
)]

=
∆l

|DT |

 1

|DT |

|DT |∑
i=1

∑
z+∈C

k(zi,z
+)− 1

|DT |

|DT |∑
i=1

∑
z
′∈Z

1

|DT |k(zi,z
′
)

− 2∆l

|DT |2

|DT |∑
i=1

NC∑
j=1

∑
z
′∈Cj

|Cc| − 1

|DT | k(zi,z
′
)

≥ λ · ∆l

|DT |

 1

|DT |

|DT |∑
i=1

∑
z+∈C

k(zi,z
+)− 1

|DT |

|DT |∑
i=1

∑
z
′∈Z

1

|DT |k(zi,z
′
)

 ,

where λ is a scale constant.

B.4. Relation between HSIC(Z,Z) and High-order Moment Term

We first decompose HSIC(Z,Z). According to the definition of HSIC and Cauchy-Schwarz Inequality, we can expand
HSIC(Z,Z) under the setting of vary-way vary-shot few-shot classification task as:
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Then, we study the high-order moment term:
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where Cmax ≥ |Cc| for ∀c ∈ {1, 2, ..., NC}.
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Algorithm 1 Maximizing Optimized Kernel Dependence Algorithm
Input: pre-trained backbone fϕ∗ , number of inner iterations n, learning rate η, linear transformation parameters hθ, a list
of bandwidths Σ = {σ1, σ2, ..., σT }, and ϵ = 1e− 5.
Output: the optimal parameters for linear transformation head θ∗.
# Sample a task
Sample a new task T = {{Xs, Y s}, {Xq, Y q}};
Obtain the representations: Z = {hθ ◦ fϕ∗(xi)}|X

s|
i=1 ;

# Inner optimization for test power maximization
Maximize the test power of ĤSIC(Z, Y ;σZY , θ) and ĤSIC(Z,Z;σZZ , θ) with Eq. (6) and (7):

σ∗
ZY = maxΣ

ĤSIC(Z,Y ;σZY ,θ)√
vZY +ϵ

; σ∗
ZZ = maxΣ

ĤSIC(Z,Z;σZZ ,θ)√
vZZ+ϵ

# Outer optimization for dependence optimization
for i = 1 to n do

Obtain the representations: Z = {hθ ◦ fϕ∗(xi)}|X
s|

i=1

Compute ĤSIC(Z, Y, σ∗
ZY , θ) and ĤSIC(Z,Z;σ∗

ZZ , θ) with Eq. (6) for loss:
L(Z, Y ; θ) = −ĤSIC(Z, Y, σ∗

ZY , θ) + γĤSIC(Z,Z;σ∗
ZZ , θ)

Update parameters:
θ ← θ − η∇θL(Z, Y ; θ)

end for

C. Differences between SSL-HSIC and MOKD
In this paper, we propose a bi-level optimization framework MOKD, which is inspired by a new interpretation of NCC-based
loss from the perspective of kernel dependence measure. We find that the core insight of NCC-based loss is learning a
set of class-specific representations, where the similarities among samples within the same class are maximized while the
similarities between samples from different classes are minimized. Our proposed MOKD method achieves the same goal
by optimizing the dependence respectively between representations and labels and among all representations based on the
optimized HSIC measures where the test power of the kernels used is maximized.

However, we notice that the outer optimization objective in Eq. (5) of our proposed MOKD method shares a similar format
as the objective of SSL-HSIC (Li et al., 2021b). From our perspective, such a similar format mainly results from two aspects.
On the one side, the outer optimization objectives of NCC-based loss and InfoNCE share the same softmax-like structure.
On the other hand, we adopt a similar label kernel as SSL-HSIC by adapting it to few-shot classification settings. Even
though, actually, there are two major differences between these two objectives.

Firstly, the most obvious difference between SSL-HSIC and MOKD is that MOKD takes the test power of kernel HSIC
measures into consideration. As aforementioned, a challenge of applying HSIC to few-shot classification tasks is that the
kernels used may sometimes fail to accurately measure the dependence between the given two data samples. As a result,
the transformation model may fail to learn a set of class-specific representations where the similarities among samples
belonging to the same class are maximized while the similarities between samples from different classes are minimized.
Such a phenomenon may further induce uncertainty and result in misclassification of samples. Thus, by introducing test
power maximization in HSIC, kernels’ capability of detecting dependence between data samples is improved. This facilitates
increasing the sensitivity of kernel HSIC to dependence and further contributes to dependence optimization.

In addition, SSL-HSIC and MOKD are derived from different learning frameworks and are designed for different task
settings. To be specific, SSL-HSIC is derived from the InfoNCE loss (Oord et al., 2018) that is designed for unsupervised
contrastive learning and focuses on learning robust and discriminative representations of a sample by contrasting two
different views of samples. The ultimate goal of SSL-HSIC is to learn a good feature encoder for downstream tasks. However,
MOKD is derived from NCC-based loss (a.k.a., Prototypical loss) (Snell et al., 2017) that is designed for supervised few-shot
classification and aims at learning a set of class-specific representations where the similarities among samples within the
same class are maximized while the similarities between samples from different classes are minimized. The ultimate goal of
MOKD is to learn the optimal task-specific parameters (of a linear transformation head) for each task to extract a set of
class-specific representations where the data clusters are well learned and the undesirable high similarities are alleviated.

In order to compare SSL-HSIC with MOKD, we further conduct an experiment to reveal the differences between the two
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Table 4. Comparisons of MOKD and SSL-HSIC.
Datasets ImageNet Omniglot Aircraft Birds DTD QuickDraw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR10 CIFAR100

MOKD 57.3±1.1 94.2±0.5 88.4±0.5 80.4±0.8 76.5±0.7 82.2±0.6 68.6±1.0 92.5±0.5 64.5±1.1 55.5±1.0 95.1±0.4 72.8±0.8 63.9±1.0
SSL-HSIC 56.5±1.2 92.0±0.9 87.3±0.7 78.1±1.1 75.2±0.8 81.4±0.7 63.5±1.2 90.9±0.8 59.7±1.3 51.4±1.1 93.4±0.6 70.0±1.1 61.8±1.1
SSL-HSIC(TPM) 56.9±1.1 92.6±0.9 87.5±0.6 79.8±0.9 75.7±0.7 82.0±0.7 67.1±1.0 91.4±0.6 62.4±1.0 53.6±1.0 94.3±0.5 71.5±0.8 63.5±1.0

learning frameworks. In this experiment, HSIC measures used in SSL-HSIC are estimated in the same unbiased way as
MOKD. The results are reported in Table 4. As we can observe, MOKD outperforms SSL-HSIC and SSL-HSIC with Test
Power Maximization on all datasets of Meta-Datasets. Moreover, an interesting phenomenon is that SSL-HSIC achieves
better performance when applying test power maximization to kernels used in SSL-HSIC. This strongly demonstrates that
test power facilitates capturing the dependence between data samples and in turn, learning better representations for each
class in the given support set. Compared with MOKD, the main difference between the two objectives is the HSIC(Z,Z)
term. Specifically, in SSL-HSIC loss, the term is HSIC(Z,Z) is modified to

√
HSIC(Z,Z) to achieve better performance

in practice. However, in the original theoretical results of SSL-HSIC, the term should be HSIC(Z,Z). In this paper, since
we propose to maximize the test power via HSIC(·, ·), the modification may potentially result in a mismatch of test power.

D. More Settings for CFC
In this section, we provide more details about cross-domain few-shot classification task settings. Specifically, detailed
information on Meta-Dataset, experimental settings, data split settings, and vary-way vary-shot settings are introduced.

D.1. Introduction to Meta-Dataset

Meta-Dataset was first proposed by Triantafillou et al. (2020) as a CFC benchmark. The selected datasets are free and easy
to obtain and span various visual concepts with different degrees in fine-grain. The original Meta-Dataset is composed of 10
datasets that are ILSVRC 2012 (ImageNet) (Russakovsky et al., 2015), Omniglot (Lake et al., 2015), FGVC Aircraft (Air-
craft) (Maji et al., 2013), CUB 200-2011 (CU Birds) (Wah et al., 2011), Describable Textures (DTD) (Cimpoi et al., 2014),
Quick Draw (Jongejan et al., 2016), FGVCx Fungi (Fungi) (Schroeder & Cui, 2018), VGG Flower (Flower) (Nilsback &
Zisserman, 2008), Traffic Sign (Houben et al., 2013), MSCOCO (Lin et al., 2014). Then, MNIST (LeCun et al., 1998),
CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-100 (Krizhevsky et al., 2009) were added by Requeima et al. (2019).

ILSVRC 2012. ImageNet is a dataset composed of natural images from 1000 categories. In Meta-Dataset, some images
that are duplicates of other datasets (e.g. 43 images in CU Birds) are removed.

Omniglot. Omniglot is a dataset composed of 1623 handwritten characters. The dataset contains 50 classes with 20
examples in each class. The split of Omniglot dataset follows Lake et al. (2015).

Aircraft. Aircraft is a dataset of images of aircraft spanning 102 model variants, and each class contains 100 images. In
Meta-Dataset, the images are cropped according to the provided bounding boxes in case of including other aircrafts or the
copyright texts.

CU Birds (CUB-200-2011). CU Birds is a dataset for fine-grained classification of 200 different bird species. The images
in CU Birds did not use the provided bounding boxes for harder challenges.

Describable Textures. DTD dataset consists of 5640 images of textures, which are organized according to a list of 47
categories inspired from human perception.

Quick Draw. A dataset of 50 million black-and-white drawings across 345 categories.

Fungi. Fungi is a dataset of 1500 wild mushroom species and contains about 100K images.

VGG Flower. VGG Flower is a dataset of natural images of 102 flower categories. Each class contains 40∼258 images.

Traffic Sign. Traffic Sign is a dataset of 50K images of German road signs in 43 classes.

MSCOCO. MSCOCO is a dataset of images collected from Flickr with 1.5 million object instances belonging to 80
categories labeled and localized using bounding boxes. The version adopted in Meta-Dataset is the train2017 split and the
images are created images from original images using each object instance’s groundtruth bounding box.

MNIST. MNIST is a dataset of handwritten digits. MNIST is composed of 60K training images and 10K test images.

CIFAR-10 & CIFAR-100. CIFAR-10 is a dataset of 60K 32×32 color images in 10 different classes that are airplanes, cars,
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birds, cats, deer, dogs, frogs, horses, ships, and trucks. CIFAR-100 is a dataset with 100 classes and each class contains 500
training data and 100 test data. Each image in CIFAR-100 owns both a “fine” label and a “coarse” label.

D.2. Task Settings

In this paper, there are two main experimental settings for our main results: “train on all datasets” and “train on ImageNet
only”. In “train on all datasets” settings, the backbone we use is the multi-domain backbone which has observed training
data of all 8 domains (ImageNet, Omniglot, Aircraft, CU Birds, DTD, QuickDraw, Fungi and VGG Flower). In the “train
on ImageNet only” settings, the backbone we use is the single-domain backbone which is trained only on the training data
of the ImageNet dataset. For both sets of settings, during the meta-test phase, the evaluation is performed on the test data of
seen domains and data from unseen domains.

Moreover, for simplicity, the default setting in this paper is “train on all datasets” settings if not any specific clarification.

D.3. Split Settings

The splits of the datasets in this paper are consistent with those in Meta-Dataset. For example, under “train on all datasets”
settings, ImageNet, Omniglot, Aircraft, Birds, DTD, QuickDraw, Fungi, and VGG Flower are preserved as ‘seen domains’
where the training set of each dataset are accessible for training the backbone. Each dataset of the seen domain is divided
into a training set, a validation set, and a test set roughly with the proportions of 75%, 15%, and 15%. Specifically, for
ImageNet, Meta-Dataset constructs a sub-graph of the overall DAG that describes the relationships among all 82115 ‘synsets’
in ILSVRC 2012. Then, the entire graph is cut into three pieces for training, validation, and testing without overlap.

D.4. Vary-way Vary-shot Settings

Vary-way vary-shot task is a popular and basic task setting in cross-domain few-shot classification (Triantafillou et al., 2020;
Dvornik et al., 2020; Liu et al., 2021a; Doersch et al., 2020; Li et al., 2021a; 2022). Such task settings stimulate the common
daily situations where there exist distribution gaps among tasks and the data in the given task are imbalanced. Compared
with conventional few-shot classification task settings where the numbers of ways and shots are fixed and tasks for the
test are sampled from unseen data sets with the same distribution, the vary-way vary-shot task is more challenging due to
imbalanced data and distributional discrepancies between source and target domains.

In the context of cross-domain few-shot classification, a vary-way vary-shot task is sampled from a single dataset for each
learning episode. Generally, the sampling process of a vary-way vary-shot task mainly includes two independent steps:
sampling a set of classes and sampling support and query data from the sampled classes. We only provide a brief introduction
to the task sampling process, for more details, please refer to the paper of Meta-Dataset (Triantafillou et al., 2020).

Class Sampling Given a dataset, the number of ways (classes) NC is sampled uniformly from the interval [5, Nmax],
where Nmax denotes the maximum of the number of classes. Usually, Nmax is either 50 or as many classes as available.

Support and Query Data Sampling After a set of classes is sampled, the numbers of shots for support and query sets are
respectively determined by the following rules.

Compute query set size. In vary-way vary-shot task settings, the number of query data of each class in a task is fixed to the
same number. The fixed number should be no more than half of the total number of data in the given class so that there are
still roughly 50% of data being used as support data. The process is formulated as:

q = min

{
10,

(
min
c∈C
⌊0.5 ∗ |c|⌋

)}
,

where C denotes a set of selected classes, c denotes a single class and |c| denotes the number of images in the given class c.
In order to avoid a too large query set, the maximum number of query data of each class is set to 10.

Compute support set size. The computation of support set size is formulated as:

s = min

{
500,

∑
c∈C
⌈βmin {100, |c| − q}⌉

}
,
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where β is a coefficient sampled uniformly from (0, 1]. In vary-way vary-shot task settings, the total number of data in
a support set of a task is no more than 500. For each class in the selected set, the number of shots is determined by its
remaining data where query data have been excluded. The maximum number of shots for each class is 100. The coefficient
β is used to sample a smaller number of support data and generate a task with an imbalanced number of shots.

Data Sampling for Each Class. After the support set size is determined, the number of shots for each class is calculated.
First of all, NC random scalars {α1, α2, ..., αNC

} are uniformly sampled from the interval [log(0.5), log(2)). Then, their
‘contributions’ to the support set are calculated as:

Rc =
exp(αc)|c|∑

c′∈C exp(αc′ )|c
′ |
.

Then, the number of shots for class c can be calculated by:

Kc = min {⌊Rc ∗ (s− |C|)⌋+ 1, |c| − q} .

The term Rc ∗ (s− |C|)⌋+ 1 is to guarantee that there is at least one sample being select for the class.

E. More Experimental Settings
E.1. Pre-trained Backbone

In this paper, we directly use both multi-domain and single-domain ResNet-18 (He et al., 2016) backbones provided by
URL repository1 for simplicity and fairness. Two kinds of backbones are respectively applied in our experiments according
to different experimental settings. For “train on ImageNet only” settings, the pre-trained backbone applied is a single
domain-specific backbone that is trained only on the ImageNet dataset. For “train on all datasets” settings, the pre-trained
backbone applied is a multi-domain backbone. The multi-domain backbone is distilled from 8 single domain-specific
pre-trained backbones. More details about model distillation are available in (Li et al., 2021a).

For simplicity, except for specific clarification, the experiments are conducted on the multi-domain backbone under the
“train on all datasets” settings. In practice, we directly use both multi-domain and single-domain backbones provided in
URL repository in order to make fair comparisons.

E.2. More Implementation Details

In this paper, we follow most settings in URL (Li et al., 2021a) to train a simple linear head on top of a pre-trained backbone.

Initialization & Learning rate. For each adaptation episode, we re-initialize the linear transformation layer with an
identity matrix and learn a set of task-specific parameters for the given task. The optimizer used in MOKD is Adadelta (Zeiler,
2012). The learning rate is 1.0 for Traffic Sign and MNIST and 0.25 for the remaining datasets. Besides, the weight decay is
set to 0.25 for seen domains and 0.0 for unseen domains.

Values of γ. In vary-way vary-shot task settings, we intuitively set γ to 1.0 for Omniglot, Aircraft, CU Birds, Quick Draw
and MNIST while 3.0 for other datasets. Since datasets like Omniglot and Aircraft are simple and the main object of each
image is salient, small γ is enough. In contrast, since datasets like ImageNet and Fungi are complex and each image contains
too much semantic information, large γ is required to penalize the high-variance representations and alleviate the overfitting.

In addition, in vary-way 5-shot and 5-way 1-shot task settings, we respectively set γ to 1.0 and 0 for all datasets since there
are only a few data samples in each task.

Hardware & Seed settings. In this paper, all experiments are performed on an NVIDIA GeForce RTX 3090 GPU. The
GPU memory required for running MOKD is about 5 GB. For fairness, all baselines of URL and experiments on MOKD are
performed with seeds 41, 42, 43, 44, 45.

1https://github.com/VICO-UoE/URL
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E.3. Adaptive Bandwidth Selection

Bandwidth is an essential component of a kernel (such as Gaussian kernel) since it closely corresponds to the test power of
the kernel as shown in this paper. It is widely believed that kernels with large test power are more sensitive to the dependence
among data. As the ultimate goal of this paper is to learn class-specific representations by maximizing dependence among
samples belonging to the same class and minimizing the dependence among all samples, a viable way is to select a suitable
bandwidth to maximize the test power of the kernel. To this end, we first perform bandwidth selection before optimizing
the objective loss to maximize its test power so that the optimized kernel is much more sensitive to the dependence. To be
concrete, the test power is maximized by selecting an optimal bandwidth to maximize HSIC(·,·;σ,θ)√

v+ϵ
, where, σ denotes the

bandwidth, v denotes the variance of HSIC, and ϵ is a constant that aims to avoid v ≤ 0.

First of all, bandwidth is initialized as the median of the Gram matrix obtained with the data. Then, we manually set a list of
coefficients to scale the median as the new bandwidth. To be concrete, the scale coefficient is selected from the list [0.001,
0.01, 0.1, 0.2, 0.25, 0.5, 0.75, 0.8, 0.9, 1.0, 1.25, 1.5, 2.0, 5.0, 10.0]. Finally, by iteratively calculating HSIC(·,·;σ,θ)√

v+ϵ
where σ

is a scaled median, we select the σ which obtains the largest test value of HSIC(·,·;σ,θ)√
v+ϵ

as the optimal bandwidth.

The reason that we chose the grid search method for the optimal bandwidth is the efficiency of MOKD. Optimizing
bandwidth with auto optimizer requires extra hyperparameter selection and gradient descent steps, and this extra work will
make the algorithm complicated and time-consuming.

F. Detailed Experimental Results
F.1. Results Under Vary-way Vary-shot Settings

In this section, we evaluate MOKD on vary-way vary-shot tasks under both “train on all datasets” and “train on ImageNet
only” settings. To be clear, we mark seen domains with green while unseen domains with red.

F.1.1. RESULTS UNDER TRAIN ON IMAGENET ONLY SETTINGS

The empirical results under “train on ImageNet only” settings are reported in Table 1 with mean accuracy and 95%
confidence. Here, we provide a more detailed analysis of the results.

Generally, MOKD achieves the best performance among all approaches on 10 out of 13 datasets, including ImageNet,
Omniglot, Textures (DTD), Quick Draw, Fungi, VGG Flower, MSCOCO, MNIST, CIFAR10, and CIFAR100, and ranks 1.3
on average of all datasets. Compared with URL, where MOKD is based, MOKD outperforms URL on almost all datasets.
Specifically, compared with URL, MOKD obtains 1.5%, 0.2%, 0.7%, 0.9%, 3.3%, 0.8%, 1.6%, 0.4%, 2.3%, 2.1%, 1.2%
and 1.1% improvements respectively from Omniglot to CIFAR-100. For ImageNet, which is the seen domain, MOKD gets
the same results as URL and outperforms other previous works.

An interesting phenomenon is that MOKD performs better than URL on unseen domains compared with the results on
seen domains. As we can see from the table, MOKD achieves 1.5% improvements on average on unseen domains. Such a
phenomenon indicates that MOKD has better generalization ability than previous works. Due to there exist distribution gaps
between seen and unseen domains, it is challenging for a model to perform well on the domains that it has never observed
before. We guess the reason for such a phenomenon is that MOKD directly optimizes the dependence respectively between
representations and labels and representation themselves with the optimized kernel HSIC where the test power is maximized
to be more sensitive to dependence. Thus, it is able to learn a set of better representations where similarities among samples
within the same class are maximized while similarities between samples from different classes are minimized via capturing
the accurate dependence between representations and labels.

F.1.2. RESULTS UNDER TRAIN ON ALL DATASETS SETTINGS

The results under “train on all datasets” settings are reported in Table 2 with mean accuracy and 95% confidence. Here, we
intend to provide a more detailed analysis of empirical results.

According to the table, it is easy to observe that MOKD achieves the best performance on average and ranks 1.8 among
all baselines. Compared with URL where our proposed MOKD is based, MOKD outperforms URL on 10 out of 13
datasets. Specifically, MOKD achieves 0.1%, 0.2%, 0.2%, 0.3%, 0.6%, 1.2%, 1.1%, 0.4%, 0.9% and 1.0% improvements
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respectively on Omniglot, Aircraft, CU Birds, Textures (DTD), VGG Flower, Traffic Sign, MSCOCO, MNIST, CIFAR10
and CIFAR100 datasets. Besides, compared with 2LM which is a recent new state-of-the-art method in the cross-domain
few-shot classification community, MOKD still achieves better performance on 8 out of 13 datasets.

Consistent with the results under “train on ImageNet only” settings, MOKD also obtained better performance on unseen
domains (Traffic Sign, MSCOCO, MNIST, CIFAR10, and CIFAR100) under “train on all datasets” settings. Specifically,
under “train on all datasets” settings, MOKD achieves 1.2%, 1.3%, 0.4%, 0.9%, and 1.0% improvements on Traffic Sign,
MSCOCO, MNIST, CIFAR10 and CIFAR100 datasets. Such a phenomenon consistently demonstrates that MOKD is able
to obtain better generalization performance on previously unseen domains with only a few learning adaptation steps.

Although MOKD achieves impressive performance on the Meta-Dataset benchmark, we also notice that slight overfitting
happens on the Fungi dataset (see Fig. 5(g)).

F.1.3. DISCUSSION ABOUT WHY MOKD GENERALIZES WELL ON UNSEEN DOMAINS

According to the results under both “train on all datasets” and “train on ImageNet only” settings, we observe that MOKD
achieves better generalization performance on unseen domains than on seen domains. From our perspective, the reasons
for this phenomenon are collectively determined by both pre-trained backbones and the optimization objective of MOKD.
Specifically, on the one side, the optimization objective of MOKD proposed in Eq. (5) is more powerful in exploring
class-specific representations; on the other side, the pre-trained backbones limit feature exploration to some extent.

From the perspective of the optimization objective of MOKD, as we have mentioned in Theorem 3.4 of our paper, maximizing
HSIC(Z, Y ) is equivalent to exploring a set of representations that matches the cluster structure of the given task. Meanwhile,
since test power maximization is further taken into consideration, MOKD has a more powerful ability to explore such
representations compared with NCC-based loss. Our visualization results in Fig. 1, 8, and 9 have demonstrated this.

However, the performance is not only simply determined by the optimization objective in Eq. (5), but also decided by the
pre-trained backbones. In our paper, the backbone used under “train on all datasets” settings is pre-trained on 8 datasets,
including ILSVRC 2012, Omniglot, Aircraft, CU Birds, DTD, Quick Draw, Fungi and VGG Flowers. Since the distribution
is shared between the training and test sets of a single dataset, it is easy for the pre-trained backbone to extract good features,
where the cluster structures are definite, from test data of seen domains. However, such an advantage may somewhat
constrain the function space that can be explored by the linear transformation head. An intuitive explanation for this
conjecture is that a loss will converge to the local optimal if the initial point is close to that local optimal. In contrast, since
data from unseen domains have never been observed by the pre-trained model, the features extracted from the pre-trained
backbone are not so good. Thus, it is probable that MOKD can find better results from a relatively bad initialization.

As a simple demonstration, we compare the performance gaps between the initial and final adaptation steps. The results are
obtained with random seed 42 from both URL and MOKD methods. Since both URL and MOKD initialize the linear head
with an identity matrix, their initial accuracies before performing adaptation are the same (as shown in Fig. 5 in our paper).

Intuitively, a small performance gap means the extracted features from the pre-trained backbone are good enough for direct
classification. Otherwise, the extracted features are not so good. According to the table, we notice that the gaps on seen
domains are generally smaller than unseen domains for both URL and MOKD, which demonstrates that the extracted
features from unseen domain data are not so good. Based on this observation, as MOKD is more powerful in exploring a set
of representations that matches the cluster structure of the given task, better improvements are obtained on unseen domains.

F.2. Effect of More Trainable Modules

As demonstrated in previous work (Li et al., 2022), plugging extra trainable modules into the frozen pre-trained backbone
contributes to achieving better generalization performance on Meta-Dataset. As MOKD can be seen as a variant case of
URL, we also evaluate our proposed MOKD with the TSA strategy.

Specifically, since fine-tuning 4 extra trainable modules consumes more running time (about 30s per iteration), we plug
the extra trainable modules only into the second and third resnet block. In addition, in this experiment, we set the learning
rate for the trainable module in the backbone to 0.5 for Traffic Sign, MNIST, and CIFAR-100 and 0.05 for the remaining
datasets. We also set the learning rate for the transformation head to 1.0 for Traffic Sign, MNIST, and CIFAR-100 and 0.1
for the remaining datasets. The results are reported in Table 5.

According to the results in the table, we can observe that MOKD+TSA fails to outperform TSA in most cases. According
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Table 5. Comparisons of MOKD and MOKD TSA.
Datasets ImageNet Omniglot Aircraft Birds DTD QuickDraw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR10 CIFAR100

TSA 57.7±1.1 94.7±0.4 88.9±0.5 80.7±0.8 77.2±0.7 82.3±0.6 66.8±1.0 92.7±0.5 83.6±0.9 55.2±1.0 96.8±0.3 80.6±0.8 71.2±0.9
MOKD+TSA 56.2±1.1 94.9±0.4 88.1±0.6 78.6±0.8 73.0±0.7 81.2±0.5 63.9±1.0 92.1±0.6 87.3±0.8 54.5±1.0 97.4±0.3 78.9±0.8 64.7±0.8

Table 6. Comparisons of performance gaps between initial and final steps.
Datasets ImageNet Omniglot Aircraft Birds DTD QuickDraw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR10 CIFAR100

URL 2.00 0.15 1.36 0.27 2.42 0.19 1.40 0.58 13.94 2.30 3.59 2.77 3.52
MOKD 2.00 0.23 1.55 0.46 2.68 0.25 1.22 1.22 14.99 3.70 4.19 3.67 4.64

to our further visualization results of learning curves, we find that severe overfitting happens in the failure cases. Such a
phenomenon implies that MOKD strategy may be more suitable for the efficient transformation head adaptation. In the case
of more trainable modules in the backbone, MOKD may limit the performance due to overfitting.

F.3. Further Studies on Vary-way 5-shot and 5-way 1-shot

In this section, we further conduct experiments on more challenging 5-way 1-shot and vary-way 5-shot tasks under the
“train on all datasets” settings. These tasks are difficult for our proposed MOKD since scarce data have a negative effect
on HSIC estimation. For example, less accurate HSIC measures can be estimated with fewer data samples. Besides,
maximizing dependence between representations and labels with only extremely few data samples may result in learning
biased class-specific representations. The results are reported in Table 7.

Vary-way 5-shot. According to Table 7, MOKD achieves best performance on 6 out of 13 datasets and ranks 1.8 among
all baselines on vary-way 5-shot task settings. Generally, MOKD obtains comparable results on Omniglot and Quick
Draw compared with the best results but obtains better results on Aircraft, CU Birds, VGG Flower, and Traffic Sign with
improvements 0.5%, 0.7%, 0.6% and 2.5% respectively. Such results show that MOKD can obtain good performance even
if the available data are relatively scarce. However, compared with the results under vary-way vary-shot settings, MOKD
fails to achieve impressive performance in general.

Five-way One-shot. The results regarding 5-way 1-shot tasks are reported in Table 7. According to the table, we observe
that MOKD fails to achieve the best performance under 5-way 1-shot task settings. We notice that overfitting took place
when performing MOKD on 5-way 1-shot tasks. The reason for such a phenomenon is that there is only one sample available
for training and MOKD tends to learn excessively biased representations for each class. Even so, MOKD still outperforms
other baselines except for URL.

Some remarks regarding the empirical results. As shown in both vary-way 5-shot and 5-way 1-shot task settings, MOKD
fails to significantly outperform all baselines. According to the learning curves in our experiments, we find that MOKD
tends to overfit the data under these two settings. A reasonable cause for such a phenomenon is that too few data samples
negatively affect the estimation of HSIC measures. For example, in 5-way 1-shot task settings, HSIC(Z, Y ) has to explore
representations from only 5 data samples to match the cluster structures of the given support set. Thus, it is highly possible
that the learned representations will be extremely biased since there is only one reference sample for each class. Thus, the
generalization performance drastically drops. From this perspective, we know that the proposed MOKD is unsuitable for
tasks with extremely scarce data samples in each class since the estimated HSIC is not reliable enough to learn a set of good
representations that match the cluster structures.

F.4. Analyses on Gamma

In our work, γ functions as a coefficient of regularization term HSIC(Z,Z). Since HSIC(Z,Z) mainly facilitates penalizing
high-variance representations and removing common information shared among samples, γ intuitively determines the power
of penalization and suppression imposed to high-variance representations and common features shared across samples. In
order to figure out how datasets in Meta-Dataset react to γ, we run MOKD with different γ values under the “train on all
datasets” settings. The results are reported in Table 8 and Fig. 6 and 7.

According to the numerical results reported in Table 8, a general conclusion we can summarize is that different datasets
prefer different values of γ. To be concrete, for simple datasets, such as Omniglot, Aircraft and MNIST, small γ is preferred
since images in these datasets are simple and the main object of each image is evident. However, for complicated datasets,
such as ImageNet, Fungi, and MSCOCO, large γ is better since images in these datasets contain abundant objects and
semantic information. In some cases, the semantic information, such as the backgrounds, is useless and sometimes may
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Table 7. Results on vary-way 5-shot and 5-way 1-shot task settings (Trained on All Datasets). Mean accuracy, 95% confidence
interval reported.

Datasets Vary-way 5-shot 5-way 1-shot
Sim-CNAPS SUR URT URL MOKD Sim-CNAPS SUR URT URL MOKD

ImageNet 47.2±1.0 46.7±1.0 48.6±1.0 47.8±1.0 47.5±1.0 42.6±0.9 40.7±1.0 47.4±1.0 46.5±1.0 46.0±1.0
Omniglot 95.1±0.3 95.8±0.3 96.0±0.3 95.8±0.3 96.0±0.3 93.1±0.5 93.0±0.7 95.6±0.5 95.5±0.5 95.5±0.5
Aircraft 74.6±0.6 82.1±0.6 81.2±0.6 83.9±0.5 84.4±0.5 65.8±0.9 67.1±1.4 77.9±0.9 78.6±0.9 78.6±0.9
Birds 69.6±0.7 62.8±0.9 71.2±0.7 76.1±0.7 76.8±0.6 67.9±0.9 59.2±1.0 70.9±0.9 76.2±0.9 75.9±0.9
Textures 57.5±0.7 60.2±0.7 65.2±0.7 66.8±0.6 66.3±0.6 42.2±0.8 42.5±0.8 49.4±0.9 52.0±0.9 51.4±0.9
Quick Draw 70.9±0.6 79.0±0.5 79.2±0.5 78.3±0.5 78.9±0.5 70.5±0.9 79.8±0.9 79.6±0.9 79.1±0.9 78.9±0.9
Fungi 50.3±1.0 66.5±0.8 66.9±0.9 68.7±0.9 68.8±0.9 58.3±0.1 64.8±1.1 71.0±1.0 71.4±1.0 71.1±1.0
VGG Flower 86.5±0.4 76.9±0.6 82.4±0.5 88.5±0.4 89.1±0.4 79.9±0.7 65.0±1.0 72.7±1.0 80.3±0.8 79.8±0.8

Traffic Sign 55.2±0.8 44.9±0.9 45.1±0.9 56.7±0.8 59.2±0.8 55.3±0.9 44.6±0.9 52.7±0.9 57.4±0.9 57.0±0.9
MSCOCO 49.2±0.8 48.1±0.9 52.3±0.9 51.3±0.8 51.8±0.8 48.8±0.9 47.8±1.1 56.9±1.1 52.1±1.0 50.9±0.8
MNIST 88.9±0.4 90.1±0.4 86.5±0.5 88.5±0.4 89.4±0.3 80.1±0.9 77.1±0.9 75.6±0.9 73.3±0.8 72.5±0.9
CIFAR-10 66.1±0.7 50.3±1.0 61.4±0.7 59.6±0.7 58.8±0.7 50.3±0.9 35.8±0.8 47.3±0.9 48.6±0.8 47.3±0.8
CIFAR-100 53.8±0.9 46.4±0.9 52.5±0.9 55.8±0.9 55.3±0.9 53.8±0.9 42.9±1.0 54.9±1.1 61.5±1.0 60.2±1.0

Average Seen 69.0 71.2 73.8 75.7 76.0 65.0 64.0 70.6 72.5 72.2
Average Unseen 62.6 56.0 59.6 62.3 63.0 57.7 49.6 57.5 58.4 57.5
Average All 66.5 65.4 68.3 70.6 71.0 62.2 58.5 65.5 67.1 66.5

Average Rank 4.1 3.8 2.8 2.2 1.8 3.6 4.2 2.5 1.7 2.8

1 Both the results on URL and MOKD are the average of 5 random seed. The ranks only consider the first 10 datasets.

Table 8. Analyses on γ (Trained on All Datasets). Mean accuracy, 95% confidence interval are reported.
Datasets γ = 0.0 γ = 0.5 γ = 1.0 γ = 2.0 γ = 3.0 γ = 4.0 γ = 5.0

ImageNet 53.6±1.0 56.2±1.1 57.0±1.1 57.2±1.1 57.3±1.1 57.3±1.1 57.3±1.1
Omniglot 94.4±0.5 94.4±0.5 94.2±0.5 93.9±0.5 93.7±0.5 93.5±0.5 93.3±0.5
Aircraft 85.2±0.5 87.6±0.5 88.4±0.5 88.3±0.5 88.2±0.5 88.0±0.5 87.9±0.5
Birds 77.8±0.7 80.3±0.7 80.4±0.8 80.3±0.8 80.1±0.8 79.9±0.8 79.8±0.8
Textures 73.2±0.7 75.4±0.7 76.1±0.7 76.3±0.7 76.5±0.7 76.5±0.7 76.5±0.7
Quick Draw 80.5±0.6 82.1±0.6 82.3±0.6 82.3±0.6 82.2±0.6 82.1±0.6 82.0±0.6
Fungi 61.9±0.9 65.1±1.0 66.8±1.0 68.1±1.0 68.6±1.0 68.7±1.0 68.7±1.0
VGG Flower 88.8±0.5 91.5±0.5 92.1±0.5 92.4±0.5 92.5±0.5 92.5±0.5 92.3±0.5

Traffic Sign 48.7±1.0 62.9±1.1 64.1±1.1 64.6±1.1 64.5±1.1 64.2±1.1 64.0±1.1
MSCOCO 44.7±1.0 51.3±1.0 53.4±1.0 55.0±1.0 55.5±1.0 55.4±1.0 55.3±1.0
MNIST 91.7±0.5 95.0±0.4 95.1±0.4 94.6±0.4 94.5±0.4 94.3±0.4 94.3±0.4
CIFAR-10 66.2±0.8 71.0±0.8 72.3±0.8 72.4±0.8 72.8±0.8 72.9±0.8 72.9±0.8
CIFAR-100 57.1±1.0 62.5±1.0 63.5±1.0 64.0±1.0 63.9±1.0 63.8±1.0 63.6±1.0

Average Seen 76.9 79.1 79.7 79.8 79.9 79.8 79.7
Average Unseen 61.7 68.4 69.7 70.1 70.2 70.1 70.0
Average All 71.1 75.0 75.8 76.1 76.2 76.1 76.0

have a negative effect on the performance.

In addition, a special case is that it is equivalent to performing an ablation study on HSIC(Z,Z) when γ is set to zero.
As shown in the table, the performance drops drastically on most datasets. By further plotting the learning curves (see
Fig. 6), we find that overfitting happens on these datasets when the HSIC(Z,Z) term is removed. Thus, such phenomenon
demonstrates that HSIC(Z,Z) contributes to penalizing high-variance kernelized representations and alleviating the
overfitting phenomenon.

Further discussion about γ. According to the results reported in Table 8, an interesting phenomenon is that different
datasets achieve their best performance with different gamma values. In our opinion, two aspects are worth noticing here.

On the one hand, as aforementioned, there exist high similarities between samples from different classes when performing
classification with NCC-based loss. A reasonable cause for such a phenomenon is the trivial common features shared across
samples. On the other side, according to Fig. 6, merely maximizing HSIC(Z, Y ) results in the overfitting phenomenon.

For complicated datasets, such as ImageNet and MSCOCO, there are many objects and abundant semantic information in
images. However, most of semantic information is useless and sometimes has a negative effect on representation learning.
Thus, when tasks are sampled from these datasets, it is challenging for the model to learn definite and discriminative
representations for each class. This will in turn result in uncertainties. For example, Fig. 8(g) and 9(d) have demonstrated
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Table 9. Comparisons of running time between MOKD and URL. (sec. per task)
Datasets ImageNet Omniglot Aircraft Birds DTD QuickDraw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR10 CIFAR100

URL 0.7 0.8 0.5 0.7 0.4 1.1 1.0 0.5 1.0 0.9 0.5 0.5 1.1
MOKD 0.9 0.7 0.8 0.8 0.8 0.9 0.8 0.8 0.9 0.9 0.8 0.8 0.9

Table 10. Ablation study on test power maximization. Mean accuracy, 95% confidence interval are reported.
Datasets MOKD w/o Test Power MOKD w Test Power

ImageNet 56.4±1.1 57.2±1.1
Omniglot 93.9±0.5 94.2±0.5
Aircraft 88.1±0.5 88.3±0.5
Birds 80.1±0.8 80.2±0.8
Textures 75.9±0.7 75.7±0.7
Quick Draw 82.0±0.6 82.1±0.6
Fungi 64.1±1.1 68.9±1.0
VGG Flower 91.9±0.5 91.8±0.5

Traffic Sign 62.8±1.2 64.1±1.0
MSCOCO 52.9±1.1 55.3±1.0
MNIST 95.3±0.4 95.0±0.4
CIFAR-10 72.1±0.8 73.0±0.8
CIFAR-100 62.0±1.0 63.0±1.0

Average Seen 79.0 79.8
Average Unseen 69.0 70.1
Average All 75.2 76.1

this. Meanwhile, due to the scarce data in few-shot classification tasks and the strong power of HSIC(Z, Y ), the model
tends to learn high-variance representations and overfit the data.

Thus, a large gamma value is essential for these complicated datasets. For one thing, HSIC(Z,Z) facilitates penalizing
high-variance kernelized representations for further alleviating the overfitting phenomenon. For another thing, according to
its definition, HSIC(Z,Z) measures the dependence between two sets of data. Thus, minimizing HSIC(Z,Z) drives the
model to learn discriminative features for each single sample so that samples are “independent” of each other. This further
helps remove the trivial common features shared across samples and in turn, alleviates the high similarities among samples.
In contrast, since simple datasets, such as Omniglot and Aircraft, own evident and definite semantic area, small γ is enough.

Thus, in our work, we set small γ for those simple datasets, such as Aircraft, Omniglot, and MNIST. However, for those
complex datasets, such as ImageNet and MSCOCO, we set large γ = 3 (inspired by SSL-HSIC (Li et al., 2021b)).

F.5. Comparisons of Different Bandwidth Selection

In this paper, we adopt the grid search method to select the optimal bandwidth for the kernel to maximize its test power for
dependence detection. In addition to the grid search Jitkrittum et al. (2016), many previous works have been done to optimize
the Gaussian kernel in this field. Specifically, El Amri & Marrel (2024) similarly proposed to select the bandwidth in a
range of values 2β , where β = {−15,−13, ..., 4, 5}. Li et al. (2021b) proposed to optimize the kernel distance entropy to
tune kernel parameters automatically. To figure out the differences among these strategies, we perform MOKD respectively
with each of these strategies. To be clear, we denote these invariants respectively as “MOKD + 2β” and “MOKD + entropy”.
The results are reported in the following table. All results are obtained with random seed 42.

Table 11. Comparisons of different bandwidth selection strategies.
Datasets ImageNet Omniglot Aircraft Birds DTD QuickDraw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR10 CIFAR100

MOKD 57.5±1.1 94.3±0.4 88.3±0.5 80.2±0.8 76.7±0.7 82.5±0.6 67.8±1.0 92.8±0.5 64.9±1.1 55.6±1.0 95.1±0.4 73.0±0.8 64.5±1.0
MOKD + 2β 56.9±1.1 94.4±0.4 88.3±0.5 80.2±0.8 76.2±0.7 82.5±0.6 65.2±1.0 92.3±0.5 62.7±1.2 54.8±1.0 95.6±0.4 72.4±0.8 63.5±1.0
MOKD + entropy 56.8±1.1 94.0±0.5 88.1±0.5 80.0±0.8 76.0±0.7 82.3±0.6 63.6±1.1 91.9±0.6 62.5±1.2 52.0±1.0 95.5±0.4 72.6±0.8 62.6±1.0

As we can observe from the table, it is easy for us to observe that the grid search approaches achieve better performance than
the entropy optimization method. Specifically, we can observe evident performance gaps on Fungi, VGG Flower, Traffic
Sign, MSCOCO, and CIFAR-100 datasets. Further, we can observe that the test power maximization strategy adopted in
our paper achieves better performance than “MOKD + 2β . The main difference between the two strategies is the original
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MOKD scales the median of the kernel matrix while “MOKD + 2β” uses 2β as the bandwidth. However, 2β is not an
empirically appropriate bandwidth for the kernel.
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Figure 5. Test accuracy curves of Meta-Dataset with respect to the steps under “train on all datasets” settings. As shown in the figures,
MOKD evidently achieves a better learning process and convergence performance compared with URL baseline.
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Figure 6. Part test accuracy curves of datasets in Meta-Dataset. The learning curves show that when HSIC(Z,Z) is removed, MOKD
tends to overfit the training data and achieves bad generalization performance.
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Figure 7. Illustration of effect of γ on all datasets in Meta-Dataset.
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Figure 8. Visualization results of similarity matrices of representations respectively learned with NCC-based loss and MOKD on seen
domains.
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Figure 9. Visualization results of similarity matrices of representations repsectively learned with NCC-based loss and MOKD on unseen
domains.
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