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Abstract

Bayesian optimization has been successfully ap-
plied to optimize black-box functions where the
number of evaluations is severely limited. How-
ever, in many real-world applications, it is hard
or impossible to know in advance which designs
are feasible due to some physical or system lim-
itations. These issues lead to an even more chal-
lenging problem of optimizing an unknown func-
tion with unknown constraints. In this paper,
we observe that in such scenarios optimal solu-
tion typically lies on the boundary between fea-
sible and infeasible regions of the design space,
making it considerably more difficult than that
with interior optima. Inspired by this observa-
tion, we propose BE-CBO, a new Bayesian op-
timization method that efficiently explores the
boundary between feasible and infeasible de-
signs. To identify the boundary, we learn the
constraints with an ensemble of neural networks
that outperform the standard Gaussian Processes
for capturing complex boundaries. Our method
demonstrates superior performance against state-
of-the-art methods through comprehensive exper-
iments on synthetic and real-world benchmarks.
Code available at: https://github.com/
yunshengtian/BE-CBO

1. Introduction
Many optimization problems involve the need to optimize
black-box functions, where the performance of a sample
can only be determined through physical experimentation
or time-expensive simulation, which may take even on the
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order of weeks or months per single experiment. Thus, the
total number of evaluations that can be conducted is limited.
In this scenario, Bayesian optimization (BO) (Jones et al.,
1998; Shahriari et al., 2016) has proven to be a successful
approach that guides the search for an optimal solution by
iteratively proposing which experiment to evaluate that may
lead to the highest performance increase.

In addition to optimizing unknown functions, many prac-
tical problems include unknown constraints. For untested
samples, it is impossible to determine if a particular combi-
nation of design parameters will lead to feasible or infeasible
design. In such cases, infeasible regions are typically discov-
ered when pushing the limits of what is physically possible,
and the optimal solution lies on the boundary of feasible
regions.

For example, consider the problem of designing an airplane
wing. The goal is to make it as lightweight as possible
while also being durable and structurally strong to sustain
the forces. Hence, the optimization needs to reduce the
amount of used material until the wing starts breaking under
applied forces. The optimal design will be found just before
we step into the infeasible range. Similarly, imagine the
task of moving a linear stage to a desired position by apply-
ing an acceleration followed by deceleration. To optimize
this process, the optimizer might progressively increase the
voltage applied to achieve faster and more efficient move-
ment. However, if the voltage is continuously increased
without considering the motor’s limitations, it can lead to
excessive heat generation, effectively burning the motor and
causing performance degradation or failure. Comparable
examples can be found in chemistry and materials science,
especially in formulation development where often certain
amounts/combinations of ingredients are needed to yield
feasible materials, and the actual properties of interest can
be measured only for feasible materials. This leads to a
situation in which the optimizer is proposing a candidate for
which no performance feedback can be obtained, resulting
in a BO iteration in which no new information is retrieved.
Indeed, while analyzing many real-world benchmark prob-
lems, we observe that all these problems have the optimal
solution on the boundary between feasible and infeasible
designs (further details in Section 5.1).
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Motivated by this observation, we argue that a good model
of the boundary and efficient search around it can signifi-
cantly improve efficacy and lead to the discovery of better
solutions compared to exploring the entire design space.
We propose a novel BO algorithm incorporating a bound-
ary exploration strategy tailored for exploiting this problem
structure, which is prevalent in real-world problems with
unknown physical constraints. In case of unknown physi-
cal constraints we need to model the space of feasible and
infeasible designs. In physical experiments a sample is con-
sidered infeasible if it fails before being able to measure
its performance, therefore such sample does not provide
any continuous value in return. Hence, we train a binary
classifier to represent all constraints that may appear in the
system. Furthermore, it is important to note the difference
between imposed constraints and scenarios where the con-
straints are unknown. In the former, when the constraints
are specified by the user, imposed artificially, the optimum
solution may be found in the interior of the feasible region.
The case of boundary optima is considerably more chal-
lenging than that of interior optima, more even so for BO,
where gradients are infeasible to evaluate and the number
of function evaluations is subject to a limited budget. For
unknown constraints, a surrogate needs to be sufficiently
accurate (at least in the vicinity of the optimum) so that the
identified solution is sufficiently close to the feasible side of
the boundary while not trespassing on the other side.

While existing approaches (Gelbart et al., 2014; Eriksson
& Poloczek, 2021; Antonio, 2021) have addressed BO with
unknown constraints, our method is the first to explicitly
consider the boundary issue and it demonstrates superior
performance. In summary, our main contributions are the
following:

• We introduce BE-CBO (Boundary Exploration for Con-
strained Bayesian Optimization) for optimizing black-
box functions with a limited evaluation budget and
unknown constraints. Our key insight is that accu-
rately modeling and efficiently exploring the boundary
between feasible and infeasible designs is crucial in
discovering better performing designs.

• To model the unknown constraint boundary, we pro-
pose using Deep Ensembles and demonstrate its su-
perior modeling capability by comparing against the
most common method in surrogate modeling for BO,
i.e., Gaussian Processes.

• Comprehensive experiments and ablation studies on
synthetic functions and real-world benchmark prob-
lems showing the efficiency of our method and state-
of-the-art performance on practical setups.

2. Related Work
Constrained Bayesian Optimization BO has proven to
be a powerful methodology for global optimization of black-
box functions with expensive evaluations (Shahriari et al.,
2016). It has demonstrated remarkable success in various
applications, including robotics (Lizotte et al., 2007), re-
source allocation (Hickish et al., 2019), hyperparameter
tuning (Snoek et al., 2012), experimental design (Srinivas
et al., 2010), and clinical drug trials (Yu et al., 2019). In
classical BO, the feasible set X is assumed to be known
and easy to evaluate, e.g., they are either a hyper-cubes
or a simplex (Močkus, 1975; Frazier, 2018). Recent re-
search faces a more challenging scenario called constrained
Bayesian optimization (CBO), where the feasiblility of opti-
mization variables is unknown or hard to evaluate. In these
cases, the evaluation of the feasibility of one solution is also
time costly as the objective function. Two slightly differ-
ent settings are considered in CBO: 1) continuous-valued
constraint and 2) binary-valued constraint. In continuous-
valued CBO, the constraints take the form of inequality
constraint R(x) ≥ 0, where R : Rd → R is a continuous-
valued function. It considers the scenario where both the
function value and the constraints’ values can be obtained
from the experiments, even if the sample falls into the infea-
sible region. In the binary-constraint case, the outcome of
the experiment becomes 1R(x)≥0f(x), that we only observe
the function value when the sample is feasible (R(x) ≥ 0),
and when the sample falls into the infeasible region, we
observe a failure with no function value.

Prior works mainly consider continuous-valued constraints.
Gardner et al. (2014) proposes EIC that multiples the Ex-
pected Improvement (EI) (Močkus, 1975) with the proba-
bility of constraint satisfaction as the acquisition function.
PESC (Hernández-Lobato et al., 2015) extends Predicted
Entropy Search (PES) (Hernández-Lobato et al., 2014) to
the constrained case. ADMMBO (Ariafar et al., 2019) uses
ADMM to alternatively optimize the objective value and fea-
sibility of the solution. SCBO (Eriksson & Poloczek, 2021)
uses a trust region optimizer to scale up to high dimen-
sional problems with constraints. 2-OPT-C (Zhang et al.,
2021) applies a multi-step lookahead approach instead of
the standard myopic approach, which encourages sampling
the boundary between feasible and infeasible regions, shar-
ing a similar motivation as our method. All methods use
Gaussian Process (GP) regressors to model the unknown
constraints.

The binary-valued CBO is much less considered in the prior
works, though the setup is prevalent in practice for optimiz-
ing physical systems. Modeling the binary-valued constraint
of the feasibility set is fundamentally different from model-
ing the continuous-valued constraints. Similar to Gardner
et al. (2014), Gelbart et al. (2014) proposes CEI that mul-
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tiples the EI with the probability of constraint satisfaction.
Lindberg & Lee (2015) uses a slightly different formula-
tion by using asymmetric entropy as the feasibility score
for efficient exploration. However, these methods use GP
classifiers (GPC) for relatively simple and low dimensional
constraints and the efficacy on complicated constraints is not
demonstrated. A recent work SVM-CBO (Antonio, 2021)
proposes a two-stage approach. In the first stage, it trains an
SVM classifier to explore the constraint boundary, and in
the second stage, the algorithm performs BO in the feasible
region captured by the SVM.

Safe Bayesian Optimization In some scenarios, ensur-
ing the safety and reliability of evaluations have become
important concerns when running BO. To address these con-
cerns, safe BO techniques have emerged as a promising
solution (Sui et al., 2015; Turchetta et al., 2019; Kirschner
et al., 2019). A representative application of safe BO can be
found in robotics (Baumann et al., 2021; Berkenkamp et al.,
2023) due to the concern of robot hardware damage during
optimization. However, although constrained BO and safe
BO share a similar spirit, the main objective in constrained
BO is to achieve higher performance while safe BO puts
more priority on being safe, i.e., conservative on violating
the constraint and exploring infeasible design space, which
will be less effective in terms of finding the optimum.

Neural Networks for Classification Though GPC has
been used in CBO algorithms for modeling the con-
straints (Bachoc et al., 2020; Lindberg & Lee, 2015), they
face the issue of high computational complexity in both the-
ory and lack of supporting software packages, and require a
careful choice of the GP kernel, or otherwise the resulting
constraint boundaries might be too smooth and lack details.
In contrast, Neural Networks (NN) have been widely used
and have reached great success in classification problems
with both low- and high-dimensional data with complex
boundaries, including manually selected features (Swain
et al., 2012) and raw data such as images (Lu & Weng,
2007), texts (Minaee et al., 2021), and graphs (Zhang et al.,
2018). Despite impressive classification accuracies in super-
vised learning benchmarks, naive NNs are poor at quantify-
ing predictive uncertainty (Lakshminarayanan et al., 2017;
Gawlikowski et al., 2023), thus cannot be directly applied
to CBO for constraint modeling. Recently, the prediction
uncertainty of NNs has been studied in several approaches,
including Bayesian NN (Kwon et al., 2020; Tran et al., 2019)
and ensemble methods (Lakshminarayanan et al., 2017),
have been proposed. Additionally, the ensemble method has
shown strong promise in few-shot training (Beluch et al.,
2018) where the number of training samples is small.

3. Preliminaries
We are interested in efficiently optimizing black-box func-
tions with costly evaluations and unknown constraints.
Bayesian Optimization (BO) is a powerful framework for
such scenario (Jones et al., 1998; Shahriari et al., 2016).
In the typical setup, BO addresses the challenge of find-
ing the global optimum of an expensive objective function
f : X ⊂ Rd → R, where direct gradient information is
unavailable. In addition, the total number of performed
function evaluations is often limited to several dozens.

The optimization process begins with an initial set of N eval-
uations Y0 = {f(xi)}Ni=1, where xi is sampled at random
from the design space X , to explore the function’s behavior.
A surrogate model f̂(x|Y0), typically a Gaussian Process
(GP), is then used to approximate the unknown function f
using existing observations Y0. The main strength of BO
lies in the strategy for selecting the subsequent evaluations
by balancing exploration and exploitation. This balancing is
defined with an acquisition function q that guides the search
by trading off between exploiting promising regions and
exploring uncertain regions of the function. Popular acquisi-
tion functions include Expected Improvement (EI) (Močkus,
1975), Entropy Search (ES) (Hennig & Schuler, 2012), Pre-
dictive Entropy Search (PES) (Hernández-Lobato et al.,
2014), and Thompson Sampling (TS) (Thompson, 1933). In
this work, we use EI, but the proposed method is straight-
forward to generalize to other acquisition functions. EI
measures the expected amount of improvement over the
current best value f ′ by observing at the sampling point:
EI(x) = E[max{0, f̂(x|Yi) − f ′}]. When f̂(x) is GP, EI
has a closed-form expression (Jones et al., 1998), thus
widely used in practice. Finally, the sample for next-step
evaluation is selected as x+ = argmaxx EI(x). The set of
observed samples is updated as Yi+1 = Yi ∪ {f(x+)}, and
f̂ is recomputed on Yi+1.

Another layer of complexity is added to our problem by
incorporating unknown constraints. In this work, we are
interested in practical applications where design samples
can be feasible and infeasible. Unlike other works with
constraints that are continuous functions giving a real value
even for samples that do not satisfy the constraints (Eriksson
& Poloczek, 2021), in our setup, it is impossible to obtain
any objective value when the design is infeasible. These
designs are impossible to create and evaluate. They either
contradict the forces of physics or fail during the evaluation
time. Hence, we model the constraints as a binary function
c : X → {0, 1}, where x is feasible if c(x) = 1 and
infeasible otherwise. Our final goal can be formalized as

argmin
x∈X

f(x) s.t. c(x) = 1,

where both f and c are unknown.
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(a)

Gaussian Process Deep Ensemble Ground Truth

(b)

(c)

Figure 1: Comparison of modeling constraints between
Gaussian Processes (GP) and Deep Ensembles (DE) on the
LSQ problem with three sets of random sample evaluations.
Green dots represent feasible designs and red dots represent
infeasible designs. We observe that DE tends to be more
robust than GP in capturing complex boundaries. (a) Failure
case of GP; (b) Successful case of GP; (c) Both GP and DE
are not fitted well due to the poor sample distribution but
DE is closer to the ground truth.

4. Proposed Method
Our proposed method implements the BO pipeline with a
few modifications described below. In summary, our method
consists of the following steps: We first conduct initial eval-
uations on a random set of samples. We then fit a GP (as
outlined in Rasmussen & Williams (2005)) on the evalu-
ated data to model the objective function. In parallel, we
fit another surrogate model to approximate the constraints
described in Section 4.1. To select which sample to evaluate
next, we optimize an acquisition function EI (see Section 3)
with a constrained optimization approach introduced in Sec-
tion 4.2. Finally, we evaluate the proposed sample and
iterate until we reach the budget for the number of function
evaluations.

4.1. Modeling Constraints

As described in Section 3, we consider the problem of rep-
resenting constraints as a binary function, i.e., a classifier
that predicts for each design sample whether it is feasi-
ble or infeasible. Specifically, we aim to train a classifier
C : X ⊂ Rd → [0, 1] that measures a probability of sample
x being feasible. When C(x) > 0.5, sample x is considered
more likely to be feasible.

For many practical problems, it is difficult even to find a

single feasible solution due to the non-convex nature of
the feasible set. Hence, fitting a good surrogate model for
the unknown constraints is a delicate task. Many previ-
ous works utilize GPs to approximate the constraints based
on a given set of evaluations (Eriksson & Poloczek, 2021;
Gelbart et al., 2014). However, since we observe that the
optimal solution typically lies on the boundary between
feasible and infeasible regions (see Section 4.2), having a
higher-accuracy surrogate model is crucial. To the best of
our knowledge, we are the first to propose the use of Deep
Ensembles (DE) (Lakshminarayanan et al., 2017; Fort et al.,
2019) for this purpose in Bayesian optimization. Please
note the difference between ensembles previously used in
Bayesian optimization that were in the context of Gaus-
sian Process Ensembles (Wang et al., 2018) and Acquisition
Functions Ensembles (Hoffman et al., 2011; Kandasamy
et al., 2020).

Deep Ensembles DE is composed of a set of neural net-
works, often multilayer perceptrons (MLPs), and can be
used to model epistemic uncertainty. By training multi-
ple independent MLPs and leveraging the diversity among
them, DE enable improved accuracy and enhanced uncer-
tainty estimation. Each MLP in the ensemble is trained on
the same dataset but with different random initialization
for weights. During inference, predictions from the ensem-
ble are obtained by averaging or combining the individual
model predictions. Unlike Bayesian NN, it does not require
delicate hyperparameter tuning and long training.

More specifically, in this work, we train N identical MLPs
Mθi independently on all evaluated samples Yi to model the
probability of each sample being feasible or infeasible. The
output of each Mθi is a probability value between 0 and 1
at a given sample point x. Our classifier C is defined as a
DE and takes the mean of the predicted value from Mθi ,
µE(x) =

1
N

∑N
i Mθ⋆

i
(x), where θ⋆i are trained weights for

each model. In addition, we can compute the variance of the
prediction as σE(x)

2 = 1
N−1

∑N
i (Mθ⋆

i
(x)− µE(x))

2. To
evaluate the feasibility probability C(x) we are essentially
computing C(x) = µE(x). See details in Appendix A.1.

Benefits of Deep Ensembles GP-based constraint mod-
eling has several limitations which can be addressed by
using DE. First, GPs inherently assume a degree of smooth-
ness in the underlying function they model, as evidenced
by the choice of kernel function (e.g., RBF, Matern). This
smoothness assumption can lead to difficulties when try-
ing to capture sharp boundaries or discontinuities of the
constraint. Second, the kernel structure is chosen a priori
and remains fixed throughout the optimization. Although
parameters of the kernel can be fitted to data, the form of
the kernel itself is fixed and might not be well-suited to
represent complex, non-linear boundaries. This limitation
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Figure 2: Example evaluation of the LSQ synthetic benchmark problem guided by our algorithm BE-CBO. Top row
illustrates the objective function, while the bottom row illustrates the classifier. In the left plot, the ground truth is shown
with the boundary and optimal solution. In the second plot, the state of the surrogate is shown for both the constraint and the
objective, based on the first initial 10 samples. The following three plots demonstrate the state of the surrogate models for
the objective and the constraint after 50, 120, and 200 evaluations.

is discussed in depth in the context of model selection and
adaptation (Duvenaud et al., 2013). Thus, compared to GP,
DE is more flexible and powerful in representing complex
constraint functions (see Figure 1 and (Beluch et al., 2018)
for examples). Besides, DE is also fast to train due to easy
parallelization and simple architectures (see Section 5 for
runtime comparisons). Please refer to Appendix D.1 for
more detailed comparison between GP and DE.

Training Deep Ensembles In practice, we find that train-
ing DE with the popular maximum likelihood estimation
(e.g., using binary cross-entropy loss) as suggested by Lak-
shminarayanan et al. (2017) leads to poorly calibrated uncer-
tainties and thus deteriorates the BO performance. Instead,
we find training DE with variational inference, specifically,
evidence lower bound (ELBO), provides better-calibrated
uncertainties and improves performance by a large margin,
as aligned with observations from Tomczak et al. (2018).
This approach requires the model to output continuous la-
tent values that can be transformed to probabilities using
Bernoulli likelihood. Please see Appendix A.1.2 for compu-
tation details and experimental validations.

4.2. Boundary Exploration

For many practical problems, there is no information about
constraints, and discovering the feasible and infeasible re-
gions of space is intertwined with the optimization process.
These infeasible regions occur when the system has phys-
ical or implicit limitations not artificially imposed by the
users. In such scenarios, we discover infeasible regions by
pushing the limit of what is feasible as we try to optimize
the designs further. This reasoning, and many examples we
have seen in practice, lead us to observe that the optimum

most frequently (if not always) lies on or very close to the
boundary between feasible and infeasible regions.

To ensure exploration around the boundary, we formulate a
constrained optimization problem:

argmax
x

q(x) s.t. l(x) ≤ C(x) ≤ u(x) (1)

where q is an acquisition function (see Section 3), C is the
classifier (Section 4.1), and l and u are lower and upper
bound functions respectively. As discussed in Section 3,
we implement EI for the acquisition function, but note that
Eq. 1 is not in any way tied to the particular formulation of
EI. The proposed method can easily generalize to other ac-
quisition functions. Function l determines how far into the
infeasible region can we sample. By allowing the samples
to be queried in the infeasible part it encourages pushing
the boundary and discovering new regions. However, query-
ing many infeasible samples is especially problematic for a
small sampling budget as those samples do not return any
value. Hence, we limit l to remain close to the boundary,
accounting for uncertainty in the prediction of the bound-
ary, as discussed in the following paragraph. Function u,
however, determines how far into the feasible region we can
sample. Since all feasible values return additional informa-
tion for the GP modeling the objective function, we allow
exploration of the entire feasible region and set u(x) = 1
(recall that the upper bound for C is equal to 1 since it rep-
resents the probability). Please note that all the functions
are updated in every iteration of BO to fit the new data.

A trivial approach to defining the lower bound around the
boundary would be to set a constant value, say l(x) = 0.4.
This bound leaves a 10% margin on the infeasible side of the
boundary to allow some space for exploration and address-
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ing the inaccuracy of surrogate model predictions. However,
in the initial iterations of BO, the surrogate models for
classifier and objective function typically exhibit very high
inaccuracy due to the small number of samples for fitting
and nonlinear functions to approximate (see, for example,
Figure 2). The accuracy can quickly increase with more
samples being evaluated. Hence, the bound should also ac-
count for this change. It should be wider when the accuracy
is low. We propose a dynamic bound strategy, where the ex-
ploration region around the boundary directly relates to the
uncertainty of the fitted classifier. Inspired by UCB (Srinivas
et al., 2010), we define the dynamic bound as:

l(x) = 0.5− σE(x)

where σE(x) is the standard deviation of the Deep Ensem-
bles C for input x.

With this formulation, we incorporate the uncertainty of the
classifier into the selection strategy, while the uncertainty
of the surrogate of the objective function is captured in the
acquisition function (Močkus, 1975). We demonstrate one
example of the optimization progress lead by BE-CBO over
200 evaluations in Figure 2. It qualitatively shows that accu-
rate constraint modeling plus active boundary exploration is
effective in discovering both the correct constraint boundary
and the global optimum.

5. Experimental Evaluation
We conduct comprehensive experiments to evaluate the per-
formance of our methods and compare them to the relevant
state-of-the-art methods on both synthetic test functions and
real-world benchmark problems.

Algorithms We compare our algorithm to several base-
line algorithms described in Section 2 that can be applied
to binary constraints: CEI (Gelbart et al., 2014), SCBO
(Eriksson & Poloczek, 2021), SVM-CBO (Antonio, 2021),
and random search. We implement and compare CEI and
SCBO in our Python codebase, built upon the BoTorch (Ba-
landat et al., 2020) BO framework. We conduct SVM-CBO
experiments using their framework. Our code will be re-
leased with a reproducibility guarantee. See more details in
Appendix B.2.

Benchmark Problems Our benchmark includes three syn-
thetic test functions and nine real-world engineering design
problems: 2D Townsend function (Townsend, 2014), 2D
Simionescu function (Simionescu, 2014), 2D LSQ function
(Gramacy et al., 2016), 2D three-bar truss design (Ray &
Saini, 2001), 3D tension-compression string design (Hedar
et al., 2006), 4D welded beam design (Hedar et al., 2006),
4D gas transmission compressor design (Pant et al., 2009),
4D pressure vessel design (Coello & Montes, 2002), 7D

speed reducer design (Lemonge et al., 2010), 9D planetary
gear train design (Rao et al., 2012), 10D rolling element
bearing design (Gupta et al., 2007), and 30D cantilever beam
design (Cheng et al., 2018). Please refer to Appendix B.1
for more detailed descriptions.

5.1. Results and Discussion

Performance We monitor the current best value f ′ over
the number of evaluations performed. For every algorithm,
we run experiments with 10 different random seeds and
the same 10 initial samples for a total of 200 evaluations.
We average the results over these 10 experiments for every
algorithm, and plot the mean and the standard deviation
across them, as presented in Figure 3.

Test problems are chosen to assess the efficacy of the method
in handling a wide range of function characteristics, includ-
ing concave, convex, disconnected, and varying complexi-
ties in design space. As shown in Figure 3, BE-CBO consis-
tently exhibits top performance and low variance compared
to other algorithms that oscillates across different problems.
Figure 4 shows qualitative comparisons on sample distribu-
tions of algorithms at different time steps when evaluating
on the Simionescu function. Our method effectively ex-
plores the boundary region, classifies the complex constraint
landscape well, and discovers both optima of the function.
Besides, our method also places samples occasionally on
other parts of the boundary to capture other local optima that
are potentially better than the best discovered optima. See
more qualitative examples in Appendix C.1. We benchmark
algorithm runtime in Appendix C.2, which shows that BE-
CBO exhibits stable runtime across all problem dimensions.

Overall, BE-CBO performs robustly on all of our bench-
mark problems, and we have not observed a case in which
it completely fails or performs much worse than other base-
lines. However, we noticed that BE-CBO is slightly out-
performed by SCBO on our 30D cantilever beam design
problem. We speculate that this is because SCBO’s key
advantage in high-dimensional optimization is its usage of
TURBO (Eriksson et al., 2019), a well-designed optimizer
for high-dimensional BO based on the idea of using sev-
eral local surrogates instead of a single global surrogate,
along with its restart strategy when TURBO gets stuck. In
BE-CBO, we adopt a relatively standard SLSQP optimizer
with a global surrogate for acquisition optimization, which
may be suboptimal for practical high-dimensional optimiza-
tion. Although our core idea of BE-CBO is independent
of the choice of acquisition optimizers, we believe that in-
tegrating effective ones such as TURBO with BE-CBO is
technically feasible and promising for combining the best
of both worlds.
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Figure 3: Quantitative comparison of different algorithms including BE-CBO on all benchmark problems. The current best
value is shown w.r.t. the number of function evaluations. Each experiment has 10 initial random samples and 200 total
evaluations. The curve is averaged over 10 different random seeds and the standard deviation is shown as a shaded region.

Feasibility Ratio We measure the feasibility ratio in Fig-
ure 5 by comparing the number of feasible and infeasible
points sampled by each algorithm. This is to keep track of
how many samples did not retrieve any information on the
objective value due to falling in the infeasible region. These
samples do not improve the objective surrogate model, but
they do improve the classifier and push the boundary further.

While the feasibility ratio has not been studied in CBO, there
is abundant research on constrained evolutionary algorithms
that focuses the search around the boundary and demonstrate
improved performance (Isaacs et al., 2008; Ray et al., 2009;
Jiao et al., 2019). Jiao et al. (2019) empirically shows that
50% is the most reliable feasibility ratio for evolutionary
algorithms on global optimization problems with different
function characteristics.

Interestingly, our algorithm outperforms the ones focusing
the search in the feasible region (SCBO) or penalizing points
less likely to be feasible (CEI). It is worth pointing to the
examples where our algorithm is able to discover larger
feasible regions and better performing designs due to the
improved accuracy in constraint modeling and narrowed
search around the boundary on the infeasible side.

Boundary Optimality We focus on practical problems
where the constraints are unknown and imposed by a physi-
cal system. The design keeps improving until it reaches the
limits of the physical system. Hence, the optimum is often
found on the boundary of feasible region. In the prior liter-
ature, this observation has been exploited in multiple con-

1Note that SCBO applies a Gaussian copula transform to the
objective function to magnify the optimum region.

texts, such as designing effective constrained evolutionary
algorithms (Isaacs et al., 2008; Ray et al., 2009; Liu et al.,
2021), designing test functions that resemble real-world
problems (Sergeyev et al., 2021), and active set methods in
constrained optimization (Gratton et al., 2011).

We acknowledge that this property does not hold for every
problem, such as synthetically constructed functions with
interior optima and problems with user-specified constraints.
Therefore, to test the generality of our method, we modi-
fied the three synthetic benchmark problems such that their
optima are shifted to inside the feasible region. Results in
Appendix C.3 shows that BE-CBO successfully reaches the
optimal region and exhibits competitive performance.

In addition, we investigate if active constraints exist at the
global optima of all nine real-world problems in our bench-
mark, which cover most of the mechanical design problems
with continuous parameters and unknown inequality con-
straints collected in a real-world non-convex constrained
problem suite (Kumar et al., 2020). For problems that do not
have a known global optimum, we run CMA-ES (Hansen
et al., 2003) with millions of evaluations to approximate a
global optimum. As a result, we found that all nine prob-
lems have the global optimum on the constraint boundary,
i.e., at least one active constraint. In those scenarios, the ac-
tive constraints represent physical limitations that determine
the upper bound of the mechanical design’s performance.
See more details of these experiments in Appendix B.1.3.

5.2. Ablation Studies

To systematically study how effective each component of
BE-CBO is, we conduct comprehensive ablation study ex-
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Figure 4: Qualitative comparison of sample distributions from different algorithms on the Simionescu benchmark. Left: The
true function landscape, where darker color means a higher objective value and the white region is infeasible. Right: The
predicted function landscape (top: CEI, middle: SCBO1, bottom: BE-CBO) where darker color means a higher objective
value and the contour represents the feasibility boundary (feasible inside, infeasible outside). Grey: initial samples, black:
evaluated samples guided by each algorithm, and red: the global optima.

periments around the two key contributions of BE-CBO:
Deep Ensembles (DE) and boundary exploration. Please
see Appendix D for details of each experiment. We aim to
answer the following key questions:

1. How does DE improve classification accuracy upon GP?
In Appendix D.1.1, we compare the classification perfor-
mance between DE and GP when being used as the classifier
in BE-CBO. By measuring the Balanced Accuracy metric
from 10K random samples in the space in each iteration, we
observe DE’s superior and stable performance compared to
GP on all benchmark problems.

2. How does DE improve BE-CBO’s performance upon
GP? Appendix D.1.2 shows that by switching DE to GP
in BE-CBO, we observe significant performance drop on
half of the benchmark problems. It confirms that having
more accurate constraint classification helps improve the
BO performance, especially for our boundary exploration
strategy where boundary accuracy is important, and for real
physical problems where boundary is crucial to explore.

3. Is DE sensitive to hyper-parameters? We find that the
overall performance of DE is insensitive to hyperparameters
within wide ranges by experimenting different numbers of
MLPs, numbers of hidden layers, numbers of neurons in a
layer, and learning rates in Appendix D.2.

4. How does BE-CBO perform with other acquisition func-
tions than EI? We use EI as the acquisition function in
BE-CBO mainly because of its popularity and good balance
between exploration and exploitation. However, BE-CBO
is compatible with any standard acquisition functions and
is not tied to EI. One can also use upper confidence bound

(UCB) when more explicit control over the exploration is
preferred. In Appendix D.3, we compare the performance of
using EI and UCB for BE-CBO respectively, and the results
suggest that they perform similarly well on our benchmark
problems overall with some differences in particular prob-
lems.

5. How does boundary exploration perform compared to
other forms of constrained acquisition functions? We in-
vestigate two variants of BE-CBO where similar constraint
treatments to CEI and SCBO are applied instead of the
proposed boundary exploration. In Appendix D.4, the re-
sults show that our boundary exploration is the most robust
strategy in coupling the constraints with the acquisition
function.

6. Conclusion and Future Work
We introduced a novel CBO method that aims to find a
global optimum of an unknown function under unknown
constraints. We specifically address the problem in which
the infeasible designs cannot be evaluated, hence returning
no information for the objective function nor a continuous
value for the constraint. Such problems are common, for ex-
ample, in chemistry and materials science in which specific
combinations of synthesis parameters may lead to invalid
materials, making it impossible to measure any output quan-
tities. This results in a BO iteration with no information
gain which can cause the optimizer to get stuck in the worst
case. Coupling the BO optimizer with a classifier that can
distinguish the feasible from the infeasible regions allows
the optimizer to also draw information from failed experi-
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Figure 5: Feasibility ratio comparison of different algorithms including our BE-CBO on synthetic test functions and
real-world problems. The error bar charts represent the mean and variance over 10 different random seeds.

ments and to converge quickly to the actual optimum most
often located at the constrained boundary, paving the way
to more efficient experimentation.

We employed Deep Ensembles for the classification of the
constraints representing binary feasible/infeasible regions.
To the best of our knowledge, we are the first to propose
using DE for modeling unknown constraints in BO. DE
exhibits improved accuracy in the classification, allowing
our method to focus the search for optima on the boundary.
However, we share the same observation as Li et al. (2023)
that using DE for modeling objectives (i.e., regression) does
not lead to improved performance. Finally, we present a
boundary exploration strategy that efficiently discovers bet-
ter designs. We performed extensive tests on both synthetic
test functions and real-world problems. We found that our
approach outperforms other methods and works particularly
well on practical problems.

We acknowledge two main limitations of our work. Firstly,
our algorithm was exclusively tested in a continuous de-
sign space, focusing on a single objective. To broaden its
applicability, a future direction would involve extending
the algorithm to handle categorical variables and explore
multi-objective BO. Secondly, our work does not account
for the potential costs linked to evaluating infeasible sam-
ples. For instance, costs associated with material breakage
during evaluation or motor damage caused by excessively
high voltage are not considered. Furthermore, to the best of
our knowledge, we are unable to find theoretical analysis
on global convergence rate in the constrained BO literature
when unknown constraints are involved due to the added
complexity of constraint surrogates and the interplay be-
tween constraints and objectives. We leave these exciting

directions for future work.
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A. Method Implementation Details
A.1. Deep Ensembles

A.1.1. NEURAL NETWORK ARCHITECTURE AND PARAMETERS

We implement an ensemble of Multi-layer Perceptrons (MLPs) for modeling the unknown constraints. For each MLP in
the ensemble, we use a simple and standard structure of 4 fully connected layers with 64⌊log2(d)⌋ neurons in each hidden
layer where d is the problem dimension. The network gets larger as the problem dimension gets higher. We use ReLU
nonlinearity between each pair of fully connected layers.

Similar to training GP classifiers using a variational framework (Hensman et al., 2015), we use the variational evidence
lower bound (ELBO) to approximate the posterior and marginal likelihood of Deep Ensemble classifiers given the Bernoulli
likelihood. The ensemble is optimized for maximal marginal log likelihood using the Adam optimizer with a 3 × 10−4

learning rate for 1,000 iterations. Note that we do not apply regularization or dropout as suggested by Lakshminarayanan
et al. (2017).

Overall, the architecture we use is very simple and straightforward to implement with almost no hyper-parameters, but
works robustly across a wide range of benchmark problems as shown in our experiments.

A.1.2. MEAN AND UNCERTAINTY COMPUTATION

In Section 4.1 of the main paper, we introduced the mean and variance computation following the original formulation of
Deep Ensembles (Lakshminarayanan et al., 2017). In practice, we empirically observed an alternative implementation of
mean and uncertainty computation leads to better performance.

As mentioned in Section 4.1, instead of letting the network ensemble directly output the probability value between [0, 1]
for the constraint feasibility and training the ensemble using maximum likelihood estimation (MLE, specifically, binary
cross-entropy loss), we treat the network ensemble as a real-valued latent constraint function g(x) such that the constraint is
satisfied if and only if g(x) ≥ 0. In other words, we let the network ensemble output a latent Gaussian distribution in a
continuous space and later transform the output to a probability between [0, 1] by standard normal CDF Φ, following the
approach taken by CEI (Gelbart et al., 2014). The transformed probability is essentially the mean prediction. With such
treatment, we can optimize the Deep Ensembles in a similar way as training GP classifiers based on a variational inference
(VI) framework, as described in Section A.1.1.

For uncertainty computation, since we can easily get the real-valued mean µg and standard deviation σg from the latent
Gaussian distribution, we can transform the one-sigma confidence interval [µg − σg, µg + σg] by the standard normal CDF
Φ and obtain a corresponding confidence interval in the transformed probability space [Φ(µg − σg),Φ(µg + σg)] and define
the transformed standard deviation as σE = (Φ(µg + σg)− Φ(µg − σg))/2. In practice, we use this formula to obtain the
dynamic bounds as described in Section 4.2 of the main paper.

In practice, we find that models trained by MLE are overly confident, i.e., usually output extremely low uncertainties, which
leads to the poor performance. On the contrary, training with VI produces much more reasonable uncertainty estimation.
Figure 6 shows empirical comparisons between training DE with VI and MLE respectively for BE-CBO, which shows a
clear advantage of VI.

A.2. Constrained Optimization on Acquisition Functions

For numerical optimization of the constrained acquisition function in BE-CBO, we specify the dynamic bound constraint as
a nonlinear inequality constraint to the acquisition optimizer in BoTorch (Balandat et al., 2020), which calls an underlying
SLSQP optimization from SciPy, a standard and robust choice for handling nonlinear inequality constraints. However,
the SLSQP optimizer requires constraint-satisfying initial solutions as input. Since randomly generated initial solutions
can easily violate the constraint, to deal with this problem, we use the Adam optimizer (Kingma & Ba, 2014) to find
constraint-satisfying samples through gradient descent. We use a standard mean squared error (MSE) loss to measure the
difference between the sample’s feasibility probability and 0.5. By optimizing such MSE loss, the sample gets closer to the
constraint boundary by pushing the feasibility probability to 0.5, thus the sample becomes closer to satisfying the dynamic
band constraint.
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Figure 6: Comparisons between BE-CBO trained with VI and MLE respectively, averaged over 10 random seeds.

B. Experimental Setup
Due to the large number of benchmark problems and random seeds, the experiments are conducted in parallel on a distributed
server with Intel Xeon Platinum 8260 CPUs with 4GB RAM per core, where each individual experiment runs on a single
CPU thread without GPU.

For surrogate modeling of the objective in BE-CBO and all baseline algorithms, we directly use the implementation of GP
regressors in BoTorch (Balandat et al., 2020), where Matern 5/2 kernel is used with their default hyperparameters1. For the
GP constraint classifiers in all baseline algorithms and also ablation studies in BE-CBO, we leverage the implementation
from GPyTorch (Gardner et al., 2018), where RBF kernel is used with their default hyperparameters.2 We use the standard
Bernoulli likelihood in GP classifiers for representing posterior probability distributions, and use the variational evidence
lower bound (ELBO) to optimize the GP classifiers (Hensman et al., 2015).

B.1. Benchmark Problems

In this section, we briefly introduce the properties of each problem, including the dimensions of the design space X ⊂ Rd.
The problem descriptions for 3 synthetic functions and 9 real-world problems are described respectively. We perform 10
independent test runs with 10 different random seeds for each problem on each algorithm. For each test run of one problem,
we use the same initial set of samples for every algorithm, which is generated by a scrambled quasirandom Sobol sequence
using the same random seed.

We represents all benchmark problems in the form of minimizing f(x) subject to multiple underlying constraints c1(x) ≥
0, ..., cn(x) ≥ 0. Note that we aim to solve the problem where the constraints are unknown and the algorithm only learns
whether a design point is feasible or infeasible. Hence, multiple constraints can exist, but their formulas are invisible and
they are all captured with one classifier that outputs a binary value.

B.1.1. SYNTHETIC TEST FUNCTIONS

Townsend function (Townsend, 2014) is a trigonometric function f(x) = −[cos((x1 − 0.1)x2)]
2 − x1 sin(3x1 + x2)

constrained by c(x) = (2 cos t− 1
2 cos 2t−

1
4 cos 3t−

1
8 cos 4t)

2 + (2 sin t)2 − x2
1 − x2

2 where t = arctan2(x1, x2) and
with bounds −2.25 ≤ x1 ≤ 2.25 and −2.5 ≤ x2 ≤ 1.75.

1https://botorch.org/tutorials/scalable_constrained_bo
2https://notebook.community/jrg365/gpytorch/examples/02_Simple_GP_Classification/Simple_

GP_Classification
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Simionescu function (Simionescu, 2014) is a hyperbolic paraboloid function f(x) = 0.1x1x2 constrained by c(x) =
(rT + rS cos(n arctan x

y ))
2 − x2

1 − x2
2 where rT = 1, rS = 0.2 and n = 8, in the domain [−1.25, 1.25]2.

LSQ function (Gramacy et al., 2016) is a linear objective function f(x) = x1 + x2 with sinusoidal and quadratic
constraints c1(x) = x1 + 2x2 +

1
2 sin(2π(x

2
1 − 2x2))− 3

2 and c2(x) =
3
2 − x2

1 − x2
2 bounded by [0, 1]2.

B.1.2. REAL TEST FUNCTIONS

Three bar truss design (Ray & Saini, 2001) minimizes the volume of the truss structure subject to stress constraints. The
analytical formula is given as f(x) = l(2

√
2x1 + x2) with two variables 0 ≤ x1, x2 ≤ 1, subject to three constraints:

• c1(x) = 2−
√
2x1+x2√

2x2
1+2x1x2

• c2(x) = 2− 1
x1+

√
2x2

• c3(x) = 2− x2√
2x2

1+2x1x2

Tension-compression string design (Hedar et al., 2006) is a three dimensional design problem where the weight of a
tension-compression string, given by f(x) = (x1 + 2)x2x

2
3, needs to be minimized, where: 2 ≤ x1 ≤ 15 is the number of

active coils (integer), 0.25 ≤ x2 ≤ 1.3 is the wire diameter, and 0.05 ≤ x3 ≤ 2 is the mean coil diameter. This minimization
is constrained by the minimum deflection, shear stress, surge frequency, and limits on the outside diameter (Coello &
Montes, 2002):

• c1(x) =
x3
2x1

71785x4
3
− 1

• c2(x) = 1− 4x2
2−x3x2

12566(x2x3
3−x4

3)
− 1

5108x2
3

• c3(x) =
140.45x3

x2
2x1

− 1

• c4(x) = 1− x2+x3

1.5

Welded beam design (Belegundu & Arora, 1985) aims to minimize the cost of the beam, f(x) = 1.10471x2
1x2 +

0.04811x3x4(14 + x2), where 0.125 ≤ x1 ≤ 10 and 0.1 ≤ x2, x3, x4 ≤ 10 are four design variables referring to physical
dimensions of the beam. This optimization is subject to constraints on the shear stress, bending stress in the beam, buckling
load on the bar, the end deflection of the beam, and a side constraint (Hedar et al., 2006):

• c1(x) = 13000− τ(x)

• c2(x) = 30000− σ(x)

• c3(x) = Pc(x)− 6000

• c4(x) = 0.25− δ(x)

• c5(x) = x4 − x1

where τ(x) =

√
(τ1(x))2 + (τ2(x))2 +

x2τ1(x)τ2(x)√
0.25[x2

2+(x1+x3)2]
, τ1(x) = 6000√

2x1x2
, τ2(x) =

6000(14+0.5x2)
√

0.25[x2
2+(x1+x3)2]

2[0.707x1x2(x2
2/12+0.25(x1+x3)2)]

,

σ(x) = 504000
x2
3x4

, Pc(x) = 64746.022(1− 0.0282346x3)x3x
3
4, δ(x) = 2.1953

x3
3x4

.

Gas transmission compressor design (Pant et al., 2009) aims to minimize the total annual cost of a gas pipeline trans-
mission system and its operation, given by f(x) = (8.61)105x

1/2
1 x2x

−2/3
3 x

−1/2
4 + (3.69)104x3 + (7.72)108x−1

1 x0.219
2 −

(765.43)106x−1
1 , where 20 ≤ x1 ≤ 50 is the length between compressor stations, 1 ≤ x2 ≤ 10 is the compression

ratio, 20 ≤ x3 ≤ 50 is the inside diameter of the pipe, and 0.1 ≤ x4 ≤ 60 is a non-dimensional parameter, subject to
c(x) = 1− x4x

−2
2 − x−1

2 .

Pressure vessel design (Coello & Montes, 2002) minimize the total cost f(x) = 0.6224x1x3x4 + 1.7781x2x
2
3 +

3.1661x2
1x4 + 19.84x2

1x3, including the cost of the material, forming and welding. There are four design variables: Ts
(thickness of the shell), Th (thickness of the head), R (inner radius) and L (length of the cylindrical section of the vessel, not
including the head). The constraints are given as:

• c1(x) = x1− 0.0193x3

• c2(x) = x2− 0.00954x3

• c3(x) = πx2
3x4 +

4
3πx

3
3 − 1296000

• c4(x) = 240− x4
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Speed reducer design (Lemonge et al., 2010) is a seven dimensional problem that seeks to minimize the weight of a
speed reducer. The design variables are: the face width (2.6 ≤ x1 ≤ 3.6), the module of teeth (0.7 ≤ x2 ≤ 0.8), the number
of teeth on pinion (integer) (17 ≤ x3 ≤ 28), the length of the shaft 1 between the bearings (7.3 ≤ x4 ≤ 8.3), the length of
the shaft 2 between the bearings (7.3 ≤ x5 ≤ 8.3), the diameter of the shaft 1 (2.9 ≤ x6 ≤ 3.9), and the diameter of the
shaft 2 (5 ≤ x7 ≤ 5.5).

The weight is given by:

f(x) = 0.7854x1x
2
2(3.3333x

2
3+14.9334x3− 43.0934)− 1.508x1(x

2
6+x72)+7.4777(x3

6+x3
7)+0.7854(x4x

2
6+x5x

2
7)

and is subject to the following mechanical constraints:

• c1(x) = 1− 27x−1
1 x−2

2 x−1
3 ,

• c2(x) = 1− 397.5x−1
1 x−2

2 x−2
3 ,

• c3(x) = 1− 1.93x−1
2 x−1

3 x−3
4 x−4

6 ,

• c4(x) = 1− 1.93x−1
2 x−1

3 x−3
5 x−4

7 ,

• c5(x) = 1100− [ 745x4

x2x3

2
+ (16.9)106]0.5 1

0.1x3
6

,

• c6(x) = 850− [ 745x5

x2x3

2
+ (157.5)106]0.5 1

0.1x3
7

,

• c7(x) = 40− x2x3,

• c8(x) = x1/x2 − 5,

• c9(x) = 12− x1/x2,

• c10(x) = 1− (1.5x6 + 1.9)x−1
4 ,

• c11(x) = 1− (1.1x7 + 1.9)x−1
5 .

Planetary gear train design (Rao et al., 2012) minimizes the gear ratio errors which can be stated as:

f(x) = max |ik − i0k| where k = {1, 2, R}, i1 = N6

N4
, i01 = 3.11, i2 = N6(N1N3+N2N4)

N1N3(N6−N4)
, i02 = 1.84, iR =

(
N2N6

N1N3

)
,

i0R = −3.11. The design variables are defined as x̄ = (ρ,N6, N5, N4, N3, N2, N1,m2,m1). It is also subject to the
following constraints:

• c1(x) = Dmax −m3(N6 + 2.5)

• c2(x) = Dmax −m1(N1 +N2)−m1(N2 + 2)

• c3(x) = Dmax −m3(N4 +N5)−m3(N5 + 2)

• c4(x) = (N1 +N2) sin
(

7
ρ

)
−N2 − 2− δ22

• c5(x) = (N6 −N3) sin
(

7
ρ

)
−N3 − 2− δ33

• c6(x) = (N4 +N5) sin
(

7
ρ

)
−N5 − 2− δ55

• c7(x) = (N6−N3)
2− (N3+N5+2+ δ35)

2− (N4+

N5)
2 − 2(N6 −N3)(N4 +N5) cos

(
2π
ρ − β

)
• c8(x) = −N4 +N6 − 2N5 − 2δ56 − 4

• c9(x) = −2N3 +N6 −N4 + 2δ34 + 4

where δ22 = δ33 = δ55 = δ35 = δ56 = 0.5, β = cos−1
(

(N4+N5)
2+(N6−N3)

2−(N3+N5)
2

2(N6−N3)(N4+N5)

)
, and Dmax = 220, with bounds:

p = (3, 4, 5), m1 = (1.75, 2.0, 2.25, 2.5, 2.75, 3.0), m3 = (1.75, 2.0, 2.25, 2.5, 2.75, 3.0), 17 ≤ N1 ≤ 96, 14 ≤ N2 ≤ 54,
14 ≤ N3 ≤ 51, 17 ≤ N4 ≤ 46, 14 ≤ N5 ≤ 51, 48 ≤ N6 ≤ 124, and Ni is an integer. We apply continuous optimization
methods on this problem by rounding the continuous variables into integer ones.

Rolling element bearing design (Gupta et al., 2007) optimizes the dynamic capacity of a rolling bearing. The design
parameter vector can be written as x̄ = (Dm, Db, Z, fi, fo,KDmin,KDmax, ε, e, ξ) where f̄i = ri

Db
and f̄o = ro

Db
. The

bounds of the paramters are Dm ∈ [125, 150], Db ∈ [10.5, 31.5], Z ∈ [4, 50], fi ∈ [0.515, 0.6], fo ∈ [0.515, 0.6],
KDmin ∈ [0.4, 0.5], KDmax ∈ [0.6, 0.7], ε ∈ [0.3, 0.4], e ∈ [0.02, 0.1], ξ ∈ [0.6, 0.85]. The objective function is defined as
f(x) = Cd where

Cd =

{
fcZ

2/3D1.8
b , Db ≤ 25.4 mm

3.647fcZ
2/3D1.4

b , Db > 25.4 mm

fc = 37.91

1 +{
1.04

(
(1− γ)1.72

(1 + γ)1.72

)(
fi(2fo − 1)

fo(2fi − 1)

)0.41
}10/30.3

[
γ0.3(1− γ)1.39

(1 + γ)1/3

] [
2fi

2fi − 1

]0.41
, γ =

Db cosα

Dm
.

The constraints are defined as:
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• c1(x) =
ϕ0

2 sin−1
(

Db
Dm

) − Z + 1

• c2(x) = 2Db −KDmin(D − d)

• c3(x) = KDmax(D − d)− 2Db

• c4(x) = ξBw
−Db

• c5(x) = Dm − 0.5(D + d)

• c6(x) = (0.5 + e)(D + d)−Dm

• c7(x) = 0.5(D −Dm −Db)− eDb

where

ϕ0 = 2π − 2 cos−1

[{
(D − d)/2− 3(T/4)2

}2
+ {(D/2− (T/4)−Db)}2 − (d/2 + (T/4))2

2{(D − d)/2− 3(T/4)}{(D/2− (T/4)−Db)}

]
, T = D − d− 2Db.

Cantilever beam design (Cheng et al., 2018) minimizes the tip deflection of a stepped cantilever beam subject to
constraints. Due to the complexity of formulas, please refer to the original paper for details.

B.1.3. BOUNDARY OPTIMALITY OF REAL-WORLD PROBLEMS

Table 1: Details of the 9 real-world design optimization problems. d is the dimension of design variables, g is the number of
unknown inequality constraints, g∗ is the number of active constraints at the optimum, f(x∗) is the optimal performance
value.

Problem Name d g g∗ f(x∗)

Three-bar truss design problem 2 3 1 2.6389E+02
Tension/compression spring design 3 3 2 1.2665E-02
Welded beam design 4 5 1 2.4453E+00
Gas transmission compressor design 4 1 1 2.9648E+06
Pressure vessel design 4 4 2 5.8853E+03
Speed reducer design 7 11 2 2.9944E+03
Planetary gear train design 9 9 1 3.6859E+00
Rolling element bearing 10 9 3 8.3918E+04
Cantilever beam design 30 21 1 1.5731E+02

For real-world design optimization problems with unknown physical constraints, the optimal solutions usually lie on the
boundary of feasible regions since the performance upper bound is usually constrained by physical limits. Though this is
often the experience from practitioners, to further validate whether this observation is true, we check whether the global
optimum is on the constraint boundary for each problem in our collected nine benchmark problems. Table 1 summarizes the
problem description, the optimum information and active constraints at the optimum. All problems have at least one active
constraint at the optimum and some problems have multiple ones.

B.2. Baseline Algorithms

In this section, we provide a description of the other baseline algorithms that we used for comparison with our own algorithm.
Specifically, we compare our algorithms to several BO baseline algorithms that are discussed in Results Section of the
main paper. These baseline algorithms are designed or have been modified to handle binary unknown constraints. Here we
describe the differences between our adoption of these algorithms and their original formulation in the paper.

CEI (Gelbart et al., 2014) We implement this algorithm in BoTorch. The acquisition function remains unchanged to
its original form, with one notable modification regarding the constraint classification. In contrast to the paper’s setup
where individual constraints provide separate responses, our evaluation process only allows for obtaining a single feasibility
response. Therefore, we have modified the implementation to utilize a single binary classifier as a constraint surrogate
instead of multiple classifiers for multiple constraints as described in the original paper.
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SCBO (Eriksson & Poloczek, 2021) We implement this algorithm in BoTorch as there exists a reference implementation
in the BoTorch documentation1. In contrast to the original setup, where multiple continuous responses can be obtained from
individual constraints during evaluation, our approach assumes a binary feasibility response. Consequently, we employ a
single binary classifier in our setup, similar to the adoption of CEI, instead of multiple regressors for multiple constraints as
described in the paper. Due to the binary nature of the constraint, we do not apply the Bilog transformation to the constraint
values. However, we still apply the Gaussian copula transformation to the objective values and implement the restart of new
trust regions according to the paper’s descriptions.

SVM-CBO (Antonio, 2021) To conduct the SVM-CBO algorithm experiments, we utilized the code and framework
provided by the authors. The experimental setup described in their paper involved 100 evaluations, comprising of 10 initial
samples, 60 evaluations in phase 1, and 10 evaluations in phase 2. In our extended evaluations, where we employed 20
initial samples and a total of 200 evaluations, we maintained the same ratio as described in the original paper. Thus, we
performed 127 evaluations in phase 1 and 63 evaluations in phase 2.

C. Additional Comparison
C.1. Qualitative Comparison of Sample Distributions

Figure 7: Qualitative comparison of sample distributions from different algorithms on the LSQ benchmark.

We show more qualitative comparison of sample distributions on extra two 2D functions (LSQ and Townsend) in Figure 7
and 8 besides the Simionescu shown in the main paper. Same as the main paper, in each figure, the true function landscape
is on the left, where darker color means a higher objective value and the white region means infeasible. On the right is the
predicted function landscape (top: CEI, middle: SCBO, bottom: BE-CBO) where darker color means a higher objective
value and the contour means the feasibility boundary (feasible inside, infeasible outside). Initial samples (grey), the rest
evaluated samples (black) and the global optima (red) are also displayed.

For the LSQ function, the objective function is relatively smooth so all three algorithms discover the global optimum in the
end. BE-CBO discovers the global optimum more efficiently at 100 evaluations and also classifies a much more accurate
constraint boundary compared to the other two algorithms. For the Townsend function, both CEI and SCBO get stuck in the
two local optima in the middle, while BE-CBO sucessfully discovers the true global optimum on the upper right corner and
also classifies the constraint boundary well.

C.2. Runtime Comparison

In order to empirically assess the speed efficiency of various algorithms, we collect and analyze the runtime statistics
measured in seconds, shown in Figure 9. In general, BE-CBO exhibits stable runtime across different problem dimensions

1https://botorch.org/tutorials/scalable_constrained_bo
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Figure 8: Qualitative comparison of sample distributions from different algorithms on the Townsend benchmark.

with very low variance, at around 5K seconds for 200 iterations. Our speed is close to CEI in many cases and faster than SCBO
on average. One might observe that BE-CBO has slower performance than all other algorithms on Tension/Compression
String Design, Planetary Gear Train and Rolling Element Bearing Design problems. Though in these cases BE-CBO’s speed
does not change much, other algorithms operate faster than on other problems. This observation can be actually explained by
our proposed feasibility ratio metric shown in Figure 5. In those cases, our algorithm is the most successful in discovering
feasible points while other algorithms produce mostly infeasible points. The surrogate classifiers in other algorithms fail to
learn useful information thus the fitting stops early, with the exception of SVM-CBO where the SVM fitting time scales
badly with the problem dimension.
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Figure 9: Runtime comparison between algorithms. The experiments are averaged over 10 random seeds. The time is
accumulated after every iteration, i.e. after 200 evaluations the runtime is showing the total number of seconds spent to
propose and evaluated all 200 samples.

C.3. Synthetic Benchmark Problems With Interior Optima

Although our motivation of developing BE-CBO is the observation that most real-world problems have their optima on the
constraint boundary due to physical limits, to test the generality of our method, we construct synthetic functions with global
optimum located at the interior of the feasible region. We modified the objective functions of Townsend, Simionescu and
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LSQ while leaving their constraint functions unchanged. Figure 10 shows the landscape of the modified functions. The
analytical forms of the modified objective functions are as follows:

• Townsend: f(x) = −[cos(((x1 + 1)− 0.1)x2)]
2 − (x1 + 1) sin(3(x1 + 1) + x2)

• Simionescu: f(x) = 0.1x1x2 + 0.1(x1 − x2 + 1)2

• LSQ: f(x) = (x1 − 0.4)2 + (x2 − 0.45)2

We conduct experiments on these modified functions using CEI, SCBO and BE-CBO. The comparison results are shown in
Figure 11. The results show that BE-CBO can effectively discover interior optima in different functions. Though BE-CBO
encourages exploration on the constraint boundary, we leverage the underlying Expected Improvement acquisition to decide
where is the most promising region considering both the dynamic band and the whole predicted feasible region. In other
words, whether to explore the boundary region or the interior feasible region depends on the predicted objective landscape,
thus both boundary and interior optima can be discovered.
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Figure 10: Landscape of the modified Townsend, Simionescu and LSQ functions. The red star indicates the global optimum
location, which is inside the feasible region instead of on the constraint boundary in their original forms.
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Figure 11: Quantitative comparison of different algorithms including our BE-CBO on shifted synthetic test functions. The
current best value is shown w.r.t. the number of function evaluations. Every experiment has 10 initial random samples and
200 evaluations in total. The curve is averaged over 10 different initial random seeds and the standard deviation is shown as
a shaded region.

D. Ablation Studies
D.1. Gaussian Processes vs Deep Ensembles for Modeling Unknown Constraints

We use a surrogate model to approximate the unknown constraints. This surrogate model needs to work as a binary classifier
that predicts whether a point is feasible since we do not get any additional information when the point is infeasible. Instead
of using a popular choice for surrogate models in Bayesian optimization, which are Gaussian Processes, here we show how
Deep Ensembles can benefit the overall performance of our Bayesian optimization framework.
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D.1.1. CLASSIFICATION PERFORMANCE COMPARISON

We demonstrate how the classification accuracy of Deep Ensembles is more stable and in general outperforms the accuracy
of Gaussian Processes (GPs). In real-world problems, it is often hard to find any feasible points due to complex constraints,
which is reflected in some of the benchmark problems we used to test our approach (see further details in Section B.1). In
such cases, we will typically obtain imbalanced data where most of the points are infeasible. Hence, to properly compare
the classification accuracy, we use the Balanced Accuracy (Kelleher et al., 2020) metric, defined as

TPR+ TNR

2

where TPR = true positive
total positive is a true positive rate measuring the sensitivity and TNR = true negative

total negative is a true negative rate
measuring the specificity.

The experiments are conducted over the same 10 random seeds for both Deep Ensembles and GPs. To test the GPs we simply
replace the Deep Ensembles with GPs in our algorithm BE-CBO to train the classifier which models the constraints. All the
other steps of our Bayesian optimization framework are identical. Starting from 10 initial random samples, we perform 200
function evaluations in each test run and check the classification accuracy after each evaluation when the classifiers are
updated. The results are reported in Figure 12. Note that GPs oscillate in accuracy between different iterations and perform
poorly on complex real-world problems, which immediately affects the overall algorithm performance shown in Figure 13.
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Figure 12: Comparison of classification accuracy between Gaussian Processes and Deep Ensembles when used as classifiers
in our Bayesian optimization framework. Classification accuracy is computed with the Balanced Accuracy metric. Curves
show the average over 10 random seeds and shaded regions represent standard deviation.

D.1.2. EFFECT OF GAUSSIAN PROCESSES VS DEEP ENSEMBLES ON BE-CBO

We compare the performance of our algorithm BE-CBO when using different surrogate models for the unknown constraints.
In one setup, we run our proposed algorithm consisting of Deep Ensembles for modeling the constraints, while in the other
setup, we replace the Deep Ensembles with Gaussian Processes (GPs). Both setups are tested on the same 10 initial random
samples and we report the average performance and the standard deviation from 10 random seeds in Figure 13. Deep
Ensembles and GPs have comparable performance for simpler benchmark problems, while Deep Ensembles demonstrate
superior performance in higher dimensions and Tension/Compression String design that is known to be challenging to model
and find any feasible designs. Furthermore, we note that GPs perform well only when they are able to closely approximate
the true boundary between the feasible and infeasible region of the design space. This finding is reflected in the classification
accuracy of different surrogate models, as seen in Section D.1.1.
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Figure 13: Performance of our algorithm BE-CBO when using Deep Ensembles vs Gaussian Processes for modeling
unknown constraints. The current best value found by an algorithm is shown w.r.t. the number of function evaluations.
Experiments are run independently from 10 random seeds. The bold curves represent the average in performance over all 10
seeds and shaded areas reflect the standard deviation.

D.2. Hyperparameters of Deep Ensembles

D.2.1. NUMBER OF MLPS

One hyperparameter in our network ensemble is the number of MLPs used. However, we observed that varying this
parameter does not have much significant effect on the overall performance of our algorithm. In our experiments, we use 5
MLPs in an ensemble for efficiency in memory and computing resources. Our tests show that increasing the number of
MLPs up to 8 or decreasing down to 3 mostly has little effect on the overall performance (see Figure 14).
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Figure 14: Performance comparison of our algorithm when using different number of MLPs in ensemble. The current best
value found by an algorithm is shown w.r.t. the number of function evaluations and the performance is averaged over 10
initial seeds for each experiment.
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D.2.2. NUMBER OF HIDDEN LAYERS

The effect of the number of layers on the algorithm is shown in Figure 15. We tested 1, 2, 3, 4 hidden layers with 64 log2 d
neurons in each layer where d is the problem dimension. The result shows that one hidden layer is insufficient in some cases
since the network is too shallow which leads to underfitting. Two or more hidden layers perform similarly in general.
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Figure 15: Comparison of BE-CBO with different number of hidden layers for the Deep Ensemble classifier. The current
best value is shown w.r.t. the number of function evaluations. The curve is averaged over 10 different initial random seeds.
The performance of BE-CBO is not particularly sensitive to the number of layers as long as it has more than one hidden
layer.

D.2.3. NUMBER OF NEURONS IN A LAYER

The effect of the number of layers on the algorithm is shown in Figure 16. To effectively learn across all problem
dimensions, we scale the number of neurons in each layer w.r.t. the problem dimension following a logarithmic formula
N(d) = C log2(d) where N is the number of neurons, d is the problem dimension and C is a constant factor. We tested
C = 16, 32, 64, 128, 256 with 2 hidden layers. The results suggest that on most problems, the number of neurons do not
matter much, but in some problems, networks with a low capacity (C = 16 or 32) are outperformed by networks with more
neurons and it seems like C = 64 is a stable choice across all problems.

D.2.4. LEARNING RATE

In the paper, we did experiments with a 3e-4 learning rate, which is a common choice for this hyperparameter. We now test
3e-3, 1e-3, 3e-4, 1e-4, 3e-5 learning rates and show results in Figure 17. Since we set a fixed number of training iterations
(1000), small learning rates 1e-4 and 3e-5 are outperformed by larger rates because the network training does not converge.
Larger learning rates (3e-3, 1e-3, 3e-4) perform similarly with slight variations on different problems.

D.3. Acquisition Function Choices

To understand the performance of BE-CBO on more acquisition functions, we switch from EI to UCB (with beta = 0.1 as
the default value in BoTorch) in our method and run empirical comparisons. As shown in Figure 18, the results suggest that
EI and UCB perform similarly well on our benchmark problems overall, with some performance differences in particular
problems. In practice, users may select the proper acquisition function to be used in BE-CBO based on the desired properties
(such as the explicit control over exploration in UCB).

D.4. Dynamic Adaptation of Bounds for Boundary Exploration

To validate whether the proposed boundary exploration strategy is successful, we modify our BE-CBO with different
methods of coupling the constraint into the acquisition function instead of doing boundary exploration. For example, CEI
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Figure 16: Comparison of BE-CBO with different number of neurons in a layer for the Deep Ensemble classifier. The
current best value is shown w.r.t. the number of function evaluations. The curve is averaged over 10 different initial random
seeds. The performance of BE-CBO is not sensitive to the number of neurons as long as it has at least 64 neurons in a layer.
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Figure 17: Comparison of BE-CBO with different learning rates for training the Deep Ensemble classifier. The current best
value is shown w.r.t. the number of function evaluations. The curve is averaged over 10 different random seeds. Relatively
large learning rates perform similarly good as small rates will underfit the network since the number of training iterations is
fixed.

proposes to multiply the feasible probability with the acquisition function, and SCBO applies a 0.5 upper bound on the
feasible probability as a constraint on top of the acquisition function. Specifically, when ignoring the rest of their approaches,
they can be written as optimizing:

CEI: argmax
x

C(x)q(x)

SCBO: argmax
x

q(x) s.t. C(x) ≥ 0.5

For reference, our approach is optimizing:

BE-CBO: argmax
x

q(x) s.t. C(x) ≥ 0.5− σE(x)
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Figure 18: Comparison of BE-CBO with different acquisition functions (EI and UCB). The current best value is shown w.r.t.
the number of function evaluations. The curve is averaged over 10 different random seeds.

Thus, we develop two variants of BE-CBO based on CEI and SCBO’s optimization objective and call them BE-CBO-M
(M stands for multiplication of C(x)) and BE-CBO-C (C for the 0.5 cutoff on C(x)), while the rest of the algorithm (e.g.,
surrogate models) share the same design choices as BE-CBO. Figure 19 compares the performance between these two
variants and BE-CBO on all benchmark problems.

The results show that BE-CBO-M is clearly outperformed by BE-CBO-C and BE-CBO. Even though the multiplicative
form of BE-CBO-M is a reasonable design in theory, in practice, the inaccuracy in constraint modeling can lead to failure
cases easily. On one hand, multiplying C(x) with the acquisition may encourage sampling in the safe region instead of
exploration; On the other hand, when overestimation of the acquisition value happens in the infeasible region, even with a
small probability of C(x), it may still sample very far away in the infeasible region where the predicted q(x) is huge. The
algorithm gets stuck in such scenario because the new evaluated infeasible point does not update the classifier much since it
already has a low feasibility prediction, then in the next iteration, the algorithm will keep proposing points in the similar
region.

BE-CBO-C shares a similar performance with BE-CBO in low dimensional problems, but the performance starts to
deteriorate when evaluated on high dimensional problems. Especially on the 30D Cantilever Beam Design problem, having
a 0.5 cutoff bound in the objective makes BE-CBO-C explores much slower compared to BE-CBO. For more thorough
evaluations, we implemented four additional high-dimensional real-world benchmark problems, including 10D multi-product
batch plant design (Grossmann & Sargent, 1979), 10D synchronous optimal pulsewidth modulation control for 9-level
and 11-level inverters (Rathore et al., 2010), and 14D industrial refrigeration system design (Paul H., 1987). Besides the
dimensionality, we would like to highlight the feasibility ratio (FR) as an important property of our benchmark problems,
which indicates the ratio of feasible samples among a massive amount of random samples in the parameter space. As shown
in Figure 20, BE-CBO greatly outperforms BE-CBO-C on high-dimensional problems with a low feasibility ratio. To further
validate this observation, we conduct controlled experiments on standard synthetic Ackley functions (constrained in the
same way following SCBO) with varying dimensions. Figure 21 shows that BE-CBO becomes more advantageous than
BE-CBO-C on problems with higher dimensions and lower feasibility ratios, and BE-CBO-C completely fails to improve in
challenging cases. In such scenarios, exploration, or the ability to jump out of local minima, is crucial to the algorithm’s
performance. BE-CBO promotes exploration through our proposed dynamic bound strategy, while the fixed and conservative
bound of BE-CBO-C discourages it from effective exploration.
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Figure 19: Comparison of BE-CBO with different variants of constraint coupling in the acquisition function. The current
best value is shown w.r.t. the number of function evaluations. The curve is averaged over 10 different initial random seeds.
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Figure 20: Comparison between BE-CBO and BE-CBO-C on additional high-dimensional real-world problems.
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Figure 21: Comparison between BE-CBO and BE-CBO-C on additional synthetic Ackley functions with different dimen-
sionalities.
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