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Abstract

Maximum Inner Product Search (MIPS) is a
ubiquitous task in machine learning applications.
Given a query vector and n other vectors in d di-
mensions, the MIPS problem is to find the atom
that has the highest inner product with the query
vector. Existing MIPS algorithms scale at least as
O(
√
d) with respect to d, which becomes compu-

tationally prohibitive in high-dimensional settings.
In this work, we present BanditMIPS, a novel ran-
domized algorithm that provably improves the
state-of-the-art complexity from O(

√
d) to O(1)

with respect to d. We validate the scaling of Ban-
ditMIPS and demonstrate that BanditMIPS out-
performs prior state-of-the-art MIPS algorithms
in sample complexity, wall-clock time, and pre-
cision/speedup tradeoff across a variety of ex-
perimental settings. Furthermore, we propose
a variant of our algorithm, named BanditMIPS-
α, which improves upon BanditMIPS by em-
ploying non-uniform sampling across coordinates.
We also demonstrate the usefulness of Bandit-
MIPS in problems for which MIPS is a sub-
routine, including Matching Pursuit and Fourier
analysis. Finally, we demonstrate that Ban-
ditMIPS can be used in conjunction with pre-
processing techniques to improve its complex-
ity with respect to n. All of our experimen-
tal results are reproducible via a 1-line script at
github.com/ThrunGroup/BanditMIPS.
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1. Introduction
The Maximum Inner Product Search problem (MIPS) is a
ubiquitous task that arises in many contexts, such as infor-
mation retrieval, augmenting large auto-regressive language
models, and the Matching Pursuit (MP) problem (Shrivas-
tava & Li, 2014; Neyshabur & Srebro, 2015; Yu et al., 2017;
Locatello et al., 2017; Sivic & Zisserman, 2003; Dong et al.,
2012; Boytsov et al., 2016; Borgeaud et al., 2022).

Given a query vector q ∈ Rd and n atom vectors
v1, . . . ,vn ∈ Rd, MIPS aims to find the atom most similar
to the query:

i∗ = argmax
i∈{1,··· ,n}

vT
i q (1)

For example, in recommendation systems, the query q may
represent a user and the atoms (vis) represent items with
which the user can interact; MIPS finds the best item for
the user as modeled by their concordance vT

i q (Amagata &
Hara, 2021; Aouali et al., 2022). In many applications, the
number of atoms n and the feature dimension d can easily
be in the millions, so it is critical to solve MIPS accurately
and efficiently (Hirata et al., 2022).

The naı̈ve approach scales as O(nd), as it evaluates all nd
scalar products. Significant prior work has focused on the
improving the scaling with n, often via heavy preprocess-
ing (Morozov & Babenko, 2018b; Liu et al., 2020); these
approaches are discussed in detail in Section 1.1. However,
fairly little work has focused on improving the complexity
of MIPS algorithms with respect to d; most existing MIPS
algorithms computationally prohibitive in high-dimensional
datasets in domains like e-commerce, genomics, and fi-
nance.

In this work, we propose BanditMIPS, a state-of-the-art
randomized algorithm for the MIPS problem that scales
as O(1) with respect to d, under general assumptions that
often hold in practice. Intuitively, BanditMIPS performs
adaptive, coordinate-wise sampling to estimate the inner
products vT

i q for each i. BanditMIPS allocates more sam-
ples to “promising” atoms while simultaneously discarding
“unpromsing” atoms quickly. The specific adaptive sam-
pling procedure is motivated by multi-armed bandits (MAB)
(Even-Dar et al., 2006).
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Our specific contributions are as follows:

• In Section 3, we propose BanditMIPS, a novel state-
of-the-art algorithm for MIPS in high-dimensional set-
tings. We also propose BanditMIPS-α, which provides
additional runtime speedup by sampling coordinates
intelligently.

• In Section 4, we prove that BanditMIPS achieves O(1)
sample complexity with respect to d under general
settings.

• In Section 5, we empirically demonstrate that Bandit-
MIPS outperforms baseline algorithms across a variety
of experimental settings and achieves up to a 30× wall-
clock time improvement over the next fastest algorithm.
We also discuss how BanditMIPS can be used as a sub-
routine in other applications, such as Matching Pursuit
and in the classification layer of a large language model
(LLM).

We conclude in Section 6 with a discussion of limitations
and future work.

1.1. Related work

The MIPS problem is well-studied and has inspired many
algorithms due to its ubiquity. Prior work often assumes that
the vector entries are nonnegative, performs non-adaptive
sampling (Lu et al., 2017; Lorenzen & Pham, 2021; Ding
et al., 2019), or relies on product quantization (Dai et al.,
2020). A large family of MIPS algorithms are based on
locality-sensitive hashing (LSH) (Song et al., 2021; Lu &
Kudo, 2021; Wu et al., 2022; Ma et al., 2021) and proxim-
ity graphs, such as ip-NSW (Morozov & Babenko, 2018b).
Many of these algorithms require significant preprocessing,
are limited in their adaptivity to the underlying data distribu-
tion, provide no theoretical guarantees, or scale linearly in
d — all drawbacks that have been identified as bottlenecks
for MIPS in high dimensions (Ponomarenko et al., 2014).

Other approaches attempt to reduce MIPS to a nearest neigh-
bor search (NN) problem. The NN literature is vast and
has inspired the use of techniques based on permutation
search (Naidan et al., 2015), inverted files (Amato & Savino,
2008), vantage-point trees (Boytsov & Naidan, 2013b), k-
dimensional or random projection trees (Dasgupta & Fre-
und, 2008), concomitants of extreme order statistics (Pham,
2020a; 2021; 2020b), ordering permutations (Chávez et al.,
2008), principle component analysis (PCA) (Bachrach et al.,
2014), or hardware acceleration (Xiang et al., 2021; Abuzaid
et al., 2019). The proliferation of NN algorithms has also
inspired several associated software packages (Bernhards-
son, 2018; Johnson et al., 2019; Boytsov & Naidan, 2013a)
and tools for practical hyperparameter selection (Sun et al.,

2023). All of these approaches require significant prepro-
cessing that scales linearly in d, e.g., for computing the
norms of the query or atom vectors, whereas BanditMIPS
does not. Furthermore, MIPS is fundamentally different
from and harder than NN because the inner product is not a
proper metric function (Morozov & Babenko, 2018a).

Recent work to improve scaling with d attempts to use
dimensionality reduction techniques, but these methods
often discard valuable information, particularly in high-
dimensional settings where signal is diffuse, and usually
scale linearly with d (Li et al., 2020). As such, some recent
work attempts to improve scaling with d.

Perhaps most similar to our work is the BoundedMe, which
solves the MIPS problem using an adaptive sampling ap-
proach (Liu et al., 2019). However, this method still scales
as O(

√
d) with respect to d. Intuitively, BoundedMe is only

adaptive to the relative ranking of the inner products; the
number of times each atom is sampled does not adapt to the
actual values of the sampled inner products. This approach
is wasteful because information contained in the sampled
inner products’ values is discarded.

Multi-armed bandits: BanditMIPS is motivated by the
best-arm identification problem in multi-armed bandits
(MABs) (Audibert et al., 2010; Jamieson & Nowak, 2014;
Jamieson et al., 2014; Jamieson & Talwalkar, 2016). In
the best-arm identification setting, we have n arms each
associated with an expected reward µi. At each time step
t = 0, 1, · · · , we decide to pull an arm At ∈ {1, · · · , n},
and receive a reward Xt with E[Xt] = µAt . The objective
is to identify the arm with the largest reward while using
the fewest number of arm pulls. The use of MAB-based
adaptive sampling to develop computationally efficient algo-
rithms has seen many applications, such as random forests
and k-medoid clustering (Tiwari et al., 2020; Bagaria et al.,
2018a;b; Zhang et al., 2019b; Bagaria et al., 2021).

2. Preliminaries and Notation
We consider a query vector q ∈ Rd and n atoms
v1, . . . ,vn ∈ Rd. Let [n] denote the set {1, . . . , n}. For
a given query q ∈ Rd, the MIPS problem is to find the
solution to Equation (1): i∗ = argmaxi∈[n] v

T
i q.

We let µi :=
vi

Tq
d denote the normalized inner product of

atom vi with q. (Intuitively, if each of the coordinates of
the atom vi and q are drawn i.i.d., then the unnormalized
inner product will scale with d, whereas the normalized
inner product will not). Note that argmaxi∈[n] v

T
i q =

argmaxi∈[n] µi so it is sufficient to find the atom with the
highest µi. Furthermore, for i ̸= i∗, we define the gap of
atom i as ∆i := µi∗ − µi ≥ 0 and the minimum gap as
∆ := mini ̸=i∗ ∆i. In this work, we primarily focus on the
computational complexity of MIPS with respect to d.
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Table 1. MIPS as a best-arm identification problem.

Terminology Best-arm identification MIPS

Arms i = 1, . . . , n Atoms v1, . . . ,vn

Arm parameter µi Expected reward E[Xi] Average coordinate-wise product viTq
d

Pulling arm i Sample a reward Xi Sample a coordinate J with reward qJviJ
Goal Identify best arm with probability at least 1− δ Identify best atom with probability at least 1−δ

3. Algorithm
We now discuss the reduction of the MIPS problem to a
best-arm identification problem in the multi-armed bandits
framework. Table 1 represents how BanditMIPS can be
represented as a best-arm identification problem. Intuitively,
we view each atom vi as an arm with arm parameter µi :=
vT
i q
d . Pulling arm i corresponds to randomly sampling a

coordinate J ∼ Unif[d] and evaluating the (scalar) product
Xi = qJviJ . Using this reduction, the best atom can be
estimated using best-arm identification algorithms.

Algorithm 1 BanditMIPS
Input: Atoms v1, . . . ,vn ∈ Rd, query q ∈ Rd, error
probability δ, sub-Gaussianity parameter σ
Output: i∗ = argmaxi∈[n] q

T
i v

1: Ssolution ← [n]
2: dused ← 0
3: For all i ∈ Ssolution, initialize µ̂i ← 0, Cdused ←∞
4: while dused < d and |Ssolution| > 1 do
5: Sample a new coordinate J ∼ Unif[d]
6: for all i ∈ Ssolution do
7: µ̂i ← dusedµ̂i+viJqJ

dused+1

8:
(
1− δ

2nd2
used

)
-CI: Cdused ← σ

√
2 log(4nd2

used/δ)
dused+1

9: end for
10: Ssolution ← {i : µ̂i + Cdused ≥ maxi′ µ̂i′ − Cdused}
11: dused ← dused + 1
12: end while
13: If |Ssolution| > 1, update µ̂i to be the exact value µi =

vT
i q for each atom in Ssolution using all d coordinates

14: return i∗ = argmaxi∈Ssolution
µ̂i

With this reduction in mind, we propose BanditMIPS in
Algorithm 1. BanditMIPS can be viewed as a combina-
tion of the Upper Confidence Bound (UCB) and successive
elimination algorithms (Lai & Robbins, 1985; Even-Dar
et al., 2006; Zhang et al., 2019a), applied to the MIPS prob-
lem. Algorithm 1 uses the set Ssolution to track all potential
solutions to Equation (1); Ssolution is initialized as the set
of all atoms [n]. We will assume that, for a fixed atom i
and a randomly sampled coordinate, the random variable
Xi = qJviJ is σ-sub-Gaussian for some known parameter

σ. With this assumption, Algorithm 1 maintains a mean
objective estimate µ̂i and confidence interval (CI) for each
potential solution i ∈ Ssolution, where the CI depends on the
error probability δ as well as the sub-Gaussian parameter
σ. We discuss the sub-Gaussianity parameter and possible
relaxations of this assumption in Sections 3.2 and 4.

3.1. Additional speedup techniques

Non-uniform sampling reduces variance: In the original
version of BanditMIPS, we sample a coordinate J for all
atoms in Ssolution uniformly from the set of all coordinates
[d]. However, some coordinates may be more informative
of the inner product than others. For example, larger entries
of vi may contribute more to the inner product with q.
Motivated by this observation, we propose BanditMIPS-α,
in which we sample each coordinate j ∈ [d] with probability
wj ∝ q2βj and

∑
j wj = 1, and estimate the arm parameter

µi of atom i as X = 1
wJ

qJviJ . X is an unbiased estimator
of µi and the specific choice of coordinate sampling weights
minimizes the combined variance of X across all atoms;
different values of β corresponds to the minimizer under
different assumptions. We provide theoretical justification
of this weighting scheme in Section 4.

Warm start increases speed: In some settings, it may
be necessary to solve the MIPS problem for a batch of m
queries instead of just a single query. In such cases, we
may cache the atom values for all atoms across a random
subset of coordinates, and provide a warm start to Bandit-
MIPS by using these cached values to update arm parameter
estimates µ̂i, Ci, and Ssolution for all m MIPS problems
simultaneously. Such a procedure will eliminate the less
promising atoms and avoid repeated sampling for each of
the m MIPS problems, thereby improving computational
efficiency. We note that, since the m MIPS problems are
independent, the theoretical guarantees described in Section
4 still hold across all m MIPS problems simultaneously.

3.2. Sub-Gaussian assumption and construction of
confidence intervals

Crucial to the accuracy of Algorithm 1 is the construction of
the (1−δ)-CI based on the σ-sub-Gaussianity of each Xi =
qJviJ . We note that the requirement for σ-sub-Gaussianity
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is rather general. In particular, when the coordinate-wise
products between the atoms and query are bounded in [a, b],
then each Xi is σ-sub-Gaussian with σ2 = b2−a2

4 . This
is commonly the case, e.g., in recommendation systems
where user ratings (each element of the query and atoms)
are integers between 0 and 5. In such settings, we use this
implied value of σ in our experiments in Section 5.

The σ-sub-Gaussianity assumption allows us to compute
1− δ CIs via Hoeffding’s inequality, which states that for
any random variable Sn = Y1 + Y2 + . . . Yn where each
Yi ∈ [a, b]

P (|Sn − E[Sn]| > ϵ) ≤ exp
(
−2ϵ2

n(b− a)2

)
.

Setting δ equal to the right-hand-side and solving for ϵ gives
the width of the confidence interval. The value σ2 = b2−a2

4
acts as a variance proxy used in the creation of the confi-
dence intervals by BanditMIPS; smaller variance proxies
should result in tighter confidence intervals and lower sam-
ple complexities and runtimes.

In other settings where the sub-Gaussianity parameter may
not be known a priori, it can be estimated from the data or
the CIs can be constructed using the empirical Bernstein
inequality (Maurer & Pontil, 2009).

4. Theoretical Analysis
We now present theoretical results on the correctness
and computational complexity of BanditMIPS. Since each
coordinate-wise multiplication only incurs O(1) computa-
tional overhead to update running means and confidence
intervals in Algorithm 1, sample complexity bounds trans-
late directly to wall-clock times bounds via constant factors.
For this reason, we focus on sample complexity bounds,
in line with prior work (Tiwari et al., 2020; Bagaria et al.,
2018b).

We present our main result in Theorem 4.1. In Theorem
4.1, we assume that, for a fixed atom vi and dused randomly
sampled coordinates, the (1− δ′) confidence interval scales

as Cdused(δ
′) = O

(√
log 1/δ′

dused

)
(note that we use dused and

δ′ here because we have already used d and δ). We note that
the sub-Gaussian CIs described in Section 3.2 satisfy this
property.

Theorem 4.1. Assume ∃ c0 > 0 s.t. ∀ δ′ > 0, dused > 0,

Cdused(δ
′) < c0

√
log 1/δ′

dused
. With probability at least 1 − δ,

BanditMIPS returns the correct solution to Equation (1) and
uses a total of M computations, where

M ≤
∑

i∈[n],i̸=i∗

min

[
16c20
∆2

i

log

(
n

δ∆i

)
+ 1, 2d

]
. (2)

Theorem 4.1 is proven in the Appendix A. We note that
c0 is the sub-Gaussianity parameter described in Section
3.2 and is a constant. Intuitively, Theorem 4.1 states that
with high probability, BanditMIPS returns the atom with
the highest inner product with q. The instance-wise bound
Equation (2) suggests the computational cost of a given atom
vi, min

[
16c20
∆2

i
log

(
n

δ∆i

)
+ 1, 2d

]
, depends on ∆i, which

measures how close its optimization parameter µi is to µi∗ .
Most reasonably different atoms i ̸= i∗ will have a large ∆i

and incur an O
(

1
∆2 log

n
δ∆i

)
computation that is indepen-

dent of d when d is sufficiently large.

Important to Theorem 4.1 is the assumption that we can con-

struct (1− δ′) CIs Ci(dused, δ
′) that scale as O(

√
log 1/δ′

dused
).

As discussed in Section 3.2, this is a rather general as-
sumption, for example when the estimator Xi = qJviJ
for each arm parameter µi has finite first and second mo-
ments (Catoni, 2012) or is bounded. Our experiments in
Section 5 also verify that this assumption holds in many
real-world datasets.

Discussion of the hyperparameter δ: The hyperparameter
δ allows users to trade off accuracy and sample complexity
when calling Algorithm 1. A smaller value of δ corresponds
to a lower error probability, but will lead to longer runtimes
because the confidence intervals constructed by Algorithm
1 will be wider and atoms will be filtered more slowly. The-
orem 4.1 provides an analysis of the effect of δ and we
discuss appropriate ways to tune it in Section 5. We note
that setting δ = 0 reduces Algorithm 1 to the naı̈ve algo-
rithm for MIPS. In particular, Algorithm 1 is never worse in
sample complexity than the naı̈ve algorithm.

Discussion of the importance of ∆: In general, Bandit-
MIPS takes only O

(
1
∆2 log

n
δ∆

)
computations per atom if

there is reasonable heterogeneity among them. As proven in
prior work (e.g., Appendix 2 of Bagaria et al. (2018a)), this
is the case under a wide range of distributional assumptions
on the µis, e.g., when the µis follow a sub-Gaussian dis-
tribution across the atoms. These assumptions ensure that
BanditMIPS has an overall complexity of O

(
n
∆2 log

n
δ∆

)
that is independent of d when d is sufficiently large, pro-
vided ∆ does not depend on d.

At first glance, the assumption that each ∆i (and therefore
∆) does not depend on d may seem restrictive. However,
such an assumption actually applies under a reasonable num-
ber of data-generating models. For example, if the atoms’
coordinates are drawn from a latent variable model, i.e., the
µis are fixed in advance and the atoms’ coordinates cor-
respond to instantiations of a random variable with mean
µi, then ∆i will be independent of d. As a concrete exam-
ple, two users’ 0/1 ratings of movies may agree on 60%
of movies and their atoms’ coordinates correspond to ob-
servations of a Bernoulli random variable with parameter
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0.6. Other recent works provide further discussion on the
conversion between an instance-wise bound like Equation
(2) and an instance-independent bound that is independent
of d (Bagaria et al., 2018a; Baharav & Tse, 2019; Tiwari
et al., 2020; Bagaria et al., 2021; Baharav et al., 2022).

We note that, in the worst case, BanditMIPS may take O(d)
computations per atom when most atoms are equally good,
e.g., in datasets where the atoms are symmetrically dis-
tributed around q. For example, if each atom’s coordinates
are drawn i.i.d. from the same distribution, then the gaps
∆i will scale inversely with d; We can ameliorate this prob-
lem by permitting an ϵ-suboptimal arm to be identified; we
demonstrate how our algorithm still exhibits O(1) scaling
with respect to d with this modification in Appendix C.

Optimal weights for non-uniform sampling: Let J ∼ Pw

be a random variable following the categorical distribution
Pw, where P(J = j) = wj ≥ 0 and

∑
j∈[d] wj = 1.

The arm parameter µi of an atom i can be estimated by
the unbiased estimator XiJ = 1

dwJ
viJqJ . (Note that d is

fixed and known in advance). To see that XiJ is unbiased,
we observe that EJ∼Pw [XiJ ] =

∑
j∈[d] wj

1
dwj

vijqj =∑
j∈[d]

vijqj
d = µi.

We are interested in finding the best weights w∗, i.e., those
that minimize the combined variance

argmin
w1,...,wd≥0

∑
i∈[n]

VarJ∼Pw [XiJ ], s.t.
∑
j∈[d]

wj = 1. (3)

Theorem 4.2. The solution to Problem (3) is

w∗
j =

√
q2j

∑
i∈[n] v

2
ij∑

j∈[d]

√
q2j

∑
i∈[n] v

2
ij

, for j = 1, . . . , d. (4)

The proof of Theorem 4.2 is provided in Appendix A.

In practice, computing the atom variance
∑

i∈[n] v
2
ij re-

quires O(nd) operations and can be computationally pro-
hibitive. However, we may approximate

∑
i∈[n] v

2
ij based

on domain-specific knowledge. Specifically, if we assume
that for each coordinate j, qj has a similar magnitude to
the vijs, we can approximate 1

n

∑
i∈[n] v

2
ij ≈ q2j and set

w∗
j =

q2j∑
j∈[d] q

2
j

. In the non-uniform sampling versions of

BanditMIPS, we use an additional hyperparameter β and let
w∗

j ∝ q2βj . β can be thought of as a temperature parameter
which governs how uniformly (or not) we sample the co-
ordinates based on the query vector’s values. We note that
β = 1 corresponds Equation (4).

The version we call BanditMIPS-α corresponds to taking
the limit β →∞. In this case, we sort the query vector ex-
plicitly and sample coordinates in order of the sorted query
vector; the sub-Gaussianity parameter used in BanditMIPS-
α is then the same as that in the original problem with

uniform sampling. While the sort incurs O(dlogd) cost, we
find this still improves the overall sample complexity of the
algorithm relative to the closest baseline when O(dlogd+n)
is better than O(n

√
d), as is often the case in practice.

5. Experiments
We now demonstrate the improvements of BanditMIPS and
BanditMIPS-α over prior state-of-the-art across a variety of
datasets and applications.

Datasets: We empirically evaluate the performance of Ban-
ditMIPS and BanditMIPS-α on two synthetic and four real-
world datasets. The two synthetic datasets are called the
NORMAL CUSTOM and CORRELATED NORMAL CUSTOM
datasets and are described in greater detail in Appendix B.
We also conduct experiments on four real-world datasets, the
Netflix Prize dataset (Bennett et al., 2007) the Movie Lens
dataset (Harper & Konstan, 2015), the Sift-1M (Jégou
et al., 2011) and CryptoPairs datasets (Carsten, 2022) to
provide practical evaluations. We also discuss these datasets
in greater detail in Appendix B.

Baseline MIPS algorithms: We compare BanditMIPS and
BanditMIPS-α to eight baseline MIPS algorithms: LSH-
MIPS (Shrivastava & Li, 2014), H2-ALSH-MIPS (Huang
et al., 2018), NEQ-MIPS (Dai et al., 2020), PCA-MIPS
(Bachrach et al., 2014), BoundedME (Liu et al., 2019),
Greedy-MIPS (Yu et al., 2017), HNSW-MIPS (Malkov &
Yashunin, 2016; Morozov & Babenko, 2018a). and NAPG-
MIPS (Tan et al., 2021).

Metrics: Throughout the experiments, we focus on both
sample complexity (defined as the number of coordinate-
wise multiplications performed) and wall-clock time. In
the precision-speedup tradeoff experiments, we also define
the precision@k to be the proportion of the true top k al-
gorithms returned by the algorithms’ top k estimates, and
define the speedup sample complexity of naı̈ve algorithm

sample complexity of compared algorithm . In some
experiments, we also allow for algorithms to identify an
ϵ-suboptimal atom, where ϵ is additive error.

BanditMIPS scales as O(1) with respect to d: We first
assess the scaling with d for BanditMIPS on the four real-
world datasets. Figure 1 shows that BanditMIPS does not
scale with d and returns the correct answer to the MIPS
problem. This validates our theoretical results in Section 4.

BanditMIPS exhibits lower sample complexity than base-
lines while preserving accuracy: We also compare the sam-
ple complexities of BanditMIPS and BanditMIPS-α to those
of the eight baseline MIPS algorithms for different values
of d. Due to prohibitely slow baseline algorithms for larger
values of d, we omitted the Sift-1M and CryptoPairs
from the real-world datasets and instead measure sample
complexities on the two synthetic datasets, with a maximum
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Figure 1. Sample complexity of BanditMIPS versus d on four real-world datasets. The values of R2, the coefficient of determination, are
similar for linear, logarithmic, and square root fits, which suggests the scaling is actually constant; the sample complexity of BanditMIPS
does not scale with d. 95% CIs are provided around the mean and are computed from 10 random trials.

of d = 20, 000. We omit GREEDY-MIPS from Figure 2
because its sample complexity was significantly worse than
all algorithms, and omit HNSW-MIPS as its performance
was strictly worse than NAPG-MIPS (a related baseline).
In measuring sample complexity, we measure query-time
sample complexity and neglect the cost of preprocessing for
the baseline algorithms; this is favorable to the baselines.

Figure 2 shows that BanditMIPS and BanditMIPS-α sub-
stantially outperform other algorithms in sample complexity
on all four datasets. Note that the non-uniform sampling
version BanditMIPS-α outperformed the default version
BanditMIPS in 3 out 4 datasets, suggesting the weighted
sampling technique further improves sample efficiency.
BanditMIPS-α demonstrated slightly worse performance
than BanditMIPS on the Netflix dataset, possibly because
the highest-value coordinates for the randomly sampled
query vectors had low dot products with the atoms. In all
experiments, BanditMIPS and BanditMIPS-α returned the
correct answers to the MIPS problems.

BanditMIPS is faster in wall-clock time than baselines
while preserving accuracy: We also measure the wall-

Algorithms Speedup
Naı̈ve algorithm 1.00×

BoundedMe 0.36×
BanditMIPS 53.02×

BanditMIPS-α 25.97×

Table 2. Wall-clock time speedups of different algorithms on the
Netflix dataset. BanditMIPS and BanditMIPS-α significantly out-
perform the other algorithms. In this setting, ϵ = 0.1, δ = 0.1,
n = 1, 000, and d = 100, 000. Confidence intervals are omitted
for clarity.

clock performance of BanditMIPS and BanditMIPS-α com-
pared to the naı̈ve algorithm and the BoundedME algorithm
(the closest baseline). BanditMIPS and BanditMIPS-α sig-
nificantly outperform both baselines. As shown in Table 2
and Table 3, BanditMIPS surpasses BoundedME by a large
margin for the Netflix and Movie Lens datasets.

BanditMIPS exhibits a better trade-off between speed
and accuracy than baselines: We evaluate the trade-off be-
tween speed and accuracy of BanditMIPS and BanditMIPS-
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Figure 2. Sample complexities of BanditMIPS, BanditMIPS-α, and other baseline algorithms versus d across four datasets. The y-axis is
on a logarithmic scale. BanditMIPS and BanditMIPS-α outperform other baselines in sample complexity. On the Movie Lens dataset,
BanditMIPS outperforms the next best algorithm by 30×. 95% CIs are provided around the mean and are computed from 10 random
trials.

(a) (b)

Figure 3. Wall-clock time of BanditMIPS versus d on the Netflix dataset and the OPT-6.7B experiment. The runtime of BanditMIPS
does not scale with d. For the Netflix dataset, ϵ = 0.1, δ = 0.1, and n = 1, 000. In the OPT-6.7B experiment, ϵ = 1.0, δ = 0.9, and
n = 1, 000. Means were calculated from 10 random seeds; confidence intervals are omitted for clarity.

α by varying the error probability δ; similarly, we vary
the corresponding hyperparameters in the baseline algo-
rithms (see Appendix B.3 for more details). As in Liu

et al. (2019), we define the speedup of an algorithm to
be speedup = sample complexity of naı̈ve algorithm

sample complexity of compared algorithm . The accu-
racy is defined as the proportion of times each algorithm
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Algorithms Speedup
Naı̈ve algorithm 1.00×

BoundedMe 0.41×
BanditMIPS 14.19×

BanditMIPS-α 9.93×

Table 3. Wall-clock time speedups of different algorithms on the
Movie Lens dataset. BanditMIPS and BanditMIPS-α significantly
outperform the other algorithms. In this setting, ϵ = 0.1, δ = 0.1,
n = 1, 000, and d = 6, 000. Confidence intervals are omitted for
clarity.

Algorithms Speedup
Naı̈ve algorithm 1.00×

BoundedMe 1.02×
BanditMIPS 4.00×

BanditMIPS-α 6.02×

Table 4. Wall-clock time speedups of different algorithms when
applied to the classification layer of OPT-6.7B. BanditMIPS and
BanditMIPS-α significantly outperform the other algorithms. In
this setting, ϵ = 1.0, δ = 0.9, n = 10, 000, and d = 4, 096.
Confidence intervals are omitted for clarity.

returns the true MIPS solution (precision@1). Figure 4
shows the results of the precision-speedup tradeoff experi-
ments on the Netflix and Movie Lens datasets. BanditMIPS
and BanditMIPS-α demonstrate the best precision-speedup
tradeoffs amongst all algorithms. Figure 4 also includes the
k-MIPS setting where the goal is to find the top k atoms,
with k = 5.

BanditMIPS can be applied in conjunction with prepro-
cessing techniques to reduce scaling with n: Many forms
of preprocessing for the MIPS problem do not affect the
applicability of BanditMIPS ; in fact, BanditMIPS can often
be used in conjunction with preprocessing to reduce its scal-
ing with n. We propose a variant of BanditMIPS , dubbed
Bucket AE, that combines BanditMIPS with a normalized
binning technique. More precisely, we estimate the norm of
each atom with a constant number of samples. Afterwards,
we sort use the results to sort the atoms into bins of b atoms
in decreasing order, where b is a hyperparameter. Then,
when running BanditMIPS, we make comparisons between
only the best atoms in each bin and eliminate an entire bin
if the maximum possible inner product of that bin’s best
atom is less than the current largest sampled inner product
across all bins. Intuitively, this allows us to filter atoms with
small estimated norm more quickly. Figure 5 demonstrate
the efficacy Bucket AE; it reduces the scaling with n while
maintaining O(1) scaling with d on the Netflix dataset. In
all experiments, Bucket AE returned the correct solution to
the MIPS problem for all trials.

BanditMIPS can be applied to Matching Pursuit: In

the Matching Pursuit (MP) problem, a vector q is approxi-
mated as a linear combination of the atoms v1, . . . ,vn. A
common algorithm for MP involves solving MIPS to find
the atom vi∗ with the highest inner product with the query,
subtracting the component of the query parallel to vi∗ , and
reiterating this process with the residual. This approach
solves the MIPS problem several times as a subroutine. Our
previous experimental results suggest that BanditMIPS can
also be used to accelerate the MP problem.

We construct a simple synthetic dataset (titled the
SimpleSong) where the query is constructed as five notes;
each note is the best atom from an independent MIPS iter-
ation. Figure 5 demonstrates the total sample complexity
of BanditMIPS to identify these notes (five iterations of
MIPS) of the song as the song length increases by looping.
BanditMIPS demonstrates no scaling with respect to d as
the song length increases. This experiment is described in
greater detail in Appendix C.

BanditMIPS can be in classification layers of LLMs:
The final operation in an LLM’s inference pass in classifi-
cation tasks, e.g., next-token prediction, is usually a matrix
multiplication followed by a non-linearity. In such settings,
where the outputs correspond to probabilities over possible
next tokens, it is often sufficient to find the highest element
that results from the final matrix multiplication; this is ex-
actly the MIPS problem. We employ BanditMIPS on the
classification layer of OPT-6.7B (Zhang et al., 2022), where
the MIPS problem is used determine the next token to gen-
erate. Table 4 demonstrates the 4× speedup achieved by
BanditMIPS for hidden dimension size d = 4, 096. Addi-
tionally, Figure 3 demonstrates that BanditMIPS still scales
as O(1) with respect to d in wall-clock time.

Additional Experiments and Violation of Distributional
Assumptions: We discuss a dataset on which the assump-
tions in Section 4 fail, namely when ∆ scales with d in
Appendix C. We also discuss the robustness of BanditMIPS
to corruption of the underlying dataset in Appendix C.

6. Conclusions and Limitations
In this work, we proposed BanditMIPS, a novel state-of-the-
art algorithm for MIPS in high-dimensional settings. We
also proposed BanditMIPS-α, which provides additional
runtime speedup by sampling coordinates intelligently. We
demonstrated, both theoretically and experimentally, that
BanditMIPS and BanditMIPSachievee O(1) sample com-
plexity with respect to d under general settings. We also
showed that both algorithms outperforms baseline algo-
rithms across a variety of experimental settings and achieve
up to a 30× wall-clock time improvement over the next
fastest algorithm. We discussed how BanditMIPS can be
used as a subroutine in other applications, such as Matching
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Figure 4. Precision@k versus speedup for various algorithms across different real-world datasets. Higher is better. The top row consists
of experiments for precision@1 (accuracy); the bottom row for precision@10. BanditMIPS and BanditMIPS-α significantly outperform
the the algorithms; they consistently achieve better precision at higher speedup values than the baselines. Each dot represents the mean
across 10 random trials and CIs are omitted for clarity.

Figure 5. Sample complexity of Bucket AE versus n (left) and d (middle) on the Netflix dataset. Bucket AE demonstrates that no scaling
with d and better scaling with n than BanditMIPS. Means and CIs were obtained from 5 random seeds. Right: sample complexity of MP
when using BanditMIPS as a subroutine for MIPS versus d on the SimpleSong dataset. The sample complexity does not scale with the
length of the song, d. Uncertainties and means were obtained from 3 random seeds. BanditMIPS returns the correct solution to MIPS in
each trial.

Pursuit and in the classification layer of a large language
model (LLM), and can be used in conjunction with prepro-
cessing techniques.

Limitations: Though the assumptions for BanditMIPS and
BanditMIPS-α are often satisfied in practice, requiring them
may be a limitation of our approach. In particular, when

many of the arm gaps are small, BanditMIPS will com-
pute the inner products for the relevant atoms naı̈vely. Fur-
thermore, when the sub-Gaussianity parameter σ is large,
BanditMIPS may collapse to the naı̈ve algorithm.
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A. Proofs of Theorems
In this appendix, we present the proofs of Theorems 4.1 and 4.2.

A.1. Proof of Theorem 4.1:

Proof. Following the multi-armed bandit literature, we refer to each index i as an arm and refer to its optimization object µi

as the arm parameter. We sometimes abuse the terminology and refer to the atom vi as the arm, with the meaning clear
from context. Pulling an arm corresponds to uniformly sampling a coordinate J and evaluating viJqJ and incurs an O(1)
computation. This allows us to focus on the number of arm pulls, which translates directly to coordinate-wise sample
complexity.

First, we prove that with probability at least 1− δ, all confidence intervals computed throughout the algorithm are valid
in that they contain the true parameter µis. For a fixed atom vi and a given iteration of the algorithm, the

(
1− δ

2nd2
used

)
confidence interval satisfies

Pr (|µi − µ̂i| > Cdused) ≤ 2e−C2
dused

dused/2σ
2

≤ δ

2nd2used

by Hoeffding’s inequality and the choice of Cdused = σ
√

2log(4nd2
used/δ)

dused+1 . For a fixed arm i, for any value of dused we have that

the confidence interval is correct with probability at least 1− δ
n , where we used the fact that 1+ 1

22 +
1
32 + . . . = π2

6 < 2. By
another union bound over all n arm indices, all confidence intervals constructed by the algorithm are correct with probability
at least 1− δ.

Next, we prove the correctness of BanditMIPS. Let i∗ = argmaxi∈[n] µi be the desired output of the algorithm. First,
observe that the main while loop in the algorithm can only run d times, so the algorithm must terminate. Furthermore, if
all confidence intervals throughout the algorithm are valid, which is the case with probability at least 1− δ, i∗ cannot be
removed from the set of candidate arms. Hence, vi∗ (or some vi with µi = µi∗) must be returned upon termination with
probability at least 1− δ. This proves the correctness of Algorithm 1.

Finally, we examine the complexity of BanditMIPS. Let dused be the total number of arm pulls computed for each of the arms
remaining in the set of candidate arms at a given iteration in the algorithm. Note that for any suboptimal arm i ̸= i∗ that has

not left the set of candidate arms Ssolution, we must have Cdused ≤ c0

√
log(1/δ)

dused
by assumption (we note this assumption holds

for our specific choice of Cdused in Algorithm 1). With ∆i = µi∗ − µi, if dused >
16c20
∆2

i
log n

δ∆i
, then

4Cdused ≤ 4c0

√
log n

δ∆i

dused
< ∆i

Furthermore,

µ̂i∗ − Cdused ≥ µi∗ − 2Cdused

= µi +∆i − 2Cdused

> µi + 2Cdused

> µ̂i + Cdused

which means that i must be removed from the set of candidate arms by the end of that iteration.

Hence, the number of data point computations Mi required for any arm i ̸= i∗ is at most

Mi ≤ min

[
16c20
∆2

i

log
n

δ∆i
+ 1, 2d

]

where we used the fact that the maximum number of computations for any arm is 2d when sampling with replacement. Note
that bound this holds simultaneously for all arms i with probability at least 1− δ. We conclude that the total number of arm
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pulls M satisfies

M ≤
∑
i∈[n]

min

[
16c20
∆2

i

log
n

δ∆i
+ 1, 2d

]
with probability at least 1− δ.

As argued before, since each arm pull incurs O(1) scalar multiplication, M also corresponds to the total number of operations
up to a constant factor.

A.2. Proof of Theorem 4.2

Proof. Since each XiJ is unbiased, optimizing Problem (3) is equivalent to minimizing the combined second moment∑
i∈[n]

EJ∼Pw [X
2
iJ ] =

∑
i∈[n]

∑
j∈[d]

1

d2wj
q2j v

2
ij (5)

=
∑
j∈[d]

 1

d2wj
q2j

∑
i∈[n]

v2ij

 . (6)

The Lagrangian is given by

L(w, ν) =
∑
j∈[d]

 1

d2wj
q2j

∑
i∈[n]

v2ij

+ ν

1−
∑
j∈[d]

wj

 . (7)

Furthermore, the derivatives are

∂L(w, ν)

∂wj
= −

q2j
∑

i∈[n] v
2
ij

d2w2
j

− ν (8)

∂L(w, ν)

∂µ
= 1−

∑
j∈[d]

wj . (9)

By the Karush-Kuhn-Tucker (KKT) conditions, setting the derivatives to 0 gives

w∗
j =

√
q2j

∑
i∈[n] v

2
ij∑

j∈[d]

√
q2j

∑
i∈[n] v

2
ij

for j = 1, . . . , d. (10)

B. Description of Datasets
Here, we provide a more detailed description of the datasets used in our experiments.

B.1. Synthetic Datasets

In the NORMAL CUSTOM dataset, a parameter θi is drawn for each atom from a standard normal distribution, then each
coordinate for that atom is drawn from N (θi, 1). The signals are generated similarly.

In the CORRELATED NORMAL CUSTOM dataset, a parameter θ is for the signal q from a standard normal distribution,
then each coordinate for that signal is drawn from N (θ, 1). Atom vi is generated by first sampling a random weight
wi ∼ N (0, 1); then atom vi is set to wiq plus Gaussian noise.

Note that for the synthetic datasets, we can vary n and d. The values of n and d chosen for each experiment are described in
Subsection B.3.
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B.2. Real-world datasets

Netflix Dataset: We use a subset of the data from the Netflix Prize dataset (Bennett et al., 2007) that contains the ratings
of 6,000 movies by 400,000 customers. We impute missing ratings by approximating the data matrix via a low-rank
approximation. More specifically, we approximate the data matrix via its 100-factor SVD decomposition. The movie vectors
are used as the query vectors and atoms and d corresponds to the number of sampled users.

Movie Lens Dataset: We use Movie Lens-1M dataset (Harper & Konstan, 2015), which consists of 1 million ratings of
4,000 movies by 6,000 users. As in the Netflix dataset, we impute missing ratings by obtaining a low-rank approximation
to the data matrix. More specifically, we impute missing values via non-negative matrix factorization (NMF) with
15 factors. The movie vectors are used as the query vectors and atoms and d corresponding to the number of subsampled users.

Sift-1M Dataset: The Sift-1M dataset (Jégou et al., 2011) contains features of n = 128 different images, where each image
is an atom with d = 1, 000, 000 dimensions.

CryptoPairs Dataset: The CryptoPairs dataset (Carsten, 2022) consists of the historical trading data of more than 400
trading pairs at 1 minute resolution reaching back until the year 2013.

We note that for all these datasets, the coordinate-wise inner products are sub-Gaussian random variables. In particular, this

means the assumptions of Theorem 4.1 are satisfied and we can construct confidence intervals that scale as O
(√

log 1/δ′

d′

)
.

We describe the setting for the sub-Gaussianity parameters in Section B.3.

B.3. Experimental Settings

Scaling Experiments: In all scaling experiments, δ and ϵ were both set to 0.001 for BanditMIPS and BanditMIPS-α. ϵ is
the hyperparameter in bandit algorithms that controls how far the returned arm is from the true optimal arm, allowing for
an ϵ-suboptimal choice. For the NORMAL CUSTOM and CORRELATED NORMAL CUSTOM datasets, the sub-Gaussianity
parameter was set to σ = 1. For the Netflix and Movie Lens datasets, the sub-Gaussianity parameter was set to σ = 25.
For the CryptoPairs, SIFT-1M, and SimpleSong datasets described in Appendix D, the sub-Gaussianity parameters
were set to σ = 2.5e9, σ = 6.25e5, and σ = 25, respectively. The number of atoms was set to 100 and all other atoms used
default values of hyperparameters for their sub-Gaussianity parameters.

Tradeoff Experiments: For the precision versus speedup tradeoff experiments, the number of dimensions was fixed
to d = 10, 000. The various values of speedups were obtained by varying the hyperparameters of each algorithm. For
NAPG-MIPS and HNSW-MIPS, for example, M was varied from 4 to 32, ef constructions was varied from 2 to
500, and ef searches was varied from 2 to 500. For Greedy-MIPS, budget varied from 2 to 999. For LSH-MIPS, the
number of hash functions and hash values vary from 1 to 10. For H2ALSH, δ varies from 1

24 to 1
2 , c0 varies from 1.2 to 5,

and c varies from 0.9 to 2. For NEQ-MIPS, the number of codewords and codebooks vary from 1 to 100. For BanditMIPS ,
BanditMIPS-α, and BoundedME, speedups were obtained by varying δ from 1

1010 to 0.99 and ϵ from 1
1010 to 3.

All experiments were run on a 2019 Macbook Pro with a 2.4 GHz 8-Core Intel Core i9 CPU, 64 GB 2667 MHz DDR4
RAM, and an Intel UHD Graphics 630 1536 MB graphics card. Our results, however, should not be sensitive to hardware,
as we used hardware-independent performance metrics for our results (except for wall-clock time measurements).

C. Additional Experimental Results
Assumptions on ∆: We also investigate the performance of BanditMIPS on a dataset on which the necessary distributional
assumptions are violated. We call this dataset the SymmetricNormal dataset. In this dataset, the signal and each
atom’s coordinate is drawn i.i.d. from N (0, 1), making all atoms symmetric a priori. We now consider the quantity
∆i,j(d) := µ1(d)− µ2(d) =

vT
1 q−vT

2 q
d , i.e., the gap between the first and second arm, where our notation emphasizes we

are studying each quantity as d increases. By the Central Limit Theorem, the sequence of random variables
√
d∆i,j(d)

converges in distribution to N (0, σ2
i,j) for some constant σ2

i,j . Crucially, this implies that ∆i,j(d) is on the order of 1√
d

.

The complexity results from Theorem 4.1 then predicts that BanditMIPS scales linearly with d. In practice, this case can be
dealt with by allowing for an ϵ-suboptimal atom vector to be returned. In this case, BanditMIPS will no longer depend on
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Figure 1. Sample Complexity of BanditMIPS versus d on the SymmetricNormal dataset when ϵ-suboptimal atoms are identified, with
ϵ = 0.1. BanditMIPS, with this modification, scales as O(1) with respect to d, even when all atoms have an equal inner product with the
query vector.

the ∆is for large d, and instead on the relative error hyperparameter ϵ. Figure C demonstrates that, with this modification,
BanditMIPS does not scale with d even in this highly symmetric dataset.

D. Application to Matching Pursuit on the SimpleSong Dataset
We construct a simple synthetic dataset, titled the SimpleSong Dataset where the query and atoms are audio signals
sampled at 44,100 Hz and each coordinate value represents the signal’s amplitude at a given point in time. Common musical
notes are represented as periodic sine waves with the frequencies given in Table 5.

The query in this dataset is a simple song. The song is structured in 1 minute intervals, where the first interval – called
an A interval – consists of a C4-E4-G4 chord and the second interval – called a B interval – consists of a G4-C5-E5
chord. The song is then repeated t times, bringing its total length to 2t minutes. The dimensionality of the the signal is
d = 2t ∗ 44, 100 = 88, 200t. The weights of the C4, E4, and G4 waves in the A intervals and the G4, C5, and E5 waves in
the B intervals are in the ratio 1:2:3:3:2.5:1.5.

The atoms in this dataset are the sine waves corresponding to the notes with the frequencies show in Table 5, as well as
notes of other frequencies.

In the audio domain, we note that when the atoms v1, . . . ,vn are periodic functions with predefined frequencies, MP
becomes a form of Fourier analysis in which the atoms are the Fourier components and their inner products with the query
correspond to Fourier coefficients. For more detailed background on Fourier theory, we refer the reader to (Brigham, 1988).

For convenience, we restrict t to be an integer in our experiments so a whole number of AB intervals are completed. We
ran BanditMIPS with δ = 1

10,000 and σ2 = 6.25 over 3 random seeds for various values of t. BanditMIPS is correctly
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Table 5. Frequencies for various musical notes.

Note Frequency (Hz)

C4 256
E4 330
G4 392
C5 512
E5 660
G5 784

able to recover the notes played in the song in order of decreasing amplitude: G4, C5, E4, E5, and C4 in each experiment.
Furthermore, BanditMIPS is able to calculate their Fourier coefficients correctly. Crucially, the complexity of BanditMIPS
to identify these components does not scale with d, the length of the song.

Our approach may suggest an application to Fourier transforms, which aim to represent signals in terms of constituent
signals with predetermined set of frequencies. We acknowledge, however, that Fourier analysis is a well-developed field
and that further research is necessary to compare such a method to state-of-the-art Fourier transform methods, which may
already be heavily optimized or sampling-based.
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