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Abstract
Understanding what makes high-dimensional data
learnable is a fundamental question in machine
learning. On the one hand, it is believed that
the success of deep learning lies in its ability to
build a hierarchy of representations that become
increasingly more abstract with depth, going from
simple features like edges to more complex con-
cepts. On the other hand, learning to be insen-
sitive to invariances of the task, such as smooth
transformations for image datasets, has been ar-
gued to be important for deep networks and it
strongly correlates with their performance. In this
work, we aim to explain this correlation and unify
these two viewpoints. We show that by introduc-
ing sparsity to generative hierarchical models of
data, the task acquires insensitivity to spatial trans-
formations that are discrete versions of smooth
transformations. In particular, we introduce the
Sparse Random Hierarchy Model (SRHM), where
we observe and rationalize that a hierarchical rep-
resentation mirroring the hierarchical model is
learnt precisely when such insensitivity is learnt,
thereby explaining the strong correlation between
the latter and performance. Moreover, we quan-
tify how the sample complexity of CNNs learning
the SRHM depends on both the sparsity and hier-
archical structure of the task.

1. Introduction
Deep Learning has demonstrated remarkable efficacy across
diverse tasks, from image classification (Voulodimos et al.,
2018) to the development of chatbots (Brown et al., 2020).
This success is not well understood: learning generic tasks
requires a number of training points exponential in the data
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dimension (Luxburg & Bousquet, 2004; Bach, 2017), which
is unachievable in practice for images or text that lie in high
dimension. Learnable data must then be highly structured.
Understanding the nature of this structure is key to various
fundamental problems of machine learning, ranging from
the existence of scaling laws (Cortes et al., 1993; Hestness
et al., 2017; Spigler et al., 2020; Kaplan et al., 2020; Bom-
masani et al., 2022) that relate the size of the training set
to the performance and the emergence of new abilities, the
success of transfer learning, or that of unsupervised methods
such as diffusion models (Ho et al., 2020).

One view is that learnable data often consists of local fea-
tures that are assembled hierarchically (Grenander, 1996): a
dog is made of a body, limbs, and a face, itself consisting of
ears, eyes, etc... This view is consistent with the observation
that after training, deep neural networks form a hierarchical
representation of the input (Zeiler & Fergus, 2014; Doimo
et al., 2020). These properties also mirror the architecture
of Convolutional Neural Networks (CNNs) (Lecun et al.,
1998; LeCun et al., 2015), which are deep and display small
filter sizes. From a theoretical viewpoint, the locality of the
features proves to be advantageous to approximate and learn
high-dimensional tasks (Favero et al., 2021; Abbe et al.,
2021; Bietti et al., 2022; Xiao, 2022; Xiao & Pennington,
2022; Bietti, 2022; Mei et al., 2022; Cagnetta et al., 2023a).
Moreover, various hierarchical models of data, organizing
local features within a hierarchical structure, have been
proposed, (Mossel, 2018; Poggio et al., 2017; Malach &
Shalev-Shwartz, 2018; Schmidt-Hieber, 2020; Malach &
Shalev-Shwartz, 2020; Cagnetta et al., 2023b; Allen-Zhu
& Li, 2023). As detailed in subsection 1.2, deep networks
can represent and learn such models more efficiently than
shallow networks, both in terms of number of parameters
and number of training points.

Intrinsically, hierarchical models have a discrete nature,
which seems well-suited for texts. Images however are often
approximated as a continuous function of a two-dimensional
space (Castleman, 1996), whose label is invariant to smooth
transformations. This stability of image labels to small
smooth transformations has been proposed in (Bruna &
Mallat, 2013; Mallat, 2016) as a key simplification enabling
image classification in high dimension. Enforcing such sta-
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Figure 1. CIFAR 10: (A) Test error vs sensitivity to diffeomorphisms of common architectures trained on all CIFAR10, showing a
remarkable correlation between the two quantities. A grey line, corresponding to a power-law, guides the eye. (B) Same as (A), for
increasing size of the training set P , whose value is indicated by the degree of opacity. The sensitivity to smooth transformations is
computed in relative terms to the sensitivity to white noise. (A, B) are adapted from (Petrini et al., 2021). The SRHM captures these
observations: (C) Test error vs sensitivity to diffeomorphisms of a CNN trained with P = 7400 on the SHRM model, with parameters
L = s = s0 = 2 and nc = m = 10. The sensitivity to diffeomorphisms is defined as the change of network output induced by a
diffeomorphism applied on the input, see Eq. 7. For details about the architectures and their training process, see Appendix B. (D) Same
as (C) for sensitivity to exchange of synonyms, defined as the change of the network output induced by an exchange of synonyms (defined
in Section 2) applied on the input, see Eq. 6. (E) and (F): as top panels (C) and (D), for increasing P (increasing opacity).

bility in neural networks can improve their performance
(Kayhan & Gemert, 2020). Moreover, the stability can
also improve during training by learning pooling operations,
(Dieleman et al., 2016; Azulay & Weiss, 2018; Ruderman
et al., 2018; Zhang, 2019; Tomasini et al., 2023). One
finds that (i) there exists a strong correlation between the
network’s test error and its sensitivity to diffeomorphisms,
which characterizes the change of output when a diffeo-
morphism is applied to the input (Petrini et al., 2021), as
recalled in Figure 1 (A) and (ii) the sensitivity to diffeo-
morphisms decreases with the size of the training set, as
shown in Figure 1 (B). Currently, these observations remain
unexplained, and it is not clear how they relate with the fact
that neural networks build a hierarchical representations of
data.

1.1. Our Contributions

• We argue that incorporating sparsity into hierarchical
generative models naturally leads to classification tasks
insensitive to the exact position of the local features,
implying insensitivity to discrete versions of diffeo-
morphisms.

• To illustrate this process, we introduce the Sparse Ran-
dom Hierarchy Model (SRHM), which captures the
empirically observed correlation between sensitivity
to diffeomorphisms and test error, as depicted in Fig.1
(C).

• This correlation arises because a hierarchical repre-
sentation, crucial for achieving good performance, is
learnt precisely at the same number of training points
at which insensitivity to diffeomorphisms is achieved.
We provide arguments justifying this observation.

• We quantify how the number of training points needed
to learn the task, also called sample complexity, of
deep networks is influenced by both the sparsity and
hierarchical nature of the task, and how it depends on
the presence of weight sharing in the architecture.

1.2. Prior Work

Hierarchical representations: It is recognized that deep net-
works can represent hierarchically compositional functions
with significantly fewer parameters than shallow networks
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Figure 2. (1) On the top of that panel, an instance of the production rules of a Random Hierarchical Model (RHM) with nc = 2 classes,
L = 2, m = 3 synonyms per feature, vocabulary size v = 3, and s = 2. Here the classes set is C = {green, orange}, the high-level
features vocabulary is V2 = {red, blue, purple} and the low-level features vocabulary is V1 = {turquoise, pink, green}. On the bottom, a
couple of examples generated via the rules above are shown. The first example is generated by the production rules in the black boxes
(i.e. the green label generates (red,blue), which themselves generate the couples (turquoise, pink) and (pink, green). (2) Top: effect of
a diffeomorphism τ on a dog. The blue arrows represent the displacement field induced by τ . Bottom: effect of a diffeomorphism τ
on an instance of a sparse generative hierarchical task. (3) Different definitions of sparsity. (A) Each one of the s informative features
is embedded in a sub-patch of size s0 + 1 with strictly s0 uninformative elements, yielding a patch of s(s0 + 1) elements. (B) The s
informative features can occupy any position within the patch of s(s0 + 1) elements. In both cases, all the possible rearrangements
are shown for s = 2 and s0 = 1. At the next production rule, each uninformative element generates an empty patch of s(s0 + 1)
uninformative elements, as pictured in (4). (5) Four data sampled from the generative hierarchical task shown in panel (1) with sparsity
(A). The first two examples follow the rules in black boxes in panels (1) and (4), showcasing different feature rearrangements.

(Poggio et al., 2017). Sufficient information exists in a
training set with size polynomial in d to reconstruct such
tasks (Schmidt-Hieber, 2020)— although the training may
take an immense time. Generative hierarchical models of
data (Mossel, 2018; Malach & Shalev-Shwartz, 2018; 2020)
can be learnt efficiently by iterative clustering methods, if
correlations exist between input features and output. Deep
architectures trained with gradient descent display a hierar-
chical representation of the data, corresponding to the latent
variables in these models (Cagnetta et al., 2023b; Allen-
Zhu & Li, 2023). Deep networks, as opposed to shallow
ones, beat the curse of dimensionality, with a sample com-
plexity that is polynomial in the dimension (Cagnetta et al.,
2023b). However, none of these works consider sparsity

in feature space, and the stability it confers to discretised
smooth transformations of the input.

Task structure and invariance: In (Hupkes et al., 2021) a
classification of different combinatorial properties of tasks
is introduced. The SRHM displays the properties of sys-
tematicity, substitutivity and localism in that classification
(Hupkes et al., 2021).

CNNs were crafted to have internal representations equiv-
ariant to certain transformations such as rotations (Cohen &
Welling, 2014; 2016; Ensign et al., 2017; Kondor & Trivedi,
2018; Finzi et al., 2021; Batzner et al., 2022; Blum-Smith
& Villar, 2023). How such a procedure can improve sample
complexity has been addressed for linear models such as
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random features and kernel methods (Favero et al., 2021;
Bietti et al., 2021; Elesedy & Zaidi, 2021; Elesedy, 2021;
Mei et al., 2021). Instead, our work focuses on how in-
variance emerges during training and how it affects sample
complexity, in a regime where features are learnt.

Finally, in the context of adversarial robustness the response
of trained networks to small-norm transformations of the
input data that change the input label are investigated (Fawzi
& Frossard, 2015; Kanbak et al., 2018; Alaifari et al., 2018;
Athalye et al., 2018; Xiao et al., 2018; Alcorn et al., 2019;
Engstrom et al., 2019). Our approach differs from this litera-
ture since we consider the response to generic perturbations
belonging to specific ensembles, rather than worst-case per-
turbations.

2. Background: Hierarchical Generative
Models

We consider hierarchical classification tasks where im-
ages are generated from class labels through a hierar-
chical composition of production rules (Mossel, 2018;
Malach & Shalev-Shwartz, 2018; DeGiuli, 2019; Malach
& Shalev-Shwartz, 2020; Cagnetta et al., 2023b; Allen-
Zhu & Li, 2023). These tasks represent a specific case
of context-free grammars, a generative model in formal
language theory (Rozenberg & Salomaa, 1997). We fo-
cus on L-level context-free grammar, considering a set of
class labels C ≡ {1, . . . , nc} and L disjoint vocabularies
Vℓ ≡

{
aℓ1, . . . , a

ℓ
vℓ

}
of low- and high-level features, with

ℓ = 1, ..., L. Henceforth, we refer to ℓ > 1 as high-level
features or latent variables. Upon selecting a class label α
uniformly at random from C, the data is generated iteratively
from a set of production rules:

α 7→ µ
(L)
1 , . . . , µ(L)

sL for α ∈ C and µ
(L)
i ∈ VL, (1)

µ(ℓ) 7→ µ
(ℓ−1)
1 , . . . , µ(ℓ−1)

sℓ
for µ(ℓ) ∈ Vℓ, µ

(ℓ−1)
i ∈ Vℓ−1, (2)

for ℓ = 2, ..., L. At each level ℓ, we consider mℓ distinct
rules stemming from each higher-level feature a(ℓ)i . In other
words, there are mℓ equivalent lower-level representations
of a(ℓ)i for all i = 1, ..., v. These equivalent representations
are termed ‘synonyms’. In Figure 2, panel 1, we show on
the top the generation rules of a generative hierarchical task
with nc = 2 classes with two levels of production rules,
each counting 3 synonyms.

To simplify notation, we opt for the case of the Random
Hierarchy Model (RHM) (Cagnetta et al., 2023b), for which:
(i) ∀ℓ, vℓ = v,mℓ = m, sℓ = s, (ii) the m production rules
associated with any latent variable or class, shown on top
in the example of panel 1 in Figure 2, are randomly chosen
among the vs possibles ones and (iii) the m production rules
of any latent variable or class are sampled uniformly during
data generation, as exemplified on the bottom of panel 1

in Figure 2. Consequently, the total number of possible
data produced per class is m

d−1
s−1 , where the dimension d

is defined as d = sL. (iv) Two distinct classes or latent
variables cannot yield the same low-level representation.
This condition ensures, for example, that two distinct classes
never generate the same data, implying that m ≤ vs−1. An
example of a hierarchical generation process is shown in
Figure 2, panel (1).

Note that (i) we represent each input level feature in V1

with a one-hot encoding of length v, yielding input data
with dimension d × v. The representation of higher-level
features need not be specified, as they are latent variables.
(ii) Although we focused on generating one-dimensional
data patches, the same model can generate square ‘images’
without modifications if s is the square of a natural number.

The RHM can be used to generate P training points of input-
label pairs (x, y) where y = 1, .., nc indicates the class and
x ∈ Rd×v is the input corresponding to d sub-features µ(1),
each one-hot encoded in a dimension v. Using such data to
train deep networks to classify y from x, one finds (Cagnetta
et al., 2023b) that:

• The sample complexity P ∗ of shallow network grows
exponentially in d, whereas for deep networks it is
polynomial in d and reads P ∗ ∝ ncm

L, with a prefac-
tor of order unity for CNNs.

• The sample complexity corresponds also to the training
set size at which a hierarchical neural representation
emerges. The latent variables µℓ are encoded closer
to the output as ℓ increases. This representation is
insensitive to change of synonyms in the input.

• Synonyms produced by the same high-level feature
µ(2) of the image share the same correlation with the
output, a fact true for any given patch of size s in the
input. When a sufficient number of data is present,
i.e. P ≥ P ∗, these correlations are larger than the
sampling noise given by the finitess of the training set.
These correlations can be used to group synonyms to-
gether. Gradient descent can capture these correlations,
constructing a representation invariant to synonyms
exchange. These correlations between synonyms and
output are necessary for the network to solve the task:
if a hierarchical model is designed without them, learn-
ing is essentially impossible (it requires an exponen-
tial number of data in the dimension)(Cagnetta et al.,
2023b).

3. Sparsity and Stability to Diffeomorphisms
Our key insight is that spatial sparsity of features implies
stability to diffeomorphisms. This point is illustrated using
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Figure 3. Networks: (a) Locally Connected Network (LCN). Each
neuron’s weight focuses on a single input element (in red). Net-
works have L hidden layers, with filters matching patches of size
s(s0 + 1) from the generative process in Figure 2 (here L = 2,
s = 2, s0 = 1). A last fully connected layer connects the output
of the last local layer with the output. (b) Convolutional Neural
Network (CNN) with the structure of (a), featuring weight sharing
such that each weight considers different pixels in all patches of
size s(s0 + 1) (in red).

a sketched dog in Figure 2, panel (2): if a few lines can
define what is on a drawing, then small changes in the
relative distances between these lines should not alter the
class label.

This idea can be readily implemented in generative models
by adding an ‘uninformative’ feature 0 to each vocabulary
Vℓ and imposing, for example, the constraint that each pro-
duction rule in Eq. 1 and Eq. 2 contains exactly s × s0
uninformative features. We implement sparsity in two ways,
as shown in Figure 2, panel (3). (A) Each of the s informa-
tive features is embedded in a sub-patch of size (s0+1) with
strictly s0 empty elements. The position of each informative
feature is independent of the other feature positions. (B)
The s informative features can occupy any position within
the patch of s(s0 + 1) elements, as long as their order re-
mains the same. For both (A) and (B), at each level of the
hierarchy, each uninformative feature will produce a patch
of s(s0 + 1) uninformative features at the next level, as
depicted in Figure 2, panel (4). We denote model A as the
Sparse Random Hierarchical Model (SRHM).

Note that (i) these processes generate very sparse data, with
just sL informative features randomly placed in inputs of di-
mension d = (s(s0 + 1))L, as shown for a few examples in

Figure 2, panel (5). The informative features are represented
with one-hot encoding with dimension v, while uninforma-
tive pixels are represented by empty columns, yielding input
with size d× v. (ii) Sparsity implies that some transforma-
tion leaves the task invariant. For (A), the transformations
that do not affect the task include the motion of the s in-
formative features µ1 within patches of size (s0 + 1). For
(B), any motion of the set of informative low-level features
µ1 that leaves their order unchanged (as diffeomorphisms
would do) does not alter the label, as illustrated in Figure 2,
panel (3).

4. Sample Complexity
We empirically analyze the number of training points re-
quired to learn the SRHM for both CNNs and for Locally
Connected Networks (LCNs), a version of CNNs without
weight sharing (Fukushima, 1975; le Cun, 1989; Favero
et al., 2021). In (Cagnetta et al., 2023b), it is shown that
in the absence of sparsity, the sample complexity mildly
depends on the architecture, as long as it is deep enough–
even for fully connected networks. Here, we start by re-
stricting ourselves to architectures that match the generative
process. Specifically, the LCN architecture has L hidden
layers with filter size and stride both equal to s(s0 + 1),
followed by a linear readout layer, as shown in Figure 3
(a). The CNNs we consider are structured as the LCNs,
but they implement weight sharing, as depicted in Figure 3
(b). By comparing the sample complexities of LCNs and
CNNs we quantify the improvement achieved through the
implementation of weight sharing. For details about the
training scheme, we refer to Appendix D. How common
architectures such as VGG, ResNet, and EfficientNet learn
the SRHM is investigated in Appendix B.

We utilize the SRHM to generate P training points, corre-
sponding to input-label pairs (x, y) where y = 1, .., nc and
x ∈ Rd×v . An example of a learning curve representing the
test error ϵ dependence on training set size P is shown in
Figure 4 (A). The test error remains large with increasing P
until it decays rapidly to near-zero values at a certain scale
P ∗, corresponding to the sample complexity. To estimate
it, we fix a threshold (e.g. 0.1) and measure the minimal
number of training points P ∗ at which the test error achieves
such a threshold. Modifying the threshold value does not
qualitatively alter our results below. We focus on sparsity A,
depicted in Figure 2 panel 3, as it is easier to analyze than
the sparsity B. We show in Appendix A that they lead to the
same sample complexity.

We systematically apply this procedure to extract the sample
complexity P ∗ as the parameters s, s0, v and L are changed
while keeping the number of informative synonyms m =
vs−1 to its maximal value.
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Figure 4. (A) Test error ε(P ) versus number of training points P . To extract the sample complexity P ∗, we fix an arbitrary threshold
ε∗ = ε(P ∗). Here ε∗ = 10%. (B) Empirical sample complexity P ∗ for a LCN to reach a 10% test error ε versus estimation of Eq. 3 for
s = 2, different depths L (red for L = 2, blue for L = 3), different vocabulary sizes v (different darkness), number of classes nc = v,
maximal m = vs−1 and different s0 (different markers). (C) Same as (B) for CNNs, supporting Eq. 4. Further support for Eq. 3 and Eq.
4 is obtained by varying s, as shown in Appendix D, Figure 10 and Appendix E, Figure 13.

For the LCNs, the results shown in Figure 4 (B) and Fig-
ure 10 in Appendix D indicate that:

P ∗
LCN ∼ C0(s, L)(s0 + 1)Lncm

L. (3)

where our observations for C0(s, L) are consistent with
C0(s, L) ∼ sL/2. We will motivate the dependence of
P ∗

LCN with s0 in section 6.

For CNNs, we observe in Figure 4 (C) and Figure 13 in
Appendix E that the sample complexity follows:

P ∗
CNN ∼ C1(s0 + 1)2ncm

L. (4)

where C1 is a constant.

The relations Eq. 3 and Eq. 4 are central to this work, as they
specify how sparsity and combinatorial properties of the
data affect the sample complexity. Remarkably, both sample
complexities are exponential in L and thus polynomial in
the input dimension d = (s(s0 + 1))L, effectively beating
the curse of dimensionality. Weight sharing proves to be
beneficial for networks trained on the SRHM, since the
sample complexity is only quadratic in L in (s0 + 1) for
CNNs, while it is exponential in L for LCNs. We will argue
why this is the case in section 6.

Benefit of Sparsity. We show that for locally connected
nets, for reasonable assumptions and for a fixed dimension d,
a higher sparsity is preferable as it leads to a smaller sample
complexity. Introducing the fraction of informative ‘pixels’
in the image F = (s0 + 1)−L as a measure of sparsity,
we can reformulate the sample complexity P ∗

LCN in terms
of the input dimension d and image relevant fraction F ,

assuming that m and s are fixed but letting L and s0 change.
One obtains:

P ∗
LCN ∼ F

log m
log s − 1

2 d
log m
log s + 1

2 , (5)

which is indeed a growing function of F , as long as m >
√
s.

This result is illustrated in Figure 5 for the case where m
takes its maximum value m = vs−1. This indicates that
neural networks can adapt to the sparsity of the task.
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Figure 5. Sample complexity of LCN learning the SRHM for vary-
ing input dimension d and input relevant fraction F at the maximal
case m = vs−1, with v = 10 and s = 5, according to Eq. 5. The
color map is in log scale. At fixed dimension d, a smaller F (hence
higher sparsity) makes the task easier.
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Figure 6. Top. Procedure to compute the sensitivity S2 and D2, defined in Eq. 6 and Eq. 7, illustrated for L = 2. We take a two-layer
network, trained with P training points on the sparse hierarchical dataset with L = 2 levels. We apply either a (A) synonyms exchange
p or a (B) diffeomorphism τ on the input data x. Note that in (A) p changes the features but not their position while in (B) τ changes
the position of the features but not their value. Then we test the second net layer f2 sensitivity to these transformations. Bottom. (C)
Empirical sample complexity P ∗ to reach a 10% test error ε versus empirical sample complexity P ∗

S to reach S2 = 30% for s = 2,
different depths L (red for L = 2, blue for L = 3), different vocabulary sizes v (different darkness), number of classes nc = v, maximal
m = vs−1 and different s0 (different markers). (D) Same as (C), for empirical sample complexity P ∗ to reach a 10% test error ε versus
empirical sample complexity P ∗

D to reach D2 = 10%. The sensitivity thresholds have been tuned based on the form of S2 and D2 versus
P , reported in Appendix D, Figure 12 for L = 2. Both P ∗

S and P ∗
D are nearly equal to P ∗.

5. Learning Invariant Representation
In section 4, we have shown that deep networks trained
on the SRHM beat the curse of dimensionality, learning
the task with a sample complexity polynomial in the input
dimension. Here, we show that they manage to do so by
learning representations that are insensitive to irrelevant
aspects of the task.

The first invariance of the SRHM task corresponds to the
fact that different combinations of s informative features
are synonyms: to solve the task, it is not necessary to carry
within the network the information of which actual synonym
was present in the input. The second invariant considers
transformations akin to diffeomorphisms, which shift the
position of the informative features µ(1). Formally, we
measure such invariant by defining two operators acting on
the input:

1. Synonymic exchange operator p. This operator takes in
a datum x and substitutes each informative s−patch of
features µ(1), produced by a given µ(2), with one of its
m−1 synonyms, chosen uniformly at random, keeping
the feature positions intact. Figure 6 (A) illustrates the
action of p. The sensitivity of the representation at a
given hidden layer fk to the action of p is measured by
the quantity Sk:

Sk =
⟨||fk(x)− fk(p(x))||2⟩x,p
⟨||fk(x1)− fk(x2))||2⟩x1,x2

, (6)

where x, x1, and x2 belong to a test set, and the average
⟨.⟩ is over the test set and on the random exchange of
synonyms p. A visualization of Sk for k = 2 for a two-
layer network is shown in Figure 6 (A). If the internal
representation fk has learnt the synonyms associated
with production rule Eq. 2 at level ℓ = 2, then Sk

is small. The sensitivity of the network output to p,
shown in Figure 1 (D, F), is defined similarly to (6).
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2. A discretised diffeomorphism operator τ . This oper-
ator takes as input a datum x and randomly shifts its
informative features according to the possible positions
obtained when the features µ(2) generate patches of
features µ1, as illustrated in Figure 2, panel (3). In this
process, the nature of the feature remains the same. In
Figure 6 (B) the action of τ on a datum x is shown. The
sensitivity Dk of fk to diffeomorphisms τ is defined
as:

Dk =
⟨||fk(x)− fk(τ(x))||2⟩x,τ
⟨||fk(x1)− fk(x2))||2⟩x1,x2

. (7)

If fk has learnt the invariance to diffeomorphisms, then
Dk is zero. This definition of sensitivity is akin to what
is used for images (Petrini et al., 2021). The sensitivity
of the network output f to τ , shown in Figure 1 (C, E),
is defined analogously to (7).

It is possible to generalize the sensitivities Eq. 6 and Eq.
7 to measure how much the representation at any hidden
layer k of a network, or its output, is sensitive to exchange
of synonyms or diffeomorphisms related to the features µ(ℓ)

produced by the latent µ(ℓ+1). We show in Appendix D and
Appendix E that the representation at layer k ≥ 2 becomes
insensitive to transformations applied to levels ℓ ≤ k − 1 of
the hierarchy, for training set size P ≫ P ∗. At that point,
the output becomes insensitive to transformations applied at
any level ℓ of the hierarchy.

Here, we focus on S2 and D2 (corresponding to the case
k = 2 and ℓ = 1). We measure how these quantities depend
on the size of the training set, as shown in Appendix D,
Figure 12, and in Appendix E, Figure 15, for L = 2. Subse-
quently, we define sample complexities P ∗

S or P ∗
D associated

with S2 and D2, using a similar procedure as for the test er-
ror: we measure the training set size where these quantities
reach some threshold value.

Figure 6 (C) and (D) present our key result for LCNs:

P ∗
S ≈ P ∗

LCN, P ∗
D ≈ P ∗

LCN, (8)

further supported by Figure 11 in Appendix D for a different
value of s. In essence, the insensitivities to diffeomorphisms
and synonyms exchange are acquired for the same training
set size, precisely when the network learns the task. This
observation appears to be universal, as it holds for common
convolutional architectures like VGG, ResNet, and Efficient-
Net as demonstrated in Appendix B, Figure 9, for the simple
convolutional architectures pictured in Figure 3 (b) in Ap-
pendix E, Figure 14 and even for fully-connected networks
in Appendix F, Figure 16.

Therefore, deep networks learn to be insensitive to dif-
feomorphisms as they learn a hierarchical representation,
which is thought to be crucial to achieve high performance.

This central result rationalizes the observed correlation be-
tween sensitivity to diffeomorphisms of the network output
(thus indicative of building a hierarchical representation
of the data,) and test error displayed in Figure 1 (A) for
CIFAR10 and (C) in the SRHM.

The relationship between insensitivity to synonyms and to
diffeomorphisms also appears when considering how these
quantities evolve with the size of the training set P , as
documented in Figure 1 (B, E, F). The results shown in
Figure 1 (C,D,E,F) for the network output hold also for
the sensitivities of internal layers, as shown in Figure 17 in
Appendix G.

6. Sample Complexities Arguments
In the absence of sparsity s0 = 0, the sample complexity
essentially corresponds to the training set size necessary
for detecting synonyms (Cagnetta et al., 2023b). Following
this result, we present a simple heuristic argument for the
sample complexity of the LCN architecture in the sparse
case s0 > 0. Crucially, this argument also explains why
invariance to synonyms and to smooth transformations are
learnt together.

• Any given 2-level latent variable µ(2) closest to the
input can generate different synonyms, distorted with
different diffeomorphisms due to sparsity, as in Fig-
ure 2, panel (3).

• All these different representations produced by that
latent variable µ(2) have the same correlation with the
class label.

• This correlation can be used to group together the rep-
resentations produced by µ(2), if the training set is
larger than some sample complexity. We can estimate
this sample complexity for LCNs as follows. A single
weight connected to the input will not see any informa-
tion for most data, as it will most often see the ”pixel”
or low-level feature µ(1) = 0, which is uninforma-
tive. With respect to the case s0 = 0, the fraction of
data with local information is diminished by a factor
(s0 + 1)−L. To detect correlations beyond sampling
noise, the sample complexity has thus to be increased
by a factor (s0 +1)L, as empirically observed in Eq. 3.
We show in Appendix C that at this sample complex-
ity a single step of GD can aggregate the equivalent
representations produced by µ(2).

• The hidden representation in the first hidden layer thus
becomes insensitive to diffeomorphisms and synonyms
at the same sample complexity, as shown in Figure 6 (C,
D). Once the representations that encode for features
µ(2) have been detected, the problem is much simpler,
corresponding to a generative model with L− 1 levels
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instead of L. Thus, representations of higher produc-
tion rules µℓ, ℓ > 2 are also detected and represented
together in the higher layers of the network beyond that
characteristic training set size. Indeed, synonyms and
insensitivity to diffeomorphisms are learnt at all levels
of the hierarchy in one go, as illustrated in Appendix D,
Figure 12.

Qualitatively, the same scenario holds for CNNs. One ex-
pects a different sample complexity since each weight is
now connected to a fraction of the input that is independent
of L. Yet, the quadratic dependence on s0 + 1 remains to
be understood.

7. Limitations
We predicted that good performance, insensitivity to dif-
feomorphism, and insensitivity to synonyms exchange
should occur concomitantly as the training set size is in-
creased. However to test this prediction on benchmark
image datasets, we are currently missing an empirical pro-
cedure to measure insensitivity to synonyms. To perform
such a measurement, one needs to be able to change what
composes a given image at various scales. The recent result
of (Sclocchi et al., 2024) suggest that change of low-level
features can be obtained using diffusion-based generative
models, and that the scale where the composition of the
image changes is controlled by the magnitude of the noise
that enters in these methods. It would be interesting to use
this result to test our prediction. Another approach would be
to test stability to actual synonyms in text data, and quantify
how this property correlates with the performance of natural
language processing systems.

8. Conclusions
Understanding the nature of real data is an elusive prob-
lem yet central to many quantitative questions of the field.
We have unified in a common framework two different ap-
proaches to this problem: the first assumes the data to be
combinatorial and hierarchical, while the second empha-
sizes the task insensitivity with respect to smooth trans-
formations, relevant for example for image datasets. This
framework was obtained by introducing models that display
both properties, based on the notion that sparsity of informa-
tive features in space naturally endows stability to smooth
transformations. These models explain the strong empiri-
cal correlation between stability to smooth transformations
and performance, and further predict that both quantities
should correlate with the insensitivity to discrete changes of
low-level features in the data.

Finally, although we focused on classification problems, the
generative models we introduced display a rich structure in
the data distribution P (x) itself, which is not only hierar-

chical but is invariant to smooth transformations. These
models are thus promising to understand how unsupervised
methods beat the curse of dimensionality, by composing or
deforming features they have learnt from examples.
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Appendix

A. Sparsity B
In this Appendix, we show support for the robustness of the sample complexities Eq. 3 and Eq. 4 to the choice of the sparsity
in Figure 2, panel (3). Indeed, we observe in Figure 7 and Figure 8 that the learning curves obtained implementing Sparsity
B in the data are consistent with Eq. 3 and Eq. 4, obtained from data generated with Sparsity A.
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Figure 7. Left: test error versus number of training points P of LCN trained on the SRHM with sparsity B (described in Figure 2, panel
(3)), with different L (different colors), different s0 (different markers), s = 2 and m = v = nc = 6. Right: same as left but rescaling P
by Eq. 3.
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(3)), with different L (different colors), different s0 (different markers), s = 2 and m = v = nc = 6. Right: same as left but rescaling P
by prediction Eq. 4.

B. Common architectures learning the SRHM
Architectures. All networks implementations can be found at github.com/leonardopetrini/diffeo-sota/tree/main/models. In
Table 1, adapted with permission of the authors from (Petrini et al., 2021), we list the structural choices of those networks.

Training scheme. We use Stochastic Gradient Descent (SGD) as optimizer, with batch size 4 and momentum 0.9. The
learning rate lr has been optimized by extensive grid search, finding: lr = 10−4. We use as train loss the cross entropy loss,
and we stop the training when it reaches a threshold of 10−2.
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Figures. In Figure 9 we report the test error and the sensitivities to input transformations of 5 different common convolutional
networks with respect to the number of training points P . The sensitivities are computed for 3 different layers at different
relative depths.
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Figure 9. Test error (in blue), sensitivity to synonymic exchange (in orange), sensitivity to diffeomorphisms (in green) for increasing
number of training points P of different common architectures (different columns). The sensitivities compute how much internal
representations, at increasing relative depth k for increasing row, are sensitive to transformations applied at the input. Note that at 80%
relative depth all the networks reach small sensitivities and test error for large enough P . We choose this relative depth for the results
shown in Figure 1 (A,B). The sensitivities Sk and Dk refer to the case ℓ = 1 in Eq. 13 and Eq. 14.

Table 1. Network architectures, main characteristics. For each column we list the salient structures of a different architectures used in
Figure 9. Table adapted with permission of the authors from (Petrini et al., 2021)

structures VGG ResNet EfficientNetB0-2
(Simonyan & Zisserman, 2015) (He et al., 2016) (Tan & Le, 2019)

depth 11, 16 18, 34 18
num. parameters 9-15 M 11-21 M 5 M

FC layers 1 1 1
activation ReLU ReLU swish
pooling max avg. (last layer only) avg. (last layer only)
dropout / / yes + dropconnect

batch norm if ’bn’ in name yes yes
skip connections / yes yes (inv. residuals)

C. Learning the SRHM with Gradient Descent
In hierarchical generative models, it is known that the first step of gradient descent in some simplified setup can already be
sufficient to group together lowest-level synonyms (Malach & Shalev-Shwartz, 2020; Cagnetta et al., 2023b). In particular,
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the case of the SRHM with s0 = 0 has been analyzed in (Cagnetta et al., 2023b). Here we show for LCNs with a given
initialization that the statistics of the first step of gradient descent for s0 > 0 is equivalent to the case s0 = 0, with a training
set size reduced by a factor (s0 + 1)L, thus supporting the result of Eq. 3 on sample complexity.

We consider an instance of the SRHM with L levels, from which we generate P training points xk with label y(xk). We
recall that training points have dimension d = (s(s0 + 1))L, with each one of the informative sL features being represented
with one-hot encoding of v features, while the (s0 + 1)L uninformative features by empty columns of dimension v. The
labels are represented with a one-hot encoding of the nc labels. To learn the SRHM, we use as a network a LCN with L
hidden layers, followed by a linear layer. Each one of the hidden layers fk for k ∈ {1, ..., L} is defined with respect to the
previous layer fk−1. We use filters with size and stride equal to s(s0 + 1), yielding a reduction of s(s0 + 1) in the spatial
size of the hidden layer at each layer. Each entry of fk is specified by two indices, one for the channel c ∈ {1, ...,Hk} and
one for the spatial location i ∈ {1, ..., (s(s0 + 1))L−k, and it is given by:

[fk(x)]c;i = ϕ

 1√
Hk−1

Hk−1∑
c′=1

w⃗k
c,c′,i · p⃗i ([fk−1(x)]c′)

 , (9)

where ϕ is the ReLU non-linearity function and w⃗k
c,c′,i are the filters of the c−th channel of the k-th layer. Each filter w⃗k

c,c′,i

connects channel c of layer k with the patch p⃗i channel c′ of layer k − 1. Note that the filters depend on the patch location i,
differently with respect to CNNs (see Figure 3). The vector p⃗i,j ([fk−1(x)]c′) denotes a s(s0 + 1)-dimensional patch of
[fk−1(x)]c′ centered in the spatial location i at channel c′ ∈ {1, ..,Hk−1}. The bottom layer k = 1 is directly looking at the
input, hence we define f0(x) as the identity and the number of channels H1 is equal to v. The output of the LCN is given by:

f(x)α =
1

HL

HL∑
c=1

aα,c[fL(x)]c, (10)

with f(x) being a vector of dimension equal to the number of classes nc and {aα,c} the parameters of the last linear layer.
We train such a LCN with GD on the cross-entropy loss

L =

P∑
k=1

− nc∑
β=1

y(xl)β log

(
e(f(xk))β∑nc

β′=1 e
(f(xk))β′

) . (11)

For simplicity we (i) take all the number of channels Hk equal to H for k > 1, (ii) send H → ∞, (iii) fix the linear layer
parameters aα,c to be i.i.d. standard Gaussian variables and (iv) initialize all the weights ω⃗k

c,c′,i to be equal to the unitary
vector 1⃗ renormalized by

√
H . As a consequence of (iii), the network output f(x)α is zero identically at initialization.

We now derive the weight updates after one step of GD. Let’s focus on the weights at the bottom layer [ω1
c,c,′,i]i0 ,

where i0 denotes a position within the filter of size s(s0 + 1) and i ∈ {1, ..., [s(s0 + 1)]L−1}. Note that, since there
is no weight sharing, each position z within the input dimension d is seen just one weight at the bottom layer, with
z = z(i, i0) = (i− 1)(s(s0 + 1)) + i0. Consequently, the weight update for a weight [ω1

c,c,′,i]i0 just depends on the content
of such pixel location z = z(i, i0):

∂∆[ω1
c,c,′,i]i0
∂t

= −∇[ω1
c,c,′,i]i0

L

= − 1

P

P∑
k=1

 nc∑
α=1

(
1

nc
− (y(xk))α

)
1

H

H∑
hL=1

aα,hL

1

H

H∑
hL−1=1

...
1

H

H∑
h2=1

[xk]c′,z(i,i0)


= − 1

P

P∑
k=1

[
nc∑
α=1

(
1

nc
− (y(xk))α

)
1

H

H∑
hL=1

aα,hL

]
[xk]c′,z(i,i0).

(12)

On average over all the training sets, the pixel at location z(i, i0) of the input datum xk relates to an informative feature with
probability pL = (s0+1)−L. Consequently, on average just a fraction P ′ = pLP of training points will give a non-vanishing
contribute to the weight update Eq. 12, which will be identical to the GD equation of an instance of the sparseless SRHM
with P ′ training points. Thus, the sample complexity in the sparse case s0 > 0 is equal to the sparseless sample complexity
ncm

L increased by a factor (s0 + 1)L, as empirically observed in Eq. 3. At this sample complexity, a single step of GD
is capable to group together representations with equal correlation with the label, as shown in (Cagnetta et al., 2023b).
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D. Sample complexities and learnt representations for LCNs
Architectures. Shown in Figure 3 (a). All layers consist of 512 channels.

Training scheme. We use Stochastic Gradient Descent (SGD) as optimizer, with batch size 4 and momentum 0.9. The
learning rate lr has been optimized by extensive grid search, finding: lr = 0.01 for s = 2 and s0 < 4, lr = 0.01 for s = 2
and s0 ≥ 4 and lr = 0.003 for s ≥ 2. We use as train loss the cross entropy loss, and we stop the training when it reaches a
threshold of 10−3.

Sample complexity figures. In Figure 10, realised with s = 3, we show additional support to the scaling of the sample
complexity P ∗

LCN , defined in Eq. 3. In Figure 11 we show for s = 3 that the insensitivity to diffeomorphism and to
synonyms exchange are achieved at the same sample complexity P ∗

LCN at which the task is learned, supporting Eq. 8.
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Figure 10. LCN: Left panel: empirical sample complexity P ∗ to reach a 10% test error ε versus prediction Eq. 3 for s = 3, different
vocabulary sizes v and different depths L (different colors), number of classes nc = v, maximal m = vs−1 and different s0 (different
markers).Note an additional factor sL/2 in the prediction, further supported by the right panel, realised at fixed s0 = 1, nc = m = 4, and
varying s and L.
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D2 = 10% (with D2 as defined in Eq. 7). The thresholds have been tuned based on the form of S2 and D2 versus P .

Learnt representations figures. To assess whether the internal representation of the trained network have learnt the
production rules Eq. 1 and Eq. 2, we define an operator pl which takes in a datum x and substitutes each informative s
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patches at generation level l with one of its m− 1 synonyms, chosen uniformly at random, keeping the feature positions
intact. The level l goes from l = 1, the input, to L, the patch closest to the label. We define the sensitivity Sk,l of the network
representation fk at an internal layer k ∈ {1, ..., L} (with k = 1 being the layer closest to the input while k = L the one
closest to the output) to synonymic exchange pl as its average change before and after applying pl on an input datum x:

Sk,l =
⟨||fk(x)− fk(pl(x))||2⟩x,pl

⟨||fk(x1)− fk(x2))||2⟩x1,x2

, (13)

where x, x1 and x2 belong to a test set, while the average ⟨.⟩ is over the test set and on the random exchange of synonyms
Pl. The same definition apply for the output of the deep network. The measure Eq. 6 is a particular case of Eq. 13 for k = 2
and l = 1, which can be visualized in Figure 6 (A).

To estimate the sensitivity to diffeomorphisms of trained networks we define an operator τl, which takes as input a datum x
and shifts randomly its features according to the possible positions shown in Figure 2, panel (3), not impacting the feature
values. Similarly to Sk,l, we define the sensitivity of fk to diffeomorphisms τl at layer l as

Dk,l =
⟨||fk(x)− fk(τl(x))||2⟩x,τl
⟨||fk(x1)− fk(x2))||2⟩x1,x2

. (14)

The measure Eq. 7 specializes Eq. 13 to k = 2 and l = 1, pictured in Figure 6 (B). T

he behaviours of Sk,l and Dk,l with respect to P are shown for different values of s = L = 2 in Figure 12. We vary k and l
in {1, ..., L}, and we analyse the sensitivity of the output too. For k ≥ l + 1 the sensitivities become significantly lower for
large P . We checked the robustness of such observation for different values of s and L (not shown here).

E. Sample complexities and learnt representations for CNNs
Architectures. Shown in Figure 3 (b). All layers consist of 512 channels.

Training scheme. Same as LCN, except for the learning rate: lr = 0.01 for s = 2 and s0 < 4, lr = 0.01 for s = 2 and
s0 ≥ 4 and lr = 0.003 for s ≥ 2.

Sample complexity figures. In Figure 13, realised with patch size s = 3, we show additional support to the scaling of the
sample complexity Eq. 3. In Figure 14 we show that, as for the LCNs, also for CNNs the insensitivity to diffeomorphism
and to synonyms exchange are achieved at the same sample complexity P ∗

CNN at which the task is learned, defined in Eq. 4.

Learnt representation figures. In Figure 15 we report the test error and the sensitivities to input transformations Sk,l and
Dk,l defined in Eq. 13 and Eq. 14, with respect to P , for CNNs trained on the SRHM for different values of L and s. We
vary k and l in {1, ..., L}, and we analyse the sensitivity of the output too. As for the LCNs, for k ≥ l + 1 the sensitivities
become significantly lower for large P . We checked the robustness of such observation for different values of s and L (not
shown here).

F. Sample complexities for FCNs
Architectures. The networks are made by stacking L full-connected layers, followed by a readout layer. All layers consist
of 512 channels for L = 2 and 256 channels for L = 3.

Training scheme. Same as LCN, except for the learning rate: lr = 0.01 for L = 2 and lr = 0.003 for L = 3.

Sample complexity figures. In Figure 16, realised with patch size s = 2, we show that, as for the LCNs and CNNs, also for
full-connected networks (FCN) the insensitivity to diffeomorphism and to synonyms exchange are achieved at the same
sample complexity at which the task is learned.

G. Correlation between test error and internal sensitivities
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Figure 12. Top: sensitivity to synonyms exchange Sk,l Eq. 13 of a L−layer LCN, trained on the SRHM with L = 2, s = 2 and
m = v = nc = 8, versus number of training points P rescaled by prediction Eq. 3. Going from left to right column the network layer k
increases from the layer closest to the input to the output. For each column at fixed k there are plotted in color the sensitivities Sk,l to
synonyms exchange at the data level l ∈ [1, ..., L], and in grey the test error. Different markers stand for different s0. Bottom: same as
top, but with the sensitivity to diffeomorphisms Dk,l Eq. 14. The sensitivities S2 and D2 defined in Eq. 6 and Eq. 7 relate to the case
k = 2 and l = 1 here.
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2 hidden-layer LCN, where it corresponds to the second layer. The test error shows a remarkable correlation with the sensitivities. A grey
line, corresponding to a power-law, guides the eye. For details about the architectures and their training process, see Appendix B. (B)
Same as (A) for sensitivity Sinternal to synonymic exchanges, defined as the change of the hidden representation induced by an exchange of
synonyms applied on the input, see Eq. 6. (C) and (D): as top panels (A) and (B), for increasing P (increasing opacity). The sensitivities
of the network output yield the same observations, as shown in Figure 1.
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