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Abstract
The performance of differentially private machine
learning can be boosted significantly by lever-
aging the transfer learning capabilities of non-
private models pretrained on large public datasets.
We critically review this approach. We primarily
question whether the use of large Web-scraped
datasets should be viewed as differential-privacy-
preserving. We further scrutinize whether existing
machine learning benchmarks are appropriate for
measuring the ability of pretrained models to gen-
eralize to sensitive domains. Finally, we observe
that reliance on large pretrained models may lose
other forms of privacy, requiring data to be out-
sourced to a more compute-powerful third party.

1. Introduction
While machine learning models have made tremendous
progress at learning generalizable concepts from data at
scale, these models also frequently memorize parts of their
training data (Feldman, 2020; Feldman & Zhang, 2020;
Shokri et al., 2017). This poses a threat when the model’s
training data contains privacy-sensitive information, as de-
ployed models may regurgitate memorized private data (Car-
lini et al., 2019; 2021; Somepalli et al., 2023).

Differential privacy (DP) (Dwork et al., 2006) offers a for-
mal solution to this problem. Informally, training a model
with (user-level) differential privacy offers a guarantee that
the model will not depend too heavily on the sensitive data
contributed by any one individual. Among other threats, this
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ence, ETH Zürich, Zürich, Switzerland 2Cheriton School of Com-
puter Science, University of Waterloo, Waterloo, Ontario, Canada
3Vector Institute, Toronto, Ontario, Canada 4Google DeepMind,
Mountain View, USA. Correspondence to: Florian Tramèr <flo-
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protects against the model memorizing training data. But
current approaches to differentially private learning scale
poorly, and greatly sacrifice the model’s useful generaliza-
tion capabilities in order to provably prevent memorization.

To address this issue, a growing line of work suggests to
augment differentially private learning algorithms with ac-
cess to public data (Abadi et al., 2016; Papernot et al., 2019;
Tramèr & Boneh, 2021; Yu et al., 2022; Li et al., 2022; Arora
& Ré, 2022; De et al., 2022; Mehta et al., 2023; Kurakin
et al., 2022; Panda et al., 2022; Nasr et al., 2023b; Tang et al.,
2024). The goal is to first use large troves of non-privacy-
sensitive data to learn generic features—independent from
any data owner’s private data—which can then be efficiently
finetuned with DP on sensitive data.

For example, suppose a company wishes to train a model
on a corpus of chat messages from its end users. While the
content of these messages is sensitive, the general structure
of a chat message (i.e., syntax, grammar, etc.) is not sensi-
tive. Thus, the company may wish to leverage a model that
was pretrained on a large public corpus of text (preferably
including chat conversations) and then finetune this model
on the specific sensitive content of the end users’ messages.

Even in the the absence of any privacy concerns this pre-
training and transfer learning approach has become the
de-facto strategy for achieving state-of-the-art results across
a variety of challenging tasks in computer vision and nat-
ural language processing. Here, a generic “foundation
model” (Bommasani et al., 2021) is first pretrained on mas-
sive and weakly curated data—typically scraped from the
public Internet. Thereafter, the model can be efficiently fine-
tuned on various downstream tasks (Radford et al., 2019).
Generative models such as large language models even ex-
hibit powerful in-context learning abilities, where the model
“learns” new tasks at inference time solely on the basis of a
small number of examples (Brown et al., 2020).

The impressive performance of foundation models naturally
places these models as ideal candidates for private learning.
Indeed, as the pretraining data comes from publicly avail-
able sources, the pretrained model is fully independent of
individuals’ privacy-sensitive target data. And since these
models learn new tasks extremely (sample)-efficiently, they
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should be able to also learn these tasks privately with only a
minor impact on performance. Thus, it is unsurprising that
a growing body of work investigates the benefits of using
Web-scale pretraining for private learning (Li et al., 2022;
Yu et al., 2022; Arora & Ré, 2022; De et al., 2022; Mehta
et al., 2023), and showcases significant improvements in
performance on canonical private learning benchmarks.

For example, on the ImageNet dataset (Deng et al., 2009), in
the absence of any pretraining, the approach of Sander et al.
(2023) achieves a top-1 accuracy of 39.2%, under a fairly
weak provable DP guarantee of ε = 8; more recent work
of Tang et al. (2023) improved this slightly to the current
state of the art: 39.39%. This represents an almost 6× in-
crease in error rate compared to the best non-private model
trained solely on ImageNet (at least 86.7% accuracy) (Tu
et al., 2022). In contrast, when leveraging a dataset of 4 bil-
lion Web images for public pretraining, Berrada et al. (2023)
achieve an accuracy of 86.8% at a much more reasonable
privacy budget of ε = 1 (with comparable results obtained
by De et al. (2022); Mehta et al. (2023)).

In a similar vein, Li et al. (2022) and Yu et al. (2022) finetune
large pretrained language models such as RoBERTa (Liu
et al., 2019) and GPT-2 (Radford et al., 2019) to achieve
strong performance on downstream tasks with differential
privacy. Arora & Ré (2022) further argue that LLMs can be
personalized to each individual’s personal and sensitive data
while incurring no privacy cost (i.e., ε = 0) by leveraging
the pretrained model’s “zero-shot” abilities. This line of
work suggests we are getting close to “solving” private
learning. Indeed, as Web-scraped datasets grow larger and
larger, the ability of pretrained models to privately adapt
(“for free”) to new tasks will only get better.

This position paper challenges this view, and critiques
the public-pretraining and private-finetuning paradigm.
We raise two (orthogonal) concerns that models trained in
this manner may fail to be a) private, or b) useful. We
thus question the validity of current findings in this area for
informing real-world deployments of differential privacy.

Our primary criticism challenges the notion that pretraining
on publicly-available Web data should be viewed as neutral
(i.e., non-sensitive) from the perspective of user privacy:

Pretraining data scraped from the Web may be
sensitive itself; because a “privacy-preserving”
finetuned model can still memorize its pretrain-
ing data, this causes direct harm and dilutes the
meaning of “private learning”.

Specifically, our critique raises issue with the privacy seman-
tics when finetuning data is sensitive, but the pretraining
data is considered to be public: as we explore, the latter
assumption is mismatched with norms and expectations of

what it colloquially means for a model to be private.

Beyond this core concern with the appropriateness of using
publicly available data for privacy-preserving learning, we
further posit that this paradigm might not be as useful as
existing research suggests, and that it could even lead to a
net loss of privacy at training or deployment time:

• Current private learning benchmarks likely overesti-
mate the value of public pretraining by fixating on
settings with highly overlapping public and private
data distributions.

• Public pretraining performs best with massively large
models that cannot be run on end-user devices, thereby
trading off one form of privacy (DP for the sensitive
finetuning data) for another (the model’s users have to
outsource private data to a third party).

Each of the three issues we raise are largely orthogonal to
one another, and solving any one of them need not affect the
others. For example, even if we were to develop benchmarks
that accurately reflect private workloads, the core issue of
the potential sensitivity of pretraining data would remain.

This work is a position paper, which takes a critical view
of the current state of the field and highlights several as-
pects we find problematic. We thus put forward a call for
solutions from the community – while we offer some broad
suggestions on potential ways to address our concerns, we
(intentionally) stop short of technically exploring solutions,
as each of these challenges deserves significant attention
beyond the scope of this article.

1.1. Paper Overview

In the reminder of this introduction, we provide a broad
overview of all three issues above, and outline some open
questions and paths forward for the field. For the interested
reader, Sections 2, 3 (and, due to space restrictions, Ap-
pendix A) then delve into more details to support our main
arguments. Finally, Section 4 provides some concluding
remarks and future outlooks.

1. The Web contains privacy-sensitive data. Training
data scraped from the Web is indeed publicly accessible, but
this does not imply that using this data in machine learning
applications poses no privacy risks.

Individuals may put some data on the Internet with a specific
context-of-use in mind. For example, someone may post
their contact information along with a research publication
with the intent that it is used to contact that person about
details of the publication. Sensitive data about individuals
could also be uploaded to the Internet unintentionally (or by
third parties privy to this information). As a result, people
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often underestimate how much information about them is ac-
cessible on the Web (Ellis & Thomas, 2022), and might not
consent to their “publicly accessible” personal data being
used for training machine learning models.

The question then is whether finetuning (with DP) on top
of such publicly pretrained models should really be pub-
licized as privacy-preserving. It is entirely possible that
models might memorize a large fraction of their (public,
yet sensitive) pretraining dataset. Then if the model ever
leaks this pretraining data, this still harms the privacy of the
data subjects. Such situations could run the risk of eroding
affected individuals’ trust in differential privacy to appropri-
ately protect their data in other settings (e.g., for collecting
census data (Abowd et al., 2022)).

The guarantees of differential privacy are complicated
enough to understand when no public data is involved (Cum-
mings et al., 2021), even for researchers (McSherry,
2016a;b). Asking data owners to distinguish between their
“public” and “private” data further muddies the waters—
especially because this distinction may not always be evi-
dent to data owners, or even knowable for some data.

Going forward, we argue that researchers should make the
privacy ramifications of using certain public data sources
clearer. Indeed, not all public data is created equal. Some
public sources (e.g., Wikipedia) are highly curated and may
pose low risks of containing sensitive information. Alterna-
tively, some data sources might consist of public data that
carries explicit consent to be used. It is an important open
research question to understand if pretraining models solely
on such stringently curated data can provide similar benefits
for downstream tasks, while mitigating privacy risks.

2. Benchmarks conflate private and public distributions.
Even if we were to solve the core privacy issue above—for
example by pretraining very powerful models solely on non-
sensitive datasets—it remains unclear if these models will
actually be useful for privacy-sensitive downstream tasks.

We argue that the usefulness of the public-pretraining
paradigm on private tasks is currently hard to assess, be-
cause existing benchmarks study “private” datasets that are
not actually any more “sensitive” than the “public” dataset
that is used for pretraining. In fact, the two are often drawn
from the same (or from a similar) underlying distribution.

For example, when we transfer from ImageNet to CIFAR-
10 (e.g., as by Tramèr & Boneh (2021); De et al. (2022)),
every single class contained in the CIFAR-10 dataset has
an identical class label in the ImageNet dataset! So can we
say that any “private learning” actually happened? After all,
training on ImageNet alone has already taught the model
how to recognize a cat, or an airplane, or a dog—thus,
(privately) finetuning on CIFAR-10 is merely performing a
loose form of domain adaptation to classify low-resolution

images more accurately. Despite this critique, this is a
standard evaluation metric for private ML with public data.

Of course, the aforementioned papers do not actually care
about privately classifying CIFAR-10, per se. Rather, they
aim to provide and evaluate a general framework for com-
bining public and private datasets. But as a result, we argue
it is not clear that measuring progress of “private” learning
on any of these benchmarks is at all meaningful. Specifi-
cally, are these benchmarks actually measuring progress in
private learning? Or are they just a direct proxy for progress
on non-private representation learning?

The answer to this question likely depends on whether there
exists an overlap between “public” and “private” data in real
privacy-sensitive applications. We posit that this will not be
the case in many applications, i.e., the privacy sensitive data
to be finetuned on will come from a data distribution that is
only poorly represented in the public pretraining data. For
example, machine learning on medical data is a canonical
motivation for private ML, but the data distributions may
not resemble those which are publicly accessible.

Unfortunately, it has already been shown that if the overlap
between the pretraining and target distributions is small,
then current methods for large scale pretraining may be less
effective. For example, in the challenging (but perfectly-
privacy) zero-shot setting, foundation models tend to per-
form poorly on medical tasks. To illustrate, the authors of
BASIC-L (a representation learning method) write:

PCam [a skin lesion dataset] is perhaps the most
sensitive dataset where BASIC-L performs poorly.
For such an important task, the top-1 accuracy of
BASIC-L (59.6%) [is] far below the bars for prac-
tical deployments, [...] [and] just slightly above
random guessing. [...] As our training data are
weakly crawled and automatically curated from
the internet, without any emphasis on medical im-
ages, our BASIC-L model cannot learn enough to
perform well on PCam. [...] despite the benefits
of open-vocabulary image classification models,
they are not ready to be deployed to tasks that
require in-domain expertise (Pham et al., 2023)

There is evidence that some deficiencies of zero-shot learn-
ing in these settings may be overcome by (non-private)
finetuning (Radford et al., 2021). But this need not always
be the case. For example, while large language models pre-
trained on Internet text achieve impressive performance on
a variety of downstream tasks (Brown et al., 2020), they still
achieve poor performance when finetuned on (potentially
sensitive) tasks that are only weakly represented online.

Understanding the efficacy and limitations of transfer learn-
ing has been a major research direction in the non-private
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machine learning community, particularly through the lens
of distribution shifts (Koh et al., 2021). Yet, it is not always
clear whether conclusions from the non-private setting are
valid when we introduce privacy constraints, as data that
is very privacy sensitive may be poorly represented in the
distribution of publicly available pretraining data.

We thus call for privacy researchers to consider (or cre-
ate) new benchmarks that more closely match envisioned
deployments of private learning. Such benchmarks could
for instance leverage sensitive datasets that were publicly
released for research purposes, such as e.g., MIMIC (John-
son et al., 2016) or the dataset from the infamous Netflix
Prize (Bennett & Lanning, 2007).

3. Large private models require trusting cloud services.
When we train a model with DP, this guarantees that anyone
who can access the trained model cannot learn much about
any individual training sample. However this is orthogonal
to any confidentiality considerations about who sees the data
during training and inference.

Ideally, when dealing with personal data (e.g., private chat
messages), the sensitive data would not leave the individ-
ual’s device. This is usually possible: the differentially
private training could be decentralized (e.g., as in Federated
Learning (McMahan et al., 2017)1), and the trained model
could be shipped to people’s devices for inference.

Unfortunately, unlocking the full power of large-scale pub-
lic pretraining currently requires drastically scaling model
sizes. With current techniques, most foundation models are
impossible to train or serve on end-user devices. For ex-
ample, MobileBERT (Sun et al., 2020)—a language model
optimized for on-device inference—has about 25M param-
eters; this is between two and four orders of magnitude
smaller than state-of-the-art language models considered in
recent works on private finetuning of language models (Li
et al., 2022; Arora & Ré, 2022; Yu et al., 2022).

We thus encourage researchers in private machine learning
to also take into consideration the scale of these models, and
their privacy implications. An important direction for future
work is to develop techniques for distilling (Hinton et al.,
2015) large foundation models into smaller, more efficient
models that are tuned for a specific (private) task.2

Are these issues not also present in non-private learning?
While our paper focuses on the shortcomings of large-scale
public pretraining for private workloads, many of our criti-

1We remind that federated learning, even with differential pri-
vacy, comes with its own associated privacy risks (Zhu et al., 2019;
Boenisch et al., 2023)

2Recently, subsequent to the original appearance of this paper,
there has been significant interest in the development of powerful
small models that facilitate on-device computation (e.g., Gunasekar
et al., 2023; Li et al., 2023; Gemini Team, 2023).

cisms may seem to apply more broadly to any application
of pretrained models. However we believe that these issues
are especially important in privacy-sensitive applications.

First, the act of labeling the whole Web as “public” for
machine learning purposes is particularly egregious when
these models are explicitly touted as “privacy preserving”,
as this dilutes the meaning of “privacy” and may downplay
the benefits of other uses of privacy enhancing technologies.

Second, a large overlap between pretraining data and com-
mon benchmarks may not be a concern if the goal is to mea-
sure absolute progress on the considered task, rather than
progress of generic learning techniques. Many standard
benchmarks are useful in the former sense (e.g., ImageNet
measures the ability to classify 1000 types of every-day
objects). But since these tasks are not privacy relevant, their
use as benchmarks in the privacy literature solely serves
the latter goal: to evaluate the progress of generic (private)
learning techniques. In this case, a large overlap between
pretraining and finetuning tasks is problematic.

In the remainder of this paper we study each of the three
challenges in more detail, provide further evidence for our
claims, and discuss conclusions of our work.

2. Is publicly accessible data public?
When a model is reported to be “trained with differential pri-
vacy,” it should mean something. And if a model is trained
with DP from scratch, it means something very precise: no
data specific to any individual training record will be memo-
rized by the final model.3 In the common pretrain-publicly-
then-finetune-privately paradigm, the privacy semantics are
slightly different. The finetuning dataset enjoys the privacy
guarantees bestowed by DP, but there is absolutely no pri-
vacy afforded to data in the pretraining dataset. Our main
argument in this section is that these privacy semantics,
while rigorous and precise, fall short of satisfying several
privacy norms in the manner they are generally used. As
such, we consider it detrimental to label the resulting mod-
els as “privacy-preserving,” as their guarantees are at odds
with how most individuals would interpret such a claim.

The issue comes from the fact that such a “privately-trained”
model will still leak details of individuals whose data were
contained in the pretraining dataset. And if a data subject
notices this and asks “if this model is private, why was my
data leaked?” the only possible answer to give is that this
data was not part of the dataset that was considered worth

3Informally speaking, if the training procedure satisfies (ε, δ)-
DP, then with probability at least 1 − δ the inclusion of one in-
dividual training record changes the probability of observing any
outcome by at most a factor eε. Most DP models are trained with
Rényi DP (Abadi et al., 2016; Mironov, 2017), which is translated
into (ε, δ)-DP to give more interpretable guarantees.

4



Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining

protecting. Such an explanation would likely not be very
satisfactory, as individuals may still view some publicly
accessible data as sensitive—especially if, as we make the
case here, it was not intentionally made public.4

This issue could be mitigated by pretraining models solely
on data that is entirely non-sensitive. Alternatively, we
could ask data owners to provide explicit consent for their
data to be used for machine learning. But then we have
to ensure that the resulting privacy risks are very clearly
communicated first. For example, if some user application
were to ask “please share your data to help improve this
product,” users may expect that their data will be shared
with the application developer, but not potentially with all
other application users.

Unfortunately, the value in pretraining currently seems to
arise mostly from the fact that we are able to train on massive
uncurated datasets. As a consequence of the size of these
datasets, much of the collected content will inevitably come
from uncertain origins with no explicit user consent, and
requesting consent becomes challenging.

Such issues arise even for extremely well-studied and
strongly supervised datasets such as ImageNet. Despite its
ubiquitous use, the dataset contains sensitive content of indi-
viduals (e.g., images of children, nudity, etc.) (Quach, 2019).
Some datasets have even been completely retracted on pri-
vacy grounds: TinyImages (Torralba et al., 2008) is a dataset
of 80M images scraped from the Web which was later sub-
sampled to create the CIFAR-10 dataset (Krizhevsky, 2009).
This dataset has since been deprecated due to the discov-
ery of offensive and derogatory images (Birhane & Prabhu,
2021). Larger-scale datasets used for natural language pro-
cessing are possibly even more challenging to curate. These
datasets are often hundreds of gigabytes (Gao et al., 2020)
to terabytes (Hoffmann et al., 2022) in size, gathered mostly
by scraping the Internet for any available text data, with
minimal content filtering or curation.

While such datasets contain, by definition, only data that is
public (in the sense of “publicly accessible” on the Internet),
their use in ML still presents significant privacy risks, as
illustrated by the following two (real) examples.

2.1. Two Motivating Examples

Intentionally shared data, for use in a particular context:
Consider again the case of a company that trains a language

4We comment that, even without any public data, and with
DP training correctly implemented, there are still risks that could
lead to catastrophic privacy violations, generally with very low
probability of occurrence. As one extreme example (which occurs
with exceptionally low probability), consider a run of DPSGD in
which all added noise happens to be negligibly small, and thus has
similar privacy risks to an unprotected model. Such failures of DP
are possible, albeit unlikely, and outside the scope of our paper.

model on the text messages of its end users. The company
initializes their model with the publicly available GPT-2
model, and then finetunes it with DP on its own corpus of
private chat messages. The company then deploys the model
and promises users that this model is privacy preserving!

Peter W. uses the model and types: “The phone
number of Peter W. is:” and the model auto-
completes his correct phone number (and also helpfully
supplies his fax number, physical address, and email ad-
dress). Peter W. claims this model violates his privacy. The
company assures Peter that it does not, since their imple-
mentation satisfies a state-of-the-art (ε = 0.1, δ = 10−12)
level of differential privacy (with respect to the data used for
finetuning). His privacy was actually compromised when
he posted his phone number along side some technical doc-
uments in a report to the government several years ago.

Peter might not be fully satisfied with such an answer. We
argue that many people might react like Peter if personal
information about them were ever output by a “privacy
preserving” machine learning model. In fact, this example
is not hypothetical: Peter W. is a real person, and the GPT-2
language model does know his phone number for exactly
the reason described above (Carlini et al., 2021). And he
is not alone: even state-of-the-art production models like
ChatGPT know the phone numbers of many people who
placed their phone number online for one purpose only for
it to be used during model training (Nasr et al., 2023a).

Similar issues could arise for other modalities, for example
for photos that individuals post online. These may be posted
for a particular purpose, e.g., on an individual’s homepage
for professional purposes, or on a social media site for shar-
ing memories with friends. This does not imply that the
subjects consent to all possible downstream uses—as one
extreme example, consider a generative model trained on
publicly accessible photos from the Web, that is then abused
for deepfake pornography. This constitutes a clear privacy
violation (Paris & Donovan, 2019), regardless of whether
the model’s training data was public or not.

Privacy violations could also arise if machine learning mod-
els create new ways of searching and linking data that was
posted online anonymously or pseudonymously. Attacks of
this nature have always been possible (e.g., using existing
image search engines), but cutting-edge advances in ML
make (and will continue to make) them easier and easier
to mount. For example, a model similar to CLIP (Radford
et al., 2021) that was trained on the entire Internet might
enable problematic forms of image search (e.g., “find all
online images that match this photo”).

Not intentionally (or knowingly) shared data: Not all
content available on the Internet is posted intentionally. In
some cases, the original owner might not even know their
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information has been posted without their consent.

We begin with another example from GPT-2 where data
was posted without the knowledge of the original author,
and was then used to train a large language model. The
GPT-2 language model was trained on many webpages that
were linked to by the social media website Reddit. One
of these articles was a transcript of an IRC conversation
(of several thousand messages) between several individu-
als discussing sensitive political and societal topics. These
individuals were likely not aware their private conversa-
tions were recorded—let alone published for anyone to see.
However GPT-2 trained on this data as if it was intentional.

Another example involves surveillance camera footage.
While surveillance cameras are ubiquitous, the public gener-
ally expects recordings to be available exclusively to security
personnel. Nonetheless, many surveillance camera configu-
rations employ minimal security, leading to livestreams of
their feeds being publicly available (Xu et al., 2018).

Data can also be published unintentionally. Reportedly,5

in at least one example, a GitHub user unintentionally up-
loaded information about their cryptocurrency wallet to a
public Git repository. When Copilot (a coding assistant
language model) (Chen et al., 2021) was trained on this
repository, it memorized this wallet’s private key and al-
lowed another user to withdraw money from the account. In
all likelihood, this user did not post the key to their cryp-
tocurrency wallet on their GitHub intentionally.

In all of these examples, the data is publicly accessible on
the Internet, but particular uses of this data constitutes a
significant violation of privacy norms, particularly when
used in combination with machine learning. One could
argue that it is not the act of training the machine learning
model that caused a privacy leak—but rather the original
act of publishing this data on the Internet.

We disagree! ML models (and foundation models in particu-
lar) have the capacity to amplify this leakage by disseminat-
ing this information in a much broader context, e.g., in new
applications built on top of these pretrained models. As an
analogy, a malicious person who doxes another by “releas-
ing someone’s personal details onto the Internet in an easily
accessible form” is still causing harm even though “these
details may already be publicly available, but in difficult
to access forms or distributed across various sources that
obscure them from casual discovery” (Douglas, 2016).6

The recent work of Brown et al. (2022) raises some related
5https://www.theregister.com/2022/05/03/

openai copilot cryptocurrency/
6We emphasize that we are making a (subjective) moral argu-

ment that the model trainer bears some culpability for propagating
this information. Legally, their liability may differ based on juris-
diction, and we omit further discussion for simplicity.

concerns, for the specific case of language models. Their
core argument is that the privacy categorization of text data
is inherently contextual (see also, the more recent works
of Mireshghallah et al. (2024); Hartmann et al. (2023); Neel
& Chang (2023)). Thus, collecting text data from vari-
ous contexts on the Web and aggregating it into a single
public-facing language model may violate users’ privacy
expectations for this data. We expand on this argument here
by: (1) considering other publicly available data modalities
than just text; and (2) by discussing the potential erosion of
trust in privacy technologies that could arise when conflating
“public” and “private” data sources (see below).

2.2. Privacy Expectations

Given that not all content available online has the expecta-
tion of being used to pretrain large models (either because
it was posted online for one particular purpose, or because
it was not even posted intentionally), this raises reasonable
privacy considerations for training on this “public” data.

By publicizing such models as being “privacy preserving,”
the leakage of people’s so-called “public” data could erode
their trust in technologies such as differential privacy (which
is not technically at fault here). This trust erosion could then
also (mistakenly) carry over to settings where differential
privacy is applied properly to all collected data—e.g., the
collection of census data in the US.

A counterargument may be that the issue here is merely one
of properly educating the public about DP and its guarantees
(in the face of public pretraining). But it is already challeng-
ing for users to understand how the semantic guarantees of
DP align with their own notions of “privacy”, even when no
pretraining is involved. By training non-privately we now
compound this issue by introducing two “tiers” of data that
are presumed to have very different privacy expectations
attached to them. But if peoples’ own privacy expectations
do not match with this assumption, we run the risk that
“privacy-preserving” models will cause real privacy harms.

3. Are we still measuring progress on private
learning?

The purpose of a benchmark is to measure progress on a
particular task of interest. The ImageNet benchmark, for
example, measures the ability of classifiers to perform image
classification across a range of everyday objects.

It is important to use the right benchmark—one where
progress serves as an appropriate proxy for progress on
the true task of interest. For example, while researchers had
historically used the MNIST dataset of hand-written digits
to evaluate the performance of neural networks, today this
dataset is not seen as a reliable measure of progress. This
is both because it has become “too easy”, and also because

6
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lessons learned from squeezing the last 0.1% test accuracy
out of the dataset often do not generalize to more interesting
datasets (e.g., Goodfellow et al., 2014).

We now make the case that current benchmarks used to
evaluate privacy-preserving machine learning are similarly
insufficient, and that we should instead study tasks that
are more directly indicative of performance on real-world
privacy-sensitive tasks.

3.1. Intra-domain versus Cross-domain Finetuning

Existing research that follows the public-pretraining-and-
private-finetuning paradigm discussed earlier has so far fo-
cused mostly on the following tasks:

• Pretrain on CIFAR-100 or ImageNet and finetune on
CIFAR-10 (Abadi et al., 2016; Papernot et al., 2019;
Tramèr & Boneh, 2021; Panda et al., 2022)

• Pretrain on Places365 and finetune on ImageNet (Ku-
rakin et al., 2022)

• Pretrain on JFT or LAION-5B and finetune on Ima-
geNet (De et al., 2022; Mehta et al., 2023)

• Pretrain on text data scraped from the Web, and fine-
tune on other text data scraped from the Web (Yu et al.,
2021b; Li et al., 2022; Yu et al., 2022)

The issue is that many of the above settings have the property
that the “private” finetuning data distribution is essentially
a subset of the “public” data distribution. For example,
the data distribution from which CIFAR-10 is drawn is a
strict subset of the data distribution from which ImageNet
is drawn. CIFAR-10 is drawn from (heavily downsampled)
images from the Internet representing one of 10 objects:
cats, horses, airplanes, etc. ImageNet is similarly drawn
from images from the Internet representing one of 1000
objects, including each of the CIFAR-10 classes. So when
we pretrain on ImageNet and privately finetune on CIFAR-
10, is any “private learning” actually happening or are we
merely performing a loose form of intra-domain transfer
from high-resolution to low-resolution images? The latter
is a worthy goal, but the former is better aligned with what
researchers try to understand in these settings: how to adapt
to novel concepts which are only well-represented in sen-
sitive data. We emphasize that the issue here is an overlap
property of the data distributions, which occurs even when
the datasets themselves are entirely disjoint.

The reliance on public pretraining with significant overlaps
between “public” and “private” data distributions has be-
come more prevalent in recent research. Abadi et al. (2016)
were, to our knowledge, the first to present private learning
results with public pretraining. While their “private” dataset

(CIFAR-10) and “public” dataset (CIFAR-100) share close
similarities, the authors argued that “the examples and the
image classes [of CIFAR-100] are different from those of
CIFAR-10.” Follow-up papers then moved on to using larger
pretraining sets (e.g, ImageNet (Tramèr & Boneh, 2021; De
et al., 2022)) but omitted the concern about class overlap
between the private and public datasets.

The situation is analogous when benchmarking large lan-
guage models. For example, the GPT-4 (OpenAI, 2023) and
Gemini (Team et al., 2023) papers present detailed analy-
ses of how common evaluation benchmarks in NLP might
overlap with the model’s training data, and the CLIP paper
(Radford et al., 2021) analyzes how many ImageNet test
images might be contained in their CLIP training dataset.

To highlight an extreme example of the questionable use
of “public pretraining,” two recent works in this area (De
et al., 2022; Mehta et al., 2023) have pretrained on Google’s
JFT dataset (Zhai et al., 2022; Sun et al., 2017) to achieve
high accuracy (privately) on ImageNet. However while
ImageNet (Deng et al., 2009) is a public dataset that any
researcher is allowed to download, JFT is a proprietary
dataset of 4 billion Web images collected and labeled by
Google that has not been made public. Thus, in this setup
the “private” dataset is actually more accessible than the
“public” dataset!7 On top of this, the datasets are similar
enough that parts of ImageNet are directly contained in JFT.
The papers above do account for this by removing images
from JFT that are near-duplicates of images from ImageNet.
But the fact remains that here the private and public datasets
are essentially identically distributed—and thus likely not
representative of many real private learning scenarios.

Of course, the above papers merely adopted these bench-
marks as illustrative examples of a public-to-private transfer
setup. Yet, we caution against such benchmarks becoming
the standard for assessing progress in private learning tech-
niques. This is because these benchmarks make it hard
to disentangle generic progress in unsupervised repre-
sentation learning, from algorithmic improvements for
private learning. This issue is compounded by the fact that
there is no consensus on what public pretraining data to use,
and so different papers use a wide variety of incomparable
public sources. For instance, prior work has presented re-
sults for private learning on CIFAR-10 while leveraging the

7The machine learning community has created large-scale,
open-source datasets which can serve as an alternative to pro-
prietary datasets like JFT. Some notable such datasets include
LAION-5B (Schuhmann et al., 2022) and the Pile (Gao et al.,
2020). However, these particular datasets have been taken down,
by the authors due to unintentional indexing of child sexual abuse
material, and by a DMCA request, respectively. These develop-
ments leave nebulous the future of large open-source datasets, and
raise further question about the nature of the contents of proprietary
datasets.
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following public data sources: CIFAR-100 (Abadi et al.,
2016; Asadian et al., 2022); unlabeled CIFAR-100 (Asa-
dian et al., 2022); ImageNet (De et al., 2022); unlabeled
ImageNet (Tramèr & Boneh, 2021); 2,000 random Ima-
geNet samples (Yu et al., 2021a); a single 600× 225 image
engineered for pretraining (Asadian et al., 2022), etc.

A potential explanation for some of these “esoteric” choices
of pretraining datasets is that without any restriction on what
can be considered as “public” data, some benchmarks (such
as CIFAR-10) become uninteresting as the private task can
essentially already be solved with perfect privacy (Arora &
Ré, 2022). For example, OpenAI’s pretrained CLIP model
gets 96.2% zero-shot accuracy on the CIFAR-10 dataset
(without any finetuning), just a few percentage points shy
of the ∼ 99% state-of-the-art using this dataset alone—
despite the fact that CLIP never saw any CIFAR-10 training
data! Thus, by definition, CLIP achieves 96.2% accuracy
at (ε, δ) = (0, 0)-DP. Similarly, Pham et al. (2023) achieve
zero-shot 85.7% top-1 accuracy on ImageNet, thus achiev-
ing perfect privacy and state-of-the-art accuracy even com-
pared to models with much larger values of ε (Mehta et al.,
2023; De et al., 2022).

Why do we believe this is a problem? After all, if it is
possible to reach 96% accuracy on CIFAR-10 without even
inspecting the training dataset, is this not actually private?
Again, our concern comes down to the fact that the underly-
ing data distribution for both CIFAR-10 and CLIP’s training
dataset are the same: images scraped from the Internet.8

As a result, unlike traditional forms of cross-domain transfer
where we must take a classifier trained in one setting (e.g.,
pictures taken from the Internet) and transfer them to a
completely new setting (e.g., classifying tumors), we have
no such need here. Instead, it is sufficient to adapt from one
sampling from a distribution (images from the Internet) to
another sampling of the same distribution—albeit a sample
with slightly different preprocessing. Thus, we argue that
benchmarks such as private learning on CIFAR-10 (with
pretraining) are a bit like MNIST for general computer
vision: there is little performance left to be squeezed out
(≈ 2%), and this marginal progress might not carry over to
real privacy-sensitive settings where a close overlap between
public and private data sources may not exist.

3.2. Towards Better Benchmarks

Ultimately, the question we want to answer is whether or not
we (as a community) are making progress towards effective
private learning. It is possible that we live in a world—which

8Specifically, CIFAR-10 was collected as a subset of TinyIm-
ages, which itself is a dataset of 80 million images collected from
the public Internet. Similarly, CLIP’s training dataset is also a
dataset of 400 million images collected by downloading images
from the public Internet.

we will call Transfermania—where all sensitive tasks
we care about (e.g., medical classification tasks) are well
represented by data that is publicly available, e.g., on the
Internet. Alternatively, we might live in a different world—
Privacyland—where these sensitive tasks are not well
represented and mostly disjoint from any public data.

Knowing which of these two worlds we are in is impor-
tant! If we are in Transfermania, then everything is
great: for a sensitive task of interest, simply use a publicly
pretrained foundation model and solve the task with either
zero-shot learning (Arora & Ré, 2022) or minimal finetun-
ing (barring the issues raised above about the pretraining
data actually also being sensitive). In contrast, if we are in
Privacyland, then foundation models pre-trained on In-
ternet data might be of little help in many privacy-sensitive
settings, as exemplified by the minor benefit of transfer
learning reported by Raghu et al. (2019); Pham et al. (2023)
on some medical tasks.

Crucially, we cannot know in which world we are in without
collecting data that resembles privacy-sensitive tasks that
we actually care about (i.e., not CIFAR-10 or ImageNet).
We thus believe it is necessary for the private learning com-
munity to begin considering and curating new benchmarks—
to properly disentangle advances in non-private representa-
tion learning from advances in privacy-preserving learning.
Such benchmarks could include existing sensitive datasets
that have been released for research purposes, e.g., medical
datasets (Johnson et al., 2016; Irvin et al., 2019; Wang et al.,
2017; Bejnordi et al., 2017), email corpora (Klimt & Yang,
2004), user reviews (Bennett & Lanning, 2007), etc.

Of course, it is possible we do live in Transfermania,
and foundation models will perform well when tuned pri-
vately on sensitive tasks. This would be a very promising
signal that private learning can be achieved in many real-
world deployments. Nevertheless, concerns with the sensi-
tive nature of pretraining sets (Section 2), and the necessity
to outsource large models (Section A) could remain.

As a result, regardless of which world we are in, we en-
courage researchers to continue studying ways to make
differentially private learning (without pretraining) better,
as progress on this problem can also inform real-world de-
ployments (even if these use some form of pretraining).

Inspired by this paper’s first appearance, some subsequent
works have studied the efficacy of cross-domain transfer
in the differentially private setting. We draw attention to
the work of Berrada et al. (2023), which performs public
pretraining on large-scale public datasets such as ImageNet-
21K and JFT, and private fine-tuning on a variety of datasets,
including medical datasets like CheXpert (Irvin et al., 2019)
and MIMIC-CXR (Johnson et al., 2019). They show that
this strategy is able to achieve reasonably high utility (i.e.,
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close to the non-private SOTA) even for datasets belonging
to such specialized domains, providing evidence towards
being in Transfermania. We note that the paper lacks
a baseline of private training from scratch, so it is tough to
evaluate precisely how much the public pretraining helped.
As this work only offers results only for a few dataset pairs,
it is important for the field to more broadly understand the
efficacy of public pretraining for private ML before reaching
any general conclusions.

4. Where do we go from here?
Public pretraining for private learning might not be the
panacea that prior work has made it out to be, and we hope
future work will carefully consider the use of public data
when performing private training. We conclude by outlining
open questions and possible directions for future work:

• Articulate granular privacy considerations for Web
data. The private learning literature often falls back on
a simplified dichotomy where all data is either “public”
or “private.” Yet, individual expectations about privacy
are rarely so binary (Nissenbaum, 2004).

We thus encourage privacy researchers to advocate
for a more responsible and granular approach to pri-
vacy when it comes to collecting training datasets—and
especially datasets collected from the Internet. This
could include developing techniques and procedures
for establishing consent for using Internet data as train-
ing data, for auditing existing datasets (including pro-
prietary ones) for sensitive content, and encouraging
appropriate disclosure of any privacy concerns (for ex-
ample, in an accompanying datasheet (Gebru et al.,
2021)). This goal is part of a broader research direc-
tion focused on responsible dataset curation in machine
learning (Bender et al., 2021; Mitchell et al., 2022).

• Construct privacy-friendly pretrained models. It
is an open problem whether one could train a (useful)
foundation model that does not carry the burden of
increased privacy risks. One avenue could be to cu-
rate and pretrain models on large Internet datasets that
do not contain any privacy-sensitive data. This would
require careful consideration pertaining to which data
should and should not be considered sensitive.9 An-
other approach would be to obtain explicit consent-
of-use from data owners. Finally, it may be possible
to pretrain a foundation model itself with differential
privacy (Anil et al., 2022; Ponomareva et al., 2022). A

9Consequently, we intentionally refrain from making any broad
prescriptions on this front, as what is and is not private depends
significantly on context, with considerations including (but not
limited to) the types of data, the application, and relevant privacy
norms.

core open problem here is how to set the right granu-
larity for DP when training on data aggregated from
various sources (Brown et al., 2022). For example,
while current works aim to pretrain language models
with privacy at the level of individual sentences (Anil
et al., 2022; Ponomareva et al., 2022), such privacy
guarantees are insufficient unless all references to a
piece of sensitive information have first been rigor-
ously eliminated or deduplicated (Lee et al., 2022).

• Design better benchmarks to measure progress in
private learning. Unfortunately, no good benchmark
for private learning currently exists. By this, we mean
a benchmark that correlates well with the true task we
care about, namely, private learning in sensitive do-
mains. Privacy-sensitive data is likely to have many
characteristics that standard ML datasets lack. Thus,
by re-purposing existing ML benchmarks for private
learning we run the risk of promoting progress metrics
that are only weakly correlated (or not at all correlated)
with progress on real privacy-sensitive tasks. This
issue is exacerbated with the avenue of public pretrain-
ing, since many canonical ML benchmarks can now be
solved privately “for free.” We thus encourage the com-
munity to explore alternative benchmarks that more
closely align with privacy-sensitive tasks of interest.10

• Promote a holistic view on ML privacy. The issues
discussed in this paper fall under the broader concern
that the current ML privacy literature is predominantly
too “model centric.” That is, most research focuses on
the narrow (but important) problem of training a model
(once) with DP. This line of research largely ignores
broader privacy considerations around data collection
(what data is collected, from what sources, and why?),
data lifetimes (for how long is data kept, and how many
models are trained on it?), model lifetimes, etc. We
encourage further research on these important topics.

Finally, while the overall tone of our article is critical, we
recognize and highlight that many recent works employing
public data have played an important role in showing that
differential privacy can be preserved for certain complex
machine learning problems, without suffering devastating
impacts on utility. This is an important step forward for the
field. We focused our attention on what we believe to be
some of the most important considerations in this area, in
an effort to steer the community towards making the next
important steps advancing private machine learning.

10We believe that choosing the right benchmarks for private
machine learning is a consequential task, deserving of significant
exploration and justification. Such investigation is beyond the
scope of the present position paper. As a result, we explicitly
abstain from prescribing any specific benchmarks, and leave this
for future work.
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A. Large models require uploading private
data

In order to achieve high accuracy, transfer learning with
differential privacy currently requires using enormous pre-
trained models. For example, state-of-the-art differentially
private ImageNet models have over 250 million parameters
and require over 100 billion FLOPs to evaluate (De et al.,
2022; Mehta et al., 2023). And while models of this size
can still be run on high-end customer GPUs (250 million
parameters require “only” 1 GB of memory), the size of
state-of-the-art models is currently scaling at a much faster
rate than (consumer) hardware.11 (The largest language
models, for example, are already larger than 500 billion
parameters.)

As a result, using these enormous private models will likely
require that data owners upload their private data to some
remote cloud service. This causes a direct tradeoff between
the privacy of the individuals who provide the private train-
ing data and the privacy of the end users of the trained
model.

To illustrate, suppose that the final model must meet a min-
imum accuracy level to be viable (potentially at the cost
of privacy). This accuracy could be reached in one of two
ways: (1) use a very large pretrained model and finetune it
with DP on sensitive data; (2) use a smaller model (possibly

11For example, from 2019 to 2022 the size of the largest lan-
guage models grew by a factor 100− 1000×, while the transistor
count and memory size of consumer GPUs grew by less than 2×
(e.g., for Nvidia’s GeForce series).
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also pretrained) and finetune it without DP (or with very
low privacy guarantees) on sensitive data.12

The latter approach—using a smaller (non-privately-
finetuned) model—has the advantage that the model can
be evaluated locally on each user’s own device and thus
poses no privacy risks to the model’s ultimate end users.
However, the sensitive training data is not guaranteed any
protection from being memorized. In contrast, the former
approach of privately tuning a larger pretrained model has
the advantage that we can achieve more stringent DP guaran-
tees for the finetuning data without sacrificing model utility,
but requires the model’s end users to upload their private
data to a remote service.

The situation is actually slightly more complicated than this,
because these models are also too large to be finetuned lo-
cally (e.g., using federated learning). While this burden
could be reduced by employing parameter-efficient methods
such as LoRA (Hu et al., 2022), enabling fine-tuning of
the very largest models on-device seems far out of reach.
Furthermore, methods such as local differential privacy (Ka-
siviswanathan et al., 2011) introduce too much noise to see
practical deployment for such settings (Bittau et al., 2017).
As a result, owners of the sensitive training data face a trade-
off between either having their data be centrally collected for
differentially private training, or keeping their data locally
but not having any differential privacy guarantees.

In principle, the confidentiality of outsourced sensitive data
(both for training and inference) could be guaranteed us-
ing cryptographic techniques such as fully homomorphic
encryption (Gentry, 2009; Gilad-Bachrach et al., 2016) or
secure multiparty computation (Micali et al., 1987; Mohas-
sel & Zhang, 2017). Unfortunately, for the time being we
are several orders of magnitude away from being able to
efficiently apply these techniques in practice to large models.
Outsourcing ML workloads to trusted execution environ-
ments (Ohrimenko et al., 2016; Tramèr & Boneh, 2019) is
another possible alternative, but the security (and scalabil-
ity) of existing platforms are also currently limited and are
unlikely to handle billion-parameter models.

12Specifically, this hypothetical precludes finetuning a smaller
model with strong DP guarantees, as the resulting accuracy would
be too poor for use.
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