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Abstract
We develop novel methodology for active feature
acquisition (AFA), the study of sequentially ac-
quiring a dynamic subset of features that mini-
mizes acquisition costs whilst still yielding accu-
rate inference. The AFA framework can be useful
in a myriad of domains, including health care ap-
plications where the cost of acquiring additional
features for a patient (in terms of time, money,
risk, etc.) can be weighed against the expected
improvement to diagnostic performance. Previous
approaches for AFA have employed either: deep
learning RL techniques, which have difficulty
training policies due to a complicated state and
action space; deep learning surrogate generative
models, which require modeling complicated mul-
tidimensional conditional distributions; or greedy
policies, which cannot account for jointly infor-
mative feature acquisitions. We show that we can
bypass many of these challenges with a novel,
nonparametric oracle based approach, which we
coin the acquisition conditioned oracle (ACO).
Extensive experiments show the superiority of the
ACO to state-of-the-art AFA methods when ac-
quiring features for both predictions and general
decision-making.

1. Introduction
An overwhelming bulk of efforts in machine learning as-
sume access to a fully observed feature vector, x ∈ Rd.
However, this paradigm largely ignores that the collection
of features comes at a cost, limiting applicability in real-
world scenarios that involve making judgements with some
features or information missing. Unlike in conventional im-
putation and partially observed methodology, we note that
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many real-world situations allow for the dynamic collection
of information on an instance at inference time. That is, of-
ten one may query (at a cost) the environment for additional
information (features) that are currently missing for an in-
stance. This shall be especially relevant in an automated
future, where autonomous agents can routinely interact with
an environment to obtain more information. In this work we
develop novel methodology for active feature acquisition
(AFA) (Saar-Tsechansky et al., 2009), the study of how to
sequentially acquire a dynamic (on a per instance basis)
subset of features that minimizes acquisition costs whilst
yielding accurate inferences.

Consider the following illustrative application where
AFA is useful: an automated survey system to perform
psychological assessments. A traditional ML approach
would require collecting responses on an exhaustive list of
survey questions, and only after all responses (features)
are collected would one make a prediction of the correct
assessment. However, administering a long survey is slow,
may lead to user fatigue (Early et al., 2016a), or may even
decrease the accuracy of responses (Early et al., 2016b).
Instead, an AFA approach would sequentially decide what
next question (if any) to prompt the user with to help it
make its assessment, ultimately leading to a prediction with
a succinct, personalized subset of features per instance.
Note that in contrast to traditional feature selection, which
would always select the same subset of questions, an AFA
approach will determine a custom subset of questions (of
potentially varying cardinality) to ask on a per case basis.
This is because, in AFA, the next feature (answer to a
question) to acquire can depend on the values of previous
acquisitions. Similar applications include educational
assessments, automated trouble shooting systems, and
cyberphysical systems.

In this work, we first present an alternative perspective from
the two predominant approaches to active feature acquisi-
tion: reinforcement learning (RL) algorithms that are the-
oretically optimal but practically challenging to train, and
greedy approaches that are computationally simpler but may
lead to sub-optimal sets of acquired features. In contrast
to both, we contribute the following: (1) ACO, a simple,
nonparametric policy approach that is non-greedy while
circumventing the need for training a general RL policy;
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Figure 1. In this MNIST example, pixels are sequentially observed
(acquired) until prediction confidence exceeds the cost of any more
acquisitions. The acquisition process (top) and the prediction
probabilities (bottom) using the ACO agent vary per instance.

(2) a generalization of the ACO policy to the less-explored
AFA task of making a decision to maximize expected out-
comes. We show that ACO achieves competitive empiri-
cal performance across a variety of established prediction
benchmarks.

2. Related Directions
As noted by Li & Oliva (2021), AFA is related to feature
selection and active learning, as follows.

Feature Selection Feature selection is a well studied
task (e.g., see surveys by (Khaire & Dhanalakshmi, 2022;
Venkatesh & Anuradha, 2019; Miao & Niu, 2016)) to ascer-
tain a constant subset of features that are predictive. Feature
selection can be seen as a special case of AFA (perhaps a
stubborn one) that selects the same next features to observe
regardless of the previous feature values it has encountered.
In contrast with feature selection methods, which make
predictions based on a fixed subset of features, AFA dynam-
ically selects features on an instance-by-instance basis that
is sequentially chosen (Fig. 1) for better prediction. (Note
that AFA may be applied after an initial feature selection
preprocessing step to reduce the feature space.) A dynamic
strategy helps when covariates are indicative of other fea-
tures that are dependant with the output.

Active Learning Active learning is another interactive
task in ML to gather more labeled instances (e.g., see (Fu
et al., 2013; Konyushkova et al., 2017; Yoo & Kweon, 2019;
MacKay, 1992; Houlsby et al., 2011)). Active learning con-
siders queries to an expert for the correct output label to
a complete set of features in order to construct a training
instance to build a better classifier. Instead, AFA consid-
ers queries to the environment for the feature value corre-
sponding to an unobserved feature dimension, i, in order to
provide a better prediction on the current instance. That is,
while the active learning paradigm queries an expert during
training to build a classifier with complete features, the AFA
paradigm queries the environment at evaluation to obtain un-
observed features of a current instance to help assess it (with
few acquired features); thus, AFA is a distinct problem.

3. Methods
We develop a data-driven, deployable approximation to an
oracle that solves a novel AFA objective. Furthermore,
we extend the scope of AFA beyond prediction, modify-
ing the objective and method to the active acquisition of
features when making a decision. The strong performance
of our methodology (see Experiments) compared to more
computationally-intensive methods provides evidence for
the advantage of our newly proposed objective and lays the
groundwork for the development of future solutions.

3.1. AFA MDP

We now expound on the formal definition of the AFA prob-
lem. Throughout, we consider underlying instances x ∈ Rd

and corresponding labels y. We denote the ith feature as
xi ∈ R, and a subset of feature values o ⊆ {1, . . . , d} as
xo ∈ R|o|. As several previous works have noted (Zubek
& Dietterich, 2002; Rückstieß et al., 2011; Shim et al.,
2018), AFA can be succinctly encapsulated as the following
Markov decision process (MDP): states s = (xo, o) are com-
prised of the currently observed features o, and the respec-
tive values xo; actions a ∈ ({1, . . . , d} \ o) ∪ {ϕ} indicate
whether to acquire a new feature value, a ∈ {1, . . . , d} \ o,
or to terminate with a prediction, a = ϕ; when mak-
ing a prediction (a = ϕ) rewards r are based on a su-
pervised loss −ℓ(ŷ(xo, o), y) of a prediction based on ob-
served features ŷ(xo, o) and the ground truth label y, oth-
erwise the reward is a negative cost of acquiring another
feature onto o, −c(a, o) (commonly at a constant cost
c(a, o) = α); lastly, for non-terminal actions, the state tran-
sitions (xo, o) → (xo∪{a}, o ∪ {a}). Then, the objective of
the AFA problem essentially reduces to learning an acquisi-
tion policy π(xo, o) that maximizes (possibly a variant of)
the value function.

3.2. Challenges

One of the core difficulties of the AFA problem is that while
its MDP formulation is general and encapsulating, it yields
an RL problem with a large action space (acquire feature i
or terminate to predict), a complicated state space of evolv-
ing dimension (values of acquired features), and sparse re-
wards. As a concrete example, even if each of the d features
has values lying in only k categories, the dimension of the
state space is

∑d
i=0

(
d
i

)
ki (super exponential in d). These

challenges make for a difficult RL agent optimization task
(Dulac-Arnold et al., 2015; Minsky, 1961), especially with
a finite amount of training data (a finite number of potential
states seen during training roll-outs). When the labels and
feature space are discrete (or can be discretized), previous
work has shown promise by noting special properties about
the optimal solution and utilizing dynamic programming
(Liyanage & Zois, 2021).
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One approach to assuage these issues is to attempt to in-
corporate more explicit distributional knowledge into the
acquisition policy and/or tweak the value function. For in-
stance, Li & Oliva (2021) provided the policy with surrogate
information about feature uncertainties and used auxiliary
rewards via a generative model to guide its acquisitions.
While this led to empirical improvements over direct RL
approaches such as (Shim et al., 2018), it requires learning
a complicated, accurate deep generative model for all con-
ditional dependencies (which, as noted above, grows at a
super-exponential rate) in addition to still needing to train a
deep RL agent.

An alternative approach restricts the complexity of the learn-
ing task by limiting the search to a greedy policy class (Ma
et al., 2018; He et al., 2012; 2016; Covert et al., 2023).
For instance, (Ma et al., 2018; Gong et al., 2019) use a
generative approach to estimate the expected utility (e.g.,
mutual information) of any one acquisition, employing a
greedy strategy to maximize utility; alternatively, Covert
et al. (2023) advances this learning approach by showing
how amortized optimization can be used to approximate the
conditional mutual information. This greedy approach al-
lows one to implicitly construct a policy by only learning the
locally optimum policy at each each acquisition step, eas-
ing the computational burden compared to the general RL
approach. However, this comes at the expense of possibly
overlooking jointly informative sets of features.

We motivate our proposed oracle by first contrasting it with
previous “retrospective oracle” approaches (He et al., 2012;
2016; Madasu et al., 2022). Such approaches will look for
the next feature, i, that, when added to the already acquired
features, o, results in the best improvement of a loss ℓ (e.g.,
MSE or cross-entropy) using an estimator ŷ:

i = argmin
j∈{1,...,d}\o

ℓ
(
ŷ(xo∪{j}), y

)
. (1)

This approach has been previously described as an “ora-
cle” (e.g., the “forward-selection oracle,” (He et al., 2012)).
We offer an alternative perspective by defining an oracle
which solves a novel AFA objective meant to balance the
limitations posed by the (full) RL and greedy approaches.
We argue that our oracle improves on the oracle defined by
eq. (1) by being:

1. Non-greedy: Previous retrospective approaches have
acquired the feature which most decreases the predic-
tion loss at one time step. Greedily acquiring the next
best feature ignores jointly informative groups of mul-
tiple features that may be acquired. Thus, we consider
acquisitions collectively for the final prediction.

2. Deployable: In principle, an oracle should be deploy-
able in one’s environment, as it should be able to yield

the correct action given the same information (the same
states) as the agent. However, the resulting action from
eq. (1) depends on inputs x (the entire feature vector), y
(the respective true label), and o (the already acquired
feature indices), thereby “cheating” by operating over
more information than the AFA policy, π(xo, o), has
available. This has a practical implication: as a con-
sequence of utilizing information that is not available
during a roll-out, the cheating oracle is not deploy-
able at inference time. Therefore, it can only serve
as a reference teacher policy in AFA (He et al., 2012;
2016; Madasu et al., 2022). Instead, our approach shall
yield a directly deployable oracle, making it possible
to judge its performance at test time and disentangling
any degradation in performance due to learning a pol-
icy to imitate the oracle.

3.3. Acquisition Conditioned Oracle

We now define our deployable oracle, which we coin the
acquisition conditioned oracle (ACO), through introducing
a novel objective. As the oracle is defined in terms of full
distributional knowledge over the environment (p(x, y)), it
is unattainable in practice. Later, we describe approxima-
tions that allow us to define an AFA policy as an estimate
of the ACO.

Our new objective generalizes the greedy, non-deployable
optimization in eq. (1) using a weighted (by α > 0) cost c
for subsets:

u(xo, o) = argmin
v⊆{1,...,d}\o

Ey,xv|xo
[ℓ (ŷ(xo,xv),y)] + αc(v; o). (2)

At a high-level, eq. (2) imagines likely scenarios of the
unacquired feature values and labels (based on conditional
dependencies with acquired features), and determines which
subset of additional features leads to the greatest expected
reduction in prediction loss (adjusting for acquisition costs).
The optimization is non-greedy since it measures the ex-
pected loss under the acquisition of subsets of features. Fur-
thermore, it is deployable since it makes decisions only
based on information, (xo, o), available to the agent.

Note that sequentially minimizing the ACO objective (2)
does not yet define a policy. Whenever the ACO minimiza-
tion (2) returns u(xo, o) = ∅, it is clear that there are no
further acquisitions that are worth the cost. However, when
u(xo, o) ̸= ∅, the optimization only indicates that there is
an expected net benefit (based on the acquired information)
to acquiring all the features in u(xo, o) jointly to make a
prediction. As the AFA MDP acquires one feature at a time,
the ACO oracle must return a single feature to a acquire.
We finalize the ACO policy by proposing to select the fea-
ture j ∈ u(xo, o) that most minimizes the expected loss
Ey,xj |xo

[ℓ (ŷ(xo,xj),y)] to break ties. In the Appendix
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Algorithm 1 Acquisition Conditioned Oracle
Input: Observed features o (possibly o = ∅), instance
values xo, distribution p(x, y), estimator ŷ
Initialize do predict := false
while |o| < d and not do predict do

u(xo, o) := argmin
v⊂{1,...,d}\o

Ey,xv|xo

[
ℓ
(
ŷ(xo,xv),y

)]
+ αc(v; o)

if u(xo, o) = ∅ then
do predict = true

else
o := o ∪ {argminj∈u(xo,o) Ey,xj |xo

[ℓ (ŷ(xo,xj),y)]}
end if

end while
Return Prediction ŷ(xo)

(Section B), we provide a more formal justification for why
this selection has desirable properties.

This oracle, in addition to satisfying our two desiderata,
provides an intuitive solution to the RL policy optimization
by leveraging distributional knowledge over the features
and labels to directly navigate the complicated environment
and decide useful acquisitions. In contrast, Li & Oliva
(2021) use distributional knowledge to guide an RL opti-
mized agent; while that approach is tuned to the AFA MDP,
it encounters a more difficult optimization problem.

While the ACO policy does not solve the full RL optimiza-
tion problem, when casted as the equivalent maximization
problem we have that:

Theorem. (Informal.) The optimal value of the AFA MDP
policy is lower bounded by the value of the ACO policy.

Thus, feature subset acquisition guided by the ACO relates
directly to the MDP of interest. A proof of this result can
be found in Section C of the Appendix.

3.4. Approximate ACO

There are two main limitations that render the ACO in-
feasible in practice: 1) the ground truth data distribu-
tion is unknown; and 2) the search space over subsets
v ⊆ {1, . . . , d} \ o can be large. Below we discuss ap-
proximation techniques to yield an ACO that is deployable
in practice. Throughout, we assume that we have a training
dataset D = {(x(i), y(i))}ni=1 of n input/output tuples as is
common in prior AFA approaches.

First, we note that in practice the data distribution, p(x, y), is
unknown and therefore cannot be used in the ACO minimiza-
tion (2) and resulting policy (Alg. 1). Furthermore, since
the data distribution must be conditioned as p(y, xv|xo),
for v ⊆ {1, . . . , d} \ o (e.g., for the expectation in eq. (2)),
we must be able to condition on arbitrary subsets of fea-
tures o. One approach is to leverage advances in deep ar-

bitrary conditional models (Ivanov et al., 2018; Belghazi
et al., 2019; Li et al., 2020; Molina et al., 2019; Strauss
& Oliva, 2021), which are able to approximate conditional
distributions p(y, xu | xo) for arbitrary subsets u, o. How-
ever, this approach requires learning an expensive genera-
tive model, which can be challenging due to computation,
hyperparameter-optimization, and sample-complexity. Sim-
pler estimators of these (conditional) distributions include
k-nearest-neighbors and kernel density estimators (Holmes
et al., 2012). Experiments showed that the ACO yielded
performant policies by sampling labels and unacquired fea-
tures through neighbors, i.e. Ey,xv|xo

[ℓ (ŷ(xo,xv),y)] ≈
1
k

∑
i∈Nk(xo)

ℓ
(
ŷ(xo, x

(i)
v ), y(i)

)
, where Nk(xo) is the set

of k nearest neighbor indices in D = {(x(i), y(i))}ni=1,
to xo (i.e., comparing instances only using features
o ⊆ {1, . . . , d} to values xo via a distance function
d(xo, x

(j)
o ) 7→ R+).

Second, because the proposed ACO policy considers all pos-
sible additional subsets of features to append to a current set
of features o, the optimization in eq. (2) will be over large
space when the number of acquirable sets of features is high.
We note that minimizing over v ⊆ {1, . . . , d} \ o can be
posed as a discrete optimization problem (as it is equiva-
lent to searching over binary membership indicator vectors);
hence, one may deploy a myriad of existing discrete op-
timization approaches (Parker & Rardin, 2014) including
relaxations (Pardalos, 1996), and genetic algorithms (Ra-
jeev & Krishnamoorthy, 1992). In practice, we observed
that ACO yielded a performant policy when using a simple
upperbound of eq. (2) based on a subsample of potential
subsets to minimize over, O ⊆ {v|v ⊆ {1, . . . , d} \ o}, in-
dicating that slightly suboptimal subsets were still effective
and enabling embarrassingly parallelizable optimization.

3.5. Parametric Policies

The approximate ACO (AACO) policy, π̂ACO(xo, o), de-
fined using the approximations above, is a valid nonpara-
metric policy in that, for a new instance drawn at test time,
it is deployable and can actively acquire features and make
a prediction without using unacquired features or the in-
stance’s label. One may, however, want a parametric policy
πθ(xo, o) that is able to decide what actions to take without
having to sample unobserved features and optimizing eq. (2)
(e.g. where πθ is a function stemming from neural network
weights θ). Fortunately, mimicking a teacher policy is the
focus of the well studied problem of imitation learning (Hus-
sein et al., 2017), where we are able to leverage algorithms
such as DAgger (Ross et al., 2011) to supervise and train a
parametric policy πθ(xo, o) based on the approximate ACO
policy π̂ACO(xo, o). In practice, we observed that a simple
behavioral cloning approach (Bain & Sammut, 1995) that
directly trains πθ(xo, o) based on roll-outs of π̂ACO(xo, o)
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was an effective way of supervising the parametric policy.

3.6. AFA for Decision Making

We now consider an important extension to settings where
one wishes to actively acquire features to determine a deci-
sion that will maximize an outcome, rather than for deter-
mining a prediction to match a label, as before. For example,
actively acquiring information about a patient (e.g., running
blood tests, getting biopsies, etc.) to determine a treatment
(e.g., choose a drug) that will maximize the outcome (e.g.,
based on mortality). A fundamental challenge in construct-
ing algorithms for decision tasks is that typically the out-
come under only one decision is ever observable for a given
instance. Therefore, decision making requires constrasting
counterfactuals that are unobserved in the training data. The
construction of policies to make optimal decisions from data
with fully observed contexts has been extensively studied in
statistics, and operations research under the titles dynamic
treatment regimes (DTRs) or individualized treatment rules
(ITRs) (Murphy, 2003; Kosorok & Laber, 2019).

Below, we develop a novel policy for general decision-
making with AFA through analogies between components
in a causal inference setup and ACO for prediction. Let y(a)
denote the potential outcome (Rubin, 2005) under decision
(intervention) a ∈ A, where we assume larger values of
y(a) are better without loss of generality. It can be shown
that, under certain conditions (see Appendix), one can train
a partially observed decision-making policy π̂A(xo) which
maps observed feature values xo to interventions to maxi-
mize E[y(π̂A(xo))]. Note that this decision-making policy
π̂A(xo) is analogous to ŷ(xo), the classifier given partially
observed inputs, since π̂A(xo) similarly maps partially ob-
served inputs to outputs. Moreover, one can also train an
estimator, Q̂(x, a), of E[Y (a) | x], the expected outcome
for an instance x with action a. −Q̂(x, a) is akin to a loss
function ℓ as it judges the effectiveness of an output a for
an instance. Leveraging Q̂(x, a), and π̂A(xo), it is now
possible to utilize a AACO to construct a decision-making
acquisition policy πacq(xo), which determines what (if any)
new features are worth acquiring in order to make a better
decision (one that shall yield a higher expected outcome).
Analogously to eq. (2), we may minimize:

argmin
v⊆u

−Exu|xo

[
Q̂ ((xo,xu), π̂A(xo,xv))

]
+ αc(v; o), (3)

where u = {1, . . . , d} \ o, determining if acquiring new
features v will lead to better decisions (made by π̂A and
assessed using Q̂). As before, the ACO’s policy πacq(xo)
stemming from eq. (3) will determine what new features to
sequentially acquire until reaching a subset o′ for which no
new acquisitions are worth the cost, at which time we choose
an intervention according to π̂A(xo′). To the best of our
knowledge, this represents the first oracle based approach

for AFA decision-making with observational (offline) data.

4. Experiments
We perform extensive experiments to assess the AACO’s
performance relative to alternative AFA methods, charac-
terize the influence of approximations and policy-design
decisions on performance, and demonstrate how AFA can
be utilized for decision making.

Performance Measurement AFA methods face a trade-
off between task performance and acquisition costs. There-
fore, we measure performance by reporting the methods’
inference results across different values of α (2) (as dis-
tinct ticks, e.g. Fig. 3), assuming equal feature costs. Note
that the AACO, unlike some alternatives, acquires different
numbers of features for different instances at a given cost
depending on the complexity of the instance’s task.

Comparisons Many alternative AFA methods, especially
ones leveraging generative models, are complex to train, and
therefore performance can be heavily dependent upon imple-
mentation details. Thus, to facilitate more fair comparisons,
we compare our experimental results against results from the
original sources (Li & Oliva, 2021). Because they represent
a variety of recognized approaches in AFA and have experi-
mental results recorded on several benchmark datasets, we
throughout compare to: JAFA (Shim et al., 2018), which
jointly trains a deep learning RL agent (using Q-Learning)
and a classifier for AFA; GSMRL (Li & Oliva, 2021), which
learns a generative surrogate arbitrary conditioning model
to derive auxiliary information and rewards that are used
to train a deep learning agent; EDDI (Ma et al., 2018), a
greedy policy that estimates the information gain for each
candidate feature using a VAE-based model with a set em-
bedding and selects one feature with the highest expected
utility at each acquisition step; and GSM+Greedy (Li &
Oliva, 2021), which similarly acquired features greedily us-
ing a surrogate arbitrary conditioning model that estimates
the utility of potential feature acquisitions. Please refer to
(Shim et al., 2018; Li & Oliva, 2021) for baseline hyperpa-
rameters details. In the Appendix (Section A.3), we also
compare to a variation in which the AACO is used as a
teacher policy in behavior cloning (AACO + BC, 3.5). As
simpler alternatives, we also compare to a baseline classifier
using all features and a static classifier (STATIC) where the
same features were used for each instance and chosen based
on their permutation feature importance.

Implementation Details AFA (prediction) methods re-
quire a predictor ŷ(xo) that can make predictions on arbi-
trary subsets of features. We found that gradient boosted
trees tended to perform well and were therefore used for
our AACO implementations as well as for the baseline and
static classifiers. Moderate feature dimensions (≤ 10) al-
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Figure 2. Test accuracy on Real-World datasets. Full-feature classifier accuracy denoted by dashed line.

lowed for feasible training and caching of separate pre-
dictors for each possible subset of features. For higher
dimensional acquisition spaces, we utilized a masking strat-
egy where the feature vector, with unobserved entries im-
puted with a fixed value, was concatenated with a binary
mask indicating the indices of observed entries (Li et al.,
2020). During training, these masks were drawn at ran-
dom to simulate making predictions with missing features.
For the AACO approximations (3.4), we approximated the
distribution of p(y, xu|xo) in AACO using a k = 5 nearest
neighbors density estimate. Furthermore, we enumerated
all potential subsets in moderate dimensional problems but
took random subsamples (10,000) in higher dimensions.
See 4.3 for a discussion of sensitivity to this choice. Perfor-
mance measures were evaluated on a test set independent
of the training sets used for the predictor and density esti-
mator training. Code for the AACO policy can be found at
https://github.com/lupalab/aaco.

4.1. Cube Dataset

5.00 5.25 5.50 5.75 6.00 6.25
# of Acquired Features

80

82

84

86

88

90

A
cc

ur
ac

y

Cube(d=20)

AACO
ACO-knn+10k
ACO-knn
ACO

Figure 3. Left: Distribution of features in CUBE-σ. Right: Accu-
racy, with multiple ticks correspond to different cost scales α.

We begin with a study of the CUBE-σ = 0.3 dataset (as
described by Shim et al. (2018)), a synthetic classification
dataset designed for feature acquisition tasks. We consider
a d = 20-dimensional version with 8 classes. Each data
point consists of 17 uniform and 3 normally distributed
features. For a data point of class k, features k through
k + 2 are normally distributed, with means as shown in
Fig. 3; remaining features are uniformly distributed.

The synthetic environment allows us to better isolate the
effect each approximation (of the ACO) has on the AACO’s

performance. We compare the following policies: ACO
(Alg. 1), which is known in this environment (up to
importance-sampling error); ACO-knn, identical to ACO
except it approximates p(y, x) (used implicitly in eq. (2))
with a nearest neighbors estimate; ACO-knn+10k, iden-
tical to ACO-knn except that is chooses a random subset
of |O| = 10, 000 subsets of features to search over; and
AACO, which is identical to ACO-knn+10k except that it
no longer has access to the Bayes-rule classifier to make
predictions (during eq. (2) and at prediction time). From
the results in Fig. 3, we see that ACO performs admirably,
achieving near-optimal predictions with under 5 features
acquired on average. Encouragingly, ACO-knn+10k, de-
spite not having searching over all possible (220) subsets
achieves results near identical to ACO-knn, suggesting that
the search approximation may not lead to significant de-
creases in accuracy.
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Figure 4. Cube Results; Full-feature classifier accuracy denoted by
dashed line.

We also compare to previous AFA approaches on the
CUBE-0.3 dataset (as reported by Shim et al. (2018)), which
include: JAFA+* variations (Shim et al., 2018) and GSMRL
(Li & Oliva, 2021). In Fig. 3, we see that AACO performs,
despite not using deep RL methodology.

4.2. Real World Datasets

Next we perform experiments on real-world datasets stem-
ming from the UCI ML repository and MNIST, for
which experimental results from a multitude of alterna-
tive approaches exist. Results of JAFA, GSMRL, EDDI,

6
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GSM+Greedy are reported from (Li & Oliva, 2021). Due
to the higher dimensionality of MNIST, most baselines are
unable to scale, and hence we consider a downsampled
16× 16 version were d = 256. (See below for an ablation
on the full-dimensional MNIST.)

We observe across datasets that our AACO approach often
outperforms the other methods (Fig. 2). This is especially
impressive considering that most of the baselines utilize
complicated deep-learning approaches, whereas the AACO
utilizes simple nonparametric techniques. We also note
that the performance of the parametric policy AACO+BC is
often competitive with that of AACO, despite being super-
vised using a relatively simple behavioral cloning approach
(Fig. 11). Consistent with the findings of (Covert et al.,
2023), dynamic approaches to AFA don’t always outper-
form simpler static baselines, which underscores the com-
plexity of the task as well as the promise our new objective
has for effectively navigating the complex policy space.

Psychological Assessments Psychological assessments
based on survey responses provide a compelling use-case.
Here AFA policies (ideally) dynamically determine a small

Figure 5. Big 5 results.

personalized subset of ques-
tions to assess an individ-
ual without the need of
a lengthy survey, reducing
user fatigue and potentially
improving accuracy (Early
et al., 2016a). We con-
sider the “Big Five Person-
ality Test” [(OSPP, 2023)],
which consists of 50 ques-
tions, each asking the user to rate their agreement with a
given statement on an ordinal scale with 5 options. Ques-
tions pertain to one of the ”big five” personality traits refer-
enced in academic psychology. We attempt to classify each
survey instance by the quartile (leading to 4 classes) of the
associated emotional stability (ES) score (based on the sum
of 10 ES questions) with respect to the overall population
of survey takers. Given its consistent performance in the
previous comparisons, we compare to GSMRL in this task.
We also compare to a Rescale baseline that uses ground-
truth information to randomly sub-select from the 10 ES
questions. We can see (Fig. 5) that there is a high amount of
variance in responses to ES questions; e.g., Rescale has
considerable ambiguity between quartiles even when acquir-
ing a majority of pertinent questions (6). In contrast, AACO
is better able to leverage feature dependencies (without any
ground-truth annotations) and also outperforms GSMRL.

4.3. Ablations

Through ablation studies, we provide empirical results that
investigate the sensitivity of approximation choices (3.4),

compare our novel AFA objective to greedy alternatives, and
provide promising evidence for the AACO’s ability to scale
to high (acquisition) dimension tasks. Extended discussion
and full results can be found in the Appendix.

Approximations As discussed above (3.4), implementing
the ACO requires two approximations. First, full distribu-
tional knowledge (p(y, x)) is unknown. Consequently, the
conditional expected loss of acquiring an additional sub-
set of features, which forms the basis for the objective in
eq. (2), must be estimated. Our experiments demonstrate
that a simple k nearest neighbors density estimate already
performs well, and we found that the results were relatively
insensitive to the choice of k in a range from 5 to 50 (Ta-
ble 1). Preliminary attempts to instead use a deep arbitrary
conditional model were largely unsuccessful, perhaps high-
lighting the challenges involved with their training. The sec-
ond approximation, present in higher dimensional settings,
avoids searching all possible subsets of acquirable features.
Remarkably, ablations demonstrate that uniformly sampling
subsets can be effective once just a moderate (∼ 100) num-
ber of subsamples were considered (Fig. 10).

Greedy/Cheating Comparison Our ACO objective
eq. (2) differs from greedy alternatives in that it minimizes
an expected loss of a sequence of future acquisitions. To bet-
ter understand these differences, we compare AACO with
variations that modify eq. (2) to only search over subsets
with one extra feature (greedy) or terminate the acquisition
process at the same number of features for all instances. In
both cases, we find the AACO to be performant (Fig. 11).
Additionally, we extensively compare to previous oracle
approaches that are not deployable because they observe in-
formation (y and xu) that is not accessible to an AFA agent
(”cheating”). Thus, utilizing these cheating oracles requires
supervising a parametric policy. We find that the AACO
and AACO with behavior cloning outperform the policies
supervised by cheating oracles, regardless of whether the
oracle greedily acquired features or not (Fig. 11). This pro-
vides evidence that the benefit of our ACO (compared to the
greedy oracle) extends beyond its non-greedy objective, sug-
gesting that a deployable oracle (one that utilizes the same
information as the student) can be more easily emulated.
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GSMRL
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Figure 6. 786d MNIST. AACO
and AMOPT are SOTA for this
high dimensional task.

Scaling As noted by Li
& Oliva (2021), most exist-
ing AFA baseslines fail to
scale to higher dimensional
settings, such as the full
28× 28 MNIST dataset. In-
deed, even GSMRL, which
is able to learn a reasonable
policy in the 784-d MNIST,
actually sees a degradation
of performance when com-
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pared to the policy in 256-d
MNIST (Fig. 2). A notable exception is Covert et al. (2023)
(AMOPT), whose greedy policy achieved near 90% accu-
racy after only 10 pixel acquisitions, a result that is (to our
knowledge) the best performance yet. In spite of its rel-
ative simplicity (no deep neural network architectures or
challenging optimization procedures), we find comparable
SOTA from the AACO policy (Figure 6). This finding, as
well as the relative success on the 256-d MNIST, provide
evidence that the ACCO policy can successfully navigate
the high dimensional feature spaces that pose considerable
challenges to alternative methods.

4.4. Decision Making
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0.6
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AACO Best Feature-Selection Subset

Figure 7. Results on synthetic data. Left: % of time policy made
the ground-truth optimal decision. Right: value function, with
optimal value given by dashed line.

We investigate the ability of the AACO’s policy πacq(xo) to
learn what features are relevant for making decisions that
maximize expected outcomes according to a decision policy
π̂A(xo). We first evaluate its performance under a synthetic
environment, where the ground-truth optimal decisions are
known (i.e. y(a) is known for every a ∈ A). We generate
four features x0, .., x3, a treatment a ∈ {0, 1}, and an out-
come y that depends on x0, ..., x3 and a. Full details of the
environment are provided in the Appendix. As depicted in
Figure 7, we find that increasing acquisition costs prompts
the AACO policy to choose relevant features for decision
making. By construction, an average of 2.25 features are
sufficient for optimal decision making. At similar levels of
AACO acquired features, the partially-observed decision-
making policy (π̂A(xo)) attains near-perfect decision mak-
ing with a value function (E[y(π̂A(xo))]) approaching the
value function of the full-context optimal decision policy
(green line). As AFA in this setting has been previously un-
derstudied, here we compare to a feature selection approach
that uses a constant subset of features (depicted in orange).
This highlights AACO’s better performance with its ability
to dynamically acquire relevant features per-instance.

Real-World Commerce Data Next, we demonstrate the
practical utility of our method in the contextual bandit set-
ting, which encompasses many decision making problems
such as internet adverting (Chapelle & Li, 2011), content
recommendation (Agarwal et al., 2013), and medical treat-
ment strategies (Kosorok & Laber, 2019). When contexts
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Figure 8. Left: % agreement (in decision-making) with the full
feature policy. Right: estimated value function (as % of the full-
feature value function).

are associated with a cost (possibly in the form of time,
computation, or money), a fruitful strategy is to acquire
features based on their relevance for decision making. We
illustrate a novel application of this end-goal using the Open
Bandit Dataset (Saito et al., 2020), which contains data from
a large-scale fashion e-commerce platform and is a common
benchmark for off-policy evaluation. Our objective is to
actively acquire a user’s context (features) to recommend a
product (clothing items) that maximizes the expected click-
rate by the user. The user’s context, which is collected at a
cost per feature, consists of user demographic data as well
as user-specific affinity scores induced by historic clicks.
The data set consists of over 1 million instances with 65
features. For simplicity, the action space is restricted to the
two most frequent clothing item recommendations.

In this real-world setting, the ground-truth optimal decisions
are unknown. Thus, we measure the effectiveness of our
methods relative to a learned recommendation policy based
on full contexts. As a baseline, we compare our strategy to
a natural cost-aware alternative, feature selection, in which
a fixed subset of features are used by the decision-policy
for all instances. We see (Fig. 8) that the partially-observed
decision policy under AACO makes the same decisions as
the full-context policy over 90% of the time with only 20
features, has an estimated value close to the full-context
policy, and generally outperforms the best feature selection
alternative. This highlights the ability of the policy to make
satisfactory decisions without observing full contexts and to
tailor the acquired contexts to each instance.

5. Conclusion
The ACO represents a rethinking of ideas in AFA method-
ology by introducing a novel objective leading to a new,
effective method. ACO directly identifies a general opti-
mization problem eq. (2) that yields a deployable policy. We
believe that the ACO optimization encapsulates the crux of
the AFA problem, allowing one to achieve SOTA perfor-
mance with simple approximations, even in higher dimen-
sionalities. Lastly, we showed that our ACO framework
seamlessly extends to a setting where we are acquiring fea-
tures not for prediction, but instead for decision making
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with general observational training data.

While the ACO framework provides an intuitive formulation
of the AFA challenge, further work is needed to understand
when it might be suboptimal compared to the MDP for-
mulation in AFA MDP. Furthermore, the approximations
evaluated in this paper (using neighbors to approximate the
expected conditional loss, evaluating the loss at random sub-
sets of unacquired features) are elementary; however, we
are encouraged by their effectiveness, and exploring what
additional benefit might be derived from more complex ap-
proximations is an exciting endeavor.
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A. Ablations
A.1. Evidence for Adaptive Feature Acquisition

In active feature acquisition, the agent (AFA policy) sequentially acquires a dynamic (on a per instance basis) subset of
features that minimize acquisition costs whilst yielding accurate inferences. Therefore, a couple of the salient aspects of the
AFA paradigm are determining which and how many features are relevant to make an accurate prediction for a particular
instance. In tasks exhibiting significant heterogeneity, one might expect different features were more or less relevant for
different groups or that different groups needed more features to feel achieve the requisite confidence in prediction.
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Figure 9. Left: Acquisition actions taken by AACO, expressed as a histogram per class for each feature. I.e., we report the portion of the
time that a feature was acquired on average for making a prediction for instances of each class. Right: A histogram of the number of
selected features per instance for the AACO policy on the MNIST-256 dataset (16.635 selected features on average).

We provide evidence that our AACO policy is able to successfully distinguish which features are most relevant for prediction
in the synthetic CUBE dataset. In Fig. 9, we report the portion of the time that a feature was acquired on average for making
a prediction for instances of each class. Note that, in addition to not acquiring the noise features 10-19 in most cases, the
agent tends to focus on the most defining features for each specific class, as indicated by Fig. 3 in the main paper. (Here
feature 6 was deterministically chosen as the initial feature.)

To highlight the AACO’s dynamic nature in allowing for variable numbers of acquisitions per instance, we examine the
distribution of the number of features acquired for the MNIST-256 experiment (Fig. 9). While a grand majority of instances
terminate the acquisition process with fewer than 20 features, a small minority of the instances exceed 40 feature acquisitions.
Inspection of the average number of features acquired by the (true) label of the instance, we find that images of the digit “1”
had the fewest features acquired on average (10.74) while the digit “8” had the most features acquired on average (20.37).

A.2. Role of Approximations

As previously discussed (3.4), the AACO makes two approximations compared to the ACO. The first approximation is that
full distributional knowledge (p(y, x)) is unknown. Consequently, the conditional expected loss of acquiring an additional
subset of features, which forms the basis for the objective in eq. (2), is unknown and must be estimated. Our experiments
demonstrate that a simple a k nearest neighbors density estimate already performs well. To assess the sensitivity of the
AACO’s performance to the number of neighbors k, we ran an experiment on the CUBE dataset where k was varied (while
the cost remained fixed). The results are shown in Table 1; accuracy and feature selection are fairly stable across the choice
of k. Similar trends hold across other data. While a deep arbitrary conditional model would also be used to estimate the
unknown density (and a Monte Carlo approximation made to the integral by sampling from the model), preliminary attempts
to learn a deep arbitrary conditional model were largely unsuccessful, perhaps highlighting the challenge involved with their
training.

The second approximation involves the search over subsets posed by the minimization in eq. (2). When the dimension of
the acquirable sets of features is moderate, as in the Gas and Grid experiments, it is feasible to search over all possible
subsets and find the minimizing subset u(xo, o). However, when the cardinality of (sets of) acquirable features in large, such
brute-force optimization is impractical. While minimizing over v ⊆ {1, . . . , d} \ o can be posed as a discrete optimization
problem, our experiments were conducted using a simple random sample of |O| subsets (|O| = 10, 000 for the CUBE and
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Table 1. Ablation on the sensitivity of the AACO to the number of neighbors k used on the CUBE dataset.
Neighbors Accuracy Features

k=5 0.846 5.824
k=10 0.856 5.916
k=25 0.85 5.576
k=50 0.842 5.49
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Figure 10. A comparison of the predictive performance of the AACO policy under different cardinalities of O on the MNIST-256 dataset,
with three cost scales α used for each cardinality. 10,000 is the original mask size used in other experiments. We find that even with only
a small number of sampled subsets (100 and above), the prediction accuracy is fairly consistent.

MNIST examples). In this ablation, we investigate the sensitivity of the AACO’s predictive performance as we vary this
hyperparameter. Because of its high dimensionality, the MNIST-256 dataset is used for the experiment. As seen in Figure
10, the prediction accuracy is consistent even under a small number (∼ 100) of sampled subsets, a promising finding that
provides some evidence of the method’s robustness to this parameter. Because the computational complexity scales linearly
with |O|, reducing the number of subsets searched can lead to significant gains in the speed of inference.

A.3. Greedy/Cheating Comparisons

The ACO policy bypasses many of these computational challenges faced by deep RL policies while still optimizing a
non-greedy objective. While challenging to study theoretically, we find that the AACO’s empirical performance rivals and
often exceeds that of these competitor approaches across a wide array of empirical benchmarks. In this ablation, we try to
better understand which components of the AACO policy might be responsible for its empirical success.

Our ACO objective (eq. (2)) differs from greedy alternatives in that it minimizes an expected loss of not just the next
acquisition but a sequence of future acquisitions, where the benefit of the sequence of acquisitions is weighed against the
cost of acquiring them. Ideally, this design choice allows the ACO to (1) favor features that are jointly informative and (2)
tailor the number of acquisitions to the complexity of the instance’s task. To assess potential benefits from (1), we compare
the AACO policy to a variant that uses the following greedy modification of eq. (2)

u(xo, o) = argmin
j∈{1,...,d}\o

Ey,xj |xo
[ℓ (ŷ(xo,xj),y)] + α. (4)

Compared to eq. (2), this greedy objective only searches over subsets that contain one more feature than is in o. We
title this (approximated) policy AACO Greedy. We also compare to a variant of the ACO policy (AACO Fixed
Acquisitions) that always terminates after fixed number of acquisitions, regardless of whether u(xo, o) = ∅ or
not.

Another aspect that differentiates our objective from some other retrospective oracle approaches (He et al., 2012; 2016;
Madasu et al., 2022), which greedily determine what next feature would ideally be acquired for a particular instance x
with corresponding label y given an observation set o of already acquired features, is that the ACO solving the objective
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is deployable. That is, the oracle can be deployed to solve eq. (2) while respecting the AFA paradigm. On the contrary,
previous retrospective oracle approaches ”cheat” by performing a search over information that is not available to the agent.
Beyond necessitating some form of imitation learning to construct a valid AFA policy, we speculate these oracles are harder
to emulate than a deployable oracle, i.e. one that utilizes the same information as the student. To investigate this, we
compare the AACO to a policy learned from behavior cloning that emulates an oracle that chooses the next feature using
either (Cheating + BC)

i ∈ argmin
v⊆{1,...,d}\o

ℓ (ŷ(xo∪v), y) + α|v|

or (Greedy Cheating + BC)

i = argmin
j∈{1,...,d}\o

ℓ
(
ŷ(xo∪{j}), y

)
+ α.

Note that the lack of an expectation means that the oracle, for a given instance, is using that instance’s full features and label.
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Figure 11. A comparison of the AACO policy with alternative modifications on the Grid, Gas, and MNIST-256 datasets..

Results from these experiments are displayed in Fig. 11. These experiments provide evidence that the empirical success of
AACO can be attributed to at least several factors. First, we find that a non-greedy objective (comparing AACO to AACO
Greedy) provides benefits in some contexts, such as the MNIST example. We also find that having using behavioral
cloning generally leads to approximation error that reduces performance compared to a deployable oracle. Finally, the
poor performance of the cheating oracles (Cheating + BC and Greedy Cheating + BC) relative to AACO + BC
suggests that there is benefit to emulating an oracle that only operates over the same information as a (valid) AFA policy.

A.4. Scaling

As noted by Li & Oliva (2021), most existing AFA baseslines fail to scale to higher dimensional settings, such as the full
28× 28 MNIST dataset. With 784-d MNIST JAFA struggles to learn a policy that selects a small number of features (and
instead learns to select all or no features) (Li & Oliva, 2021). Furthermore, greedy methods like EDDI and GSM+Greedy
are unable to scale their searches. Indeed, even GSMRL, which is able to learn a reasonable policy in the 784-d MNIST,
actually sees a degradation of performance when compared to the policy in 256-d MNIST (Fig. 2). A notable exception is
Covert et al. (2023) (AMOPT), whose greedy policy achieved near 90% accuracy after only 10 pixel acquisitions, a result
that is (to our knowledge) the best yet performance. In spite of its relative simplicity (no deep neural network architectures
or challenging optimization procedures), we find comparable SOTA from the AACO policy (Figure 6). This finding, as well
as the relative success on the 256-d MNIST, provide evidence that the ACCO policy can successfully navigate the high
dimensional feature spaces that pose considerable challenges to alternative methods.
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B. Internal Consistency of Policy’s Acquisition
In 3.4, we discussed how sequentially minimizing the ACO objective (2) does not yet define a policy. Specifically, whenever
u(xo, o) ̸= ∅, the optimization only indicates that there is an expected net benefit to acquiring u(xo, o) but does not provide
concrete guidance on which feature j ∈ {1, . . . , d} \ o would be best to acquire, which is necessary to define an AFA policy.

One desirable property a policy in this setting ideally has is that it is ”internally consistent” with respect to (2) in the sense
that it never selects a feature j ∈ {1, . . . , d} \ o that leads to higher expected loss. This is, it will never select j if

Exj |xo

[
min

v⊆{1,...,d}\o∪{j}
Ey,xv|xo,xj

[ℓ (ŷ(xo, xj ,xv),y)] + α|{j} ∪ v|
]

> min
v⊆{1,...,d}\o

Ey,xv|xo
[ℓ (ŷ(xo,xv),y)] + α|v|.

The term on the left corresponds to the expected loss if j were selected and the optimization (2) were repeated.

Proposition B.1. If predictions are made according to the Bayes rule classifier, y ⊥ xj |xo, xv, and xj ⊥ xv|xo for all
v ⊆ {1, . . . , d} \ o ∪ {j}, then selecting j is not internally consistent when ŷ corresponds to the Bayes rule classifier.

Proof. We have that

Exj |xo

[
min

v⊆{1,...,d}\o∪{j}
Ey,xv|xo,xj

[ℓ (ŷ(xo, xj ,xv),y)] + α|{j} ∪ v|
]

= Exj |xo

[
min

v⊆{1,...,d}\o∪{j}
Ey,xv|xo

[ℓ (ŷ(xo,xv),y)] + α|{j} ∪ v|
]

= min
v⊆{1,...,d}\o∪{j}

Exj |xo

[
Ey,xv|xo

[ℓ (ŷ(xo,xv),y)] + α|{j} ∪ v|
]

= min
v⊆{1,...,d}\o∪{j}

Exj |xo

[
Ey,xv|xo,xj

[ℓ (ŷ(xo, xj ,xv),y)] + α|{j} ∪ v|
]

= min
v⊆{1,...,d}\o∪{j}

Ey,xv,xj |xo

[
ℓ (ŷ(xo, xj ,xv),y) + α|{j} ∪ v|

]
> min

v⊆{1,...,d}\o
Ey,xv|xo

[ℓ (ŷ(xo,xv),y)] + α|v|

To follow the steps of the proof, note that because y ⊥ xj |xo, xv, we have that ŷ(xo, xj , xv) = ŷ(xo, xv). Furthermore,
the independence statements y ⊥ xj |xo, xv and xj ⊥ xv|xo imply that the density p(y, xv|xo, xj) reduces to p(y, xv|xo).
This demonstrates the first equality. The second equality trivially holds since the terms inside the outer expectation do
not involve xj . The third equality reverses the first equality using the same logic, while the fourth equality is due to
p(y, xv|xo, xj)p(xj |xo) = p(y, xv, xj |xo). Finally, the inequality is due to the fact that the expected loss is the same, but
the left hand term has an additional cost term (αc(o ∪ j ∪ v) > αc(o ∪ v)

Proposition B.2. If y ⊥ xj |xo, xv , and xj ⊥ xv|xo for all v ⊆ {1, . . . , d} \ o ∪ j, then j ̸∈ u(xo, o).

We note that choosing j ∈ u(xo, o) does not guarantee that it is internally consistent. However, it does prevent the
undesirable scenario of selecting a variable that which is irrelevant (in the sense that y ⊥ xj |xo, xv , and xj ⊥ xv|xo for all
v ⊆ {1, . . . , d} \ o ∪ {j}), which would lead to an internally inconsistent selection acquisition.

C. Additional Theory
In the following, we show that the optimal value for the AFA MDP described in Section 3.1 is lower bounded (approximated)
by the maximizer of the (negative of the) ACO’s objective. Thus, feature subset acquisition guided by the ACO relates
directly to the MDP of interest. We outline a sketch of the proof.
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Theorem C.1. (Informal.) The optimal value of the AFA MDP is lower bounded by the value of the ACO policy.

Proof. In sticking with the usual conventions in reinforcement learning, we will re-express the relevant quantities in terms
of maximization as opposed to minimization. Therefore, let us denote ACOk(xo) as:

ACOk(xo) := max
v⊂{1,...,d}\o s.t.|v|≤k

− Ey,xv|xo
[ℓ(ŷ(xo∪v), y)]− α|v|,

i.e. the negative of the objective that the ACO minimizes eq. (2) subject to the constraint that the number of additional
features in less than or equal to k. Furthermore, we define

V 0(xo) := −Ey|xo
[ℓ(ŷ(xo), y)]

and

V k(xo) := max{V 0(xo), max
j∈{1,...,d}\o

− α+ Exj |xo
[V (k−1)(xo∪j)]}.

We note that V 0(xo) is the expected negative loss (from prediction) given currently observed xo and it is thus the value of
both the optimal AFA and ACO policies of the ‘termination action,’ which prompts a prediction. Thus, we observed that
V k(xo) is the value following the optimal policy of the (k-acquisition) AFA MDP problem; either terminate, or choose the
best additional feature according the the value with a reduced budget. Noting the equivalence of the optimal AFA MDP
and ACO policies when there are 0 remaining features remaining (the base case, V 0(xo) = ACO0(xo)), we proceed by
induction on k, noting that1:

V k(x0)

= max{V 0(xo), max
j∈{1,...,d}\o

− α+ Exj |xo
[V (k−1)(xo∪j)]}

≥ max{V 0(xo), max
j∈{1,...,d}\o

− α+ Exj |xo
[ACO(k−1)(xo∪j)]}

= max

V 0(xo), max
j∈{1,...,d}\o

− α+ Exj |xo

 max
v⊂{1,...,d}\o∪j

s.t. |v|≤k−1

− Ey,xv|xo,xj
[ℓ(ŷ(xo∪j∪v), y)]− α|v|


∗
≥ max{V 0(xo), max

j∈{1,...,d}\o
max

v⊂{1,...,d}\o∪j
s.t. |v|≤k−1

− Ey,xv,xj |xo
[ℓ(ŷ(xo∪j∪v), y)]− α(1 + |v|)}

= max{V 0(xo), max
v⊂{1,...,d}\o
s.t. 1≤|v|≤k−1

− Ey,xv|xo
[ℓ(ŷ(xo∪v), y)]− α|v|}

= ACOk(xo),

where ∗ follows from

∀v′ ∈ Ω, xj , max
v∈Ω

L(xj , v) ≥ L(xj , v
′) =⇒

∀v′ ∈ Ω, Exj |xo

[
max
v∈Ω

L(xj , v)

]
≥ Exj |xo

[L(xj , v
′)] =⇒

Exj |xo

[
max
v∈Ω

L(xj , v)

]
≥ max

v∈Ω
Exj |xo

[L(xj , v)]

1We denote the singleton {j} as j for clarity.
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for Ω := {v ⊂ {1, ..., d}\o ∪ j s.t. |v| ≤ k − 1}, and L(xj , v) := −Ey,xv|xo,xj
[ℓ(ŷ(xo∪j∪v), y)] − α|v|. Note that one

may recover the non-cardinality constrained ACO problem by considering large enough k (e.g., ACOd(∅) for an empty
initialization to acquisition).

D. Causal Inference and Decision Making
For a more comprehensive introduction to causal inference for optimal decision making, we refer interested readers to
Kosorok & Laber (2019). In the following, we provide a concise summary of some relevant details. Let y(a) denote the
potential outcome under decision (intervention) a ∈ A, which is the counterfactual outcome that would have been observed
under action a (for a particular unit). Because the outcome under at most one action can be observed for a given unit, only
one of the potential outcomes is ever observable. More formally, the observed outcome y is related to the potential outcomes
through y =

∑
a′∈A y(a′)I(a = a′), where a is the observed action for the unit.

A decision policy πA(x) is defined as a mapping from the features x to an action a ∈ A. We note that the policy, by
definition, depends on which set of features x are used to determine the action. For a class of decision policies Π, an
optimal decision policy π∗

A(x) is any policy maximizing E[y(πA)], where y(πA) is the potential outcome under the action
recommended by πA (i.e., y(πA) =

∑
a′∈A y(a′)I(πA(x) = a′)). Note that this is a counterfactual (causal) parameter,

since for some instances in the training data set, y(πA) might be unobserved since the observed action might differ from that
recommended by πA(x). In what follows, we will outline sufficient causal assumptions that allow counterfactual quantities
such as E[y(πA)] to be expressed and estimated in terms of the observed data.

We make the assumption that the complete features x are sufficient to adjust for confounding. That is, we assume that
either (1) interventions a are marginally independent of y(a) or that (2) y(a) ⊥ a|x. (1) is satisfied when a is marginally
randomized such as in randomized controlled trials or A/B tests while (2) occurs when a depends on a behavior policy
πb(x). Furthermore, we assume p(a|x), the conditional distribution of interventions in the collected data, is greater than 0
for all a ∈ A and x for which p(x) > 0. This assumption essentially ensures that, in theory, all the potential outcomes can
be observed.

Under scenario (1), we have that E[y(a)|xo, a] = E[y|xo, a]. That is, the potential outcome under action a is, in (conditional)
expectation, equal to the outcomes of those who were assigned action a in the observed data. Then, for a given context xo,
the optimal policy (when Π is unrestricted), can be identified as

π∗
A(xo) = argmax

a∈A
Q(xo, a),

where Q(xo, a) := E[y|a, xo]. The identification of the optimal policy under scenario (2) is complicated because, in general,
it is not true that E[y(a)|xo, a] = E[y|xo, a]. Instead, we have that E[Y (a)|xo, a] = E[E[y|x, a]|xo], which depends on the
(unknown) distribution of p(x|xo). However, by contrasting E[y(π∗

A)] with E[y(πA)] (i.e. examining the regret from using
πA(xo) instead of π∗

A(x)), we find that

π∗
A(xo) = argmin

πA∈Π
E[Q(x, π∗

A(x))−Q(x, πA(xo))],

Therefore, a partial-information policy πA(xo) can be estimated by minimizing the empirical version of this loss. Then,
with this learned policy π̂A(xo) that uses partially observed information, we can proceed with the approximate AACO as
outlined in the Methods section.

E. Additional Experiment Details
For the Cube and MNIST experiments, searching over all possible subsets v ⊆ {1, . . . , d} \ o to find the best (additional)
subset of features is infeasible. As discussed in the Methods section, we approximate this minimization by choosing random
subsets of features O ⊆ {v|v ⊆ {1, . . . , d} \ o}. In our experiments, we chose |O| = 10, 000.

The AACO policy approximates the distribution of p(y, xu|xo) nonparametrically by using the set of k nearest neighbors.
When getting nearest neighbors to perform the search over, we found that results where relative stable to choice and as
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few as k = 5 neighbors performed well; this is the number of neighbors used in the experiments (with k = 20 performing
slightly better in the synthetic Cube dataset, see ablation below). In general, increasing the number of neighbors can lead to
neighbors having values xo less similar to the test instance’s x(i)

o , but having larger numbers of neighbors could lead to a
better approximation of the conditional expectation of the loss, representing a bias-variance trade off. To standardize the
relative importance of each feature, all features were mean-centered and scaled to have a variance of 1.

We found that gradient boosted trees tended to perform well and were therefore used for the AACO policy predictor ŷ. The
training procedure for ŷ varied upon the dimensionality of the features. Small to moderate dimension settings allowed for
the separate training of a ŷ for each possible subset of features, leading to a dictionary of predictors. In higher dimensions,
we utilized a masking strategy where the feature vector, whose unobserved entries were imputed with a fixed value, was
concatenated with a binary mask that indicated the indices of observed entries (Li et al., 2020). During training, these
binary masks were drawn at random to simulate making predictions with missing features. While this predictor allows for
predictions with arbitrary subsets of features and could be used to make the final predictions, we found better performance
by using the aforementioned dictionary-of-predictors approach on the subsets of features available at prediction, which often
saw relatively few unique subsets and could use caching to avoid retraining models. AACO models were ran on individual
Titan Xp GPUs.

The AACO acquisition policy is a valid nonparametric policy in that, for a new instance drawn at test time, it is deployable
and can actively acquire features and make a prediction without ever using unacquired features or the instance’s label. In our
experiments, we also considered using behavioral cloning (Bain & Sammut, 1995) to train a parametric policy πθ(xo, o)
that imitates the AACO policy. After rolling the AACO policy out on the validation dataset, we trained gradient boosted
classification trees to mimic the actions in this data. Then, these trained classification-based policies were rolled out on a
test data set. As with training the arbitrary classification models, we utilized a masking strategy where the feature vector,
whose unobserved entries were imputed with a fixed value, was concatenated with a binary mask that indicated the indices
of observed entries (Li et al., 2020).

The Open Bandit Dataset (Saito et al., 2020) is a real-world logged bandit dataset provided by ZOZO, Inc., a Japanese
fashion e-commerce company. The data contains information collected from experiments where users are recommended
one of 34 fashion items, with the response variable being whether or not the user clicked on the recommended item. The
Open Bandit Dataset contains several campaigns under different recommendation policies. We analyzed the AACO policy
under the Men’s campaign with the Thompson Sampling policy. To simplify the presentation, we filtered the data to only
include events where the two most frequently recommended products were recommended. This leads to a setting where the
objective is to learn a binary decision policy that chooses between these two clothing recommendations. Altogether, the
filtered data set has over 1 million instances and 65 features (i.e. the context x).

Code for the AACO policy can be found at https://github.com/lupalab/aaco.

F. Synthetic Decision-Making Environment
In the synthetic decision-making environment, we create 4 features (x0, x1, x2, x3), where x0 ∼ U(0, 1), x1 follows a
Rademacher(0.5) distribution, and (x3, x4) are jointly normal with a correlation of 0.3. Furthermore, to imitate the realistic
scenario in which interventions a in a previously collected data set are not randomized, we draw a a a Bernoulli random
variable according to a probit model with a linear dependence on the four features. To create a setup where different numbers
of features are relevant to decision making, we draw the outcome y from a normal distribution with a mean equal to the
following:

a ∗
[
I(0 < x0 ≤ 0.25) + I(0.25 < x0 ≤ 0.5)x1

+ I(0.5 < x0 < 0.75)x1x2 + I(0.75 < x0 < 1)x1(x
2
3 − 1)

]
Clearly, the optimal decision when all of x1, x2, x3, and x4 are observed is to assign a = 1 when the above quantity in
brackets is positive and assign a = 0 otherwise. The optimal decision when only a proper subset of the four features are
observed requires marginalizing the bracketed quantity over the unknown features. Furthermore, the number of features
relevant for decision making varies from instance to instance. For example, if 0 < x0 ≤ 0.25, then only x0 is needed to
make an optimal decision. The feature x0 is particularly important, since it is informative about which other features should
be acquired.gins, page numbering, etc.) should be kept the same as the main body.
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G. Time Complexity and Runtimes
Time complexity (and real-world runtimes) :

For the AACO with a random subset search of size |O|, number of features d, number of training points n, and an average
number of acquisitions m, the time complexity is O(nd|O|m) for a prediction, where a naive nearest neighbors search is
O(nd). For a pre-trained RL-based method (such as (Li & Oliva, 2021)), the time complexity at inference is O(m) assuming
the pre-learned policy makes decisions at a constant time. Therefore, the time complexity at inference is greater for the
AACO. However, note that this is the typical tradeoff between nonparametric and parametric methods. Alternative Deep
Learning based methods require complex computation during training, which is not necessary for the AACO. Additionally,
we provide practitioners with options to choose between which of these tradeoffs is most applicable to their use-case through
parametric policies (Section 3.5), which use imitation learning to mimic the AACO policy, speeding up inference time at
the possible slight expense of some accuracy (and also achieving O(m) time complexity). While these parametric policies
generally are quicker at inference (due to no need to search over subsets and find neighbors), the AACO is an embarrassingly
parallel policy. Furthermore, even without parallelization, we find that the AACO can efficiently perform inference. Please
see Table 2 for experimental runtimes.

Table 2. Runtimes from experimental results. Time is minutes per 1k instances at inference.
Dataset Time Avg. # of Features

Gas 29 3.1
Grid 37 5.5

MNIST 80 15.4
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