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Abstract

Recent text and image foundation models are
incredibly impressive, and these models are at-
tracting an ever-increasing portion of research
resources. In this position piece we aim to shift
the ML research community’s priorities ever so
slightly to a different modality: tabular data. Tab-
ular data is the dominant modality in many fields,
yet it is given hardly any research attention and
significantly lags behind in terms of scale and
power. We believe the time is now to start de-
veloping tabular foundation models, or what
we coin a Large Tabular Model (LTM). LTMs
could revolutionise the way science and ML use
tabular data: not as single datasets that are an-
alyzed in a vacuum, but contextualized with re-
spect to related datasets. The potential impact
is far-reaching: from few-shot tabular models to
automating data science; from out-of-distribution
synthetic data to empowering multidisciplinary
scientific discovery. We intend to excite reflec-
tions on the modalities we study, and convince
some researchers to study large tabular models.

1. Introduction
Let us start with the obvious: the recent progress in mod-
elling text and image is incredibly impressive. It is not just
the capabilities of these models that has grabbed the public
imagination, it is also their seemingly “creative”, human-
like output; photorealistic images of horse-riding astronauts
and poems in the style of Sylvia Plath. We acknowledge
that text and image foundation models have large potentials
for real-world good—from low-cost, tailored educational
aids, to personalized medicine. Furthermore, these models
are already showcasing how the use of ML need not be
constrained to the ML community.
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Figure 1. Representation of different modalities in foundation
model research across recent ML conferences, roughly estimated
as the number of accepted papers with abstracts containing key-
words (see Appendix A). LLMs are booming and tabular data is
heavily underrepresented.

The immense public interest in text and image modalities,
as well as commercial incentives, may partly explain why
the majority of foundation model (FM) research is focused
on these modalities. The flip side is that other modalities
receive hardly any attention from the ML research commu-
nity (see Figure 1). With this work, we prompt foundation
model researchers to reflect on the modality they study, to
consider alternative modalities, and to potentially redirect
their attention. In particular, in this paper we will argue how
tabular foundation models have been almost entirely unex-
plored, yet in some domains present a potential for impact
that is just as large, if not larger, than image and text models.
We will refer to this class of models as Large Tabular Model
(LTM).

How to think about LTMs? LLMs are already widely used
as tools, and vision FMs (e.g. (Saharia et al., 2022)) can gen-
erate synthetic images or embed real images for downstream
tasks. LTMs can play a similar role for (multimodal settings
with) tabular data. For data scientists, LTMs could provide
an invaluable tool for cleaning and preprocessing datasets;
for finding relevant datasets (possibly from different do-
mains or general knowledge-bases, e.g. Wikipedia tables);
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for augmenting existing datasets (e.g. few-shot generation
of additional columns or performing SQL joins based on
related data, e.g. adding a GDP column to a dataset with
different countries); and for conducting automated (meta)-
analyses. Just like vision FMs, generative LTMs could be
used to generate synthetic data, and do so with less data than
conventional generative models. Generating full, accurate
synthetic datasets that can be used in-place of real data has
many applications (van Breugel & van der Schaar, 2023):
enable data sharing while maintaining privacy, reduce bias
and improve representation of marginalized groups, simu-
late unseen domains, and augment the size of existing real
data. Just like vision and text FMs, using the LTM’s em-
bedding of tabular rows (or full datasets) could be used for
downstream tasks, including as input for prediction models
or other foundation models.

Why tabular FMs have been overlooked. We may wonder
why LTMs have been overlooked so far. We hypothesize
there are three main reasons: data, tabular ML difficulty, and
human perception. First, until recently there has been a lack
of large tabular metadatasets. These datasets may also be
messy or not fit the typical ML problem setting (e.g. are not
labelled for any specific task, or may require domain knowl-
edge). Additionally, due to privacy or ownership concerns,
some subfields (e.g. medical data) would not be represented
in this data. Second, the difficulty of tabular ML can be
discouraging. As discussed, tabular data baselines are often
strong, and a new method may not consistently outperform
it—possibly hindering publication as a result. Furthermore,
there are some unique challenges (see desiderata 2). Third,
we believe humans’ “more natural” skills of interpreting
text and vision may have played a large role. Many vision
and text papers have as primary way of evaluation human
judgement (e.g. realism of generated images or texts). This
is a solution when metrics are unavailable or unreliable—
e.g. the primary image generation metrics FID and IS have
known problems (Liu et al., 2018; Chong & Forsyth, 2019;
Alaa et al., 2022)—yet visual inspection is very hard for
tabular data. At last, non-experts understand that StableDif-
fusion and ChatGPT generate impressively realistic outputs,
and hence these models are featured heavily in and outside
the ML research community. This in turn may have encour-
aged more people to study this topic compared to modalities
like time-series and tabular.

Why care about the tabular domain. Let us highlight three
main reasons why switching to tabular foundation models
is worth your consideration. First, tabular data is ubiqui-
tous in the real world (Borisov et al., 2022; Shwartz-Ziv &
Armon, 2022)—from electronic healthcare records (Fatima
& Pasha, 2017) to census data (Office for National Statis-
tics, 2021), from cybersecurity (Buczak & Guven, 2016) to
credit scoring (Dastile et al., 2020), and from finance to nat-
ural sciences (Shwartz-Ziv & Armon, 2022). Quantitative

research relies on these datasets, which in turn progresses
scientific knowledge and influences public policy. This prac-
tical importance is also reflected in its prominence in online
data science competitions, e.g. Kaggle and KDD Cup focus
primarily on tables (Kaggle, 2017; Huang et al., 2020).

Second, despite the above the tabular domain offers
uniquely exciting, large, unsolved challenges for re-
searchers. In the past two decades, machine learning for
tabular data has not progressed as resolutely compared to
other modalities. Recent benchmarking papers (Gorishniy
et al., 2021; Borisov et al., 2022; Shwartz-Ziv & Armon,
2022; Grinsztajn et al., 2022) all find that XGBoost (Chen
& Guestrin, 2016), a tree-based model, is still among the
top performers for supervised learning on tabular data. The
authors attribute many reasons to this, e.g. tabular data
being discontinuous, containing heterogeneous and uninfor-
mative features (Grinsztajn et al., 2022), and data contain-
ing no spatial invariances that could inform a good prior
(cf. convolutional nets for vision) (Borisov et al., 2022).
We will go into some of these further in Section 2, but
for now we would like to point to another, more obvious
reason why tabular data research is lagging behind other
modalities: the scale of data, models, and task complex-
ity is vastly different than in the vision and text domain.
In (Grinsztajn et al., 2022), the largest datasets are only
50,000 points, and for these datasets (Appendix A2) the
difference between data-heavy transformer-based models
and tree-based models becomes smaller. Similarly, Borisov
et al. (2022) find that for their largest dataset (which counts
11 million samples but just 27 features), the transformer-
based model SAINT (Somepalli et al., 2021) outperforms
tree-based models. Additionally, benchmark papers (Kadra
et al., 2021; Gorishniy et al., 2021; McElfresh et al., 2023)
do find settings in which neural nets seem to outperform
XGBoost rather consistently, e.g. when the number of sam-
ples increases (McElfresh et al., 2023), the number of target
classes increases (Gorishniy et al., 2021), and when more
modern regularization techniques are used for deep nets
(Kadra et al., 2021). Furthermore, none of the discussed
tabular benchmarking papers consider settings with multiple
or truly large and diverse datasets—even though the power
of modern vision and text models may well be attributed
to their training on billions of images (Schuhmann et al.,
2022) or trillions of tokens (Touvron et al., 2023). These
observations indicate that the scaling advantages observed
in other modalities (Bommasani et al., 2022), may well
hold in tabular data, yet these model sizes and data settings
are simply not studied due to benchmarks consisting of
primarily smaller datasets and models. This comes with
another advantage: developing SOTA LTMs is still within
computational reach of many ML researchers, cf. the
economically-exclusionary cost of training modern LLMs.

Third, the impact of a foundation model for tabular data lies
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not just in the ubiquity of the modality, but also in humans’
intrinsic inability to parse tabular data effectively them-
selves. Humans are incredibly good at understanding text
and image, and foundation models in the text and vision
space have aimed to match this: to encapsulate fundamental
understanding of abstract concepts, resembling human-like
skills. In the tabular domain the power of FMs may be
just as large—foundation models being able to reason about
real-world distributions over different variables, and gener-
alize to new relationships. For example, a foundation model
trained on tables with features A and B, and B and C, might
well be able to reason about the relationship between A and
C. Relatively speaking, however, this power would be much
higher compared to humans, as table parsing, data analyses,
and computations are not an intrinsic skill of ours.1 We
do not know what knowledge can be derived from combin-
ing wide, diverse tabular datasets, but the potential alone is
exciting and worth exploring.

In a nutshell, designing the first generation of truly large,
foundational tabular models could be an immensely reward-
ing and exciting opportunity for many researchers.

Overview. In this position piece, we start by contextualiz-
ing the term LTM with respect to other foundation models
(Bommasani et al., 2022), and discussing model and data
requirements (Section 2). In Section 3, we will discuss the
current research related to LTMs, and how it is still rather
limiting. We continue exploring the applications of LTMs
(Section 4), as well as adaptation challenges (Section 5).
At last, in Section 6 we return to our thesis and provide a
head-to-head comparison of the impact of LTMs and LLMs
along different dimensions, attempting to convince the ML
research community to shift more attention to tabular.

2. Large Tabular Model
The term Foundation Model (FM) was first coined by (Bom-
masani et al., 2022), denoting “any model that is trained on
broad data (generally using self-supervision at scale) that
can be adapted (e.g., fine-tuned) to a wide range of down-
stream tasks; current examples include BERT (Devlin et al.,
2019), GPT-3 (Brown et al., 2020), and CLIP (Radford
et al., 2021).” The three mentioned examples being LLMs
reflect the initial dominance of LLMs in FM research and
discourses. Though (Bommasani et al., 2022) write about
FMs for other modalities (including image and multimodal),
tabular FMs are missing from the 200+ page report.

To draw a direct comparison with LLMs, we coin the term
Large Tabular Model (LTM) for a tabular foundation model.
In this paper, we focus on the simplest form of tabular data:
single independent tables (cf. relational databases). Let

1In fact, we expect many readers consider tables as abstract
and “dry”, and may well be the reason why it is so understudied.

us discuss how the foundation model definition moulds to
tabular data, and what kind of model and data it necessitates.

2.1. Model Requirements

The two foundation model requirements, large-scale (self-
supervised) training and adaptability, extent to LTMs by
definition. However, let us propose four desiderata specific
to LTM design, that are implied for “large-scale” and “adapt-
ability” to be possible in tabular data. These are not strictly
necessary, but desirable for adapting the model “to a wide
range of downstream tasks” (see Section 4).

D1 Mixed-type Columns. LTMs should be able to handle
the different types of data that are common in tables,
e.g. numerical, categorical, datetime, and missing data.

D2 Cross-dataset Modelling. Tabular datasets only cover
a specific topic and are often moderately sized. Con-
sequently, to enable large-scale training and broad ap-
plicability we need one LTM to be trained on different
datasets. This requires a capability to model heteroge-
neous feature spaces—i.e. feature spaces with different
(numbers of) features that could carry very different
meanings.

D3 Textual Context. The meaning of tabular data is often
dependent on contextual metadata, e.g. the dataset
description, column names, and category names. An
LTM should leverage this information.

D4 Invariance/Equivariance w.r.t. column order. Col-
umn order is usually arbitrary for tables. We want an
LTM to reflect this, and have output that is invariant or
equivariant to input permutations. In other words, let-
ting f denote the LTM, x a row, and T some permuta-
tion of the columns, we desire (invariance) f(T (x)) =
f(x) or (equivariance) f(T (x)) = T (f(x)).2

Model type and architecture. Similar to FM and LLM,
we envision the term LTM to be very much open to inter-
pretation. In particular, we set no restrictions on the type
of models used for LTMs. In LLM literature, conditional
generative models with a transformer backbone form a cor-
nerstone for many applications. Yet, it would be false to
state encoder-only LLMs that create embeddings are not
foundation models. Similarly, we believe some type of
conditional generative model (i.e. that allows generation
based on a subset of the variables and metadata) could be an
important model class for future LTMs: this would for ex-
ample allow few-shot (probabilistic) prediction, imputation,
and conditional generation. For representation learning,

2Note, equivariance only makes sense if the output is a se-
quence of the same length as the input. This may not be the case
for some LTMs, e.g. LTMs that aim to embed rows as static
embeddings.

3



Position: Why Tabular Foundation Models Should Be a Research Priority

encoder-only LTMs may be more suitable. Architecture-
wise, attention-based architectures are dominant in related
work (Section 3), for good reason: they can process a vary-
ing number of features and naturally satisfy D4 (i.e. output
is equivariant w.r.t. feature order when no positional encod-
ing is used). Nonetheless, benchmarking papers (Gorishniy
et al., 2021; Borisov et al., 2022; Shwartz-Ziv & Armon,
2022; Grinsztajn et al., 2022) could motivate researchers to
look beyond transformer architectures.

2.2. Data

Key to FMs, is that they are “trained on broad data” (Bom-
masani et al., 2022). In particular, many of the performance
gains of recent LLMs and vision models are due to scaling
(Brown et al., 2020; Kaplan et al., 2020; Rombach et al.,
2022; Hoffmann et al., 2022). “Broad data” for LTMs im-
plies having a large corpus of tables with context (e.g. de-
scriptions). Fortunately, there has been a growing body of
work composing these large datasets. WebTables (Lehm-
berg et al., 2016) consists of 10M HTML datasets from the
web. Bhagavatula et al. (2015) proposed a dataset based on
Wikipedia tables, which has the advantage of being curated
and covering a wide range of topics. More recently, the size
(and hence coverage) of these datasets has increased tremen-
dously. Most recent is Eggert et al. (2023), who publish
TabLib—a metadataset counting 627 million tables and 827
billion context tokens, covering a diverse range of topics.
This is comparable to the size of large-scale image and text
datasets, and hence should not prohibit research into LTMs.
Nonetheless, there are some possible data challenges, which
we will go into in Section 5.

2.3. Benchmarking tasks for LTMs

The broad definition of foundation model poses the ques-
tion: even if we have build a supposed LTM, how do we
benchmark it and deem it successful? Multiple tasks, set-
tings, and datasets will likely be required, similar to LLM
benchmarks—e.g. the massive text embedding benchmark
(Muennighoff et al., 2023) consists of 8 tasks, 56 datasets,
and 112 languages. In Appendix B we outline some tasks
and settings that could be used for benchmarking LTMs. We
hope to encourage others to focus on developing metrics
and benchmarks further.

Takeaway: We use Large Tabular Model (LTM) to denote a
foundation model for tabular data. This term is only loosely
defined, but implies a large-scale tabular model that is adapt-
able to many downstream tasks.

3. Current State of LTMs
In the previous section we have discussed our position on
what LTMs should be able to do, which included handling

some of the inherent difficulties of tabular data (e.g. its lack
of structural meaning, mixed-type variables, limited size of
datasets). Let us discuss some of the works related to LTMs,
how they already fit some of the LTM criteria, and which
criteria they not yet fulfill.

Representation learning. Both Yin et al. (2020) and Deng
et al. (2020) adapt BERT (Devlin et al., 2019) for table un-
derstanding and parsing (e.g. entity linking, column type
annotation). Both set-ups are similar, to linearize tables into
“sentences”, add textual metadata, use masked reconstruc-
tion loss as training objective, and train on large tabular
metadatasets. Their methods have numerous technical lim-
itations that prohibit wide adaptation, e.g. a 128 token
context window. (Zhu et al., 2023b) focuses on cross-table
pretraining of larger transformer models. They tokenize
numerical values more efficiently, as single tokens (Gorish-
niy et al., 2021), and for categoricals train an embedding
for each unique category in all datasets. They pretrain on
just 100 datasets, and their category look-up prevents large-
scale cross-table training (D2). (Ye et al., 2023)’s CT-BERT
present a similar approach, but instead of linearizing each
row as tokens, they embed the tokens of each categorical
feature using a pretrained LLM, pool these embeddings, and
pass the feature embeddings to their model. This results in
shorter sequences, and the pretrained LLM adds context effi-
ciently (D3). They only consider prediction as downstream
task, but do show good few-shot performance. Training is
limited to 17k datasets and a maximum of 100 features per
dataset, but we expect this could scale to larger models and
be adapted beyond prediction.

Supervised learning Though supervised learning meth-
ods are usually disqualified from being foundation models,
we find three works noteworthy. LIFT (Dinh et al., 2022)
finetunes an LLM on linearized tabular data, and exten-
sive experiments indicate similar performance to traditional
baselines. TabFM (Zhang et al., 2023) takes a more general
approach, representing rows differently, adding task-specific
information, and showing good few-shot prediction using in-
context examples. TabPFN (Hollmann et al., 2023a) takes a
vastly different angle than the previous works: it is a trans-
former model that is trained on large quantities of tabular
synthetic data, to provide few-shot priors for supervised
learning. Despite it being trained on toy data, the authors
claim that models trained with TabPFN priors outperform
XGBoost (Chen & Guestrin, 2016) on real-world datasets.
This generalization capability, from toy to real datasets,
hints at there being more structure in the tabular domain
than some previous works suggest (Grinsztajn et al., 2022).

Generative learning. Generative learning approaches are
lacking behind significantly. Yoon et al. (2018) present
a GAN approach that learns to generate samples across
domains using a shared latent space, similar to Cycle-GAN
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(Zhu et al., 2017) in the image domain. Their intention is to
augment smaller domains with synthetic samples that have
been “translated” from larger domains, so that this improves
supervised learning on these small domains. The problem
of this approach is that their method uses a separate encoder-
decoder pair for each domain to translate to and from the
shared latent space. This will not work well for very small
domains, does not scale well to many domains, and prohibits
few-shot translation. Additionally, their method does not
satisfy D1, D3 and D4.

Pretrained LLMs may provide a solution to generation, as
they are generative, contain general knowledge, and can tok-
enize and embed rows into sequences of meaningful numer-
ical vectors (D3). However, we believe there are significant
disadvantages to adapting LLMs for tabular generation. Let
us elaborate.

3.1. Tabular Generation with LLMs

Three recent works adapt LLMs for tabular generation.
Borisov et al. (2023) use a finetuned LLM out-of-the-box
for generating tabular data. (Solatorio & Dupriez, 2023) pro-
pose a similar model based on GPT-2, but which can also
generate relational datasets and improve efficiency through
modelling a reduced fixed-set vocabulary for each column
(following (Padhi et al., 2021)). Last, (Zhao et al., 2023)
show they achieve better performance by retraining a smaller
LLM. Though these works finetune/train the LLM on just
a handful of datasets—probably because their LLM back-
bone is expensive—they could relatively easily be applied
to larger corpi of datasets. The advantage of LLM-based
generation is its simplicity, it not requiring any manual pre-
processing of data, and it allowing typical LLM techniques
(e.g. prompting and in-context examples). However, LLMs
have three major shortcomings for generating tabular data.

LLMs are not good at modelling continuous variables.
Standard LLMs are inefficient for tabular data, due to to-
kenization of numerical values (Thawani et al., 2021). A
single numerical variable is implicitly modelled as an au-
toregressive series of binned, categorical variables (e.g. 1.89
is modelled as 1 → . → 89). This lacks any prior on the
continuity of common data distributions, e.g. predicting
1.89 or 1.90 should have about the same probability, in con-
trast to 1.89 and 90.89, yet both differ in just one token.
This has been shown to lead to unrealistic outputs in LLMs
(Spithourakis & Riedel, 2018).

Some have aimed to improve numeracy through better tok-
enization of numerical values (Spithourakis & Riedel, 2018;
Jiang et al., 2020; Golkar et al., 2023). Though we consider
this promising, current solutions come with side effects. For
example, some encode number r into fixed vector re with e
some constant vector, but this results in numerical variables
being modelled as point estimates—removing the ability to

generate using the LLM.

This is even more problematic for generative tasks in which
we aim to sample from the LLM to mimic a continuous
distribution. In Figure 2 we visualize the relatively com-
plex process for an LLM to output just a single independent
Gaussian variable. Evidently, modelling just a simple con-
tinuous variable requires a seemingly unnecessary amount
of capacity, without even considering conditional dependen-
cies on other variables. Other model classes (e.g. diffusion
models (Song & Ermon, 2019; Ho et al., 2020)) inherently
support continuous variables, which we believe makes them
a better option.

LLMs are poorly calibrated. At the same time, Renda
et al. (2023) found that LLMs are poor at sampling from
theoretically trivial distributions, e.g. a uniform distribution.
This is in line with the poor calibration of LLMs (Desai &
Durrett, 2020; Jiang et al., 2021; 2023). This does not bode
well for modelling more complex, continuous distributions
autoregressively.

Standard LLMs are expensive. LLMs are designed to be
highly flexible, and typically function autoregressively. This
flexibility means we may learn difficult relationships (e.g.
model continuous distributions, Figure 2). For tables, where
a single row may contain hundreds of features that each
contain several tokens (especially if numbers are tokenized
naively), this would mean inefficient, slow, and expensive
training and inference—lessening research and adaptation.
For large datasets or inference with in-context examples,
the context-window size could also be a hard limitation, e.g.
GReaT (Borisov et al., 2023) cannot handle more than 100,
low-dimensional in-context samples. But is this expense
necessary? Ye et al. (2023) use a pretrained LLM for en-
coding fields, but use a smaller transformer on top—this
approach reduces the sequence length to the number of fea-
tures (cf. tokenized length of row and context) and speeds up
training significantly through caching. Furthermore, smaller
transformers may suffice: tabular data is highly structured
and current state-of-the-art methods, e.g. XGBoost for pre-
diction, perform well despite their small size. Consequently,
we believe it would be fruitful to explore other architectures
(including transformer-based) beyond the standard LLM.

Takeaway: A recent surge of papers use cross-table training
for unsupervised or supervised learning. Many adapt LLMs,
but we argue why LLMs are not efficient and performant in
the presence of numerical columns. Building a generative
LTM is the largest challenge.
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4. Real-World Impact
4.1. Categorizing Adaptation

The foundation of machine learning (ML) is data. Unfortu-
nately, data can be limiting for some domains (e.g. health-
care, where data is costly and privacy-sensitive), subpopu-
lations (e.g. historically underrepresented minorities), and
regions (e.g. developing countries). A lack of good data
hinders the development, training, and testing of ML mod-
els, and science in general. In particular, we have discussed
how ML for tabular data is lagging behind, which may be
explained by modern ML methods requiring large training
sets that the tabular domain does not always offer (Section
1). Additionally, even if data is available, it may not always
be easy to derive meaning or knowledge from it. LTMs
can help: LTMs may exhibit the same few-shot abilities as
LLMs (Brown et al., 2020), allowing us to adapt them to
a wide variety of downstream tasks with fewer data. We
highlight some applications for this adaptation.

Direct vs indirect adaptation. We consider two types of
adaptation: direct adaptation to the target task (e.g. fine-
tuning the LTM for some prediction task) or indirect adap-
tation through synthetic data (e.g. create a “fake” dataset
that augments the real data). To illustrate the advantages of
each, let us consider classification on a small imbalanced
dataset as downstream task.3 For direct adaptation, one
can fine-tune on this small dataset or supply the data as
in-context examples, such that the LTM itself provides pre-
dictions. This directness is convenient, could be cheap, and
allows us to measure the LTM’s success directly through
its downstream test performance. The indirect approach is
different: it uses the LTM to generate a synthetic dataset
that augments the real data, which is then used by a down-
stream model for training. This might be more complex,
partly because it is hard to determine how well the LTM
did at generating the data until we have run the downstream
model (see Section 5). The advantages, however, are that
we can (i) explicitly improve the real data, e.g. by sampling
additional points for the underrepresented group, (ii) can
share the synthetic data with others, and (iii) downstream
researchers can perform their usual task (e.g. train a model,
conduct data analysis), without any need of the LTM. To
ensure downstream results are trustworthy, evaluation of
the LTM and synthetic data are essential—we discuss this
further in Section 5. The choice for direct or indirect adapta-
tion will likely be application-dependent, so let us look into
some of these next.4

3There are strong connections to the debate around discrimina-
tive versus generative machine learning models. However, FMs
are usually self-supervised (and many FMs like LLMs are genera-
tive by nature), hence adapting an LTM to be generative may not
necessarily be harder than making it discriminative.

4The “indirect” approach is rather unique to tabular data. In the
text domain, creating synthetic datasets for downstream models

4.2. LTMs for Responsible AI

Inclusiveness and representation. Historically, it has been
hard to model underrepresented groups well due to the in-
herent data scarcity of these groups. Studying subgroup ro-
bustness is thus an active area of research, e.g. see (Gardner
et al., 2022). Large language models have few-shot reason-
ing abilities (Brown et al., 2020), hence we can expect simi-
lar behaviour for LTMs. This would allow adapting these
models better to small datasets or underrepresented sub-
groups within large datasets, hence improving performance
on these subgroups. Additionally, an LTM could be used to
generate synthetic data for these groups—augmenting the
real data to improve representation of marginalized groups—
in turn enabling better downstream science and ML develop-
ment for these groups (van Breugel & van der Schaar, 2023).
This is similar to other tabular augmentation approaches,
e.g. SMOTE (Chawla et al., 2002) or the deep generative
(van Breugel et al., 2023a), but may provide more realistic
examples due to the LTM’s prior knowledge.

Robustness through out-of-domain simulation. ML mod-
els can perform unpredictably bad on out-of-distribution
and distributionally shifted test data (Kolesnikov, 2023; Liu
et al., 2023; Gardner et al., 2024). Synthetic data generated
by generative models has been used in the past to simulate
unseen or scarcely seen scenarios for testing. For example,
van Breugel et al. (2023a) show how simulated data can be
used for estimating the change in performance of trained
ML predictive models (due to an environment change), and
Tucker et al. (2020) generate synthetic data to assess health-
care software. These methods are heavily limited by their
inability to generate out-of-distribution data, and their gen-
erative models’ data-intensive requirement for training. The
generalization and few-shot potential of LTMs could re-
solve both problems, thus LTMs could play a central role in
simulating data for ML model development, probing, and
post-deployment monitoring.

Privacy, data democratization, and reproducibility.
Training ML models on private data requires a trade-off
between privacy leakage and performance (Dwork & Roth,
2014). LTMs that have been pretrained on open, non-private
data can be adapted to private target data, thereby reduc-
ing the privacy budget compared to standard private ML
models—we need less information from the target dataset to
model it well. Similarly, an LTM can generate synthetic data
with a better privacy-utility trade-off compared to normal
generative models. Both direct and indirect adaptation may
prove especially beneficial for underrepresented groups, as

often makes little sense—we would still need an LLM to use this
data. In the vision generative model literature this is slightly more
explored, e.g. (Wang et al., 2019) use generative models to turn
CGI-generated images into photorealistic training images for better
downstream prediction.
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these groups have inherently a worse privacy-performance
trade-off: there are less points to learn from, hence more
information per sample is needed for accurate modelling
(van Breugel et al., 2023b).

Generating synthetic data that accurately mimics sensitive
data without revealing it, could also allow the publication
of more datasets (e.g. data from healthcare providers). This
could promote better reproducibility, democratise data ac-
cess, and enable more powerful meta-analyses (see below).

4.3. LTMs for Science

Meta-analyses. Meta-analyses are essential for consolidat-
ing and analyzing research results across studies. Individual
studies may only focus on small subpopulations (e.g. one
country), resulting in sometimes conflicting, biased, or in-
significant results. At the same time, obtaining more data
is often difficult and expensive. Meta-analyses re-use data
from multiple, existing studies to create more powerful and
cost-efficient analyses, removing local bias and noise. They
are influential in informing policy—e.g. meta-analyses are
at the top of evidence-based practice (Haidich, 2010).

In meta-analyses, different datasets need to be consolidated
into one, which is complicated by possible heterogeneity
(e.g. different features and contexts). LTMs could reduce
manual effort and cost by automating the integration of
datasets from different studies by harmonizing formats, in-
consistent column names and categories, and data types.

Bridging datasets. Going even further, LTMs could help
find and combine relevant tables that may not match directly,
and may come from very different scientific fields. This can
be compared to performing seamless, automated SQL joins
using the LTM’s full training database.This could enable
multidisciplinary science that is currently intractable.

Data scientist’s assistant. LTMs’ native understanding
of data compared to LLMs, could make them a suitable
assistant tool for data scientists. Abilities could include
automatic cleaning, exploratory data analyses, finding re-
lated datasets, applying SQL queries on complex databases,
running automated statistics, and helping visualize and inter-
pret results. This could improve data scientist’ productivity,
enjoyment of their work (by removing repetitive and often
frustrating cleaning), and aid in outwards communication—
-e.g. in improving public understanding of data meaning
and reliability.

Knowledge base. By learning from a wide range of datasets,
the LTM itself becomes a repository of knowledge. LTMs
trained on large, high-quality data (e.g. WikiTables) could
facilitate data-driven question-answering systems, and statis-
ticians could distill Bayesian priors from LTMs.

4.4. LTMs and Non-Tabular Data

Time-series and relational data. We have focused on the
simplest form of tabular data: single tables with indepen-
dent entries. This could lay the foundation for time-series
and relational databases, which are important data types
in practice (e.g. electronic healthcare records), yet contain
dependent samples. In time-series, entries are usually times-
tamped and multiple samples are linked by an ID (e.g. a
patient, where entries correspond to measurements), and in
relational databases there can be multiple tables where one
ID is linked to (possibly many) entries in different tables.
Some work has already aimed

Multimodality. This paper’s supposed dichotomy between
tabular and image/text is false of course. Many domains
are multimodal. LTMs can be aligned or used to inform
models in other modalities, and vice versa. For example,
desideratum D3 states LTMs should use textual context—it
would be sensible to acquire this context using a pretrained
LLM encoder. Similarly, some of the applications above
could still benefit from an LLM intermediary to commu-
nicate between the LTM and human. Research into LTMs
can also be encapsulated into multimodal FMs, which so far
largely ignore tabular data (Li et al., 2023a).

Takeaway: We envision an important role of LTM in pro-
moting responsible AI (including privacy, representation,
reproducibility, data democratization, robustness testing and
as a powerful tool for scientists (including data preprocess-
ing and analysis, for bridging datasets, and as a source of
knowledge itself). LTMs will also play a role for ML re-
search into other modalities, or multimodal settings.

5. Challenges
Building generative LTMs. We have seen how generative
LTMs are lagging behind. Modelling distributions across
datasets (D2), types (D1) with context (D3) is conceptu-
ally and architecturally complicated, and poses unique and
exciting challenges for researchers.

Scale. As discussed in Section 3, current models are still lim-
ited in scale and applicability. Training is usually restricted
to relatively small number of datasets (e.g. 100), and often
evaluation is restricted to one (supervised) task. As a result,
it is very uncertain whether these models generalize well to
new datasets and tasks, rendering them unsatisfactory foun-
dation models. Upscaling to larger datasets may be harder
than in other modalities, however, because data is “dirtier”
(e.g. consist of different file formats, contain missing and
noisy fields, or be preprocessed).

Data diversity and quality. The size of datasets like TabLib
(Eggert et al., 2023) is impressive, but it is yet to be deter-
mined whether their diversity is sufficient for wide appli-
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cability of future LTMs trained on this data. In the image
and text domain, large-scale datasets composed of web data
are likely to cover a large part of the “world-distribution”,
e.g. include photographs from places all over Earth, and
text from different languages. Even then, medical images or
small languages may be underrepresented. In the tabular do-
main, underrepresentation is more likely to be problematic
for two reasons. First, because tables have heterogeneous
feature spaces and context, most tables are irrelevant to most
other tables (cf. images, where each image can be scaled to
the same space and where common shapes compose objects,
which compose scenes, which compose meaning). Secondly,
many forms of tabular data are proprietary, unpublished, or
private, and will thus not appear in datasets like TabLib. As
a result, the extent to which LTMs will generalize to the
medical domain is yet to be seen. On the other hand, recent
work (Gunasekar et al., 2023) have shown that small LLMs
trained on small, but highly curated data (e.g. textbooks),
can perform remarkably well. This is promising for LTMs,
especially LTMs specialized to smaller domains for which
data banks exist (e.g. Wikipedia tables (Bhagavatula et al.,
2015) or gene expressions (Clough & Barrett, 2016)).

Evaluation. Foundation models make mistakes, e.g. hal-
lucinate false information (Ji et al., 2023), hence careful
evaluation is essential. Bommasani et al. (2022) divide
evaluation into intrinsic and extrinsic. Extrinsic evaluation
refers to measuring the performance of the adapted FM on
a downstream task, whereas intrinsic evaluation refers to
directly measuring the FM’s quality. Extrinsic evaluation
may not be representative of how “good” an FM is, as it may
not capture the performance on other possible downstream
tasks. On the other hand, intrinsic evaluation is difficult
as FMs are defined in terms of their adaptability to down-
stream tasks, which is hard to measure without performing
(or even knowing what are) those tasks. Intrinsic metrics
can also be biased towards one FM—e.g. using test loss
of FMs with different loss functions is not possible. LTM
evaluation encounters the same difficulties, but is made even
more difficult by visual inspection being unhelpful: whereas
the realism of image and text output can be relatively easily
evaluated by humans (and forms a central part in most text
and image papers), this is hard for tables. Inspiration may be
drawn from the synthetic data literature, where similar evalu-
ation challenges make metrics an active area of research (van
Breugel & van der Schaar, 2023). Until intrinsic metrics
are improved, we expect most LTM performance evaluation
to be mostly extrinsic, using multiple downstream tasks.
In Appendix B we include different tasks and settings that
could be considered for extrinsic evaluation.

Evaluation goes further than measuring performance. LTMs
need to avoid leaking private or copyrighted material, which
requires measuring a model’s memorization. Ideas from
generative model generalization metrics (Theis et al., 2016;

Arora et al., 2017; Alaa et al., 2022) and privacy-focused ML
(Dwork & Roth, 2014) could inspire LTM metrics. Evaluat-
ing bias is another challenge, which we discuss separately.

Bias. Similar to LLMs, LTMs may copy or even exacerbate
bias in their training data. Not much is known about the bias
in large tabular datasets, e.g. (Eggert et al., 2023). One may
hope that tables are usually created to represent information
and facts, and are less opinionated than text. This would be
naive: datasets can contain discriminative features (e.g. the
much-used Boston Housing dataset (Harrison & Rubinfeld,
1978)), under- or misrepresent some groups, and display
other forms of bias, e.g. publication bias (Thornton & Lee,
2000). Research into LTMs should go hand-in-hand with
research into this bias, and put safeguards in place when
publishing LTMs.

Takeaway: The most important challenges for LTMs relate
to (i) the challenges of building a model that can handle the
unique challenges of tabular data (D1-D4); (ii) uncertainty
around current datasets’ quality, bias and diversity; (iii)
reliable evaluation of LTMs; and (iv) how bias can be tested
and safeguarded against in trained LTMs.

6. Comparing LTM and LLM Impact
Let us end this position piece with a comparison of LTMs
and LLMs along five key dimensions of impact.

1. Public and commercial use. The surge in LLM use
is a testament to their adaptability, and the fundamental
role they may play in productivity and facilitating human-
ML interactions (e.g. through tools called through LLMs).
LTMs may play an important role in data-driven industries,
e.g. finance, education, government, but this will likely be
smaller than LLMs.

2. Scientific use. Tabular data is likely the largest data
modality in science (Borisov et al., 2022). We have dis-
cussed how LTMs may revolutionize how tabular data is
processed, analyzed, and re-used across domains. Though
LLM applications in the scientific domain are plentiful, cur-
rent LLMs encounter inefficiency and numerical issues with
tabular data (Section 3.1).

3. Potential for public good. LLMs may play a central role
in education, personalized healthcare (Gates, 2023), and
law (Bommasani et al., 2022). LTMs impact is much more
specific to ML and data science, e.g. more inclusive data, the
development of more robust models, improving privacy and
reproducibility, and scientific knowledge derived from using
LTMs (e.g. that use multidisciplinary data). Consequently,
both exhibit great potential for public good, yet cover vastly
different areas.

4. Risk of misuse. Generative FMs come with a risk of
misuse. Highly-realistic content generated by LLMs or vi-
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sion models can be used to impersonate individuals (i.e.
deepfakes) (Rana et al., 2022), spread misinformation at an
unprecedented scale (Marcus, 2023), and raise plagiarism
concerns for creators and academia (Kasneci et al., 2023).
This risk is smaller for LTMs compared to text and vision,
because contributing tabular data to the community often
requires identity verification (i.e. data can be traced back
to an individual and institution) and is prone to scrutiny
(i.e. data scientists are strained to verify the data source).
Additionally, malicious data fabrication to fit a false narra-
tive can already be done easily manually without the need
of an LTM (cf. image generators, where the alternative is
arduous and skillful photoediting). FM risks can also be un-
intentional however, e.g. it is difficult to guarantee models
are unbiased, reliable, and do not reproduce copyrighted or
private information. For evaluation of these unintentional
consequences, LTMs and LLMs face similar challenges.

5. Impact per researcher. The amount of research in the
LLM space vastly outnumbers work related to LTMs, yet
there are many interesting, high-potential open questions
and applications for LTMs. Furthermore, the scale of cur-
rent LLM research requires vast computational resources,
whereas LTMs have been underexplored at even moderate
scale. Consequently, the potential for impact is arguably
more plausible and more widely attainable in LTM research.

Takeaway: The above is not to give a verdict on which
modality is best—inherently we are comparing apples
to pears. However, we do hope to make the point that
each model class is very much deserving of researchers’
attention—attention that LTMs are currently not getting.

7. Conclusion
We believe large tabular models are significantly understud-
ied and within reach. LTMs provide exciting and unique
research challenges, impactful applications, and promises
a world where data usability extends across single datasets.
We hope some readers will reconsider the modality they
prioritize in their research, and help build, evaluate, and
responsibly apply the first generation of true LTMs.

Impact Statement
In this work we have argued for the importance of more re-
search into tabular foundation models. In Section 4 we have
elaborated on how these methods can aid ML inclusiveness,
representation, privacy, data democratization, and robust-
ness. On the other hand, we have also discussed how LTMs,
like LLMs, can be biased, misused, and require proper eval-
uation (Section 5). We acknowledge that research on and
adaptation of LTMs need to go hand-in-hand with bias and
misuse prevention.
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Tramèr, F., Wang, R. E., Wang, W., Wu, B., Wu, J., Wu,
Y., Xie, S. M., Yasunaga, M., You, J., Zaharia, M., Zhang,
M., Zhang, T., Zhang, X., Zhang, Y., Zheng, L., Zhou, K.,
and Liang, P. On the Opportunities and Risks of Foun-
dation Models, July 2022. URL http://arxiv.org/
abs/2108.07258. arXiv:2108.07258 [cs].

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk,
M., and Kasneci, G. Deep neural networks and tabular
data: A survey. IEEE Transactions on Neural Networks
and Learning Systems, 2022. Publisher: IEEE.

Borisov, V., Seßler, K., Leemann, T., Pawelczyk, M., and
Kasneci, G. Language Models are Realistic Tabular
Data Generators. In The Eleventh International Confer-
ence on Learning Representations, October 2023. ISBN
2210.06280v2. URL https://arxiv.org/abs/
2210.06280v2. arXiv: 2210.06280.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin,
M., Gray, S., Chess, B., Clark, J., Berner, C., McCan-
dlish, S., Radford, A., Sutskever, I., and Amodei, D.
Language Models are Few-Shot Learners. In Advances
in Neural Information Processing Systems, May 2020.
doi: 10.48550/arxiv.2005.14165. arXiv: 2005.14165
Publisher: Neural information processing systems foun-
dation.

Buczak, A. L. and Guven, E. A Survey of Data Mining
and Machine Learning Methods for Cyber Security
Intrusion Detection. IEEE Communications Surveys &
Tutorials, 18(2):1153–1176, 2016. ISSN 1553-877X.
doi: 10.1109/COMST.2015.2494502. URL https:
//ieeexplore.ieee.org/document/7307098.

Conference Name: IEEE Communications Surveys &
Tutorials.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. SMOTE: Synthetic Minority Over-sampling Tech-
nique. Journal of Artificial Intelligence Research, 16:
321–357, 2002.

Chen, T. and Guestrin, C. XGBoost: A Scalable Tree Boost-
ing System. Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2016. doi: 10.1145/2939672. URL http:
//dx.doi.org/10.1145/2939672.2939785. Pub-
lisher: ACM Place: New York, NY, USA ISBN:
9781450342322.

Chong, M. J. and Forsyth, D. Effectively Unbi-
ased FID and Inception Score and where to find
them. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recog-
nition, pp. 6069–6078, November 2019. ISSN
10636919. doi: 10.1109/CVPR42600.2020.00611.
URL https://arxiv.org/abs/1911.07023v3.
arXiv: 1911.07023 Publisher: IEEE Computer Society.

Clough, E. and Barrett, T. The Gene Expression Omnibus
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Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok,
G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O.,
Sailer, M., Schmidt, A., Seidel, T., Stadler, M., Weller,
J., Kuhn, J., and Kasneci, G. ChatGPT for good? On
opportunities and challenges of large language models
for education. Learning and Individual Differences, 103:
102274, April 2023. ISSN 1041-6080. doi: 10.1016/
J.LINDIF.2023.102274. Publisher: JAI.

Kolesnikov, S. Wild-Tab: A Benchmark For Out-
Of-Distribution Generalization In Tabular Regression,
December 2023. URL http://arxiv.org/abs/
2312.01792. arXiv:2312.01792 [cs].

Kong, K., Zhang, J., Shen, Z., Srinivasan, B., Lei, C., Falout-
sos, C., Rangwala, H., and Karypis, G. OpenTab: Ad-
vancing Large Language Models as Open-domain Ta-
ble Reasoners. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=Qa0ULgosc9.

Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J.,
and Aila, T. Improved Precision and Recall Met-
ric for Assessing Generative Models. In Advances
in Neural Information Processing Systems, volume 32,
2019. URL https://github.com/kynkaat/
improved-precision-and-recall-metric.

Lehmberg, O., Ritze, D., Meusel, R., and Bizer,
C. A Large Public Corpus of Web Tables contain-
ing Time and Context Metadata. In Proceedings
of the 25th International Conference Companion on
World Wide Web - WWW ’16 Companion, pp. 75–76,
Montr&#233;al, Qu&#233;bec, Canada, 2016. ACM
Press. ISBN 978-1-4503-4144-8. doi: 10.1145/
2872518.2889386. URL http://dl.acm.org/
citation.cfm?doid=2872518.2889386.

Li, C., Gan, Z., Yang, Z., Yang, J., Li, L., Wang,
L., and Gao, J. Multimodal Foundation Mod-
els: From Specialists to General-Purpose Assistants,
September 2023a. URL http://arxiv.org/abs/
2309.10020. arXiv:2309.10020 [cs].

Li, H., Su, J., Chen, Y., Li, Q., and Zhang, Z. Sheet-
Copilot: Bringing Software Productivity to the Next
Level through Large Language Models. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023b. URL https://openreview.net/
forum?id=tfyr2zRVoK.

Li, X., Zhao, R., Chia, Y. K., Ding, B., Joty, S., Po-
ria, S., and Bing, L. Chain-of-Knowledge: Ground-
ing Large Language Models via Dynamic Knowl-
edge Adapting over Heterogeneous Sources. In The

12

https://arxiv.org/abs/2012.06678v1
https://dl.acm.org/doi/10.1145/3571730
https://dl.acm.org/doi/10.1145/3571730
https://aclanthology.org/2020.findings-emnlp.235
https://aclanthology.org/2020.findings-emnlp.235
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://arxiv.org/abs/2205.03257v1
http://arxiv.org/abs/2106.11189
http://arxiv.org/abs/2106.11189
https://www.kaggle.com/datasets/kaggle/kaggle-survey-2017
https://www.kaggle.com/datasets/kaggle/kaggle-survey-2017
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2312.01792
http://arxiv.org/abs/2312.01792
https://openreview.net/forum?id=Qa0ULgosc9
https://openreview.net/forum?id=Qa0ULgosc9
https://github.com/kynkaat/improved-precision-and-recall-metric.
https://github.com/kynkaat/improved-precision-and-recall-metric.
http://dl.acm.org/citation.cfm?doid=2872518.2889386
http://dl.acm.org/citation.cfm?doid=2872518.2889386
http://arxiv.org/abs/2309.10020
http://arxiv.org/abs/2309.10020
https://openreview.net/forum?id=tfyr2zRVoK
https://openreview.net/forum?id=tfyr2zRVoK


Position: Why Tabular Foundation Models Should Be a Research Priority

Twelfth International Conference on Learning Repre-
sentations, 2024. URL https://openreview.net/
forum?id=cPgh4gWZlz.

Liu, J., Wang, T., Cui, P., and Namkoong, H. On the Need
for a Language Describing Distribution Shifts: Illustra-
tions on Tabular Datasets, July 2023. URL http://
arxiv.org/abs/2307.05284. arXiv:2307.05284
[cs].

Liu, S., Wei, Y., Lu, J., and Zhou, J. An Improved
Evaluation Framework for Generative Adversarial Net-
works, July 2018. URL http://arxiv.org/abs/
1803.07474. arXiv:1803.07474 [cs].

Manikandan, H., Jiang, Y., and Kolter, J. Z. Lan-
guage Models are Weak Learners. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems, 2023. URL https://openreview.net/
forum?id=559NJBfN20.

Marcus, G. Why Are We Letting the AI Cri-
sis Just Happen?, March 2023. URL https:
//www.theatlantic.com/technology/
archive/2023/03/ai-chatbots-large-
language-model-misinformation/673376/.
Section: Technology.

McElfresh, D., Khandagale, S., Valverde, J., C, V. P., Feuer,
B., Hegde, C., Ramakrishnan, G., Goldblum, M., and
White, C. When Do Neural Nets Outperform Boosted
Trees on Tabular Data?, October 2023. URL http:
//arxiv.org/abs/2305.02997. arXiv:2305.02997
[cs, stat].

Muennighoff, N., Tazi, N., Magne, L., and Reimers,
N. MTEB: Massive Text Embedding Benchmark,
March 2023. URL http://arxiv.org/abs/
2210.07316. arXiv:2210.07316 [cs].

Naeem, M. F., Oh, S. J., Uh, Y., Choi, Y., and Yoo, J.
Reliable Fidelity and Diversity Metrics for Generative
Models. In III, H. D. and Singh, A. (eds.), Proceed-
ings of the 37th International Conference on Machine
Learning, volume 119, pp. 7176–7185. PMLR, June
2020. URL http://proceedings.mlr.press/
v119/naeem20a.html. Series Title: Proceedings of
Machine Learning Research.

Ni, A., Iyer, S., Radev, D., Stoyanov, V., Yih, W.-t., Wang,
S. I., and Lin, X. V. LEVER: Learning to Verify
Language-to-Code Generation with Execution. In In-
ternational Conference on Machine Learning, September
2023. doi: 10.48550/arXiv.2302.08468. URL http://
arxiv.org/abs/2302.08468. arXiv:2302.08468
[cs].

Office for National Statistics. 2021 Census, 2021. URL
https://www.ons.gov.uk/census.

Padhi, I., Schiff, Y., Melnyk, I., Rigotti, M., Mroueh,
Y., Dognin, P., Ross, J., Nair, R., and Altman, E.
Tabular Transformers for Modeling Multivariate
Time Series. In ICASSP 2021 - 2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3565–3569, June 2021.
doi: 10.1109/ICASSP39728.2021.9414142. URL
https://ieeexplore.ieee.org/abstract/
document/9414142. ISSN: 2379-190X.

Patnaik, S., Changwal, H., Aggarwal, M., Bhatia, S., Kumar,
Y., and Krishnamurthy, B. CABINET: Content Relevance-
based Noise Reduction for Table Question Answering. In
The Twelfth International Conference on Learning Repre-
sentations, 2024. URL https://openreview.net/
forum?id=SQrHpTllXa.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning Transfer-
able Visual Models From Natural Language Supervision.
In Proceedings of the 38th International Conference on
Machine Learning, volume 139, pp. 8748–8763. PMLR,
February 2021. doi: 10.48550/arxiv.2103.00020. arXiv:
2103.00020.

Rana, M. S., Nobi, M. N., Murali, B., and Sung, A. H.
Deepfake Detection: A Systematic Literature Review.
IEEE Access, 10:25494–25513, 2022. ISSN 2169-
3536. doi: 10.1109/ACCESS.2022.3154404. URL
https://ieeexplore.ieee.org/abstract/
document/9721302. Conference Name: IEEE
Access.

Renda, A., Hopkins, A. K., and Carbin, M. Can LLMs
Generate Random Numbers? Evaluating LLM Sam-
pling in Controlled Domains. In ICML 2023 Work-
shop: Sampling and Optimization in Discrete Space,
2023. URL http://people.csail.mit.edu/
renda/llm-sampling-paper.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-Resolution Image Synthesis with La-
tent Diffusion Models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pp. 10684–10695, December 2022. doi: 10.48550/
arxiv.2112.10752. arXiv: 2112.10752.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Den-
ton, E., Ghasemipour, S. K. S., Ayan, B. K., Mahdavi,
S. S., Lopes, R. G., Salimans, T., Ho, J., Fleet, D. J.,
and Norouzi, M. Photorealistic Text-to-Image Diffusion
Models with Deep Language Understanding. Advances

13

https://openreview.net/forum?id=cPgh4gWZlz
https://openreview.net/forum?id=cPgh4gWZlz
http://arxiv.org/abs/2307.05284
http://arxiv.org/abs/2307.05284
http://arxiv.org/abs/1803.07474
http://arxiv.org/abs/1803.07474
https://openreview.net/forum?id=559NJBfN20
https://openreview.net/forum?id=559NJBfN20
https://www.theatlantic.com/technology/archive/2023/03/ai-chatbots-large-language-model-misinformation/673376/
https://www.theatlantic.com/technology/archive/2023/03/ai-chatbots-large-language-model-misinformation/673376/
https://www.theatlantic.com/technology/archive/2023/03/ai-chatbots-large-language-model-misinformation/673376/
https://www.theatlantic.com/technology/archive/2023/03/ai-chatbots-large-language-model-misinformation/673376/
http://arxiv.org/abs/2305.02997
http://arxiv.org/abs/2305.02997
http://arxiv.org/abs/2210.07316
http://arxiv.org/abs/2210.07316
http://proceedings.mlr.press/v119/naeem20a.html
http://proceedings.mlr.press/v119/naeem20a.html
http://arxiv.org/abs/2302.08468
http://arxiv.org/abs/2302.08468
https://www.ons.gov.uk/census
https://ieeexplore.ieee.org/abstract/document/9414142
https://ieeexplore.ieee.org/abstract/document/9414142
https://openreview.net/forum?id=SQrHpTllXa
https://openreview.net/forum?id=SQrHpTllXa
https://ieeexplore.ieee.org/abstract/document/9721302
https://ieeexplore.ieee.org/abstract/document/9721302
http://people.csail.mit.edu/renda/llm-sampling-paper
http://people.csail.mit.edu/renda/llm-sampling-paper


Position: Why Tabular Foundation Models Should Be a Research Priority

in Neural Information Processing Systems, 35:36479–
36494, May 2022. URL https://arxiv.org/abs/
2205.11487v1. arXiv: 2205.11487.

Sajjadi, M. S. M., Bachem, O., Lucic, M., Bousquet, O.,
and Gelly, S. Assessing Generative Models via Precision
and Recall. In Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C.,
Wightman, R., Cherti, M., Coombes, T., Katta, A., Mullis,
C., Wortsman, M., Schramowski, P., Kundurthy, S.,
Crowson, K., Schmidt, L., Kaczmarczyk, R., and Jitsev, J.
LAION-5B: An open large-scale dataset for training next
generation image-text models. Advances in Neural Infor-
mation Processing Systems, 35:25278–25294, December
2022. URL https://proceedings.neurips.cc/
paper files/paper/2022/hash/
a1859debfb3b59d094f3504d5ebb6c25-
Abstract-Datasets and Benchmarks.html.

Shwartz-Ziv, R. and Armon, A. Tabular data: Deep
learning is not all you need. Information Fusion, 81:
84–90, May 2022. ISSN 1566-2535. doi: 10.1016/
J.INFFUS.2021.11.011. arXiv: 2106.03253 Publisher:
Elsevier.

Solatorio, A. V. and Dupriez, O. REaLTabFormer: Gener-
ating Realistic Relational and Tabular Data using Trans-
formers, February 2023. URL https://arxiv.org/
abs/2302.02041v1. arXiv: 2302.02041.

Somepalli, G., Goldblum, M., Schwarzschild, A., Bruss,
C. B., and Goldstein, T. SAINT: Improved neural net-
works for tabular data via row attention and contrastive
pre-training. arXiv preprint arXiv:2106.01342, 2021.

Song, Y. and Ermon, S. Generative Modeling by Estimating
Gradients of the Data Distribution. Advances in Neural
Information Processing Systems, 32, 2019.

Spithourakis, G. P. and Riedel, S. Numeracy for Lan-
guage Models: Evaluating and Improving their Ability
to Predict Numbers. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2104–2115, 2018. doi:
10.18653/v1/P18-1196. URL http://arxiv.org/
abs/1805.08154. arXiv:1805.08154 [cs, stat].

Thawani, A., Pujara, J., Szekely, P. A., and Ilievski, F.
Representing Numbers in NLP: a Survey and a Vi-
sion, March 2021. URL http://arxiv.org/abs/
2103.13136. arXiv:2103.13136 [cs].

Theis, L., Van Den Oord, A., and Bethge, M. A note on
the evaluation of generative models. 4th International
Conference on Learning Representations, 2016.

Thornton, A. and Lee, P. Publication bias in meta-
analysis: its causes and consequences. Journal of
Clinical Epidemiology, 53(2):207–216, February 2000.
ISSN 0895-4356. doi: 10.1016/S0895-4356(99)00161-
4. URL https://www.sciencedirect.com/
science/article/pii/S0895435699001614.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Moly-
bog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R.,
Saladi, K., Schelten, A., Silva, R., Smith, E. M., Subra-
manian, R., Tan, X. E., Tang, B., Taylor, R., Williams,
A., Kuan, J. X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan,
A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R.,
Edunov, S., and Scialom, T. Llama 2: Open Foundation
and Fine-Tuned Chat Models, July 2023. URL http://
arxiv.org/abs/2307.09288. arXiv:2307.09288
[cs].

Tucker, A., Wang, Z., Rotalinti, Y., and Myles, P. Gen-
erating high-fidelity synthetic patient data for assess-
ing machine learning healthcare software. npj Dig-
ital Medicine 2020 3:1, 3(1):1–13, November 2020.
ISSN 2398-6352. doi: 10.1038/s41746-020-00353-
9. URL https://www.nature.com/articles/
s41746-020-00353-9. Publisher: Nature Publish-
ing Group.

van Breugel, B. and van der Schaar, M. Beyond Privacy:
Navigating the Opportunities and Challenges of Synthetic
Data, April 2023. URL http://arxiv.org/abs/
2304.03722. arXiv:2304.03722 [cs].

van Breugel, B., Seedat, N., Imrie, F., and van der Schaar,
M. Can You Rely on Your Model Evaluation? Improving
Model Evaluation with Synthetic Test Data. In Advances
in Neural Information Processing (NeurIPS 2023), Octo-
ber 2023a. arXiv: 2310.16524.

van Breugel, B., Sun, H., Qian, Z., and van der Schaar, M.
Membership Inference Attacks against Synthetic Data
through Overfitting Detection. In Proceedings of the 26th
International Conference on Artificial Intelligence and
Statistics, 2023b.

14

https://arxiv.org/abs/2205.11487v1
https://arxiv.org/abs/2205.11487v1
https://proceedings.neurips.cc/paper_files/paper/2022/hash/a1859debfb3b59d094f3504d5ebb6c25-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/a1859debfb3b59d094f3504d5ebb6c25-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/a1859debfb3b59d094f3504d5ebb6c25-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/a1859debfb3b59d094f3504d5ebb6c25-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2302.02041v1
https://arxiv.org/abs/2302.02041v1
http://arxiv.org/abs/1805.08154
http://arxiv.org/abs/1805.08154
http://arxiv.org/abs/2103.13136
http://arxiv.org/abs/2103.13136
https://www.sciencedirect.com/science/article/pii/S0895435699001614
https://www.sciencedirect.com/science/article/pii/S0895435699001614
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://www.nature.com/articles/s41746-020-00353-9
https://www.nature.com/articles/s41746-020-00353-9
http://arxiv.org/abs/2304.03722
http://arxiv.org/abs/2304.03722


Position: Why Tabular Foundation Models Should Be a Research Priority

Wang, Q., Gao, J., Lin, W., and Yuan, Y. Learning from
synthetic data for crowd counting in the wild. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 8198–8207, 2019.

Wang, Z., Cai, S., Chen, G., Liu, A., Ma, X., and Liang,
Y. Describe, Explain, Plan and Select: Interactive
Planning with LLMs Enables Open-World Multi-Task
Agents. In Thirty-seventh Conference on Neural In-
formation Processing Systems, 2023. URL https:
//openreview.net/forum?id=KtvPdGb31Z.

Wang, Z., Zhang, H., Li, C.-L., Eisenschlos, J. M., Perot,
V., Wang, Z., Miculicich, L., Fujii, Y., Shang, J., Lee,
C.-Y., and Pfister, T. Chain-of-Table: Evolving Tables
in the Reasoning Chain for Table Understanding. In
The Twelfth International Conference on Learning Repre-
sentations, 2024. URL https://openreview.net/
forum?id=4L0xnS4GQM.

Yang, Y., Wang, Y., Liu, G., Wu, L., and Liu, Q. UniTabE:
A Universal Pretraining Protocol for Tabular Foun-
dation Model in Data Science. In The Twelfth In-
ternational Conference on Learning Representations,
October 2023. URL https://openreview.net/
forum?id=6LLho5X6xV.

Ye, C., Lu, G., Wang, H., Li, L., Wu, S., Chen, G., and Zhao,
J. Towards Cross-Table Masked Pretraining for Web Data
Mining. In Proceedings of the ACM Web Conference
2024 (WWW ’24). ACM, July 2023. arXiv: 2307.04308.

Yin, P., Neubig, G., Yih, W. T., and Riedel, S. TaBERT:
Pretraining for Joint Understanding of Textual and Tab-
ular Data. Proceedings of the Annual Meeting of the
Association for Computational Linguistics, pp. 8413–
8426, May 2020. ISSN 0736587X. doi: 10.18653/
v1/2020.acl-main.745. URL https://arxiv.org/
abs/2005.08314v1. arXiv: 2005.08314 Publisher:
Association for Computational Linguistics (ACL) ISBN:
9781952148255.

Yoon, J., Jordon, J., and Van Der Schaar, M. Radial-
GAN: Leveraging multiple datasets to improve target-
specific predictive models using Generative Adversarial
Networks. 35th International Conference on Machine
Learning, ICML 2018, 13:9060–9068, February 2018.
arXiv: 1802.06403 Publisher: International Machine
Learning Society (IMLS) ISBN: 9781510867963.

Yoon, J., Drumright, L. N., and Van Der Schaar, M.
Anonymization through data synthesis using genera-
tive adversarial networks (ADS-GAN). IEEE Jour-
nal of Biomedical and Health Informatics, 24(8):2378–
2388, August 2020. ISSN 21682208. doi: 10.1109/
JBHI.2020.2980262. Publisher: Institute of Electrical
and Electronics Engineers Inc.

Yuan, L., Chen, Y., Wang, X., Fung, Y., Peng, H.,
and Ji, H. CRAFT: Customizing LLMs by Creat-
ing and Retrieving from Specialized Toolsets. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=G0vdDSt9XM.

Zhang, H., Wen, X., Zheng, S., Xu, W., and Bian, J.
Towards Foundation Models for Learning on Tabular
Data, October 2023. URL http://arxiv.org/abs/
2310.07338. arXiv:2310.07338 [cs].

Zhao, Z., Birke, R., and Chen, L. Y. TabuLa: Har-
nessing Language Models for Tabular Data Synthe-
sis. Proceedings of ACM Conference (Conference’17),
1, October 2023. URL http://arxiv.org/abs/
2310.12746. arXiv: 2310.12746.

Zhu, B., Sheng, Y., Zheng, L., Barrett, C., Jordan, M.,
and Jiao, J. Towards Optimal Caching and Model Se-
lection for Large Model Inference. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems, 2023a. URL https://openreview.net/
forum?id=gd20oaZqqF.

Zhu, B., Shi, X., Erickson, N., Li, M., Karypis, G., and
Shoaran, M. XTab: Cross-table Pretraining for Tabular
Transformers. In International Conference on Machine
Learning, May 2023b. URL https://arxiv.org/
abs/2305.06090v1. arXiv: 2305.06090.

Zhu, J. Y., Park, T., Isola, P., and Efros, A. A. Unpaired
Image-to-Image Translation using Cycle-Consistent Ad-
versarial Networks. Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2017-October:
2242–2251, March 2017. ISSN 15505499. doi: 10.1109/
ICCV.2017.244. URL https://arxiv.org/abs/
1703.10593v7. arXiv: 1703.10593 Publisher: Insti-
tute of Electrical and Electronics Engineers Inc. ISBN:
9781538610329.

15

https://openreview.net/forum?id=KtvPdGb31Z
https://openreview.net/forum?id=KtvPdGb31Z
https://openreview.net/forum?id=4L0xnS4GQM
https://openreview.net/forum?id=4L0xnS4GQM
https://openreview.net/forum?id=6LLho5X6xV
https://openreview.net/forum?id=6LLho5X6xV
https://arxiv.org/abs/2005.08314v1
https://arxiv.org/abs/2005.08314v1
https://openreview.net/forum?id=G0vdDSt9XM
https://openreview.net/forum?id=G0vdDSt9XM
http://arxiv.org/abs/2310.07338
http://arxiv.org/abs/2310.07338
http://arxiv.org/abs/2310.12746
http://arxiv.org/abs/2310.12746
https://openreview.net/forum?id=gd20oaZqqF
https://openreview.net/forum?id=gd20oaZqqF
https://arxiv.org/abs/2305.06090v1
https://arxiv.org/abs/2305.06090v1
https://arxiv.org/abs/1703.10593v7
https://arxiv.org/abs/1703.10593v7


Position: Why Tabular Foundation Models Should Be a Research Priority

Figure 2. Sampling continuous distributions using LLMs au-
toregressively is inefficient. Assume we autoregressively sample
tokens aiming to generate numbers that follow a standard Gaus-
sian. What token probabilities should the LLM output at each
sampling step? Let us consider a total vocabulary of just 102 to-
kens, [“− ”, “.”, “00”, ..., “99”]. For different direct histories of
generated text (examples given by each row, already generated dig-
its on left), the output probabilities need to be very different. For
example, a single “draw” is generated by sampling from probabili-
ties in the first row (e.g. giving“0”), then second row (conditional
on “0”, giving “.”), fourth row (“0.”→ e.g. “00”), and last row
(“0.00”→ e.g. “00”).
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A. Details Figure 1
The rough estimates in Figure 1 are created by checking the titles and abstracts of all accepted papers on the presence of
certain keywords, and plotting the number of counts per modality which describe “foundation model” in some way. The
keywords for “foundation model” and each modality are given in Table 1. Papers with multiple modalities are counted
towards each modality. The total number of accepted papers per conference are 1828 (ICML 2023), 3218 (NeurIPS 2023),
and 2250 (ICLR 2024).

Table 1. Key words for each search term. Abstracts are made lower-case. We intentionally do not include “text” and “time” as keywords
for respectively Language and Time Series applications, as we found this lead to many false positives. ∗ For “table” and “llm”, we use a
word boundary (\b) at the start of the keyword, to avoid common false positives (e.g. “portable”, “mutable”, “bellman”).

Research Topic Keywords

Foundation Model foundation model, llm∗, cross-dataset
Graph graph
Image image, vision

Language language, llm
Table tabular, table∗, cross-table

Time Series time-series, time series, temporal

Papers that satisfy both “foundation model” and “table” and thus form “Table” group in Figure 1 are the following per
conference: ICML 2023 (Zhu et al., 2023b; Ni et al., 2023), NeurIPS 2023 (Li et al., 2023b; Zhu et al., 2023a; Ajay et al.,
2023; Wang et al., 2023; Hollmann et al., 2023b; Manikandan et al., 2023), ICLR 2024 (Li et al., 2024; Wang et al., 2024;
Patnaik et al., 2024; Kong et al., 2024; Yuan et al., 2024; Bao et al., 2024; Yang et al., 2023). We note these include LLM
works that are evaluated on tabular tasks, e.g. Table QA (Ni et al., 2023).

B. Benchmarking LTMs
For LTMs, benchmarks will be very important, yet the breadth of their applications will make it hard to fairly compare
models. More research into LTM benchmarks is essential. For now, we would like to indicate a number of relevant
benchmarks. We split this up in ML tasks and experimental set-ups, where the latter aims to measure adaptability of the
LTM for different data settings.

Tasks could include:

1. Supervised learning. Predictive performance can be measured either through using the LTM for retrieving row
representations that can be used by a small downstream predictor, or by using the LTM directly (i.e. by generating the
target conditional on features).

2. Synthetic data generation. For generative LTMs, conditional and unconditional generation quality can be measured
similar to more traditional generative models. Any synthetic data metric can be used, e.g. train-on-synthetic-test-on-
real performance (for downstream utility) (Jordon et al., 2022), fidelity and diversity metrics (Sajjadi et al., 2018;
Kynkäänniemi et al., 2019; Naeem et al., 2020), and ϵ-identifiability (for privacy) (Yoon et al., 2020).

3. Imputation. Generative LTMs can be used for imputation, and benchmarked on this. This can be further split up
in single imputation tasks (where the aim is to model E(Xunobserved|Xobserved)) or multiple imputation (where the
aim is to sample from p(Xunobserved|Xobserved)). The latter is only relevant for generative LTMs (as representation
learning-based LTMs only provide point estimates). Another axes could be the missingness mechanism (MCAR, MAR,
MNAR).

4. LTMs for science. This includes a range of tasks that require more research and adaptation beyond the current line of
LTM work, but which could help describe success in some of the applications described in Section 4.3. For example,
subtasks could include dimensionality reduction, data cleaning (e.g. outlier detection), clustering, and cross-dataset
tasks (e.g. “which of the following datasets is most relevant to [some other dataset or question]”).

Experimental set-ups may include:
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1. Few-shot. Performance on new datasets for which relatively few samples are available. This could be split up further
into approaches that allow for finetuning of the LTM, and methods that do not (e.g. in-context learning for LLMs).
For this setting, both performance and robustness of the LTM (compared to baseline methods trained on the same few
samples) could be a deciding factor in measuring the LTMs success. This closely relates to out-of-distribution and
distributional shift benchmarking, for which good benchmarks exist (Kolesnikov, 2023; Gardner et al., 2024).

2. Zero-shot. This is the same as few-shot, but without any samples from the target dataset. This requires true
generalization of the LTM, and is likely not achieved by the current LTMs.

3. In-distribution. The performance of an LTM on hold-out test sets from the datasets on which the LTM was trained.
This is less interesting for foundation models, as we generally want adaptability—i.e. genereralizability beyond the
training data. Nonetheless, in-distribution evaluation would be useful to quantify generalization gaps in the previous
two settings (e.g. compare few-shot performance w.r.t. in-distribution experiments).

One difficulty in these experimental setups is that pretrained and published foundation models do not always come with
descriptions of the precise data (or splits thereof) on which they were trained. This is a ubiquitous problem in foundation
model evaluation, and especially problematic when one assumes they are measuring few-shot or zero-shot performance, but
actually data leakage has occurred.
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