
Algorithm and Hardness for Dynamic Attention Maintenance in Large
Language Models

Jan van den Brand 1 Zhao Song 2 Tianyi Zhou 3

Abstract

The attention scheme is one of the key compo-
nents over all the LLMs, such as BERT, GPT-1,
Transformers, GPT-2, 3, 3.5 and 4. Inspired by
previous theoretical study of static version of the
attention multiplication problem [Zandieh, Han,
Daliri, and Karbasi ICML 2023, Alman and Song
NeurIPS 2023], we formally define a dynamic
version of attention matrix multiplication prob-
lem. In each iteration we update one entry in key
matrix K ∈ Rn×d or value matrix V ∈ Rn×d.
In the query stage, we receive (i, j) ∈ [n] × [d]
as input, and want to answer (D−1AV )i,j , where
A := exp(QK⊤) ∈ Rn×n is a square matrix
and D := diag(A1n) ∈ Rn×n is a diagonal
matrix and 1n denotes a length-n vector that
all the entries are ones. We provide two re-
sults: an algorithm and a conditional lower bound.
Inspired by the lazy update idea from [Deme-
trescu and Italiano FOCS 2000, Sankowski FOCS
2004, Cohen, Lee and Song STOC 2019, Brand
SODA 2020], we provide a data-structure that
uses O(nω(1,1,τ)−τ ) amortized update time, and
O(n1+τ ) worst-case query time, where nω(1,1,τ)

denotes Tmat(n, n, n
τ ) with matrix multiplication

exponent ω and τ denotes a constant in (0, 1]. We
also show that unless the hinted matrix vector
multiplication conjecture [Brand, Nanongkai and
Saranurak FOCS 2019] is false, there is no al-
gorithm that can use both O(nω(1,1,τ)−τ−Ω(1))
amortized update time, and O(n1+τ−Ω(1)) worst
query time.

1Georgia Tech, Atlanta, GA, USA 2Adobe Research, San
Jose, CA, USA 3University of Southern California, Los Ange-
les, CA, USA. Correspondence to: Jan van den Brand <vd-
brand@gatech.edu>, Zhao Song <zsong@adobe.com>, Tianyi
Zhou <tzhou029@usc.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Large language models (LLMs) such as Transformer
(Vaswani et al., 2017), BERT (Devlin et al., 2018), GPT-3
(Brown et al., 2020), PaLM (Chowdhery et al., 2022), and
OPT (Zhang et al., 2022a) offer better results when pro-
cessing natural language compared to smaller models or
traditional techniques. These models possess the capability
to understand and produce complex language, which is ben-
eficial for a wide range of applications like language transla-
tion, sentiment analysis, and question answering. LLMs can
be adjusted to multiple purposes without requiring them to
be built from scratch. A prime example of this is ChatGPT, a
chat software developed by OpenAI utilizing GPT-3’s poten-
tial to its fullest. GPT-4 (OpenAI, 2023), the latest iteration,
has the potential to surpass the already impressive abilities
of GPT-3, including tasks such as language translation, ques-
tion answering, and text generation. As such, the impact of
GPT-4 on NLP could be significant, with new applications
potentially arising in areas like virtual assistants, chatbots,
and automated content creation.

The primary technical foundation behind LLMs is the at-
tention matrix (Vaswani et al., 2017; Radford et al., 2018;
Devlin et al., 2018; Brown et al., 2020). Essentially, an
attention matrix is a square matrix with corresponding rows
and columns representing individual words or “tokens,” and
entries indicating their correlations within a given text. This
matrix is then utilized to gauge the essentiality of each token
in a sequence, relative to the desired output. As part of the
attention mechanism, each input token is assigned a score
or weight based on its significance or relevance to the cur-
rent output, which is determined by comparing the current
output state and input states through a similarity function.

More formally, the attention matrix can be expressed as fol-
lows: Suppose we have two matrices, Q and K, comprising
query and key tokens respectively, where Q ∈ Rn×d and
K ∈ Rn×d. The attention matrix is a square n× n matrix
denoted by A that relates the input tokens in the sequence.
After normalizing using the softmax function, each entry
in this matrix quantifies the attention weight or score be-
tween a specific input token (query token Q) and an output
token (key token K). Notably, entries along the diagonal
reflect self-attention scores, indicating the significance of

1



Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

each token in relation to itself.

When modeling long sequences with large n, the most sig-
nificant hindrance to accelerating LLM operations is the
duration required for carrying out attention matrix calcula-
tions (Kitaev et al., 2020; Wang et al., 2020). These cal-
culations involve multiplying the attention matrix A with
another value token matrix V ∈ Rn×d. In (Wang et al.,
2020), they demonstrate that the self-attention mechanism
can be approximated by a low-rank matrix. They propose a
new self-attention mechanism and used it in their Linformer
model. In (Kitaev et al., 2020), they replace dot-product at-
tention with one that uses locality-sensitive hashing, which
also improves the time complexity.

Furthermore, the static attention computation and approx-
imation has been studied by (Alman & Song, 2023) from
both algorithmic and hardness perspectives. However, in
practice, the attention matrix needs to be trained and keeps
changing. In this work, we study the dynamic version of
the attention computation problem. By using a dynamic
approach, the attention weights can be updated on-the-fly as
new information is introduced, enabling the model to adapt
more effectively to changes in the input. This is particularly
beneficial in cases where the input data is highly dynamic
and subject to frequent changes, such as in natural language
processing applications where the meaning and context of
words and phrases can be influenced by the surrounding
text.

Following the prior work (Zandieh et al., 2023; Alman &
Song, 2023; Deng et al., 2023d;e;b), we formally define the
standard attention computation problem as follows. To dis-
tinguish their standard model with the dynamic version stud-
ied in this paper, we call the problem defined in (Zandieh
et al., 2023; Alman & Song, 2023) “static” version of at-
tention multiplication. Another major difference between
previous work (Zandieh et al., 2023; Alman & Song, 2023)
and our work is that they studied an approximate version,
whereas we study the exact version.

Definition 1.1 (Static Attention Multiplication). Given three
matrices Q,K, V ∈ Rn×d, we define attention computation

Att(Q,K, V ) = D−1AV

where square matrix A ∈ Rn×n and diagonal matrix D ∈
Rn×n are

A := exp(QK⊤), D := diag(A1n)

Here we apply the exp(·) function entry-wise1. We use 1n

to denote a length-n vector where all the entries are ones.
The diag() function is taking a length-n vector as input and
outputs an n× n diagonal matrix by copying that vector on

1For a matrix M ∈ Rn×n, following the transformer literature,
we use exp(M)i,j := exp(Mi,j).

the diagonal of the output matrix. See Figure 1 and Figure
2 for an illustration.

In applied LLMs training, the model parameters are chang-
ing slowly during training (Chen et al., 2021). In addition,
deep neural network architectures frequently exhibit sig-
nificant redundancy, and empirical evidence supports the
capacity of deep neural networks to tolerate substantial lev-
els of sparsity (Han et al., 2015; Gale et al., 2019). In
downstream fine-tuning tasks, the dimensions of the model
often make the fine-tuning infeasible. Over the past few
years, numerous techniques for inducing sparsity have been
proposed to sparsify the neural network such as magnitude
pruning (Zhu & Gupta, 2017), RegL (Evci et al., 2020)
and dynamic sparse reparameterization (Mostafa & Wang,
2019). Thus, it is worth considering the dynamic version of
Attention multiplication problem which update the attention
matrix entry-wise. Next, we formally define the “dynamic”
or “online” version of attention multiplication problem, we
call it ODAMV2. For consistency of the discussion, we will
use the word “online” in the rest of the paper.

Definition 1.2 (ODAMV(n, d)). The goal of Online
Diagonal-based normalized Attention Matrix Vector mul-
tiplication problem ODAMV(n, d) is to design a data-
structure that satisfies the following operations:

1. INIT: Initialize on three n× d matrices Q, K, V .

2. UPDATE: Change any entry of K, or V .

3. QUERY: For any given i ∈ [n], j ∈ [d], return
(D−1 exp(QK⊤)V )i,j .

• Here D := diag(exp(QK⊤)1n) ∈ Rn×n is a
positive diagonal matrix.

• Here [n] denotes the set {1, 2, · · · , n}.

In this paper, we first propose a data-structure that efficiently
solves the ODAMV problem (Definition 1.2) by using lazy
update techniques. We then complement our result by a
conditional lower bound. On the positive side, we use lazy
update technique in the area of dynamic algorithms to pro-
vide an upper bound. In the area of theoretical computer
science, it is very common to assume some conjecture in
complexity when proving a lower bound. For example,
P ̸= NP, (strong) exponential time hypothesis, orthogonal
vector and so on (Abboud & Williams, 2014; Henzinger
et al., 2015; Backurs & Indyk, 2015; Backurs et al., 2017;
Chen, 2018; Rubinstein, 2018; Alman et al., 2020; 2023; Al-
man & Song, 2023). To prove our conditional lower bound,
we use a conjecture which is called Hinted Matrix Vector

2The name of our problem is inspired by a well-known problem
in theoretical computer science which is called Online Matrix
Vector multiplication problem (OMV) (Henzinger et al., 2015;
Larsen & Williams, 2017; Chakraborty et al., 2018).

2



Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

A exp←

n

n ( n
d

Q × K⊤

d

M ∈ Rn×n

n ) diag← (n
n

A × 1n

1

Rn

n )
n

n D

Figure 1. Computation of the attention matrix A = exp(QK⊤) and the diagonal matrix D ∈ Rn×n (defined in Definition 1.1). Here
exp() is the entry-wise function.

multiplication (HMV) conjecture 5.2 of (Brand et al., 2019).
On the negative side, we show a lower bound of comput-
ing solving ODAMV assuming the HMV conjecture holds.
One notable difference between prior work (Alman & Song,
2023) and our work is, their techniques are from the area
of fine-grained complexity, and our techniques are not. Our
algorithmic techniques are from recent work in convex op-
timization, e.g. solving linear programming. Our hardness
techniques are from the area of dynamic algorithms.

1.1. Our Results

We first show our upper bound result making use of the lazy
update strategy.

Theorem 1.3 (Upper bound, informal version of Theorem
B.1). For any constant a ∈ (0, 1]. Let d = O(n). Let δ ∈ R
denote the update to the matrix. There is a dynamic data
structure that uses O(n2) space and supports the following
operations:

• INIT(Q,K, V ). It runs in O(Tmat(n, n, n)) time.3

• UPDATEK(i ∈ [n], j ∈ [d], δ ∈ R). This op-
eration updates one entry in K, and it runs in
O(Tmat(n, n

a, n)/na) amortized4 time.

• UPDATEV(i ∈ [n], j ∈ [d], δ ∈ R). This operation
takes same amortized4 time as UPDATEK.

• QUERY(i ∈ [n], j ∈ [d]). This operation outputs
(D−1(exp(QK⊤))V )i,j and takes O(na) worst-case
time.

Remark 1.4. The amortized time in UPDATEK and UP-
DATEV can be made into worst case time by using standard
techniques, e.g. see Section B of (Brand et al., 2019).

3We use Tmat(n, d,m) to denote the time of multiplying a
n × d matrix with another d × m matrix. For more details, we
refer the readers to Section 2.

4We remark that the presented data structure can be made worst-
case via standard techniques (sometimes referred to as “global
rebuilding”) from the dynamic algorithm area (Overmars, 1983;
Sankowski, 2004; Goranci et al., 2017; Frandsen & Frandsen,
2009).

The parameter a allows for a trade-off between update and
query time. For example, a = 1 leads to O(n1.373) up-
date time and O(n) query time whereas a = 1/2 leads
to O(n1.55) update and O(

√
n) query time, using current

bounds on Tmat(·, ·, ·) (Gall & Urrutia, 2018; Williams
et al., 2023). We remark that our results beat the naive
O(n2) update time regardless of which fast matrix multi-
plication algorithm is used5. E.g., when using Strassen’s
algorithm (Strassen et al., 1969) we get an update time of
O(n2−0.192a).

Our second result makes use of a variation of the popular on-
line matrix vector multiplication (OMV) conjecture which
is called hinted matrix vector multiplication conjecture (see
Definition C.2 and (Brand et al., 2019)). Next, we present
a lower bound for the problem of dynamically maintaining
the attention computation Att(Q,K, V ) that matches our
upper bound from Theorem 1.3.

Lemma 1.5 (Lower bound, informal version of Lemma
C.5). Assuming the HMV conjecture is true. For every
constant 0 < τ ≤ 1, there is no algorithm that solves
the ODAMV(n, d) problem (see formal version in Defini-
tion C.4) with

• polynomial initialization time, and

• amortized update time O(Tmat(n, n
τ , d)/nτ+Ω(1)),

and

• worst query time O(nτ−Ω(1)).

Conditional lower bounds identify the nature/origin of the
hardness. E.g., problems with hardness from the OV (or-
thogonal vector) conjecture (Williams, 2005; Abboud et al.,
2014) boil down to the fundamental bottleneck of searching,
hardness from the BMM (boolean matrix multiplication)
conjecture (Abboud & Williams, 2014) show that hardness
comes from matrix multiplication, and problems with hard-
ness from the HMV conjecture boil down to the trade-off
between matrix-vector multiplication vs fast matrix mul-
tiplication. We show that dynamic attention maintenance

5This is because Tmat(n, n
a, n) ≤ n2+(ω−2)a for 0 ≤ a ≤ 1.

3



Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

×

n

A × V

d

n

n

D−1=

n

Attn

Figure 2. Computation of the target matrix Att(Q,K, V ) = D−1AV (defined in Definition 1.1)

belongs to the latter class by providing tight upper and con-
ditional lower bounds.

1.2. Related Work

Static Attention Computation (Zandieh et al., 2023) was
the first to give an algorithm with provable guarantees for
approximating the attention computation. Their algorithm
makes use of locality sensitive hashing (LSH) techniques
(Charikar et al., 2020). They show that the computation of
partition functions in the denominator of softmax function
can be reduced to a variant of the kernel density estimation
(KDE) problem, and an efficient KDE solver can be em-
ployed through subsampling-based swift matrix products.
They propose the KDEformer which can approximate the
attention within sub-quadratic time and substantiated with
provable spectral norm bounds. In contrast, earlier findings
only procure entry-wise error bounds. Based on empirical
evidence, it was confirmed that KDEformer outperforms
other attention approximations in different pre-trained mod-
els, in accuracy, memory, and runtime. There are also works
(Deng et al., 2023c;a; 2024; Song et al., 2024) that optimize
the attention computation.

In another recent work (Alman & Song, 2023), they fo-
cus on the long-sequence setting with d = O(log n). The
authors established that the existence of a fast algorithm
for approximating the attention computation is dependent
on the value of B, given the guarantees of ∥Q∥∞ ≤ B,
∥K∥∞ ≤ B, and ∥V ∥∞ ≤ B. They derived their lower
bound proof by building upon a different line of work that
dealt with the fine-grained complexity of KDE problems,
which was previously studied in (Backurs et al., 2017; Al-
man et al., 2020). Their proof was based on a fine-grained
reduction from the Approximate Nearest Neighbor search
problem ANN. Additionally, their findings explained how
LLM computations can be made faster by assuming that
matrix entries are bounded or can be well-approximated by
a small number of bits, as previously discussed in (Zafrir
et al., 2019), Section 2 and (Katharopoulos et al., 2020),
Section 3.2.1. Specifically, they (Alman & Song, 2023)
showed a lower bound stating that when B ≥ Ω(

√
log n),

there is no algorithm that can approximate the computation
in subquadratic time. However, when B < o(

√
log n), they

proposed an algorithm that can approximate the attention
computation almost linearly.

Transformer Theory Although the achievements of trans-
formers in various fields are undeniable, there is still a sig-
nificant gap in our precise comprehension of their learning
mechanisms. Although these models have been examined
on benchmarks incorporating numerous structured and rea-
soning activities, comprehending the mathematical aspects
of transformers still considerably lags behind. Prior studies
have posited that the success of transformer-based models,
such as BERT (Devlin et al., 2018), can be attributed to the
information contained within its components, specifically
the attention heads. These components have been found to
hold a significant amount of information that can aid in solv-
ing various probing tasks related to syntax and semantics, as
noted by empirical evidence found in several studies (Hewitt
& Manning, 2019; Clark et al., 2019; Tenney et al., 2019;
Hewitt & Liang, 2019; Vig & Belinkov, 2019; Belinkov,
2022; Xu et al., 2024; Gu et al., 2024; Shi et al., 2024).

Various recent studies have delved into the representational
power of transformers and have attempted to provide sub-
stantial evidence to justify their expressive capabilities.
These studies have employed both theoretical as well as
controlled experimental methodologies through the lens of
Turing completeness (Bhattamishra et al., 2020b), function
approximation (Yun et al., 2020), formal language represen-
tation (Bhattamishra et al., 2020a; Ebrahimi et al., 2020; Yao
et al., 2021), abstract algebraic operation learning (Zhang
et al., 2022b), and statistical sample complexity (Wei et al.,
2021; Edelman et al., 2022) aspects. According to the re-
search conducted by (Yun et al., 2020), transformers pos-
sess the capability of functioning as universal approximators
for sequence-to-sequence operations. Similarly, the stud-
ies carried out by (Pérez et al., 2019; Bhattamishra et al.,
2020b) have demonstrated that attention models may ef-
fectively imitate Turing machines. In addition to these re-
cent works, there have been several previous studies that
aimed to assess the capacity of neural network models by
testing their learning abilities on simplistic data models
(Siegelmann & Sontag, 1992; Yao et al., 2021; Zhang et al.,
2022b). Furthermore, (Li et al., 2023a) conducted a formal
analysis of the training dynamics to further understand the

4



Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

type of knowledge that the model learns from such data
models. According to findings from a recent study (Zhao
et al., 2023), moderately sized masked language models
have demonstrated the ability to parse with satisfactory re-
sults. Additionally, the study utilized BERT-like models that
were pre-trained using the masked language modeling loss
function on the synthetic text generated with probabilistic
context-free grammar. They empirically validated that these
models can recognize syntactic information that aids in par-
tially reconstructing a parse tree. (Li et al., 2023b) studied
the computation of regularized version of exponential re-
gression problem (without normalization factor). In (Zhang
et al., 2023; Liu et al., 2023), they speedup the inference
time from both theoretical perspective and experimental per-
spective by leverage the property of attention. In (Wu et al.,
2023), they develop an information-theoretic framework
that formulates soft prompt tuning as maximizing mutual
information between prompts and other model parameters.

Dynamic Maintenance In recent years, projection main-
tenance has emerged as a crucial data structure problem.
The effectiveness and efficiency of several cutting-edge con-
vex programming algorithms greatly hinge upon a sturdy
and streamlined projection maintenance data structure (Co-
hen et al., 2019; Lee et al., 2019; Brand, 2020; Jiang et al.,
2020b; Brand et al., 2020; Jiang et al., 2021; Song & Yu,
2021; Brand, 2021; Jiang et al., 2020a; Huang et al., 2022;
Gu & Song, 2022). There are two major differences between
the problem in the dynamic data structure for optimization
and our dynamic attention matrix maintenance problem.
The first notable difference is that, in the optimization task,
the inverse of a full rank square matrix is typically com-
puted, whereas, in the attention problem, we care about
the inverse of a positive diagonal matrix which behaves the
normalization role in LLMs. The second major difference
is, in the standard optimization task, all the matrix matrix
operations are linear operations. However, in LLMs, non-
linearity such as softmax/exp function is required to make
the model achieve good performance. Therefore, we need
to apply an entry-wise nonlinear function to the correspond-
ing matrix. In particular, to compute f(QK⊤)V when f is
linear function, we can pre-compute K⊤V . However when
f is exp function, we are not allowed to compute K⊤V
directly.

Next, we will give more detailed reviews for classical opti-
mization dynamic matrix maintenance problems. Let B ∈
Rm×n, consider the projection matrix P = B⊤(BB⊤)−1B.
The projection maintenance problem asks the following data
structure problem: it can preprocess and compute an ini-
tial projection. At each iteration, B receives a low rank
or sparse change, and the data structure needs to update B
to reflect these changes. It will then be asked to approx-
imately compute the matrix-vector product, between the

updated P and an online vector h. For example, in linear
programming, one sets B =

√
WA, where A ∈ Rm×n is

the constraint matrix and W is a diagonal matrix. In each
iteration, W receives relatively small perturbations. Then,
the data structure needs to output an approximate vector to√
WA⊤(AWA⊤)−1A

√
Wh, for an online vector h ∈ Rn.

Roadmap The rest of the paper is organized as follows.
In Section 2, we give some preliminaries. In Section 3, we
explain the techniques used to show our upper bound and
lower bound results. In Section 4, we provide a lower bound
proof for the simplified version of dynamic attention prob-
lem. In Section 5, we provide the conclusion for our paper.
We defer the full proofs of upper bound in Appendix B. We
defer the full proofs of lower bound in Appendix C.

2. Preliminary
For a matrix A, we use A⊤ to denote its transpose. For a
matrix A, use Ai,j to denote its entry at i-th row and j-th
column. For a non-zero diagonal matrix D ∈ Rn×n, we
use D−1 ∈ Rn×n to denote the matrix where the (i, i)-th
diagonal entry is (Di,i)

−1 for all i ∈ [n]. For a vector
x ∈ Rn, we use diag(x) ∈ Rn×n to denote an n × n
matrix where the i, i-th entry on the diagonal is xi and zero
everywhere else for all i ∈ [n]. We use exp(M) to denote
the entry-wise exponential, i.e., exp(M)i,j := exp(Mi,j).
We use 1n to denote the length-n vector where all the entries
are ones. We use 0n to denote the length-n vector where all
entries are zeros.

We define a standard notation for describing the running
time of matrix multiplication.
Definition 2.1. For any three positive integers, we use
Tmat(a, b, c) to denote the time of multiplying an a × b
matrix with another b× c matrix.

We use ω to denote the time that nω = Tmat(n, n, n). Cur-
rently ω ≈ 2.372 (Duan et al., 2023; Williams et al., 2023).
Definition 2.2. We define ω(·, ·, ·) function as follows, for
any a, b and c, we use ω(a, b, c) to denote that nω(a,b,c) =
Tmat(n

a, nb, nc).

We give a standard fact that is used in our proof.
Fact 2.3 (folklore). Given a set of vectors a1, · · · , ak ∈ Rn

and b1, · · · bk ∈ Rd, then we have
∑k

i=1 aib
⊤
i = AB⊤

where A ∈ Rn×k and ai is i-th column of A, and B ∈ Rd×k

and bi is the i-th column of B for all i ∈ [k]. Further, we
have

• Part 1. Computing AB⊤

– takes O(nkd) time, if we do it naively
– takes Tmat(n, k, d) time, if we use fast matrix mul-

tiplication

5



Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

• Part 2. For any matrix C ∈ Rd×d, computing AB⊤C

– takes Tmat(n, k, d)+ Tmat(n, d, d), if we use fast
matrix multiplication, first compute AB⊤ then
compute (AB⊤)C

– takes Tmat(k, d, d)+Tmat(n, k, d) time, if we use
fast matrix multiplication, first compute B⊤C,
then compute A(B⊤C)

3. Technique Overview
Given three matrices Q,K, V ∈ Rn×d, we need to com-
pute the attention given by Att(Q,K, V ) = D−1AV where
square matrix A ∈ Rn×n and diagonal matrix D ∈ Rn×n

are A := exp(QK⊤), D := diag(A1n). The static prob-
lem (Alman & Song, 2023) is just computing Att for given
Q,K and V . In the dynamic problem, we can get updates
for K and V in each iteration.

Due to space limitation, we only describe the core ideas and
proof sketch of upper bound in Section 3.1. For the com-
plete proofs, we refer the readers to read the Appendix B.
Similarly, we only give high description for lower bound in
Section 3.2 and defer the details into Appendix C.

3.1. Algorithm

Problem Formulation For each update, we receive δ as
input and update one entry in either matrix K or V . In
the query function, we take index i ∈ [n], j ∈ [d] as input,
and return the {i, j}-th element in the target matrix B :=
D−1AV .

Let C denote AV . Let B̃ denote the updated target matrix
B. We notice that the computation of the attention can be
written as B̃ = (D−1 + ∆D)(C + ∆C). Let ∆(t) denote
the change in the t-th iteration. In a lazy-update fashion, we
write B̃ in the implicit form

B̃ = (D−1 +

ct∑
t=1

∆
(t)
D )(C +

ct∑
t=1

∆
(t)
C )

where ct denotes the number of updates since the last time
we recomputed D and C.

Lazy Update We propose a lazy-update algorithm (Algo-
rithm 2) that does not compute the attention matrix when
there is an update on the key matrix K. We also propose a
lazy-update algorithm (Algorithm 3) that does not compute
the attention matrix when there is an update on the value
matrix V . Instead, we maintain a data-structure (Algorithm
1) that uses ListC ,ListD and ListV to record the update by
storing rank-1 matrices before the iteration count reaches the
threshold na for some constant a. For the initialization (Al-
gorithm 1), we compute the exact target matrix D−1AV and
other intermediate matrices, which takes O(Tmat(n, d, n))
time (Lemma B.2).

Re-compute When the iteration count reaches the thresh-
old na, we re-compute all the variables in the data-structure
as follows (Lemma B.7). By using Fact 2.3, we first stack all
the rank-1 matrices in ListC and compute the matrix multi-
plication once to get

∑ct
t=1 ∆

(t)
C using Tmat(n, n

a, d) =
nω(1,1,a) time (Lemma B.8). Then, we compute C +∑ct

t=1 ∆
(t)
C to get the re-computed C̃. Similarly, to re-

compute V , we stack all the rank-1 matrices in ListV and
compute the matrix multiplication once to get

∑ct
t=1 ∆

(t)
V

using Tmat(n, n
a, d) = nω(1,1,a) time. Then, we compute

V +
∑ct

t=1 ∆
(t)
V to get the re-computed Ṽ . To re-compute the

diagonal matrix D, we sum up all the updates by
∑ct

t=1 ∆
(t)
D

and add it to the old D−1 (detail can be found in Algorithm
5). Hence, our algorithm takes nω(1,1,a)/na amortized time
to update K and V (Lemma B.3, Lemma B.4).

Fast Query Recall that the query function takes index
i ∈ [n], j ∈ [d] as input, and returns the {i, j}-th element in
the target matrix B := D−1AV . Let D̃−1 denote the lates
D−1 obtained from ListD. Let ∆V,1 and ∆V,2 be stacked
matrix obtained from list from V . We can rewrite the output
by

((D̃−1) · (A) · (V +∆V,1∆V,2))i,j

= ((D̃−1) · (A · V ))i,j + ((D̃−1) ·A · (∆V,1∆V,2))i,j

= (D̃)−1
i (Ci,j + (∆C,1∆C,2)i,j)

+ (D̃)−1
i Ai,∗∆V,1(∆V,2)∗,j .

Note that we maintain C in our re-compute function. Hence,
computing the first part takes O(na) time. As each column
of ∆V,1 and row of ∆V,2 is 1-sparse, computing the second
part takes O(na) time. The total running time needed for
the query function is O(na) (Lemma B.6, Lemma B.5).

3.2. Hardness

We now turn to our lower bound result, which is inspired
by the HMV conjecture 5.2 of (Brand et al., 2019). Let us
firstly define the HMV problem (see formal definition in
Definition C.2).

Let the computation be performed over the boolean semi-
ring. For any 0 < τ ≤ 1, the HMV problem has the follow-
ing three phases

• Phase 1. Input two n× n matrices M and V

• Phase 2. Input an n × n matrix P with at most nτ

non-zero entries

• Phase 3. Input a single index i ∈ [n]

– We need to answer MPV∗,i
– Here V∗,i ∈ Rn is the i-th column of matrix V

6



Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

Algorithm 1 Dynamic Data Structure
1: data structure DYNAMICATTENTION ▷ Theorem B.1
2: members
3: Q,K, V ∈ Rn×d ▷ Query token, Key token, Value token
4: M ∈ Rn×n ▷ The logits matrix, M = QK⊤

5: A ∈ Rn×n ▷ The attention matrix, A = exp(QK⊤)
6: D ∈ Rn×n ▷ The diagonal matrix,
7: C ∈ Rn×d ▷ Intermediate matrix, C = exp(QK⊤)V
8: B ∈ Rn×d ▷ Target matrix, B = D−1AV
9: ListA,ListC ,ListD ▷ List with size na

10: ctK , ctV
11: end members
12:
13: procedure INIT(Q,K, V ) ▷ Lemma B.2
14: Q← Q, K ← K, V ← V
15: M ← QK⊤, A← exp(QK⊤)
16: C ← exp(QK⊤)V
17: B ← D−1AV
18: ctK ← 0
19: ctV ← 0
20: end procedure
21: end data structure

Algorithm 2 Algorithm that update K and maintain the data structure
1: data structure DYNAMICATTENTION ▷ Theorem B.1
2: procedure UPDATEK(i ∈ [n], j ∈ [d], δ) ▷ Lemma B.3
3: ctK ← ctK + 1
4: K̃i,j ← Ki,j + δ
5: (∆M )∗,i ← δ · Q︸︷︷︸

n×d

ej︸︷︷︸
d×1

▷ ∆M only have entries in i-th column

6: ▷ Here ◦ denotes entry-wise product
7: (∆A)∗,i ← (A∗,i ◦ (exp((∆M )∗,i)− 1n))

8: M̃ ←M + (∆M )∗,ie⊤i ▷ We only update i-th column of M
9: Ã← A+ (∆A)∗,ie⊤i ▷ We only update i-th column of A

10: Obtain diagonal vector Dtmp from ListD[ctK −1].GETB ▷ It takes O(n) time
11: D̃ ← D−1

tmp + diag(∆A)∗,i
12: for j = 1→ n do
13: (∆D)j,j ← (Dtmp)

−1
j,j − D̃−1

j,j

14: end for
15: if ctK < na then
16: ListC [ctK − 1].(a, b)← ((∆A)∗,i ∈ Rn, V ⊤ei ∈ Rd)

17: ListD[ctK − 1].(a, b)← (∆D ∈ Rn×n, D̃−1 ∈ Rn×n) ▷ Diagonal matrices
18: else ▷ Tmat(n, n

a, d) = nω(1,1,a) time
19: RECOMPUTE() ▷ Algorithm 5. Re-compute everything
20: end if
21: /*Referesh the memory*/
22: K ← K̃
23: A← Ã
24: M ← M̃
25: end procedure
26: end data structure

7



Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

Algorithm 3
1: data structure DYNAMICATTENTION ▷ Theorem B.1
2: procedure UPDATEV(i ∈ [n], j ∈ [d], δ) ▷ Lemma B.4
3: ctV ← ctV +1
4: if ctV < na then
5: ListV [ctV −1].(a, b)← (ei ∈ Rn, δej ∈ Rd)
6: else
7: RECOMPUTE() ▷ Algorithm 5. Re-compute

everything
8: end if
9: end procedure

10: end data structure

In (Brand et al., 2019), the above problem is conjectured to
be hard in the following sense,
Conjecture 3.1 (Hinted MV (HMV), Conjecture 5.2 of
(Brand et al., 2019)). For every constant 0 < τ ≤ 1 no
algorithm for the hinted Mv problem (Definition C.2) can
simultaneously satisfy

• polynomial time in Phase 1.

• O(nω(1,1,τ)−ϵ) time complexity in Phase 2. and

• O(n1+τ−ϵ) in Phase 3.

for some constant ϵ > 0.

Our primary contribution lies in demonstrating how to re-
duce HMV problem (Definition C.2) to OAMV (Definition
4.1) and ODAMV (Definition C.4). To achieve this, we have
adopted a contradiction-based approach. Essentially, we be-
gin by assuming the existence of an algorithm that can solve
the OAMV problem with polynomial initialization time
and amortized update time of O(Tmat(n, n

τ , d)/nτ+Ω(1)),
while worst-case query time is O(nτ−Ω(1)) for all τ ∈ (0, 1].
Our assumption implies that there exists a data structure that
is faster than our result (Theorem B.1). We subsequently
proceed to demonstrate that using this algorithm enables us
to solve the HMV problem too quickly, which contradicts
the HMV conjecture.

Specifically, let us take an instance for the HMV problem
(Definition C.2)

• Let M,V ∈ {0, 1}n×n denote two matrices from
Phase 1. from HMV.

We create a new instance OAMV(ñ = n, d̃ = n) where
Q̃ = M, K̃ = 0, Ṽ = V.

In Claim 4.3 and Claim 4.4, by making use of our construc-
tion of Q̃, K̃ and Ṽ , we show that for each i ∈ [n] and
j ∈ [n],

If ((exp(Q̃K̃⊤)− 1n×n)Ṽ )j,i > 0, then (MPV)j,i = 1.

If ((exp(Q̃K̃⊤)− 1n×n)Ṽ )j,i = 0, then (MPV)j,i = 0.

By using the above two statements, we know that
exp(Q̃K̃⊤)Ṽ∗,i is enough to reconstruct MPV∗,i for the
HMV problem (Definition C.2). Then, solving MPV∗,i
takes polynomial initialization time and amortized update
time of

O(Tmat(n, n
τ , d)/nτ+Ω(1)),

while worst-case query time is O(nτ−Ω(1)) for every τ ∈
(0, 1]. The contradiction of the HMV conjecture shows that
there is no such algorithm. Similarly, for the normalized
case ODAMV (Definition C.4) problem, we show how to
reconstruct another instance of the HMV problem and com-
plete the proof by contradiction.

4. The Lower Bound for A Simplified Version
We define the dynamic attention matrix vector problem
here. For the following definition, we ignore the effect by
the normalization factor for simplicity. We will show how
to handle the normalization factor in the Appendix (see
Appendix C).

Definition 4.1 (OAMV(n, d)). The goal of the Online
Attention Matrix Vector Multiplication problem
OAMV(n, d) is to design a data structure that satis-
fies the following operations:

1. INIT: Initialize on n× d matrices Q, K, V .

2. UPDATE: Change any entry of Q, K, or V .

3. QUERY: For any given i ∈ [n], j ∈ [d], return
(exp(QK⊤)V )i,j .

Next, we present our lower bound result ignoring the nor-
malization factor.

Lemma 4.2. Assuming the hinted Mv conjecture (Conjec-
ture C.3): For every constant 0 < τ ≤ 1, there is no dy-
namic algorithm for OAMV(n, d) problem (Definition 4.1)
with

• polynomial initialization time, and

• amortized update time O(Tmat(n, n
τ , d)/nτ+Ω(1)),

and

• worst query time O(nτ−Ω(1)).

Proof. Assume there was a dynamic algorithm faster than
what is stated in Lemma 4.2 for some parameter τ , i.e. up-
date time

O(Tmat(n, n
τ , d)/nτ+ϵ)

8



Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

and query time O(nτ−ϵ) for some constant ϵ > 0. We
show that this would contradict the hinted Mv conjecture
(Conjecture C.3).

Let us take an instance for the v-hinted Mv problem (Defini-
tion C.2) with M,V ∈ {0, 1}n×n. We create a new instance
OAMV(ñ = n, d̃ = n) where

Q̃ = M, K̃ = 0, Ṽ = V

During phase 1, we give this input to the dynamic algorithm
for the OAMV problem (Definition 4.1). During phase 2,
when we receive the n×n matrix P with nτ non-zero entries,
we perform nτ updates to the data structure to set K̃⊤ = P.
This time is bounded by

O(ñτ · (Tmat(ñ, ñ
τ , d̃)/ñτ+ϵ)) = O(nω(1,1,τ)−ϵ).

At last, in phase 3, we perform ñ queries to obtain the
column exp(Q̃K̃⊤)Ṽ∗,i in O(ñ · ñτ−ϵ) = O(n1+τ−ϵ) time.

Using Claim 4.3, and Claim 4.4, we know that
exp(Q̃K̃⊤)Ṽ∗,i is enough to reconstruct MPV∗,i for the
hinted Mv problem.

Claim 4.3. For each i ∈ [n] and j ∈ [n], if ((exp(Q̃K̃⊤)−
1n×n)Ṽ )j,i is > 0, then (MPV)j,i = 1,

Proof. Assume we have

((exp(Q̃K̃⊤)− 1n×n)Ṽ )j,i > 0,

We defined Q̃ = M, K̃ = P, Ṽ = V, so we can rewrite it as

((exp(MP)− 1n×n)V)j,i > 0.

Using the definition of matrix multiplication, and the fact
that exp(x) > 1 for all x > 0, we have some k ∈ [n] with

((exp(MP)− 1n×n)j,k(V)k,i > 0

((exp(MP)j,k − 1)(V)k,i > 0

We can conclude that for each i ∈ [n], j ∈ [n], there is
at least one k ∈ [n] such that Vk,i > 0 and (MP)j,k > 0.
Therefore, by using the definition of boolean semi-ring, we
can conclude that (MPV)j,i = 1

Claim 4.4. For each i ∈ [n] and j ∈ [n], if ((exp(Q̃K̃⊤)−
1n×n)Ṽ )j,i is 0 then (MPV)j,i = 0.

Proof. We have

((exp(Q̃K̃⊤)− 1n×n)Ṽ )j,k

= ((exp(Q̃K̃⊤)− 1n×n))j,∗Ṽ∗,i
= ((exp(MP)− 1n×n))j,∗V∗,i

where the first step follows from the definition of matrix mul-
tiplication and the second step follows from the definition
of Q̃, K̃ and Ṽ .

By using the above equation, if

((exp(Q̃K̃⊤)− 1n×n)Ṽ )j,k = 0,

we have

(exp(MP)− 1n×n)j,∗V∗,i = 0. (1)

Eq. (1) implies that, for all k ∈ [n] such that Vk,i = 1 , we
have

(exp(MP)− 1n×n)j,k = 0,

which also implies that (MP)j,k = 0.

Now, we can conclude that (MPV)j,i = 0 for each i ∈ [n]
and j ∈ [n].

5. Conclusion
The development of Large Language Models (LLMs) has
had a profound impact on society, with the attention mecha-
nism being a critical aspect of LLMs. This study introduces
the dynamic version of the attention matrix multiplication
and delivers two outcomes - an algorithm and a conditional
lower bound. The algorithmic outcome presents a data
structure that supports the dynamic maintenance of atten-
tion computations, with a O(nω(1,1,τ)−τ ) amortized update
time, and O(n1+τ ) worst-case query time. The lower bound
illustrates that the algorithm is conditionally optimal unless
the conjecture on hinted matrix vector multiplication is in-
correct. It is an interesting future direction to prove an
unconditional lower bound. The problem of dynamic atten-
tion matrix multiplication, as proposed, focuses on updating
only one entry at a time in either the K or V matrix during
each iteration. It is possible to update multiple entries simul-
taneously in both matrices in practice. Therefore, further
research could expand the scope of the problem formulation
to include such situations.

Impact Statement
Our approach seeks to balance the computational demands
with environmental considerations, acknowledging the po-
tential for increased energy consumption. We advocate for
the judicious use of resources in model training and deploy-
ment, aiming to set a precedent for sustainable practices
in the field. Our findings hold particular promise for large-
scale data analysis applications, where they can contribute to
more informed and efficient decision-making processes. We
are dedicated to continuous assessment and improvement
of our methods to ensure they align with both technological
advancements and ecological sustainability.

9



Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

References
Abboud, A. and Williams, V. V. Popular conjectures imply

strong lower bounds for dynamic problems. In 2014 IEEE
55th Annual Symposium on Foundations of Computer
Science, pp. 434–443. IEEE, 2014.

Abboud, A., Williams, V. V., and Weimann, O. Conse-
quences of faster alignment of sequences. In Automata,
Languages, and Programming: 41st International Collo-
quium, ICALP 2014, Copenhagen, Denmark, July 8-11,
2014, Proceedings, Part I 41, pp. 39–51. Springer, 2014.

Alman, J. and Song, Z. Fast attention requires bounded
entries. In NeurIPS, 2023.

Alman, J., Chu, T., Schild, A., and Song, Z. Algorithms
and hardness for linear algebra on geometric graphs. In
2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS), pp. 541–552. IEEE, 2020.

Alman, J., Liang, J., Song, Z., Zhang, R., and Zhuo, D. By-
pass exponential time preprocessing: Fast neural network
training via weight-data correlation preprocessing. In
NeurIPS, 2023.

Backurs, A. and Indyk, P. Edit distance cannot be computed
in strongly subquadratic time (unless seth is false). In
Proceedings of the forty-seventh annual ACM symposium
on Theory of computing, pp. 51–58, 2015.

Backurs, A., Indyk, P., and Schmidt, L. On the fine-grained
complexity of empirical risk minimization: Kernel meth-
ods and neural networks. Advances in Neural Information
Processing Systems, 30, 2017.

Belinkov, Y. Probing classifiers: Promises, shortcomings,
and advances. Computational Linguistics, 48(1):207–
219, March 2022. doi: 10.1162/coli a 00422. URL
https://aclanthology.org/2022.cl-1.7.

Bhattamishra, S., Ahuja, K., and Goyal, N. On the Abil-
ity and Limitations of Transformers to Recognize For-
mal Languages. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 7096–7116, Online, November
2020a. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.576. URL https://
aclanthology.org/2020.emnlp-main.576.

Bhattamishra, S., Patel, A., and Goyal, N. On the com-
putational power of transformers and its implications in
sequence modeling. In Proceedings of the 24th Con-
ference on Computational Natural Language Learning,
pp. 455–475, Online, November 2020b. Association
for Computational Linguistics. doi: 10.18653/v1/2020.
conll-1.37. URL https://aclanthology.org/
2020.conll-1.37.

Brand, J. v. d. A deterministic linear program solver in
current matrix multiplication time. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 259–278. SIAM, 2020.

Brand, J. v. d. Unifying matrix data structures: Simplifying
and speeding up iterative algorithms. In Symposium on
Simplicity in Algorithms (SOSA), pp. 1–13. SIAM, 2021.

Brand, J. v. d. and Nanongkai, D. Dynamic approximate
shortest paths and beyond: Subquadratic and worst-case
update time. In 2019 IEEE 60th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 436–455.
IEEE, 2019.

Brand, J. v. d., Nanongkai, D., and Saranurak, T. Dynamic
matrix inverse: Improved algorithms and matching condi-
tional lower bounds. In 2019 IEEE 60th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pp.
456–480. IEEE, 2019.

Brand, J. v. d., Lee, Y. T., Sidford, A., and Song, Z. Solving
tall dense linear programs in nearly linear time. In Pro-
ceedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, pp. 775–788, 2020.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chakraborty, D., Kamma, L., and Larsen, K. G. Tight cell
probe bounds for succinct boolean matrix-vector multipli-
cation. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pp. 1297–
1306, 2018.

Charikar, M., Kapralov, M., Nouri, N., and Siminelakis, P.
Kernel density estimation through density constrained
near neighbor search. In 2020 IEEE 61st Annual Sympo-
sium on Foundations of Computer Science (FOCS), pp.
172–183. IEEE, 2020.

Chen, B., Liu, Z., Peng, B., Xu, Z., Li, J. L., Dao, T., Song,
Z., Shrivastava, A., and Re, C. Mongoose: A learnable
lsh framework for efficient neural network training. In
International Conference on Learning Representations,
2021.

Chen, L. On the hardness of approximate and exact (bichro-
matic) maximum inner product. In CCC, 2018.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

10

https://aclanthology.org/2022.cl-1.7
https://aclanthology.org/2020.emnlp-main.576
https://aclanthology.org/2020.emnlp-main.576
https://aclanthology.org/2020.conll-1.37
https://aclanthology.org/2020.conll-1.37


Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

Clark, K., Khandelwal, U., Levy, O., and Manning, C. D.
What does BERT look at? an analysis of BERT’s atten-
tion. In Proceedings of the 2019 ACL Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 276–286, Florence, Italy, August 2019. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/
W19-4828. URL https://aclanthology.org/
W19-4828.

Cohen, M. B., Lee, Y. T., and Song, Z. Solving linear
programs in the current matrix multiplication time. In
STOC, 2019.

Demetrescu, C. and Italiano, G. F. Fully dynamic transitive
closure: breaking through the o (n/sup 2/) barrier. In
Proceedings 41st Annual Symposium on Foundations of
Computer Science, pp. 381–389. IEEE, 2000.

Deng, Y., Li, Z., Mahadevan, S., and Song, Z. Zero-th
order algorithm for softmax attention optimization. arXiv
preprint arXiv:2307.08352, 2023a.

Deng, Y., Li, Z., and Song, Z. Attention scheme inspired
softmax regression. arXiv preprint arXiv:2304.10411,
2023b.

Deng, Y., Mahadevan, S., and Song, Z. Randomized
and deterministic attention sparsification algorithms for
over-parameterized feature dimension. arXiv preprint
arXiv:2304.04397, 2023c.

Deng, Y., Song, Z., Xie, S., and Yang, C. Unmasking
transformers: A theoretical approach to data recovery
via attention weights. arXiv preprint arXiv:2310.12462,
2023d.

Deng, Y., Song, Z., and Zhou, T. Superiority of softmax:
Unveiling the performance edge over linear attention.
arXiv preprint arXiv:2310.11685, 2023e.

Deng, Y., Song, Z., and Yang, C. Attention is naturally
sparse with gaussian distributed input. arXiv preprint
arXiv:2404.02690, 2024.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Duan, R., Wu, H., and Zhou, R. Faster matrix multiplication
via asymmetric hashing. In FOCS, pp. 2129–2138. IEEE,
2023.

Ebrahimi, J., Gelda, D., and Zhang, W. How can
self-attention networks recognize Dyck-n languages?
In Findings of the Association for Computational
Linguistics: EMNLP 2020, pp. 4301–4306, On-
line, November 2020. Association for Computational

Linguistics. doi: 10.18653/v1/2020.findings-emnlp.
384. URL https://aclanthology.org/2020.
findings-emnlp.384.

Edelman, B. L., Goel, S., Kakade, S., and Zhang, C. In-
ductive biases and variable creation in self-attention
mechanisms. In Chaudhuri, K., Jegelka, S., Song, L.,
Szepesvari, C., Niu, G., and Sabato, S. (eds.), Pro-
ceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 5793–5831. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/
v162/edelman22a.html.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen,
E. Rigging the lottery: Making all tickets winners. In
International Conference on Machine Learning, pp. 2943–
2952. PMLR, 2020.

Frandsen, G. S. and Frandsen, P. F. Dynamic matrix rank.
Theor. Comput. Sci., 410(41):4085–4093, 2009.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in
deep neural networks. arXiv preprint arXiv:1902.09574,
2019.

Gall, F. L. and Urrutia, F. Improved rectangular matrix
multiplication using powers of the coppersmith-winograd
tensor. In SODA, pp. 1029–1046. SIAM, 2018.

Goranci, G., Henzinger, M., and Peng, P. The power of
vertex sparsifiers in dynamic graph algorithms. In ESA,
volume 87 of LIPIcs, pp. 45:1–45:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

Gu, J., Li, C., Liang, Y., Shi, Z., Song, Z., and Zhou,
T. Fourier circuits in neural networks: Unlocking
the potential of large language models in mathemati-
cal reasoning and modular arithmetic. arXiv preprint
arXiv:2402.09469, 2024.

Gu, Y. and Ren, H. Constructing a distance sensitivity oracle
in o(n2.5794m) time. arXiv preprint arXiv:2102.08569,
2021.

Gu, Y. and Song, Z. A faster small treewidth sdp solver.
arXiv preprint arXiv:2211.06033, 2022.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
Advances in neural information processing systems, 28,
2015.

Henzinger, M., Krinninger, S., Nanongkai, D., and Saranu-
rak, T. Unifying and strengthening hardness for dynamic
problems via the online matrix-vector multiplication con-
jecture. In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing (STOC), pp. 21–30,
2015.

11

https://aclanthology.org/W19-4828
https://aclanthology.org/W19-4828
https://aclanthology.org/2020.findings-emnlp.384
https://aclanthology.org/2020.findings-emnlp.384
https://proceedings.mlr.press/v162/edelman22a.html
https://proceedings.mlr.press/v162/edelman22a.html


Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

Hewitt, J. and Liang, P. Designing and interpreting probes
with control tasks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 2733–2743,
Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1275.
URL https://aclanthology.org/D19-1275.

Hewitt, J. and Manning, C. D. A structural probe for
finding syntax in word representations. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4129–4138, Minneapolis, Min-
nesota, June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-1419. URL https:
//www.aclweb.org/anthology/N19-1419.

Huang, B., Jiang, S., Song, Z., Tao, R., and Zhang, R.
Solving sdp faster: A robust ipm framework and efficient
implementation. In 2022 IEEE 63rd Annual Symposium
on Foundations of Computer Science (FOCS), pp. 233–
244. IEEE, 2022.

Jiang, H., Kathuria, T., Lee, Y. T., Padmanabhan, S., and
Song, Z. A faster interior point method for semidefinite
programming. In 2020 IEEE 61st annual symposium on
foundations of computer science (FOCS), pp. 910–918.
IEEE, 2020a.

Jiang, H., Lee, Y. T., Song, Z., and Wong, S. C.-w. An
improved cutting plane method for convex optimization,
convex-concave games, and its applications. In Proceed-
ings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pp. 944–953, 2020b.

Jiang, S., Song, Z., Weinstein, O., and Zhang, H. Faster
dynamic matrix inverse for faster lps. In STOC. arXiv
preprint arXiv:2004.07470, 2021.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention. In International Conference on
Machine Learning, pp. 5156–5165. PMLR, 2020.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451,
2020.

Larsen, K. G. and Williams, R. Faster online matrix-vector
multiplication. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 2182–2189, 2017.

Lee, Y. T., Song, Z., and Zhang, Q. Solving empirical risk
minimization in the current matrix multiplication time.
In COLT, 2019.

Li, Y., Li, Y., and Risteski, A. How do transformers learn
topic structure: Towards a mechanistic understanding.
arXiv preprint arXiv:2303.04245, 2023a.

Li, Z., Song, Z., and Zhou, T. Solving regularized exp, cosh
and sinh regression problem. arxiv preprint 2303.15725,
2023b.

Liu, Z., Wang, J., Dao, T., Zhou, T., Yuan, B., Song, Z.,
Shrivastava, A., Zhang, C., Tian, Y., Re, C., et al. Deja
vu: Contextual sparsity for efficient llms at inference time.
In International Conference on Machine Learning, pp.
22137–22176. PMLR, 2023.

Mostafa, H. and Wang, X. Parameter efficient training of
deep convolutional neural networks by dynamic sparse
reparameterization. In International Conference on Ma-
chine Learning, pp. 4646–4655. PMLR, 2019.

OpenAI. Gpt-4 technical report, 2023.

Overmars, M. H. The Design of Dynamic Data Struc-
tures, volume 156 of Lecture Notes in Computer Science.
Springer, 1983.

Pérez, J., Marinković, J., and Barceló, P. On the turing
completeness of modern neural network architectures.
arXiv preprint arXiv:1901.03429, 2019.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Rubinstein, A. Hardness of approximate nearest neighbor
search. In Proceedings of the 50th annual ACM SIGACT
symposium on theory of computing, pp. 1260–1268, 2018.

Sankowski, P. Dynamic transitive closure via dynamic ma-
trix inverse. In 45th Annual IEEE Symposium on Founda-
tions of Computer Science, pp. 509–517. IEEE, 2004.

Sankowski, P. Subquadratic algorithm for dynamic shortest
distances. In Computing and Combinatorics: 11th An-
nual International Conference, COCOON 2005 Kunming,
China, August 16–19, 2005 Proceedings 11, pp. 461–470.
Springer, 2005.

Shi, Z., Wei, J., Xu, Z., and Liang, Y. Why larger language
models do in-context learning differently? arXiv preprint
arXiv:2405.19592, 2024.

Siegelmann, H. T. and Sontag, E. D. On the computational
power of neural nets. In Proceedings of the Fifth Annual
Workshop on Computational Learning Theory, COLT ’92,
pp. 440–449, New York, NY, USA, 1992. Association
for Computing Machinery. ISBN 089791497X. doi:
10.1145/130385.130432. URL https://doi.org/
10.1145/130385.130432.

12

https://aclanthology.org/D19-1275
https://www.aclweb.org/anthology/N19-1419
https://www.aclweb.org/anthology/N19-1419
https://doi.org/10.1145/130385.130432
https://doi.org/10.1145/130385.130432


Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

Song, Z. and Yu, Z. Oblivious sketching-based central path
method for solving linear programming problems. In 38th
International Conference on Machine Learning (ICML),
2021.

Song, Z., Yin, J., and Zhang, L. Solving attention kernel
regression problem via pre-conditioner. In International
Conference on Artificial Intelligence and Statistics (AIS-
TATS). PMLR, 2024.

Strassen, V. et al. Gaussian elimination is not optimal.
Numerische mathematik, 13(4):354–356, 1969.

Tenney, I., Das, D., and Pavlick, E. BERT rediscovers the
classical NLP pipeline. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguis-
tics, pp. 4593–4601, Florence, Italy, July 2019. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/
P19-1452. URL https://aclanthology.org/
P19-1452.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vig, J. and Belinkov, Y. Analyzing the structure of at-
tention in a transformer language model. In Proceed-
ings of the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pp. 63–76,
Florence, Italy, August 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/W19-4808. URL
https://aclanthology.org/W19-4808.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020.

Wei, C., Chen, Y., and Ma, T. Statistically meaningful
approximation: a case study on approximating turing
machines with transformers, 2021. URL https://
arxiv.org/abs/2107.13163.

Williams, R. A new algorithm for optimal 2-constraint
satisfaction and its implications. Theoretical Computer
Science, 348(2-3):357–365, 2005.

Williams, V. V., Xu, Y., Xu, Z., and Zhou, R. New bounds
for matrix multiplication: from alpha to omega. CoRR,
abs/2307.07970, 2023.

Wu, J., Yu, T., Wang, R., Song, Z., Zhang, R., Zhao, H.,
Lu, C., Li, S., and Henao, R. Infoprompt: Information-
theoretic soft prompt tuning for natural language under-
standing. arXiv preprint arXiv:2306.04933, 2023.

Xu, Z., Shi, Z., and Liang, Y. Do large language models have
compositional ability? an investigation into limitations

and scalability. In ICLR 2024 Workshop on Mathemati-
cal and Empirical Understanding of Foundation Models,
2024.

Yao, S., Peng, B., Papadimitriou, C., and Narasimhan, K.
Self-attention networks can process bounded hierarchical
languages. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pp.
3770–3785, Online, August 2021. Association for Com-
putational Linguistics. doi: 10.18653/v1/2021.acl-long.
292. URL https://aclanthology.org/2021.
acl-long.292.

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S., and
Kumar, S. Are transformers universal approximators of
sequence-to-sequence functions? In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=ByxRM0Ntvr.

Zafrir, O., Boudoukh, G., Izsak, P., and Wasserblat, M.
Q8bert: Quantized 8bit bert. In 2019 Fifth Workshop
on Energy Efficient Machine Learning and Cognitive
Computing-NeurIPS Edition (EMC2-NIPS), pp. 36–39.
IEEE, 2019.

Zandieh, A., Han, I., Daliri, M., and Karbasi, A. Kdeformer:
Accelerating transformers via kernel density estimation.
In ICML. arXiv preprint arXiv:2302.02451, 2023.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022a.

Zhang, Y., Backurs, A., Bubeck, S., Eldan, R., Gunasekar,
S., and Wagner, T. Unveiling transformers with lego:
a synthetic reasoning task, 2022b. URL https://
arxiv.org/abs/2206.04301.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H 2 o:
Heavy-hitter oracle for efficient generative inference of
large language models. arXiv preprint arXiv:2306.14048,
2023.

Zhao, H., Panigrahi, A., Ge, R., and Arora, S. Do trans-
formers parse while predicting the masked word? arXiv
preprint arXiv:2303.08117, 2023.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring
the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878, 2017.

Zwick, U. All pairs shortest paths using bridging sets and
rectangular matrix multiplication. Journal of the ACM
(JACM), 49(3):289–317, 2002.

13

https://aclanthology.org/P19-1452
https://aclanthology.org/P19-1452
https://aclanthology.org/W19-4808
https://arxiv.org/abs/2107.13163
https://arxiv.org/abs/2107.13163
https://aclanthology.org/2021.acl-long.292
https://aclanthology.org/2021.acl-long.292
https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
https://arxiv.org/abs/2206.04301
https://arxiv.org/abs/2206.04301


Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

Appendix
Roadmap.

In Section A, we provide several basic notations, definitions and more related work. In Section B, we present our dynamic
data-structure. Our algorithm shows the upper bound results. In Section C, we give our conditional lower bound result by
assuming the Hinted MV conjecture.

A. Preliminary
Notations For a matrix A, we use A⊤ to denote its transpose. For a non-zero diagonal matrix D ∈ Rn×n, we use
D−1 ∈ Rn×n to denote the matrix where the (i, i)-th diagonal entry is (Di,i)

−1 for all i ∈ [n].

For a vector x ∈ Rn, we use diag(x) ∈ Rn×n to denote an n× n matrix where the i, i-th entry on the diagonal is xi and
zero everywhere else for all i ∈ [n].

In many theoretical computer science (TCS)/machine learning (ML) literature, exp(M) denotes the matrix exponential, i.e.,
exp(M) =

∑∞
i=0

1
i!M

i. However, in this paper, we use exp(M) to denote the entry-wise exponential, i.e.,

exp(M)i,j := exp(Mi,j).

We use 1n to denote the length-n vector where all the entries are ones. We use 0n to denote the length-n vector where all
entries are zeros.

In this work, we use standard notation Tmat(·, ·, ·) (see Definition 2.1) and ω(·, ·, ·) (see Definition 2.2) for describing the
running time of matrix multiplication, see literature (Demetrescu & Italiano, 2000; Zwick, 2002; Sankowski, 2004; 2005;
Gall & Urrutia, 2018; Brand & Nanongkai, 2019; Cohen et al., 2019; Lee et al., 2019; Brand et al., 2019; Brand, 2020; Gu
& Ren, 2021; Jiang et al., 2021; Brand, 2021; Williams et al., 2023) for examples.

Detailed Comparison with (Alman & Song, 2023) In (Alman & Song, 2023), from the upper bound side, they make use
of the ‘polynomial method in algorithm design’. The polynomial method is a technique for finding low-rank approximations
of f(M), where M is a matrix and f is an entry-wise function. They apply a polynomial method to decompose exp(QK⊤)
to U1U2, where U1 and U2 are low rank matrices. Hence, for the follow-up attention computation (i.e., exp(QK⊤)V ) , they
can first compute U2V , and then compute U1(U2V ). As U1 and U2 are low rank matrices, these two steps can be computed
efficiently. From the lower bound perspective, they give a fine-grained reduction from the Approximate Nearest Neighbor
search (ANN) to attention problems. The hypothesis uses the Strong exponential time hypothesis.

In our case, from the upper bound side, we first proposed a data-structure that efficiently solves the Online Diagonal-based
normalized Attention Matrix Vector multiplication problem by using the lazy update techniques. Instead of updating the
target matrix every time, we set a hyperparameter a that lets the user strike the balance between the query time and the
update time. From the lower bound side, we make use of a variation of the popular online matrix vector multiplication
conjecture which is called hinted matrix vector multiplication conjecture. Notably, our work achieves congruence between
upper and lower bound results for dynamically maintaining attention computations.

B. Main Upper Bound
In Section B.1, we show the running time of initializing our data structure. In Section B.2, we show the running time of
updating K and V . In Section B.3, we show the correctness and the running time of querying the target matrix. In Section
B.4, we show the correctness and the running time of recomputing the variables in our data-structure.

We propose our upper bound result as the following:

Theorem B.1 (Main algorithm, formal version of Theorem 1.3). For any constant a ∈ (0, 1]. Let d = O(n). There is a
dynamic data structure that uses O(n2) space and supports the following operations:

• INIT(Q,K, V ). It runs in O(Tmat(n, d, n)) time.

• UPDATEK(i ∈ [n], j ∈ [d], δ ∈ R). This operation updates one entry in K, and it runs in O(Tmat(n, n
a, n)/na)

amortized time.

14



Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

Algorithm 4 Algorithm that query the {i, j}-th element in the target matrix
1: data structure DYNAMICATTENTION ▷ Theorem B.1
2: procedure QUERY(i ∈ [n], j ∈ [d]) ▷ Lemma B.6, B.5
3: Let ∆V,1 and ∆V,2 be rectangular matrix obtained from list from V
4: Let (Dtmp)

−1
i denote the list of diagonal matrices obtained from ListD[ctK ].GETB ▷ This takes O(1) time

5: /*Below is the target*/
6: answer← ((D−1

tmp) · (A) · (V +∆V,1∆V,2))i,j
7: /*The actual computation*/
8: /*Part 1. Answer, This is fast because we store C = AV */
9: answer1 ← (Dtmp)

−1
i (Ci,j + (∆C,1∆C,2)i,j) ▷ O(na) time

10: /*Part 2. Answer, this is fast because each column of ∆V,1 and row of ∆V,2 is 1-sparse*/
11: answer2 ← (Dtmp)

−1
i Ai,∗∆V,1(∆V,2)∗,j ▷ O(na) time

12: answer←∑2
j=1 answerj

13: return answer
14: end procedure
15: end data structure

Algorithm 5 Algorithm that re-compute evreything
1: data structure DYNAMICATTENTION ▷ Theorem B.1
2: procedure RECOMPUTE() ▷ Lemma B.8, Lemma B.7
3: Let ∆C,1 and ∆C,2 be rectangular matrix obtained from ListC
4: Let ∆V,1 and ∆V,2 be rectangular matrix obtained from ListV
5: Let ∆D(i) denote the list of diagonal matrices obtained from ListD[i].GETA

6: C̃ ← C +∆C,1 ·∆C,2+A∆V,1 ·∆V,2 ▷ It takes Tmat(n, n
a, d) time

7: Ṽ ← V +∆V,1 ·∆V,2 ▷ It takes Tmat(n, n
a, d) time

8: ∆D ←
∑ctK

i=1 ∆D(i) ▷ It takes n1+a time
9: D̃−1 ← D−1 +∆D ▷ It takes n time

10: B̃ ← D̃−1 · C̃ ▷ This takes nd
11: /*Refresh the memory*/
12: D ← D̃, C ← C̃, B ← B̃, V ← Ṽ
13: /*Reset the counter*/
14: ctK ← 0, ctV ← 0
15: end procedure
16: end data structure

• UPDATEV(i ∈ [n], j ∈ [d], δ ∈ R). This operation takes same amortized time as K update.

• QUERY(i ∈ [n], j ∈ [d]). This operation outputs (D−1(exp(QK⊤))V )i,j operation takes in O(na) worst case time.

B.1. Initialization

We first give the running time of the initialization procedure.

Lemma B.2 (Init). The procedure INIT (Algorithm 1) takes Tmat(n, d, n) time.

Proof. It is trivially from applying fast matrix multiplication.

B.2. Update

Next, we give the running time of updating K.

Lemma B.3 (Running time of UPDATEK). The procedure UPDATEK (Algorithm 2) takes

• Part 1. Tmat(n, n, n
a) time in the worst case

15



Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

• Part 2. Tmat(n, n, n
a)/na time in the amortized case

Proof. Part 1. It trivially from Lemma B.8

Part 2. If the ctK < na, we pay O(n) time. If ctK = na, we pay nω(1,1,a). So the amortized time is

n(na − 1) + nω(1,1,a)

na
= O(nω(1,1,a)−a)

Note that, by using fast matrix multiplication and the fact that d = O(n), we have nω(1,1,a) = Tmat(n, n
a, d). Thus we

complete the proof.

Now, we give the running time of updating V .

Lemma B.4 (Running time of UPDATEV). The procedure UPDATEV (Algorithm 3) takes

• Part 1. Tmat(n, n, n
a) time in the worst case.

• Part 2. Tmat(n, n, n
a)/na time in the amortized case.

Proof. Part 1. It trivially from Lemma B.8.

Part 2. If the ctK < na, we pay O(n) time. If ctK = na, we pay nω(1,1,a). So the amortized time is

n(na − 1) + nω(1,1,a)

na
= O(nω(1,1,a)−a)

Note that, by using fast matrix multiplication and the fact that d = O(n), we have nω(1,1,a) = Tmat(n, n
a, d). Thus we

complete the proof.

B.3. Query

We show the correctness of our QUERY that queries only one element in the target matrix.

Lemma B.5 (Correctness of QUERY). The procedure QUERY (Algorithm 4) outputs

B̃i,j = (D−1 ·A · (V +∆V ))i,j

= (D−1AV +D−1A∆V )i,j

Proof. Let ∆V,1 denote the vector obtained from ListD[ctK ].GETA.

Let ∆V,2 denote the vector obtained from ListD[ctK ].GETB

Let (Dtmp)
−1
i denote the list of diagonal matrices obtained from ListD[ctK ].GETB

We know

B̃ = ((D−1
tmp) · (A) · (V +∆V,1∆V,2))

= (Dtmp)
−1(AV ) + (Dtmp)

−1(A∆V,1∆V,2)

For the {i, j}-th element, by using simple algebra, we have

B̃i,j = (Dtmp)
−1
i (AV )i,j + (Dtmp)

−1
i (A∆V,1∆V,2)

= (Dtmp)
−1
i (C +∆C,1 ·∆C,2)i,j + (Dtmp)

−1
i (A∆V,1∆V,2)i,j

= (Dtmp)
−1
i (C +∆C,1 ·∆C,2)i,j + (Dtmp)

−1
i Ai,∗∆V,1(∆V,2)∗,j

16



Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

We know

answer1 = (Dtmp)
−1
i (C +∆C,1 ·∆C,2)i,j

and

answer2 = (Dtmp)
−1
i Ai,∗∆V,1(∆V,2)∗,j

By summing up answer1 and answer2, we have

B̃i,j = (D−1AV +D−1A∆V )i,j .

Now, we complete the proof.

Next, we give the running time of it.

Lemma B.6 (Running time of QUERY). The running time of procedure QUERY (Algorithm 4) is O(na).

Proof. We first stack all the vectors in ListV to ∆V,1 ∈ Rn×na

and ∆V,2 ∈ Rna×d, which takes O(1) time.

• Computing (Dtmp)
−1
i (C +∆C,1 ·∆C,2)i,j takes O(na) time.

• Computing (∆V,1∆V,2) takes O(na) time as ∆V,1 is 1-sparse in columns and (∆V,2) is 1-sparse in rows.

• Computing (Dtmp)
−1
i Ai,∗(∆V,1∆V,2)∗,j takes O(na) time as nnz((∆V,1∆V,2)∗,j) ≤ na.

Hence, the total running time needed is O(na)

B.4. Re-compute

We show the correctness of our re-compute function.

Lemma B.7 (Correctness of RECOMPUTE). The procedure RECOMPUTE (Algorithm 5) correctly re-compute D,C,B, V .

Proof. Part 1. Re-compute D

Let ∆D(i) denote the list of diagonal matrices obtained from ListD[i].GETA. Then, the total difference between the updated
D̃ and D is

∑ctK
i=1 ∆D(i).

By computing D̃−1 ← D−1 +∆D, we correctly get the updated D̃−1. By computing the inverse of a diagonal matrix we
get D̃.

Part 2. Re-compute V

We first stack all the vectors in ListV to ∆V,1 ∈ Rn×na

and ∆V,2 ∈ Rna×d.

By using Fact 2.3, we have Ṽ = V +∆V,1 ·∆V,2.

Part 3. Re-compute C

Similar to the proof of re-computing V .

We first stack all the vectors in ListC to ∆C,1 ∈ Rn×na

and ∆C,2 ∈ Rna×d.

By using Fact 2.3, we have C̃ = C +∆C,1 ·∆C,2+A∆V,1 ·∆V,2.

Part 4. Re-compute B

By using the definition of B = D−1C, we can update B by using B̃ = D̃−1 · C̃.

Now, we complete the proof.

Next, we give the running time of it.

17



Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

Lemma B.8 (Running time of RECOMPUTE). The running time of procedure RECOMPUTE (Algorithm 5) is Tmat(n, n
a, d).

Proof. We first stack all the vectors in ListV to ∆V,1 ∈ Rn×na

and ∆V,2 ∈ Rna×d, which takes O(1) time.

We stack all the vectors in ListC to ∆C,1 ∈ Rn×na

and ∆C,2 ∈ Rna×d, which takes O(1) time.

• Computing C +∆C,1 ·∆C,2+A∆V,1 ·∆V,2 takes Tmat(n, n
a, d) time.

• Computing V +∆V,1 ·∆V,2 takes Tmat(n, n
a, d) time.

• Computing
∑ctK

i=1 ∆D(i) takes O(na+1) time as nnz(∆D(i)) = O(n) and ctK = O(na).

• Computing D−1 +∆D takes O(n) time as nnz(∆D) = O(n).

• Computing D̃−1 · C̃ takes O(nd) time as D̃−1 is a diagonal matrix. Hence, the total running time is Tmat(n, n
a, d).

C. Main Lower Bound
In Section C.1, we give the definition of Online Matrix Vector (OMV) problem. In Section C.2, we introduce the definition
of Hinted MV and its conjecture (from previous work (Brand et al., 2019)). In Section C.3, we show the hardness of
computing the target matrix with the normalization factor.

C.1. Online Matrix Vector Multiplication

Before studying the hardness of our problem, we first review a famous problem in theoretical computer science which is
called online matrix vector multiplication problem. Here is the definition of online matrix vector multiplication, which has
been a crucial task in many fundamental optimization problems.

Definition C.1 (Online Matrix Vector (OMV) (Henzinger et al., 2015; Larsen & Williams, 2017; Chakraborty et al., 2018)).
Given a matrix A ∈ {0, 1}n×n, let T = O(n), there is an online sequence of vectors u1, · · · , uT ∈ {0, 1}n. The goal is to
design a structure that whenever receives a new vector ut and output Aut.

Such a problem is widely believed in the community that there is no algorithm to solve it in truly subquadratic time per
vector and there is no algorithm to solve it in truly subcubic time over all vectors.

C.2. Hardness from Previous Work

We define the hinted Mv problem from previous work (Brand et al., 2019).

Definition C.2 (Hinted MV (HMV) Definition 5.6 of (Brand et al., 2019)). Let the computations be performed over the
boolean semi-ring and let m = nτ , 0 < τ ≤ 1. The hinted Mv problem consists of the following phases:

1. Input two n× n matrices M and V

2. Input an n× n matrix P with at most nτ non-zero entries

3. Input a single index i ∈ [n]

• We need to answer MPV∗,i
• Here V∗,i ∈ Rn is the i-th column of matrix V

We give the hinted Mv conjecture which is from prior work (Brand et al., 2019).

Conjecture C.3 (HMV conjecture 5.2 of (Brand et al., 2019), restatement of Conjecture 3.1). For every constant 0 < τ ≤ 1
no algorithm for the hinted Mv problem (Definition C.2) can simultaneously satisfy

• polynomial time in phase 1

18



Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

• O(nω(1,1,τ)−ϵ) time complexity in phase 2 and

• O(n1+τ−ϵ) in phase 3

for some constant ϵ > 0.

C.3. Online Diagonal-normalized Attention Matrix Vector Multiplication

Next, we consider the normalization factor and defined the problem as the following.

Definition C.4 (ODAMV(n, d), restatement of Definition 1.2). The goal of Online Diagonal-based normalized Attention
Matrix Vector Multiplication problem ODAMV(n, d) is to design a data structure that satisfies the following operations:

1. INIT: Initialize on n× d matrices Q, K, V .

2. UPDATE: Change any entry of Q, K, or V .

3. QUERY: For any given i ∈ [n], j ∈ [d], return (D−1 exp(QK⊤)V )i,j , where D = diag(exp(QK⊤)1n).

Next, we present our lower bound result with the normalization factor.

Lemma C.5. Assuming the hinted Mv conjecture (Conjecture C.3): For every constant 0 < τ ≤ 1, there is no algorithm
that solve ODAMV(n, d) problem (Definition C.4) with

• polynomial initialization time, and

• amortized update time O(Tmat(n, n
τ , d)/nτ+Ω(1)), and

• worst query time O(nτ−Ω(1)).

Proof. Assume there was a dynamic algorithm faster than what is stated in Lemma C.5 for some parameter τ , i.e. update
time O(Tmat(n, n

τ , d)/nτ+ϵ) and query time O(nτ−ϵ) for some constant ϵ > 0. We show that this would contradict the
hinted Mv conjecture (Conjecture C.3).

Let us take an instance for the v-hinted Mv problem (Definition C.2) with M ∈ {0, 1}n×n, V ∈ {0, 1}n×n.

We can construct matrix M ∈ {0, 1}n×2n and V ∈ {0, 1}2n×n as follows

M :=
[
M M

]
and V :=

[
V

0n×n

]
where M is a matrix that M i,j = 1−Mi,j .

Note that ∥Mi,∗∥1 = n, for each i ∈ [n].

Based on the above construction, we will create a new instance ODAMV(ñ = 2n, d̃ = 2n), where

Q̃ =

[
M

0n×2n

]
, K̃ = 02n×2n, Ṽ =

[
V 02n×n

]
During phase 1, we give this input to the dynamic algorithm for the ODAMV problem (Definition C.4).

Let D ∈ {0, 1}n×n denote a diagonal matrix, where nnz(D) = nτ

During phase 2, we receive the 2n× 2n diagonal matrix P, where

P =

[
P 0
0 P

]
and nnz(P) = 2nτ .

19



Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

We perform 2nτ updates to the data structure to set K̃⊤ = P. This takes

O(ñτ · (Tmat(ñ, ñ
τ , d̃)/ñτ+ϵ)) = O(nω(1,1,τ)−ϵ)

time.

Note that

• ∥Q̃i,∗∥1 = n, for each i ∈ [n].

• ∥Q̃i,∗∥1 = 0, for each i ∈ [n+ 1, 2n].

By using the definition of P, we know that, for each i ∈ [n]

D̃i,i = nτ exp(1) + nτ exp(0) = nτ (e+ 1).

For each i ∈ [n+ 1, 2n]

D̃i,i = nτ exp(0) = nτ . (2)

Hence, we don’t need to update D̃.

At last, in phase 3, we perform ñ queries to obtain the column exp(Q̃K̃⊤)Ṽ∗,i in O(ñ · ñτ−ϵ) = O(n1+τ−ϵ) time.

Using Claim C.7 and Claim C.6, we know that, for any i ∈ [n] and for any j ∈ [n], if there is an algorithm that can find
(D̃−1 exp(Q̃K̃⊤)Ṽ )j,i , then using (D̃−1 exp(Q̃K̃⊤)Ṽ )j,i − (D̃−1Ṽ )j,i is enough to reconstruct (MPV)j,i. Here D̃−1Ṽ
can be computed in just O(1) time via Eq. (2). Thus, we can know the (MDV )j,i for the hinted Mv problem in O(n1+τϵ)
time, contradicting the hinted Mv conjecture.

Claim C.6. For each i ∈ [n] and j ∈ [n], if (D̃−1(exp(Q̃K̃⊤)− 1ñ×ñ)Ṽ )j,i is > 0, then (MPV)j,i = 1,

Proof. By using the fact that nτ (e+ 1) > 0 and nτ > 0, we have

D̃−1(exp(Q̃K̃⊤)− 1ñ×ñ)Ṽ )j,i > 0

((exp(Q̃K̃⊤)− 1ñ×ñ)Ṽ )j,i > 0

We know

Q̃ =

[
M

0n×2n

]
, K̃⊤ =

[
P 0
0 P

]
, Ṽ =

[
V 02n×n

]
,

so we have

((exp(MP)− 1n×2n)V)j,i > 0.

For k ∈ [n+ 1, 2n], as V =

[
V

0n×n

]
, we know (exp(MP)− 1n×2n)j,k(V)k,i = 0.

Using the definition of matrix multiplication, and the fact that exp(x) > 1 for all x > 0, we have some k ∈ [n] with

(exp(MP)− 1n×2n)j,k(V)k,i > 0

(exp(MP)j,k − 1)(V)k,i > 0

We can conclude that for each i ∈ [n], j ∈ [n], there is at least one k ∈ [n] such that

• Vk,i > 0

20



Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

• (MP)j,k > 0

Therefore, by using the definition of boolean semi-ring, we can conclude that (MPV)j,i = 1

Claim C.7. For each i ∈ [n] and j ∈ [n], if (D̃−1(exp(Q̃K̃⊤)− 1ñ×ñ)Ṽ )j,i is 0 then (MPV)j,i = 0.

Proof. By using the fact that nτ (e+ 1) > 0 and nτ > 0, we have

D̃−1(exp(Q̃K̃⊤)− 1ñ×ñ)Ṽ )j,i = 0

((exp(Q̃K̃⊤)− 1ñ×ñ)Ṽ )j,i = 0

We know

Q̃ =

[
M

0n×2n

]
, K̃⊤ =

[
P 0
0 P

]
, Ṽ =

[
V 02n×n

]
,

so we have

((exp(MP)− 1n×2n)V)j,i = 0.

For k ∈ [n+ 1, 2n], as V =

[
V

0n×n

]
, we know (exp(MP)− 1n×2n)j,k(V)k,i = 0.

For all k ∈ [n] such that Vk,i = 1 , we have (exp(MP)− 1n×2n)j,k = 0 , which also implies that (MP)j,k = 0.

Now, we can conclude that (MPV)j,i = 0 for each i ∈ [n] and j ∈ [n].

21


