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Abstract
We introduce a multiple target optimization frame-
work for DP-SGD referred to as pro-active DP.
In contrast to traditional DP accountants, which
are used to track the expenditure of privacy bud-
gets, the pro-active DP scheme allows one to a-
priori select parameters of DP-SGD based on
a fixed privacy budget (in terms of ϵ and δ)
in such a way to optimize the anticipated util-
ity (test accuracy) the most. To achieve this
objective, we first propose significant improve-
ments to the moment account method, present-
ing a closed-form (ϵ, δ)-DP guarantee that con-
nects all parameters in the DP-SGD setup. We
show that DP-SGD is (ϵ < 0.5, δ = 1/N)-DP if
σ =

√
2(ϵ+ ln(1/δ))/ϵ with T at least ≈ 2k2/ϵ

and (2/e)2k2−1/2 ≥ ln(N), where T is the total
number of rounds, and K = kN is the total num-
ber of gradient computations where k measures
K in number of epochs of size N of the local
data set. We prove that our expression is close to
tight in that if T is more than a constant factor
≈ 4 smaller than the lower bound ≈ 2k2/ϵ, then
the (ϵ, δ)-DP guarantee is violated. The above
DP guarantee can be enhanced in that DP-SGD
is (ϵ, δ)-DP if σ =

√
2(ϵ+ ln(1/δ))/ϵ with T at

least ≈ 2k2/ϵ together with two additional, less
intuitive, conditions that allow larger ϵ ≥ 0.5.
Our DP theory allows us to create a utility graph
and DP calculator. These tools link privacy and
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utility objectives and search for optimal experi-
ment setups, efficiently taking into account both
accuracy and privacy objectives, as well as im-
plementation goals. We furnish a comprehensive
implementation flow of our proactive DP, with
rigorous experiments to showcase the proof-of-
concept.1

1. Introduction
DP-SGD (Abadi et al., 2016) was introduced for private
machine learning training as it adapts distributed Stochastic
Gradient Descent (SGD) (Robbins & Monro, 1951) with
Differential Privacy (DP) (Dwork & Roth, 2014). Many
different DP notions have been developed for better tracking
the expenditure of privacy budgets during the training pro-
cess such as (ϵ, δ)-DP (Dwork & Roth, 2014), Concentrated
Differential Privacy (CDP) (Dwork & Rothblum, 2016),
Renyi-DP (Bun & Steinke, 2016a), zero-CDP (zCDP) (Bun
& Steinke, 2016b), f-DP (Dong et al., 2021). Generally, DP
comes from adding Gaussian noise N (0, C2σ2I) to local
(client-computed) mini-batch SGD updates after performing
a clipping operation x→ [x]C = x/max{1, ∥x∥/C}.

Existing DP notions are inadequate for optimizing the pa-
rameters for DP-SGD to achieve a given privacy budget,
utility (test accuracy) goal, and implementation goal (com-
munication efficiency). Consequently, we initiated the study
of a fresh DP notion called proactive DP. Our DP framework
consists of three significant components. First, a tight closed
DP formula encompassing all experimental setup parame-
ters (the number of data points N , the mini-batch or sample
size s during local SGD iterations, the step size scheme,
etc.) and privacy budget (in the form of an (ϵ,δ)-DP target),
utility goal (i.e., test accuracy), and implementation goal (in
particular, the number of communication rounds T between
server and client). We demonstrate a specific relationship
among privacy parameters ϵ, δ, and σ given by the closed
form formula, σ =

√
2(ϵ+ ln(1/δ))/ϵ. This formula is

1We remember Nhuong, our dear friend, whose presence and
kindness we so much miss. His careful and creative thinking
together with his uncanny implementation skills leaves this paper
as his footprint. His promising future cut short, he will live on
in our heart and his spark forever visible in this paper and his
scientific work.
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vital as it helps to establish a relationship between privacy
budget and utility goal. Notably, noise variance σ directly
correlates with the test accuracy of the model. However, we
aim to avert performing any blind private training because
we can only determine the impact of σ on test accuracy
after the private training process concludes. As our second
component, we introduce the utility graph method, which
allows us to learn the impact of σ on the test accuracy with-
out performing any private training. This graph assists us
in determining good privacy parameters (i.e., ϵ and δ) and
the corresponding values of noise σ that meet privacy and
utility goals. Finally, we employ a tool called DP calcula-
tor to efficiently calculate the remaining parameters of the
optimal experiment setup, such as the stepsize scheme, sam-
pling scheme, and the number of communication rounds.
Our DP framework primarily contains a tight closed DP for-
mula, utility graph, and DP calculator. It’s worth mentioning
that a tight and closed DP formula leads to better optimal
experiment settings and a more efficient DP calculator.

We devised our tight closed DP formula by non-trivially
improving the moment accountant technique (Abadi et al.,
2016). This approach has lacked a tight bound (Dong et al.,
2021) due to the high analysis complexity which the authors
of (Abadi et al., 2016) did not pursue, but did lead to a
straightforward closed non-tight DP formula for the experi-
mental framework. To demonstrate the tightness of our new
DP formula, we leverage the findings from f -DP (Dong
et al., 2021). The f -DP framework supersedes all other ex-
isting frameworks because it has all the relevant information
to derive known DP metrics. However, as stated in (Dong
et al., 2021), the ”disadvantage is that the expressions it
yields are more unwieldy: they are computer evaluable, so
usable in implementations, but do not admit simple closed
form” for the f -DP model.

Basically, together with a detailed implementation flow of
proactive DP:

• We non-trivially improve the analysis of the moment
accountant method in (Abadi et al., 2016) and show
for the first time that (ϵ, δ)-differential privacy can be
achieved for

σ =
√
2(ϵ+ ln(1/δ))/ϵ (1)

in parameter settings with (a) a reasonable DP guar-
antee by choosing δ ≤ 1/N and ϵ smaller than 0.5,
where (b) for the total number K of gradient compu-
tations over all local rounds performed on the local
data set we have (2/e)2 · k2 ≥ 1/2 + ln(1/δ) with
k = K/N measuring K in number of epochs of size
N (this condition is generally met in practice), and (c)
T is at least another constant (≈ 2) times k2/ϵ.

A precise formulation of our main result is given in
Theorem 3.1. We notice that this theorem is extracted

as a special case of the more general (but less readable
and less intuitive) Theorem B.4 which applies to any
choice of ϵ and δ. In particular, the more general the-
orem can be used for ϵ ≥ 0.5 and can also be used in
our proactive DP framework.

• Confirmed by simulations, we show that by setting T
equal to the lower bound T ≈ 2k2/ϵ, we optimize ac-
curacy (as this minimizes the number of times/rounds
when noise is aggregated into the global model at the
server) and minimize round complexity. By using the
f -DP framework, we prove that T ’s condition of being
at least ≈ 2k2/ϵ cannot be made weaker in that 2k2/ϵ
cannot be divided by more than a constant factor ≈ 4
(otherwise, this conflicts with an asymptotical result
proved by the f -DP framework). We conclude that
setting

T ≈ 2k2/ϵ (2)

leads to a close to tight (ϵ, δ)-DP guarantee which also
optimizes accuracy and minimizes round complexity
(we are the first to show such a kind of tightness result
for the moment accountant method).

• We discuss the concept of a utility graph and DP calcu-
lator in order to efficiently determine suitable parame-
ter settings based on our theory. Simulations based on
(1) and (2) show a significantly smaller ϵ. For exam-
ple, our theory applies to ϵ = 0.15 for the non-convex
problem of the simple neural network LeNet (LeCun
et al., 1998) with cross entropy loss function for image
classification of MNIST (LeCun & Cortes, 2010) at a
test accuracy of 93%, compared to 98% without dif-
ferential privacy. A detailed comparison to the current
state-of-the art is presented in Section 5.

Outline: We provide background in Section 2, where we
define (ϵ, δ)-differential privacy, explain DP-SGD as intro-
duced by (Abadi et al., 2016), and shortly introduce the
f -DP framework. In Section 3 we explain our main theory,
where we start by discussing the theoretical result of the
moment accountant method of (Abadi et al., 2016) and its
limitation, which we improve leading to our main contribu-
tion as given in (1) with a tightness result for (2) based on
the f -DP framework. We discuss the concept of a utility
graph and show how our theory can be used to determine
parameter settings for DP-SGD. Experiments are in Sec-
tion 4. A more general asynchronous SGD framework, the
detailed differential privacy proofs and analysis, additional
experiments with extra details and a proposal for an algo-
rithm that regularly updates parameters in DP-SGD are in
the appendices.
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2. Differential Private SGD (DP-SGD)
2.1. (ϵ, δ)- Differential Privacy

Differential privacy (Dwork et al., 2006b; Dwork, 2011;
Dwork et al., 2014; 2006a) defines privacy guarantees for
algorithms on databases, in our case a client’s sequence of
mini-batch gradient computations on his/her training data
set. The guarantee quantifies into what extent the output
of a client (the collection of updates communicated to the
server) can be used to differentiate among two adjacent
training data sets d and d′ (i.e., where one set has one extra
element compared to the other set).

Definition 2.1. A randomized mechanismM : D → R is
(ϵ, δ)-DP (Differentially Private) if for any adjacent d and
d′ in D and for any subset S ⊆ R of outputs,

Pr[M(d) ∈ S] ≤ eϵPr[M(d′) ∈ S] + δ,

where the probabilities are taken over the coin flips of mech-
anismM.

The privacy loss incurred by observing o is given by

Lo
M(d)∥M(d′) = ln

(
Pr[M(d) = o]

Pr[M(d′) = o]

)
.

As explained in (Dwork et al., 2014) (ϵ, δ)-DP ensures that
for all adjacent d and d′ the absolute value of privacy loss
will be bounded by ϵ with probability at least 1 − δ. The
larger ϵ the more certain we are about which of d or d′

caused observation o. In order to have a reasonable security
guarantee we assume ϵ < 0.5 such that eϵ < 1.65 is some-
what small. When using differential privacy in machine
learning we typically use δ = 1/N (or 1/(10N)) inversely
proportional with the data set size N .

In order to prevent data leakage from inference attacks in
machine learning (Lyu et al., 2020) such as the deep leakage
from gradients attack (Zhu et al., 2019; Zhao et al., 2020;
Geiping et al., 2020) or the membership inference attack
(Shokri et al., 2017; Nasr et al., 2019; Song et al., 2019) a
range of privacy-preserving methods have been proposed.
Privacy-preserving solutions for federated learning are Lo-
cal Differential Privacy (LDP) solutions (Abadi et al., 2016;
Bhowmick et al., 2019; Naseri et al., 2021; Truex et al.,
2019; Hao et al., 2020; Duchi et al., 2014) and Central Dif-
ferential Privacy (CDP) solutions (Naseri et al., 2021; Geyer
et al., 2018; McMahan et al., 2018; Papernot et al., 2018;
Yu et al., 2019). In LDP, the noise for achieving differential
privacy is computed locally at each client and is added to
the updates before sending to the server – in this paper we
also consider LDP. In CDP, a trusted server (aka trusted
third party) aggregates received client updates into a global
model; in order to achieve differential privacy the server
adds noise to the global model before communicating it to
the clients.

2.2. DP-SGD

Algorithm 1 DP-SGD: Local Model Updates with Differ-
ential Privacy

1: function LocalSGDwithDP(d)
2: for i ∈ {0, . . . , T − 1} do
3: Receive the current global model ŵ from Server.
4: Uniformly sample a random set {ξh}sih=1 ⊆ d
5: h = 0, U = 0
6: while h < si do
7: g = [∇f(ŵ, ξh)]C
8: U = U + g
9: h++

10: end while
11: n← N (0, C2σ2I)
12: U = U + n
13: Send (i, U) to the Server.
14: end for
15: end function

We analyse the Gaussian based differential privacy method,
called DP-SGD, of (Abadi et al., 2016), depicted in Al-
gorithm 1 in a distributed setting as described above.
Rather than using the gradient ∇f(ŵ, ξ) itself, DP-SGD
uses its clipped version [∇f(ŵ, ξ)]C where [x]C =
x/max{1, ∥x∥/C}. Clipping is needed because in general
we cannot assume a bound C on the gradients (for example,
the bounded gradient assumption is in conflict with strong
convexity (Nguyen et al., 2018)), yet the added gradients
need to be bounded by some constant C in order for the DP
analysis to go through.

DP-SGD uses a mini-batch approach where before the start
of the i-th local round a random min-batch of sample size
si is selected out of a local data set d of size |d| = N . Here,
we slighty generalize DP-SGD’s original formulation which
uses a constant si = s sample size sequence, while our
analysis will hold for a larger class of sample size sequences.
The inner loop maintains the sum U of gradient updates
where each of the gradients correspond to the same local
model ŵ until it is replaced by a newer global model at
the start of the outer loop. At the end of each local round
the sum of updates U is obfuscated with Gaussian noise
N (0, C2σ2) added to each vector entry, and the result is
transmitted to the server. The noised U is transmitted to
the server who adds U times the round step size η̄i to its
global model ŵ (we discount averaging the sum represented
by U by scaling the step size inversely with si). As soon
as all clients have submitted their updates, the resulting
new global model ŵ is broadcast to all clients, who in turn
replace their local models with the newly received global
model (at the start of the outer loop).

3



Proactive DP: A Multiple Target Optimization Framework for DP-SGD

2.3. Tight f -DP Framework

Appendix C summarizes the recent work by (Dong et al.,
2021) that introduces the f -DP framework based on hypoth-
esis testing. f -DP has (ϵ, δ)-DP as a special case in that
a mechanism is (ϵ, δ)-DP if and only if it is fϵ,δ-DP with
fϵ,δ(α) = max{0, 1−δ−eϵα, (1−δ−α)e−ϵ}. They prove
that DP-SGD is Cs/N (Gσ−1)⊗T -DP where Cs/N is an oper-
ator representing the effect of subsampling, Gσ−1 is a Gaus-
sian function characterizing the differential privacy (called
Gaussian DP) due to adding Gaussian noise, and operator
⊗T describes composition over T rounds. Cs/N (Gσ−1)⊗T -
DP can be translated into a tight (ϵ, δ)-DP formulation.

Towards understanding how to a-priori set parameters for
best utility and minimal privacy leakage, the tight f -DP
formulation for DP-SGD can be translated into sharp pri-
vacy guarantees. However, as stated in the introduction
by a citation from (Dong et al., 2021), the expressions it
yields are more unwieldy. Precisely, as said in (Dong et al.,
2021), “the disadvantage is that the expressions it yields are
more unwieldy: they are computer evaluable, so usable in
implementations, but do not admit simple closed form.” At
best the expressions result in an algorithm that implements a
method for keeping track (account for) spent privacy budget,
called a differential privacy accountant. This leads in (Zhu
et al., 2021) to a differential privacy accountant (using a
complex characteristic function based on taking the Fourier
transform) for a client to understand when to stop helping
the server to learn a global model.

3. Improved Moment Accountant Method
(Abadi et al., 2016) proves the following main result
(rephrased using our notation by substituting q = s/N in
their work): There exist constants c1 and c2 so that given a
constant sample size sequence si = s and number of rounds
T , for any ϵ < c1T (s/N)2, Algorithm 1 is (ϵ, δ)-DP for
any δ > 0 if we choose

σ ≥ c2
(s/N) ·

√
T ln(1/δ)

ϵ
.

The interpretation of this result is subtle: The condition on
ϵ is equivalent to

1/
√
c1 < z where z = (s/N) ·

√
T/ϵ. (3)

Substituting this into the bound for σ yields

σ ≥ (c2 · z) ·
√

ln(1/δ)

ϵ
. (4)

This formulation only depends on T through the definition
of z. Notice that z may be as small as 1/

√
c1. Therefore, σ

can potentially be as small as

σ ≥ c2√
c1
·
√

ln(1/δ)

ϵ
. (5)

This leads to the following questions: [Q1] Can we refine
the theory of (Abadi et al., 2016) and compute an explicit
constant c2/

√
c1 and show that (5) yields (ϵ, δ)-DP for ϵ sat-

isfying some constraint based on T , s, and N (but without
unknown constants)? [Q2] Can we show that the refinement
is close to tight, implying that the refined analysis of the mo-
ment accountant method cannot be much improved? [Q3]
And once we have found such a refinement, how can we use
this in practice?

The next subsections provide affirmative answers to these
questions. We stress that our characterization of a universal
constant c2/

√
c1 which is close to tight is non-trivial as we

need to develop new refined expressions which allow us to
redefine the unknown constants c1 and c2 in the theory of
(Abadi et al., 2016) as functions of T and other parameters
in order for us to determine a universal constant that tightly
bounds c2/

√
c1.

3.1. Main Contribution: Refined Analysis

The next theorem answers question [Q1] in the affirmative
(for explicit constant ≈

√
2). Rather than applying the

main result of (Abadi et al., 2016), we can directly use
the moment accountant method of their proof to analyse
specific parameter settings. In Appendix B we non-trivially
improve the analysis of the moment accountant method and
show that ‘constants’ c1 and c2 can be chosen as functions
of T and other parameters and as a result we show that σ
can remain small up to a lower bound that only depends
on the privacy budget, see (1), (6). The proof of the next
theorem is detailed in Appendix B where our improved
analysis leads to a first generally applicable Theorem B.2.
As a consequence we derive a simplified characterization
in the form of Theorem B.4. Finally, we introduce more
coarse bounds in order to extract the more readable and
more interpretable Theorem 3.1 below. We notice that the
simulations in Section 4 are based on parameters that satisfy
constraints (32, 33, 34, 62) of Theorem B.4 as this leads to
slightly better results (and also allows any δ > 0 and ϵ > 0,
in particular, ϵ ≥ 0.5).

Theorem 3.1. Let σ and (ϵ, δ) satisfy the relation

σ =
√
2(ϵ+ ln(1/δ))/ϵ with δ ≤ 1/N and ϵ < 0.5 (6)

For sample size sequence {si}T−1
i=0 the total number of local

SGD iterations is equal to K =
∑T−1

i=0 si. We define k =
K/N as the total number of local SGD iterations measured
in epochs (of size N ). Related to the sample size sequence
we define the mean s̄ and maximum smax and their quotient
θ = smax/s̄, where

s̄ =
1

T

T−1∑
i=0

si =
K

T
, smax = max{s0, . . . , sT−1}.
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Let γ be the smallest solution satisfying

γ ≥ 2

1− ᾱ
+

24 · ᾱ
1− ᾱ

(
σ

(1−
√
ᾱ)2

+
1

σ(1− ᾱ)− 2e
√
ᾱ

e3

σ

)
e3/σ

2

with ᾱ =
ϵ

γk
.

Parameter γ = 2 + O(ᾱ), which is close to 2 for small ᾱ.
We assume data sets of size N ≥ 10000 and sample size
sequences with θ ≤ 6.85. If

(2/e)2 · k2 ≥ 1/2 + ln(1/δ) and (7)

T ≥ γθ2

ϵ
· k2, (8)

then Algorithm 1 is (ϵ, δ)-differentially private.2

As presented in Section 1, current DP concepts are limited
to privacy accounting, wherein the calculation of privacy de-
pletion is contingent on the number of rounds T . In contrast,
our DP theorem establishes relationships between experi-
mental setup parameters such as N, si, k,K, θ, γ, privacy
budget defined by δ and ϵ, utility goal, i.e., the test accuracy
which directly depends on σ and C, and implementation
goal given by T . Notably, Theorem 3.1 serves as the funda-
mental basis for developing proactive DP.

For completeness we mention that the more general The-
orem B.4 states that Algorithm 1 is (ϵ, δ)-differentially
private if σ and (ϵ, δ) satisfy σ =

√
2(ϵ+ ln(1/δ))/ϵ to-

gether with condition (8) (which is ≡ (34)), and the less
intuitive constraints T ≥ max{eθσ, θ/h(σ)} · k (which
is3 ≡ (32)) and ϵ ≤ γh(σ) · k (which is ≡ (33)), where
h(x) = (

√
1 + (e/x)2− e/x)2. This allows larger ϵ ≥ 0.5.

3.2. Main Contribution: Tightness

If all local data sets are iid coming from the same source
distribution4, then simulations in Section 4 show that for
fixed K = kN the best accuracy of the final global model
is achieved by choosing the largest possible mini-batch size
s or, equivalently, since K = sT , choosing the smallest
possible number of rounds T = γθ2k2/ϵ according to con-
dition (8). Optimizing accuracy by choosing the smallest
T can be understood by observing that this implies that the

2Our theory holds in the more general asynchronous SGD
framework discussed in Appendix A.

3After substituting (32) with (1) and s̄ = kN/T , multiplying
both sides by θT/N , and dividing both sides by the min expression
in (32).

4This is the case in big data analysis where each local data set
represents a too small sample of the source distribution for learning
an accurate local model on its own. Hence, collaboration among
multiple clients through a central server is needed to generate an
accurate joint global model.

least number of times noise is added and aggregated into the
global model at the server (also larger mini-batches imply
less noise relative to the size of the mini-batches). As a
secondary objective, a smaller number of rounds means less
round communication.

For the above reasons we want to make T as small as pos-
sible, and we are interested in T meeting (8) with equality.
Rephrasing [Q2], can Theorem 3.1 be strengthened in that
the same DP guarantee can hold for a smaller T that violates
(8)? Appendix C uses the f -DP framework5 to prove into
what extent Theorem 3.1 is tight:

Theorem 3.2. For T = (γθ2k2/ϵ)/a with constant a > 2γ,
there exists a parameter setting that fits all conditions of
Theorem 3.1 except for condition (8) such that (ϵ, δ)-DP is
violated.

The theorem shows that (8) in Theorem 3.1 cannot be re-
laxed by dividing the right hand side of the inequality by
a factor more than 2γ ≈ 4. This is the first such type of
tightness result for the moment accountant as introduced by
(Abadi et al., 2016).

3.3. Main Contribution: A brief implementation flow
based on Utility Graph and DP-calculator

We outline a concise implementation process for proactive
DP. The procedure for computing experimental setup pa-
rameters is referred to as DP calculator, and is exhaustively
elaborated in Appendix D.4 and Appendix E.1.

The most important mission in machine learning is achiev-
ing a good accuracy, therefore, the added Gaussian noise
cannot be too large and is constrained. For this reason each
client wants to choose (i) the smallest possible clipping con-
stant C for the clipping operation used in DP-SGD such
that SGD still bootstraps convergence, and given C, set (ii)
the standard deviation σ of the added Gaussian noise for
differential privacy to a maximum value beyond which we
cannot expect to achieve sufficiently good (test) accuracy
for the learning task at hand, and given C and σ (leading to
Gaussian noise N (0, C2σ2I)), estimate (iii) the total num-
ber of gradient computations K = kN needed to achieve
(converge to at least) the target test accuracy.

Assuming that we are able to efficiently determine a suitable
triple (C, σ, k) (we explain how this can be done at the end

5Algorithm 1 uses C rather than 2C in line 11. This still
fits the f -DP framework because our analysis based on (Abadi
et al., 2016) assumes a probabilistic (rather than a deterministic)
sampling strategy as implemented in the Opacus library (Opacus).
For a constant sample size sequence with sample sizes s, we can
reinterpret the si as the actual chosen probabilistic sample sizes
with E[si] = s and apply our theory that holds for varying sample
size sequences (we need to formulate an upper bound on smax

which holds with probability ’close to 1’ and this will determine θ
in Theorem 3.1 and Theorem B.4).

5



Proactive DP: A Multiple Target Optimization Framework for DP-SGD

of this section), we are able to apply Theorem 3.1 for a
constant sample size sequence with si = s as follows6:

• We set δ = 1/N (the typical value used in literature).
Given δ and the previously determined σ we use the
equation in (6) to solve for ϵ. If ϵ ≥ 0.5, then Theorem
3.1 is not applicable7 and σ must be chosen larger
which violates the target accuracy – one may decide
to lower the target accuracy and recompute a triple
(C, σ, k). If ϵ < 0.5, then condition (6) is satisfied.8

Since Theorem 3.1 is tight up to a ”constant”, see
Theorem 3.2, the equation in (6) solves for a close to
tight ϵ that cannot be further decreased. This elucidates
the importance of a Theorem 3.1 that provides a close
to tight bound.

• Given k, σ and ϵ, we compute γ (which is generally
close to 2). Notice that for a constant sample size
sequence we have θ = 1 and we can verify condition
(7). Since k generally represents 50 or 100s of epochs
and we only take the natural logarithm of 1/δ = N ,
condition (7) generally verifies in practice.

• This leaves us with the final condition (8) which needs
to be satisfied in order to apply Theorem 3.1 and
conclude (ϵ, δ)-DP. As discussed in Section 3.2, we
want to meet condition (8) with equality as this yields
the best test accuracy and minimal round complexity
(among the T that satisfy (8) for the previously fixed
parameters γ, θ and k). As soon as T is computed, we
set s = K/T .

We now return to the problem of how to efficiently learn how
to select parameters C, σ and K (without having to conduct
a full training, based on DP-SGD, for various candidate
parameter settings for empirical evidence). We introduce
the concept of a utility graph where a “best-case” accuracy is
depicted as a function of noise σ and clipping constant C in
DP-SGD (see Section 4). In DP-SGD the last round of local
updates is aggregated into an update of the global model,
after which the global model is finalized. This means that the
Gaussian noise added to a client local update of its last round
is directly added as a perturbation to the final global model.

6A more advanced algorithm is proposed in Appendix E in
which parameters are regularly updated. It is left as an open
problem to implement this algorithm for learning tasks based on
more complex data sets – our current experiments do not need such
adaptivity.

7If we use the more advanced algorithm of Appendix E, which
is based on the more general Theorem B.4, then the constraint
ϵ < 0.5 can be discarded and larger target ϵ are possible.

8The client may have a DP guarantee for some target epsilon
ϵtar in mind. If the computed ϵ > ϵtar , then the client should not
participate in the collaborative training of the global model and
should abort.

We have a best-case scenario if we neglect the added noise
of all previous rounds. That is, the “best-case” accuracy
for DP-SGD is the accuracy of a global model which is
trained using SGD with clipping corresponding to C and
without adding Gaussian noise, after which Gaussian noise
is added to the final model at the very end. The utility graph
for a fixed C depicts this “best-case” trade-off between test
accuracy and σ.

To generate the graph, we fix a diminishing learning rate η̄t
(step size) from round to round and we fix the total number
K of local gradient computations that will be performed.
Based on local training data and a-priori knowledge (pos-
sibly from transferring a public model of another similar
learning task), a local client can run SGD locally without
any added noise but with clipping corresponding to C. This
learns a local model w∗ (which depends on C) and we com-
pare how much accuracy is sacrificed by adding Gaussian
noise n ∼ N (0, C2σ2I); that is, we compute and depict
the ratio “F (w∗ +n)/F (w∗)” as a function of σ and we do
this for various clipping constants C. This teaches us the
range of σ and C combinations that may lead to sufficient
accuracy (say at most a 10% drop).9

The rationale for employing the utility graph in the context
of a single client is primarily derived from scenarios charac-
terized by strong convexity, where the optimal solution w∗,
when perturbed by noise, is expected to remain in close prox-
imity to w∗. Therefore, in the strong convex case we expect
ŵ (as a result of DP-SGD) to be close enough to w∗ to lead
to sufficient prediction accuracy as anticipated by the utility
graph. In the realm of nonconvex optimization it has been
established that deep and expansive neural networks possess
a multitude of robust global optima w∗, which are intercon-
nected, as evidenced by research such as (Nguyen, 2019).
Furthermore, research by (Nguyen & Mondelli, 2020) sug-
gests that deep learning models exhibit linear convergence
when subjected to SGD. This phenomenon underpins the
practical observation that running SGD on a given training
dataset consistently yields global optima that perform with
high accuracy on testing datasets. Such findings reinforce
the expectation that the distribution of ŵ (as a result of
DP-SGD) will be sufficiently concentrated around the true
optimum w∗ and lead to sufficient prediction accuracy as
anticipated by the utility graph.

The main purpose of the utility graph is to efficiently identify
ineffective pairs (σ,C) without conducting a true private
training. It is not guaranteed that the chosen pairs (σ,C)

9In some cases (not in the experiments in this paper), F (w∗)
can be very small and as a result F (w∗ + n) is not stable. A
solution for this case can be to train model w∗ to reach a sufficient
good accuracy (for example 80% or 90%) and then stop. Now
F (w∗) is not so small and F (w∗ + n)/F (w∗) may still produce
stable results. We hypothesize that the resulting utility graph
transfers to a full training of model w∗.
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will offer good test accuracy when running the true pri-
vate training DP-SGD, i.e., whether the test accuracy fits
our requirement. Only after running DP-SGD the true test
accuracy is found out.

We summarize the execution flow for proactive DP. We
begin by setting δ = 1

N and using the utility graph to search
for a suitable σ by starting with a large value of σ and
gradually decreasing it. The goal is to find a value of σ
that yields an expected prediction accuracy greater than our
desired accuracy or utility goal. After that, we make use of
the equation in (6) to compute ϵ and check if it is smaller
than 0.5. To work with the utility graph, we must determine
the anticipated decrease in prediction accuracy compared
to training without privacy preservation. If ϵ is greater than
0.5, we must select another σ by decreasing σ until we are
unable to obtain an appropriate value because our result is
tight. Due to the tightness and simplicity of the equation in
(6), the computational cost of this process is small. If ϵ is
less than 0.5, we move forward in the process. Once we have
obtained the optimal σ and ϵ, the implementation process
progresses. In practical terms, k is generally restricted to
50 or 100 epochs. After determining the desired values of
k and ϵ, we use the DP calculator to find γ and the best T .
Finally, we can set s = K/T , where K = kN .

As an example of the above method, in Section 4 simulations
for the LIBSVM data set show (ϵ = 0.05, δ = 1/N)-DP is
possible while achieving good accuracy with σ ≈ 20.

4. Experiments
Our goal is to show that the more general asynchronous dif-
ferential privacy framework (asynchronous DP-SGD which
includes DP-SGD of Algorithm 1) of Appendix A ensures
a strong privacy guarantee, i.e, can work with very small
ϵ (and δ = 1/N ), while having a good convergence rate
to good accuracy. We refer to Appendix D for simulation
details and complete parameter settings.

Simulation environment. For simulating the asynchronous
DP-SGD framework, we use multiple threads where each
thread represents one compute node joining the training
process. The experiments are conducted on Linux-64bit OS,
with 16 cpu processors, and 32Gb RAM.

Objective function. We summarize experimental results of
our asynchronous DP-SGD framework for strongly convex,
plain convex and non-convex objective functions with con-
stant sample size sequences. As the plain convex objective
function we use logistic regression: The weight vector w
and bias value b of the logistic function can be learned by
minimizing the log-likelihood function J :

J = −
N∑
i=1

[yi · log(σ̄i) + (1− yi) · log(1− σ̄i)],

where N is the number of training samples (xi, yi) with
yi ∈ {0, 1}, and σ̄i = 1/(1 + e−(wTxi+b)) is the sigmoid
function. The goal is to learn a vector/model w∗ which
represents a pair w̄ = (w, b) that minimizes J . Function
J changes into a strongly convex problem by adding ridge
regularization with a regularization parameter λ > 0, i.e.,
we minimize Ĵ = J + λ

2 ∥w̄∥
2 instead of J . That is,

Ĵ = −
N∑
i=1

[yi log(σ̄i)+(1−yi) log(1−σ̄i)]+
λ

2
∥w̄∥2 . (9)

For simulating non-convex problems, we choose a simple
neural network (LeNet) (LeCun et al., 1998) with cross
entropy loss function for image classification.

Parameter selection. The parameters used for our dis-
tributed algorithm with Gaussian based differential privacy
for strongly convex, plain convex and non-convex objective
functions are described in Table 2. The clipping constant C
is set to 0.1 for strongly convex and plain convex problems
and 0.025 for non-convex problem (this turns out to provide
good utility).

For the plain convex case, we can use diminishing step
size schemes η0

1+β·t or η0

1+β·
√
t
. In this paper, we focus our

experiments for the plain convex case on η0

1+β·
√
t
. Here,

η0 is the initial step size and we perform a systematic grid
search on parameter β = 0.001 for strongly convex case
and β = 0.01 for both plain convex and non-convex cases.
Moreover, most of the experiments are conducted with 5
compute nodes and 1 central server. When we talk about
accuracy (from Figure 7 and onward), we mean test accuracy
defined as the fraction of samples from a test data set that get
accurately labeled by the classifier (as a result of training on
a training data set by minimizing a corresponding objective
function).

Asynchronous DP-SGD setting. The experiments are con-
ducted with 5 compute nodes and 1 central server. For
simplicity, the compute nodes have iid data sets.

Data sets. All our experiments are conducted on LIB-
SVM (Chang & Lin, 2011)10 and MNIST (LeCun & Cortes,
2010)11 data sets.

4.1. Utility Graph

Since we do not have a closed form to describe the relation
between the utility of the model (i.e., prediction accuracy)
and σ, we propose a heuristic approach to learn the range of
σ from which we may select σ for finding the best (ϵ, δ)-DP.
The utility graphs – Figures 1(a), 2(a) and 3(a) – show the
fraction of test accuracy between the model “F (w + n)”
over the original model “F (w)” (without noise), where n ∼

10https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
11http://yann.lecun.com/exdb/mnist/
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Figure 1: Strongly convex. (a) Utility graph, (b) Different s, (c) Different ϵ
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Figure 2: Plain convex. (a) Utility graph, (b) Different s, (c) Different ϵ
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Figure 3: Non-convex. (a) Utility graph, (b) Different s, (c) Different ϵ

Table 1: Common parameters of asynchronous DP-SGD framework with differential privacy

# of clients n Diminishing step size η̄t Regular λ Clipping constant C

Strongly convex 5 η0
1+βt

‡ 1
N 0.1

Plain convex 5 η0
1+βt or η0

1+β
√

t
N/A 0.1

Non-convex 5 η0
1+β

√
t

N/A 0.025

‡ The i-th round step size η̄i is computed by substituting t =
∑i−1

j=0 sj into the diminishing step size formula.

N (0, C2σ2I) (per round) for various values of the clipping
constant C and noise standard deviation σ. Intuitively, the
closer F (w + n)/F (w) to 1, the better accuracy w.r.t. to
F (w). Note that w can be any solution and in the utility

graphs, we choose w = w∗ with w∗ being near to an optimal
solution.

The smaller C, the larger σ can be, hence, ϵ can be smaller
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which gives stronger privacy. However, the smaller C, the
more iterations (larger K) are needed for convergence. And
if selected too small, no fast enough convergence is possible.
In next experiments we use clipping constant C = 0.1,
which gives a drop of at most 10% in test accuracy for
σ ≤ 20 for both strongly convex and plain convex objective
functions. To keep the test accuracy loss ≤ 10% in the
non-convex case, we choose C = 0.025 and σ ≤ 12.

4.2. DP-SGD with Different Constant Sample Sizes

Figure 1(b) and Figure 2(b) illustrate the test accuracy of our
asynchronous DP-SGD with various constant sample sizes
for the strongly convex and plain convex cases. Here, we
use privacy budget ϵ = 0.04945 and noise σ = 19.2. When
we use a bigger constant sample size s, for example, s = 26,
our algorithm can achieve the desired performance, when
compared to other constant sample sizes.12 The experiment
is extended to the non-convex case as shown in Figure 3(b),
where we can see a similar pattern. Experimental results
for other data sets are in Appendix D. This confirms that
our DP-SGD framework can converge to a decent accuracy
while achieving a very small privacy budget ϵ.

4.3. DP-SGD with Different Levels of Privacy Budget

Figure 1(c) and Figure 2(c) show that our DP-SGD frame-
work converges to better accuracy if ϵ is slightly larger. E.g.,
in the strongly convex case, privacy budget ϵ = 0.04945
achieves test accuracy 86% compared to 93% without differ-
ential privacy (hence, no added noise); ϵ = 0.1, still signifi-
cantly smaller than what is reported in literature, achieves
test accuracy 91%. Figure 3(c) shows the test accuracy of
our asynchronous DP-SGD for different privacy budgets ϵ
in the non-convex case. For ϵ = 0.15, our framework can
achieve a test accuracy of about 93%, compared to 98%
without differential privacy. These figures again confirm the
effectiveness of our DP-SGD framework, which can obtain
a strong differential privacy guarantee.

5. Related Work
Our main contribution in this paper is an improved and tight
analysis of the moment accountant method by (Abadi et al.,
2016). Since our theory goes beyond the theory developed
by Abadi et al., we want to compare our work with (Abadi
et al., 2016). Our setup in terms of the model architecture,
hyperparameters, etc., is different from Abadi et al.’s setup.
However, with ϵ = 2, we achieved ≈ 60% test accuracy
after T = 350000 iterations (Figure 14) which equals k = 7
epochs ( k = K/N = 350000/50000 = 7). In Figure

12s = 26 meets the lower bound on T ; a larger s violates this
lower bound. The reason for having a somewhat small maximum
possible s is because of the relatively small data set size.

6.1 of Abadi’s paper, they also achieved around 60% test
accuracy after 7 epochs.

However, if we analyze a different perspective where we
are interested in the test accuracy deduction from the non-
DP setting, then (Abadi et al., 2016) states that they used
the model architecture from the Tensorflow tutorial which
has 86% accuracy, and this means they have 26% accuracy
deduction at epoch 7. Meanwhile, we used AlexNet which
only has a reported 74.74% accuracy for the non-DP setting
which gives rise to a smaller 14.14% accuracy deduction at
epoch 7.

For the above reason, we claim that we have a signifi-
cant improved analysis of the accountant method in (Abadi
et al., 2016). Even with the state-of-the-art method of (De
et al., 2022) only achieves 65.9% for CIFAR10 without pre-
training data. However, they use WRN-40-4 (WideResnet)
which has 98% test accuracy, and this means they have a
32.1% test accuracy deduction. In this case, our method
still appears to be better as it can achieve a similar differen-
tial privacy and utility trade-of but for much more simpler
neural network model. On the other hand, if we do not
consider the model architecture, the test accuracy can be
achieved to 56.8%, 65.9%, 73.5% for ϵ = 1, 2, 4, respec-
tively as shown (De et al., 2022). Meanwhile, we achieve
≈ 60% test accuracy for ϵ ∈ [0.5, 3], hence, with ϵ = 1
our method still yields better test accuracy and also allows
us to report ≈ 60% test accuracy for smaller ϵ, i.e., better
differential privacy.

6. Conclusion
We propose a new concept in DP coined proactive DP, which
serves as a multi-target optimization framework for DP-
SGD. The design of proactive DP is based on a significant
improvement of the analysis of the moment account method
together with two new computation tools - utility graph and
DP calculator. These tools help to efficiently identify opti-
mal experimental setups for DP-SGD. We have presented
a detailed implementation process for our proactive DP, ac-
companied by rigorous experiments aimed at showcasing
its proof-of-concept.

Acknowledgements
This paper is supported in part by NSF grant CNS-1413996
“MACS: A Modular Approach to Cloud Security.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9



Proactive DP: A Multiple Target Optimization Framework for DP-SGD

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 308–318. ACM, 2016.

Bhowmick, A., Duchi, J., Freudiger, J., Kapoor, G., and
Rogers, R. Protection against reconstruction and its ap-
plications in private federated learning, 2019.

Bun, M. and Steinke, T. Concentrated differential privacy:
Simplifications, extensions, and lower bounds. arXiv,
2016a.

Bun, M. and Steinke, T. Concentrated differential privacy:
Simplifications, extensions, and lower bounds. In Hirt, M.
and Smith, A. D. (eds.), TCC, volume 9985, pp. 635–658,
2016b.

Chang, C.-C. and Lin, C.-J. LIBSVM: A library for sup-
port vector machines. ACM Transactions on Intelligent
Systems and Technology, 2:27:1–27:27, 2011.

De, S., Berrada, L., Hayes, J., Smith, S. L., and Balle,
B. Unlocking high-accuracy differentially private image
classification through scale, 2022.

De Sa, C. M., Zhang, C., Olukotun, K., and Ré, C. Taming
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A. Asynchronous Mini-Batch DP-SGD
All our theory, including the theorems presented in the main body, holds in the asynchronous SGD framework as introduced
in this appendix, where we provide a more general asynchronous mini-batch SGD algorithm (which follows Hogwild!’s
philosophy (Recht et al., 2011; De Sa et al., 2015; Zhang et al., 2016; Nguyen et al., 2018; Leblond et al., 2018; Nguyen
et al., 2021)) with DP. The asynchronous setting allows clients to adapt their sample sizes to their processing speed and
communication latency.

Algorithms13 2, 3, and 4 explain in pseudo code our asynchronous LDP approach. It is based on the Hogwild! (Recht et al.,
2011) recursion

wt+1 = wt − ηt∇f(ŵt; ξt), (10)

where ŵt represents the vector used in computing the gradient ∇f(ŵt; ξt) and whose vector entries have been read (one by
one) from an aggregate of a mix of previous updates that led to wj , j ≤ t. In a single-thread setting where updates are done
in a fully consistent way, i.e. ŵt = wt, yields SGD with diminishing step sizes {ηt}.

Recursion (10) models asynchronous SGD. The amount of asynchronous behavior that can be tolerated is given by some
function τ(t), see (Nguyen et al., 2018) where this is analysed for strongly convex objective functions: We say that the
sequence {wt} is consistent with delay function τ if, for all t, vector ŵt includes the aggregate of the updates up to and
including those made during the (t− τ(t))-th iteration, i.e.,

ŵt = w0 −
∑
j∈U

ηj∇f(ŵj ; ξj)

for some U with {0, 1, . . . , t− τ(t)− 1} ⊆ U .

In Algorithm 4 the local SGD iterations all compute gradients based on the same local model ŵ, which gets substituted by a
newer global model v̂k as soon as it is received by the interrupt service routine ISRReceive. As explained in ISRReceive v̂k
includes all the updates from all the clients up to and including their local rounds ≤ k. This shows that locally the delay τ
can be estimated based on the current local round i together with k. Depending on how much delay can be tolerated Setup
defines Υ(k, i) to indicate whether the combination (k, i) is permissible (i.e., the corresponding delay aka asynchronous
behavior can be tolerated). It has been shown that for strongly convex objective functions (without DP enhancement) the
convergence rate remains optimal even if the delay τ(t) is as large as ≈

√
t/ ln t (Nguyen et al., 2018). Similar behavior

has been reported for plain convex and non-convex objective functions in (Nguyen et al., 2021).

In Algorithm 4 we assume that messages/packets never drop; they will be resent but can arrive out of order. This guarantees
that we get out of the ”while Υ(k, i) is false loop” because at some moment the server receives all the updates in order
to broadcast a new global model v̂k+1 and once received by ISRReceive this will increment k and make Υ(k, i) true
which allows LocalSGDwithDP to exit the wait loop. As soon as the wait loop is exited we know that all local gradient
computations occur when Υ(k, i) is true which reflect that these gradient computations correspond to delays that are
permissible (in that we still expect convergence of the global model to good accuracy).

Algorithm 2 Client – Local model with Differential Privacy

1: Setup (n):
Initialize sample size sequence {si}Ti=0, (diminishing) round step sizes {η̄i}Ti=0, and a default global model v̂0 to start
with.
Define a permissible delay function Υ(k, i) ∈ {True,False} which takes the current local round number i and the
round number k of the last received global model into account to find out whether local SGD should wait till a more
recent global model is received. Υ(·, ·) can also make use of knowledge of the sample size sequences used by each of
the clients.

In this paper we analyse the Gaussian based differential privacy method of (Abadi et al., 2016). We use their clipping method;
rather than using the gradient ∇f(ŵ, ξ) itself, we use its clipped version [∇f(ŵ, ξ)]C where [x]C = x/max{1, ∥x∥/C}.
Also, we use the same mini-batch approach where before the start of the i-th local round a random min-batch of sample
size si is selected. During the inner loop the sum of gradient updates is maintained where each of the gradients correspond

13Our pseudocode uses the format from (Nguyen et al., 2021).
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Algorithm 3 Client – Local model with Differential Privacy

1: function ISRReceive(v̂k):
2: This Interrupt Service Routine is called whenever a new broadcast global model v̂k is received from the server. Once

received, the client’s local model ŵ is replaced with v̂k (if no more recent global model v̂>k was received out of order
before receiving this v̂k)

3: The server broadcasts global model v̂k for global round number k once the updates corresponding to local round
numbers ≤ k − 1 from all clients have been received and have been aggregated into the global model. The server
aggregates updates from clients into the current global model as soon as they come in. This means that v̂k includes
all the updates from all the clients up to and including their local round numbers ≤ k − 1 and potentially includes
updates corresponding to later round numbers from subsets of clients. The server broadcasts the global round number
k together with v̂k.

4: end function

Algorithm 4 Client – Local model with Differential Privacy

1: function LocalSGDwithDP(d):
2: i = 0
3: ŵ = v̂0
4: while True do
5: while Υ(k, i) = False do nothing end {k is the global round at the server.}
6: Uniformly sample a random set {ξh}sih=1 ⊆ d
7: h = 0, U = 0
8: while h < si do
9: g = [∇f(ŵ, ξh)]C

10: U = U + g
11: h++
12: end while
13: n← N (0, C2σ2

i I)
14: U = U + n
15: ŵ = ŵ + η̄i · U
16: Send (i, U) to the Server.
17: i++
18: end while
19: end function

to the same local model ŵ until it is replaced by a newer global model. In supplementary material B we show that this is
needed for proving DP guarantees and that generalizing the algorithm by locally implementing the Hogwild! recursion itself
(which updates the local model each iteration) does not work together with the DP analysis. So, our approach only uses the
Hogwild! concept at a global round by round interaction level.

At the end of each local round the sum of updates U is obfuscated with Gaussian noise; Gaussian noise N (0, C2σ2
i ) is

added to each vector entry. In this general description σi is round dependent, but our DP analysis in Supplementary Material
B must from some point onward assume a constant σ = σi over all rounds. The noised U times the round step size η̄i is
added to the local model after which a new local round starts again.

The noised U is also transmitted to the server who adds U times the round step size η̄i to its global model v̂. As soon as all
clients have submitted their updates up to and including their local rounds ≤ k − 1, the global model v̂, denoted as v̂k, is
broadcast to all clients, who in turn replace their local models with the newly received global model. Notice that v̂k may
include updates from a subset of client that correspond to local rounds ≥ k.

The presented algorithm adapts to asynchronous behavior in the following two ways: We explained above that the broadcast
global models v̂k themselves include a mix of received updates that correspond to local rounds ≥ k – this is due to
asynchronous behavior. Second, the sample size sequence {si} does not necessarily need to be fixed a-priori during Setup
(the round step size sequence {η̄i} does need to be fixed a-priori). In fact, the client can adapt its sample sizes si on the fly
to match its speed of computation and communication latency. This allows the client to adapt its local mini-batch SGD to

13
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its asynchronous behavior due to the scheduling of its own resources. Our DP analysis holds for a wide range of varying
sample size sequences.

We notice that adapting sample size sequences on a per client basis still fits the same overall objective function as long as
all local data sets are iid: This is because iid implies that the execution of the presented algorithm can be cast in a single
Hogwild! recursion where the ξh are uniformly chosen from a common data source distribution D. This corresponds to the
stochastic optimization problem

min
w∈Rd

{F (w) = Eξ∼D[f(w; ξ)]} ,

which defines objective function F (independent of the locally used sample size sequences). Local data sets being iid in the
sense that they are all, for example, drawn from car, train, boat, etc images benefit from DP in that car details (such as an
identifying number plate), boat details, etc. need to remain private.

B. Differential privacy proofs
This appendix proves a key observation improving the DP moment accountant from (Abadi et al., 2016). As shown in
(Abadi et al., 2016), for any given T ≥ 0 in one specific setting, there are many choices for (ϵ, δ, σ) depending on two
constants (c1, c2) (see Theorem B.1). We re-frame the problem as for a given (ϵ, δ, σ) there are many choices T depending
on K and sample size sequence s, where T ≥ k2/(const · ϵ) (see Theorem 3.1).

This appendix provides the proof of Theorem 3.1. It follows a sequence of steps: In Section B.1 we discuss the analysis
of (Abadi et al., 2016) and explain where we will improve. This leads in Section B.2 to an improved analysis yielding a
first generally applicable Theorem B.2; DP definitions/tools with a key lemma (generalized from (Abadi et al., 2016)) are
discussed in Section B.2.1 and the proof of Theorem B.2 is in Section B.2.2. As a consequence we derive in Section B.3 a
simplified characterization in the form of Theorem B.4. Finally, we introduce more coarse bounds in order to extract the
more readable Theorem 3.1 in Section B.4.

B.1. DP-SGD Analysis by Abadi et al.

(Abadi et al., 2016) proves the following theorem (rephrased using our notation substituting q = s/N ):

Theorem B.1. There exist constants c1 and c2 so that given a sample size sequence si = s and number of steps T , for any
ϵ < c1T (s/N)2, Algorithm 1 is (ϵ, δ)-differentially private for any δ > 0 if we choose

σ ≥ c2
(s/N) ·

√
T ln(1/δ)

ϵ
.

The interpretation of Theorem B.1, however, subtle: The condition on ϵ in Theorem B.1 is equivalent to

1/
√
c1 < z where z = (s/N) ·

√
T/ϵ.

Substituting this into the bound for σ yields

σ ≥ (c2 · z) ·
√

ln(1/δ)

ϵ
. (11)

This formulation only depends on T through the definition of z. Notice that z may be as small as 1/
√
c1. In fact, it is unclear

how z depends on T since T is equal to the total number K of gradient computations over all local rounds performed on the
local data set divided by the mini-batch size s, i.e., T = K/s, hence, z = (K/N) ·

√
1/(Tϵ). This shows that for fixed K

and N , we can increase T as long as 1/
√
c1 < z, or equivalently,

T < c1(K/N)2/ϵ (12)

(notice that the original constraint on ϵ in Theorem B.1 directly translates into this upper bound on T by using T = K/s).
Since σ cannot be chosen too large (otherwise the final global model has too much noise), ϵ, see (11), cannot be very small.
Therefore, (12) puts an upper bound on T which is in general much less than K for practically sized large data sets (K
equals the maximum possible number of rounds for mini-batch size s = 1).
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Rather than applying Theorem B.1, we can directly use the moment accountant method of its proof to analyse specific
parameter settings. It turns out that T can be much larger than upper bound (12). In this paper we formalize this insight (by
showing that ‘constants’ c1 and c2 can be chosen as functions of T and other parameters) and show a lower bound on σ
which does not depend on T at all – in fact z in (11) can be characterized as a constant independent of any parameters. This
will show that σ can remain small to at least a lower bound that only depends on the privacy budget.

B.2. A General Improved DP-SGD Analysis

We generalize Theorem B.1 (Abadi et al., 2016):

Theorem B.2. We assume that σ = σi with σ ≥ 216/215 for all rounds i. Let

r = r0 · 23 ·
(

1

1− u0
+

1

1− u1

e3

σ3

)
e3/σ

2

with u0 =
2
√
r0σ

σ − r0
and u1 =

2e
√
r0σ

(σ − r0)σ
,

where r0 is such that it satisfies
r0 ≤ 1/e, u0 < 1, and u1 < 1.

Let the sample size sequence satisfy si/N ≤ r0/σ. For j = 1, 2, 3 we define Ŝj (resembling an average over the sum of j-th
powers of si/N ) with related constants ρ and ρ̂:

Ŝj =
1

T

T−1∑
i=0

sji
N(N − si)j−1

,
Ŝ1Ŝ3

Ŝ2
2

≤ ρ and
Ŝ2
1

Ŝ2

≤ ρ̂.

Let ϵ = c1T Ŝ
2
1 . Then, Algorithm 4 is (ϵ, δ)-differentially private if

σ ≥ 2
√
c0

√
Ŝ2T (ϵ+ ln(1/δ))

ϵ
where c0 = c(c1) with c(x) = min

{√
2rρx+ 1− 1

rρx
,
2

ρ̂x

}
.

This generalizes Theorem B.1 where all si = s are constant. First, Theorem B.2 covers a much broader class of sample
size sequences that satisfy bounds on their ’moments’ Ŝj (this is more clear as a consequence of Theorem B.2). Second,
our detailed analysis provides a tighter bound in that it makes the relation between “constants” c0 and c1 explicit, contrary
to (Abadi et al., 2016). Exactly due to this relation c0 = c(c1) we are able to prove in Appendix B.3 Theorem B.4 as a
consequence of Theorem B.2 by considering the case c(c1) = 2/(ρ̂c1).

In order to prove Theorem B.2, we first set up the differential privacy framework of (Abadi et al., 2016) in Appendix B.2.1.
Here we enhance a core lemma by proving a concrete bound rather than an asymptotic bound on the so-called λ-th moment
which plays a crucial role in the differential privacy analysis. The concrete bound makes explicit the higher order error term
in (Abadi et al., 2016).

In Appendix B.2.2 we generalize Theorem B.1 of (Abadi et al., 2016) by proving Theorem B.4 using the core lemma of
Appendix B.2.1.

B.2.1. DEFINITIONS AND MAIN LEMMA

We base our proofs on the framework and theory presented in (Abadi et al., 2016). In order to be on the same page we repeat
and cite word for word their definitions:

For neighboring databases d and d′, a mechanismM, auxiliary input aux, and an outcome o, define the privacy loss at o as

c(o;M,aux, d, d′) = ln
Pr[M(aux, d) = o]

Pr[M(aux, d′) = o]
.

For a given mechanismM, we define the λ-th moment αM(λ;aux, d, d′) as the log of the moment generating function
evaluated at the value λ:

αM(λ;aux, d, d′) = lnEo∼M(aux,d)[exp(λ · c(o;M,aux, d, d′))].
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We define
αM(λ) = max

aux,d,d′
αM(λ;aux, d, d′)

where the maximum is taken over all possible aux and all the neighboring databases d and d′.

We first take Lemma 3 from (Abadi et al., 2016) and make explicit their order term O(q3λ3/σ3) with q = si,c and σ = σi

in our notation. The lemma considers as mechanismM the i-th round of gradient updates and we abbreviate αM(λ) by
αi(λ). The auxiliary input of the mechanism at round i includes all the output of the mechanisms of previous rounds (as in
(Abadi et al., 2016)).

For the local mini-batch SGD the mechanismM of the i-th round is given by

M(aux, d) =
si−1∑
h=0

[∇f(ŵ, ξh)]C +N (0, C2σ2
i I),

where ŵ is the local model at the start of round i which is replaced by a new global model v̂ as soon as a new v̂ is
received from the server (see ISRReceive), and where ξh are drawn from training data d, and [.]C denotes clipping (that is
[x]C = x/max{1, ∥x∥2/C}). In order forM to be able to compute its output, it needs to know the global models received
in round i and it needs to know the starting local model ŵ. To make sureM has all this information, aux represents the
collection of all outputs generated by the mechanisms of previous rounds < i together with the global models received in
round i itself.

In the next subsection we will use the framework of (Abadi et al., 2016) and apply its composition theory to derive bounds
on the privacy budget (ϵ, δ) for the whole computation consisting of T rounds that reveal the outputs of the mechanisms for
these T rounds as described above.

We remind the reader that si/N is the probability of selecting a sample from a sample set (batch) of size si out of a training
data set d′ of size N = |d′|; σi corresponds to the N (0, C2σ2

i I) noise added to the mini-batch gradient computation in
round i (see the mechanism described above).

Lemma B.3. Assume a constant r0 < 1 and deviation σi ≥ 216/215 such that si/N ≤ r0/σi. Suppose that λ is a positive
integer with

λ ≤ σ2
i ln

N

siσi

and define

U0(λ) =
2
√
λr0/σi

σi − r0
and U1(λ) =

2e
√
λr0/σi

(σi − r0)σi
.

Suppose U0(λ) ≤ u0 < 1 and U1(λ) ≤ u1 < 1 for some constants u0 and u1. Define

r = r0 · 23
(

1

1− u0
+

1

1− u1

e3

σ3
i

)
exp(3/σ2

i ).

Then,

αi(λ) ≤
s2iλ(λ+ 1)

N(N − si)σ2
i

+
r

r0
· s3iλ

2(λ+ 1)

N(N − si)2σ3
i

.

Proof. The start of the proof of Lemma 3 in (Abadi et al., 2016) implicitly uses the proof of Theorem A.1 in (Dwork et al.,
2014), which up to formula (A.2) shows how the 1-dimensional case translates into a privacy loss that corresponds to the
1-dimensional problem defined by µ0 and µ1 in the proof of Lemma 3 in (Abadi et al., 2016), and which shows at the
end of the proof of Theorem A.1 (p. 268 (Dwork et al., 2014)) how the multi-dimensional problem transforms into the
1-dimensional problem. In the notation of Theorem A.1, f(D) +N (0, σ2I) represents the general (random) mechanism
M(D), which for Lemma 3 in (Abadi et al., 2016)’s notation should be interpreted as the batch computation

M(d) =
∑
h∈J

f(dh) +N (0, σ2I)
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for a random sample/batch {dh}h∈J . Here, f(dh) (by abuse of notation – in this context f does not represent the objective
function) represent clipped gradient computations ∇f(ŵ; dh) where ŵ is the last received global model with which round i
starts (Lemma 3 in (Abadi et al., 2016) uses clipping constant C = 1, hence N (0, C2σ2I) = N (0, σ2I)).

Let us detail the argument of the proof of Lemma 3 in (Abadi et al., 2016) in order to understand what flexibility is possible:
We consider two data sets d = {d1, . . . , dN−1} and d′ = d+ {dN}, where dN ̸∈ d represents a new data base element so
that d and d′ differ in exactly one element. The size of d′ is equal to N . We define vector x as the sum

x =
∑

J\{N}

f(di).

Let
z = f(dN ).

If we consider data set d, then sample set J ⊆ {1, · · · , N − 1} and mechanismM(d) returns

M(d) =
∑
h∈J

f(dh) +N (0, σ2I) =
∑

h∈J\{N}

f(dh) +N (0, σ2I) = x+N (0, σ2I).

If we consider data set d′, then J ⊆ {1, · · · , N} contains dN with probability q = |J |/N (|J | = si is the sample size used
in round i). In this case mechanismM(d′) returns14

M(d′) =
∑
h∈J

f(dh) +N (0, σ2I) = f(dN ) +
∑

h∈J\{N}

f(dh) +N (0, σ2I) = z + x+N (0, σ2I)

with probability q. It returns

M(d′) =
∑
h∈J

f(dh) +N (0, σ2I) =
∑

h∈J\{N}

f(dh) +N (0, σ2I) = x+N (0, σ2I)

with probability 1− q. Combining both cases shows thatM(d′) represents a mixture of two Gaussian distributions (shifted
over a vector x):

M(d′) = x+ (1− q) · N (0, σ2I) + q · N (z, σ2I).

This high dimensional problem is transformed into a single dimensional problem at the end of the proof of Theorem A.1 (p.
268 (Dwork et al., 2014)) by considering the one dimensional line from point x into the direction of z, i.e., the line through
points x and x+ z; the one dimensional line maps x to the origin 0 and x+ z to ∥z∥2.M(d) as wells asM(d′) projected
on this line are distributed as

M(d) ∼ µ0 andM(d′) ∼ (1− q)µ0 + qµ1,

where
µ0 ∼ N (0, σ2) and µ1 ∼ N (∥z∥2, σ2).

In (Abadi et al., 2016) as well as in this paper the gradients are clipped (their Lemma 3 uses clipping constant C = 1) and
this implies

∥z∥2 = ∥f(dN )∥2 ≤ C = 1.

Their analysis continues by assuming the worst-case in differential privacy, that is,

µ1 ∼ N (1, σ2).

14This is actually a subtle argument: We do not have fixed constant sample sizes, instead we have probabilistic sample sizes with a
predetermined expectation. The idea is to add each data element to the sample with probability si/N . This means that the sample size is
equal to si in expectation. This allows one to compare two samples that differ in exactly one element dN (as is done in this argument).
If one uses fixed constant sample sizes, then M(d′) = x + (1 − q) · N (0, σ2I) + q · N (f(dN ) − f(dh), σ

2I) for z = f(dN ) and
some h ∈ J . Now ∥f(dN )− f(dh)∥2 ≤ ∥f(dN )∥2 + ∥f(dh)∥2 ≤ 2C = 2 (for C = 1) and we pay a factor 2 penalty. In the f -DP
framework we actually consider the latter and work with fixed (non-probabilistic) constant sample sizes. In this paper and, what should
have been assumed in (Abadi et al., 2016) and is actually implemented in the Opacus library (Opacus), we assume a probabilistic sample
size and safe the factor 2. We notice that even if we aim at a constant sample size sequence with sample sizes s, we can reinterpret the si
as the actual chosen probabilistic sample size with E[si] = s and apply our theory that holds for varying sample size sequences (we need
to formulate an upper bound on smax which holds with probability ’close to 1’ and this will determine θ in Theorem 3.1).
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Notice that the above argument analyses a local mini-batch SGD computation. Rather than using a local mini-batch SGD
computation, can we use clipped SGD iterations which continuously update the local model:

ŵh+1 = ŵh − ηh∇[f(ŵh, ξh)]C .

This should lead to faster convergence to good accuracy compared to a local minibatch computation. However, the above
arguments cannot proceed15 because (in the notation used above where the dh, h ∈ J , are the ξh, h ∈ {0, . . . , si − 1 =
|J | − 1}) selecting sample dN in iteration h does not only influence the update computed in iteration h but also influences
all iterations after h till the end of the round (because f(dN ) updates the local model in iteration h which is used in the
iterations that come after). Hence, the dependency on dN is directly felt by f(dN ) in iteration h and indirectly felt in
the f(dj) that are computed after iteration h. This means that we cannot represent distributionM(d′) as a clean mix of
Gaussian distributions with a mean z, whose norm is bounded by the clipping constant.

The freedom which we do have is replacing the local model by a newly received global model. This is because the updates
f(dh), h ∈ J , computed locally in round i have not yet been transmitted to the server and, hence, have not been aggregated
into the global model that was received. In a way the mechanismM(d) is composed of two (or multiple if more newer and
newer global models are received during the round) sums

M(d) =
∑
h∈J0

f0(dh) +
∑
h∈J1

f1(dh) +N (0, σ2I),

where J = J0 ∪ J1 and J0 represent local gradient computations, shown by f0(.), based on the initial local model ŵ and J1
represent the local gradient computations, shown by f1(.), based on the newly received global model v̂ which replaces ŵ.
As one can verify, the above arguments are still valid for this slight adaptation. As in Lemma 3 in (Abadi et al., 2016) we
can now translate our privacy loss to the 1-dimensional problem defined by µ0 ∼ N (0, C2σ2) and µ1 ∼ N (C,C2σ2) for
∥∇f(., .)∥2 ≤ C as in the proof of Lemma 3 (which after normalization with respect to C gives the formulation of Lemma
3 in (Abadi et al., 2016) for C = 1).

The remainder of the proof of Lemma 3 analyses µ0 and the mix µ = (1−q)µ0+qµ1 leading to bounds for the expectations
(3) and (4) in (Abadi et al., 2016) which only depend on µ0 and µ1. Here, q is the probability of having a special data
sample ξ (written as dN in the arguments above) in the batch. In our algorithm q = si/N . So, we may adopt the statement
of Lemma 3 and conclude for the i-th batch computation

αi(λ) ≤
s2iλ(λ+ 1)

N(N − si)σ2
i

+O

(
s3iλ

3

N3σ3
i

)
.

In order to find an exact expression for the higher order term we look into the details of Lemma 3 of (Abadi et al., 2016). It
computes an upper bound for the binomial tail

λ+1∑
t=3

(
λ+ 1

t

)
Ez∼ν1

[((ν0(z)− ν1(z))/ν1(z))
t], (13)

where

Ez∼ν1 [((ν0(z)− ν1(z))/ν1(z))
t]

≤ (2q)t(t− 1)!!

2(1− q)t−1σt
+

qt

(1− q)tσ2t
+

(2q)t exp((t2 − t)/(2σ2))(σt(t− 1)!! + tt)

2(1− q)t−1σ2t

=
(2q)t(t− 1)!!(1 + exp((t2 − t)/(2σ2)))

2(1− q)t−1σt
+

qt(1 + (1− q)2t exp((t2 − t)/(2σ2))tt)

2(1− q)tσ2t
(14)

Since t ≥ 3, we have the coarse upper bounds

1 ≤ exp((t2 − t)/(2σ2))

exp((32 − 3)/(2σ2))
and 1 ≤ (1− q)2t exp((t2 − t)/(2σ2))tt

(1− q)23 exp((32 − 3)/(2σ2))33
.

15Unless we assume a general upper bound on the norm of the Hessian of the objective function which should be large enough to cover
a wide class of objective functions and small enough in order to be able to derive practical differential privacy guarantees.
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By defining c as 1 plus the maximum of these two bounds,

c = 1 +
max {1, 1/((1− q) · 216)}

exp(3/σ2)
,

we have (14) at most

≤ (2q)t(t− 1)!!c exp((t2 − t)/(2σ2))

2(1− q)t−1σt
+

qtc(1− q)2t exp((t2 − t)/(2σ2))tt

2(1− q)tσ2t
. (15)

Generally (for practical parameter settings as we will find out), q ≤ 1− 1/216 which makes c ≤ 2. In the remainder of this
proof, we use c = 2 and assume q ≤ 215/216. In fact, assume in the statement of the lemma that σ = σi ≥ 216/215 which
together with q = si/N ≤ r0/σi and r0 < 1 implies q ≤ 215/216.

After multiplying (15) with the upper bound for (
λ+ 1

t

)
≤ λ+ 1

λ

λt

t!

and noticing that (t− 1)!!/t! ≤ 1 and tt/t! ≤ et we get the addition of the following two terms

λ+ 1

λ

λt(2q)t exp((t2 − t)/(2σ2))

(1− q)t−1σt
+

λ+ 1

λ

λtqt(1− q)2t exp((t2 − t)/(2σ2))et

(1− q)tσ2t
.

This is equal to

(1− q)
λ+ 1

λ

(
λ2q exp((t− 1)/(2σ2))

(1− q)σ

)t

+(1− q)
λ+ 1

λ

(
λq2 exp(1 + (t− 1)/(2σ2))

(1− q)σ2

)t

. (16)

We notice that by using t ≤ λ+ 1, λ/σ2 ≤ ln(1/(qσ)) (assumption), and q = si,c/Nc ≤ r0/σ we obtain

λ2q exp((t− 1)/(2σ2))

(1− q)σ
≤ λ2q exp(λ/(2σ2))

(1− q)σ
≤ 2

√
λq

(1− q)σ
=

2
√
λr0/σ

σ − r0
= U0(λ)

and

λq2 exp(1 + (t− 1)/(2σ2))

(1− q)σ2
≤ λq2e exp(λ/(2σ2))

(1− q)σ2
≤ 2e

√
λq

(1− q)σ2
=

2e
√

λr0/σ

(σ − r0)σ
= U1(λ).

Together with our assumption on U0(λ) and U1(λ), this means that the binomial tail (13) is upper bounded by the two terms
in (16) after substituting t = 3, with the two terms multiplied by

∞∑
j=0

U0(λ)
j =

1

1− U0(λ)
≤ 1

1− u0
and

∞∑
j=0

U1(λ)
j =

1

1− U1(λ)
≤ 1

1− u1

respectively. For (13) this yields the upper bound

1

1− u0
(1− q)

λ+ 1

λ

(
λ2q exp(1/σ2)

(1− q)σ

)3

+
1

1− u1
(1− q)

λ+ 1

λ

(
λq2 exp(1 + 1/σ2)

(1− q)σ2

)3

≤
(

1

1− u0
23 exp(3/σ2) +

1

1− u1

23 exp(3 + 3/σ2)

σ3

)
· λ

2(λ+ 1)q3

(1− q)2σ3
.

By the definition of r, we obtain the bound

≤ r

r0
· λ

2(1 + λ)q3

(1− q)2σ3
,

which finalizes the proof.
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B.2.2. PROOF OF THEOREM B.2

The proof Theorem B.2 follows the line of thinking in the proof of Theorem 1 in (Abadi et al., 2016). Our theorem applies
to varying sample/batch sizes and for this reason introduces moments Ŝj . Our theorem explicitly defines the constant used
in the lower bound of σ – this is important for proving our second (main) theorem in the next subsection.

Theorem B.2 assumes σ = σi for all rounds i with σ ≥ 216/215; constant r0 ≤ 1/e such that si/N ≤ r0/σ; constant

r = r0 · 23
(

1

1− u0
+

1

1− u1

e3

σ3

)
exp(3/σ2), (17)

where

u0 =
2
√
r0σ

σ − r0
and u1 =

2e
√
r0σ

(σ − r0)σ

are both assumed < 1.

For j = 1, 2, 3 we define16

Ŝj =
1

T

T−1∑
i=0

sji
N(N − si)j−1

with
Ŝ1Ŝ3

Ŝ2
2

≤ ρ,
Ŝ2
1

Ŝ2

≤ ρ̂.

Based on these constants we define

c(x) = min

{√
2rρx+ 1− 1

rρx
,
2

ρ̂x

}
.

Let ϵ = c1T Ŝ
2
1 . We want to prove Algorithm 4 is (ϵ, δ)-differentially private if

σ ≥ 2
√
c0

√
Ŝ2T (ϵ+ ln(1/δ))

ϵ
where c0 = c(c1).

Proof. For j = 1, 2, 3, we define

Sj =

T−1∑
i=0

sji
N(N − si)j−1σj

i

and S′
j =

1

T

T−1∑
i=0

sjiσ
j
i

N(N − si)j−1
.

(Notice that S′
1 ≤ r0.) Translating Lemma B.3 in this notation yields (we will verify the requirement/assumptions of Lemma

B.3 on the fly below)
T−1∑
i=0

αi(λ) ≤ S2λ(λ+ 1) +
r

r0
S3λ

2(λ+ 1).

The composition Theorem 2 in (Abadi et al., 2016) shows that our algorithm for client c is (ϵ, δ)-differentially private for

δ ≥ min
λ

exp

(
T−1∑
i=0

αi(λ)− λϵ

)
,

where T indicates the total number of batch computations and the minimum is over positive integers λ. Similar to their
proof we choose λ such that

S2λ(λ+ 1) +
r

r0
S3λ

2(λ+ 1)− λϵ ≤ −λϵ/2. (18)

This implies that we can choose δ as small as exp(−λϵ/2), i.e., if

δ ≥ exp(−λϵ/2), (19)

16sji denotes the j-th power (si)j .
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then we have (ϵ, δ)-differential privacy. After dividing by the positive integer λ, inequality (18) is equivalent to the inequality

S2(λ+ 1) +
r

r0
S3λ(1 + λ) ≤ ϵ/2,

which is equivalent to

(λ+ 1)

(
1 +

r

r0

S3

S2
λ

)
≤ ϵ

2S2
.

This is in turn implied by
λ+ 1 ≤ c0

ϵ

2S2
(20)

together with

c0
ϵ

2S2

(
1 +

r

r0

S3

S2
c0

ϵ

2S2

)
≤ ϵ

2S2
,

or equivalently,

c0

(
1 +

r

2r0
· c0 ·

S3

S2
2

ϵ

)
≤ 1. (21)

We use
ϵ = c1 · T Ŝ2

1 = c1 · S1S
′
1 (22)

(for constant σi = σ). This translates our requirements (20) and (21) into

λ+ 1 ≤ c0c1
2

S1S
′
1

S2
and (23)

c0

(
1 +

r

2r0
· c0c1

S1S3

S2
2

S′
1

)
≤ 1. (24)

Since we assume
S1S3

S2
2

=
Ŝ1Ŝ3

Ŝ2
2

≤ ρ

and since we know that S′
1 ≤ r0, requirement (24) is implied by

c0(1 +
rρ

2
· c0c1) ≤ 1,

or equivalently

c1 ≤
1− c0
rρ
2 c20

. (25)

Also notice that for constant σi = σ we have S′
1 = S1σ

2/T . Together with

S2
1

S2
=

Ŝ2
1

Ŝ2

T ≤ ρ̂T

we obtain from (23)

λ+ 1 ≤ c0c1
2

S1S
′
1

S2
≤ c0c1

2
ρ̂σ2. (26)

Generally, if

c1 ≤
2

ρ̂c0
, (27)

then (26) implies λ ≤ σ2: Hence, (a) for our choice of u0 and u1 in this theorem, U0(λ) ≤ u0 and U1(λ) ≤ u1 as defined
in Lemma B.3, and (b) the condition λ ≤ σ2

i ln
Nc

si,cσi
is satisfied (by assumption, Nc

si,cσi
≥ 1/r0 ≥ e). This implies that

Lemma B.3 is indeed applicable.
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For the above reasons we strengthen the requirement on ϵ (conditions (25) and (27) with (22)) to

ϵ ≤ min

{
1− c0
rρ
2 c20

,
2

ρ̂c0

}
· S1S

′
1

For constant σi = σ, we have
S1S

′
1 = T Ŝ2

1 ,

hence, we need

ϵ ≤ min

{
1− c0
rρ
2 c20

,
2

ρ̂c0

}
· T Ŝ2

1 (28)

Summarizing (28), (20), and (19) for some positive integer λ proves (ϵ, δ)-differential privacy.

Condition (19) (i.e., exp(−λϵ/2) ≤ δ) is equivalent to

ln(1/δ) ≤ λϵ

2
(29)

If
λ = ⌊c0

ϵ

2S2
⌋ − 1 (30)

is positive, then it satisfies (20) and we may use this λ in (29). This yields the condition

ln(1/δ) ≤
(
⌊c0

ϵ

2S2
⌋ − 1

)
ϵ

2
,

which is implied by

ln(1/δ) ≤
(
c0

ϵ

2S2
− 2

)
ϵ

2
=

c0
4S2

ϵ2 − ϵ.

For constant σi = σ we have S2 = Ŝ2T/σ
2 and the latter inequality is equivalent to

σ ≥ 2
√
c0

√
Ŝ2

√
T (ϵ+ ln(1/δ))

ϵ
. (31)

Summarizing, if (28), (31), and the lambda value (30) is positive, then this shows (ϵ, δ)-differential privacy.

The condition (30) being positive follows from
4S2

c0
≤ ϵ.

Substituting S2 = Ŝ2T/σ
2 yields the equivalent condition

4T Ŝ2

σ2c0
≤ ϵ

or

σ ≥ 2
√
c0

√
Ŝ2

√
Tϵ

ϵ
,

which is implied by (31). Summarizing, if (28) and (31), then this shows (ϵ, δ)-differential privacy. Notice that (31)
corresponds to Theorem 1 in (Abadi et al., 2016) where all si are constant implying

√
Ŝ2 = q/

√
1− q in their notation.

We are interested in a slightly different formulation: Given

c1 = min

{
1− c0
rρ
2 c20

,
2

ρ̂c0

}
what is the maximum possible c0 (which minimizes σ implying more fast convergence to an accurate solution). We need to
satisfy c0 ≤ 2/(ρ̂c1) and

rρ

2
c1c

2
0 + c0 − 1 ≤ 0,
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that is,
(c0 + 1/(rρc1))

2 ≤ 1/
(rρ
2
c1

)
+ 1/(rρc1)

2,

or

c0 ≤
√
1/
(rρ
2
c1

)
+ 1/ (rρc1)

2 − 1/(rρc1) =

√
2rρc1 + 1− 1

rρc1
.

We have

c0 = min

{√
2rρc1 + 1− 1

rρc1
, 2/(ρ̂c1)

}
= c(c1).

This finishes the proof.

B.3. A Simplified Characterization

So far, we have generalized Theorem B.1 in Appendix B in a non-trivial way by analysing increasing sample size sequences,
by making explicit the higher order error term in (Abadi et al., 2016), and by providing a precise functional relationship
among the constants c1 and c2 in Theorem B.1. The resulting Theorem B.2 is still hard to interpret. The next theorem is a
consequence of Theorem B.2 and brings us the interpretation we look for.

Theorem B.4. For sample size sequence {si}T−1
i=0 the total number of local SGD iterations is equal to K =

∑T−1
i=0 si. We

define the mean s̄ and maximum smax and their quotient θ as

s̄ =
1

T

T−1∑
i=0

si =
K

T
, smax = max{s0, . . . , sT−1}, and θ =

smax

s̄
.

We define

h(x) =
(√

1 + (e/x)2 − e/x
)2

, g(x) = min

{
1

ex
, h(x)

}
,

and denote by γ the smallest solution satisfying

γ ≥ 2

1− ᾱ
+

24 · ᾱ
1− ᾱ

(
σ

(1−
√
ᾱ)2

+
1

σ(1− ᾱ)− 2e
√
ᾱ

e3

σ

)
e3/σ

2

with ᾱ =
ϵN

γK
.

If the following requirements are satisfied:

s̄ ≤
g
(√

2(ϵ+ ln(1/δ))/ϵ
)

θ
·N, (32)

ϵ ≤ γh(σ) · K
N

, (33)

ϵ ≥ γθ2 · K
N
· s̄
N

, and (34)

σ ≥
√
2(ϵ+ ln(1/δ))/ϵ, (35)

then Algorithm 4 is (ϵ, δ)-differentially private.

Its proof follows from analysing the requirements stated in Theorem B.2. We will focus on the case where c(x) = 2
ρ̂x , which

turns out to lead to practical parameter settings as discussed in the main body of the paper.

Requirement on r – (38): In Theorem B.2 we use

r = r0 · 23 ·
(

1

1− u0
+

1

1− u1

e3

σ3

)
e3/σ

2

with

u0 =
2
√
r0σ

σ − r0
and u1 =

2e
√
r0σ

(σ − r0)σ
,
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where r0 is such that it satisfies
r0 ≤ 1/e, u0 < 1, and u1 < 1. (36)

In our application of Theorem B.2 we substitute r0 = ασ. This translates the requirements of (36) into

α ≤ 1

eσ
, α < 1, and σ >

2e
√
α

1− α
. (37)

As we will see in our derivation, we will require another lower bound (42) on σ. We will use (42) together with

α ≤ 1

e
√
2(ϵ+ ln(1/δ))/ϵ

, α < 1, and
√
2(ϵ+ ln(1/δ))/ϵ >

2e
√
α

1− α

to imply the needed requirement (37). These new bounds on α are in turn equivalent to

α ≤ g(ϵ, δ) where (38)

g(ϵ, δ) = min


√
ϵ

e
√
2(ϵ+ ln(1/δ))

,

(√
1 +

e2ϵ

2(ϵ+ ln(1/δ))
− e

√
ϵ√

2(ϵ+ ln(1/δ))/ϵ

)2


(notice that this implies α < 1).

Substituting r0 = ασ in the formula for r yields the expression

r = 23 ·
(

σ

(1−
√
α)2

+
1

σ(1− α)− 2e
√
α

e3

σ

)
· e3/σ

2

(1− α)α. (39)

Requirement on si/N – (40): In Theorem B.2 we also require si/N ≤ r0/σ which translates into

si/N ≤ α. (40)

Requirement on σ – (42) and (43): In Theorem B.2 we restrict ourselves to the case where function c(x) attains the
minimum c(x) = 2/(ρ̂x). This happens when

√
2rρx+ 1− 1

rρx
≥ 2

ρ̂x
.

This is equivalent to

x ≥ 2r
ρ

ρ̂2
+

2

ρ̂
. (41)

Notice that in the lower bound for σ in Theorem B.2 we use c0 = c(x) for x = c1, where c1 is implicitly defined by

ϵ = c1T Ŝ
2
1

or equivalently
c1 =

ϵ

T Ŝ2
1

.

To minimize ϵ, we want to minimize c1 = x. That is, we want c1 = x to match the lower bound (41). This lower bound is
smallest if we choose the smallest possible ρ (due to the linear dependency of the lower bound on ρ). Given the constraint
on ρ this means we choose

ρ =
Ŝ1Ŝ3

Ŝ2
2

.

For c1 = x satisfying (41) we have

c0 = c(c1) =
2

ρ̂x
.
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Substituting this in the lower bound for σ attains

σ ≥ 2√
c(c1)

√
Ŝ2T (ϵ+ ln(1/δ))

ϵ
=

√
ρ̂Ŝ2

Ŝ2
1

√
2(ϵ+ ln(1/δ))/ϵ.

In order to yield the best test accuracy we want to choose the smallest possible σ. Hence, we want to minimize the lower
bound for σ and therefore choose the smallest ρ̂ given its constraints, i.e.,

ρ̂ =
Ŝ2
1

Ŝ2

.

This gives
σ ≥

√
2(ϵ+ ln(1/δ))/ϵ. (42)

Notice that this lower bound implies σ ≥ 216/215 and for this reason we do not state this as an extra requirement.

Our expressions for ρ, ρ̂, and c1 with x = c1 shows that lower bound (41) holds if and only if

ϵ ≥

(
2r

Ŝ3

Ŝ1

+ 2Ŝ2

)
T. (43)

Requirement implying (43): The definition of moments Ŝj imply

Ŝ1 =
K

TN

and, since si/N ≤ α < 1,
Ŝj ≤ αj/(1− α)j−1.

Lower bound (43) on ϵ is therefore implied by

ϵ ≥ 2r
α3

(1− α)2
T 2N

K
+ 2

α2

1− α
T. (44)

We substitute
T = β

K

N
(45)

in (44) which yields the requirement

ϵ
N

K
≥ 2r

α(1− α)2
(α2β)2 +

2

1− α
(α2β). (46)

This inequality is implied by the combination of the following two inequalities:

α2β ≤ ϵN

γK
(47)

and
1 ≥ 2r

α(1− α)2
ϵN

K

1

γ2
+

2

1− α

1

γ
. (48)

Inequality (48) is equivalent to

γ ≥ 2r

α(1− α)2
ϵN

γK
+

2

1− α
. (49)

This implies

γ ≥ 2

1− α
≥ 2.
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Also notice that
1

β
=

K

TN
= Ŝ1 ≤ α

from which we obtain
1 ≤ αβ.

Let us define

ᾱ =
ϵN

γK
. (50)

Inequalities γ ≥ 2 and 1 ≤ αβ together with (47) and the definition of ᾱ imply

α ≤ α2β ≤ ϵN

γK
= ᾱ ≤ ϵN

2K
. (51)

We will require
ᾱ < 1 (52)

and also σ(1− ᾱ)− 2e
√
ᾱ > 0 i.e,

σ >
2e
√
ᾱ

1− ᾱ
. (53)

Bounds (52) and (53) are equivalent to

ᾱ ≤ h(σ) where h(σ) =
(√

1 + (e/σ)2 − e/σ
)2

. (54)

With condition (54) in place we may derive the upper bound

2r

α(1− α)2

=
24

1− α

(
σ

(1−
√
α)2

+
1

σ(1− α)− 2e
√
α

e3

σ

)
e3/σ

2

≤ 24

1− ᾱ

(
σ

(1−
√
ᾱ)2

+
1

σ(1− ᾱ)− 2e
√
ᾱ

e3

σ

)
e3/σ

2

because all denominators are decreasing functions in α and remain positive for α ≤ ᾱ. Similarly,

2

1− α
≤ 2

1− ᾱ
.

These two upper bounds combined with (50) show that (49) is implied by choosing

γ = γ(σ, ϵN/K),

where γ(σ, ϵN/K) is defined as the smallest solution of γ satisfying

γ ≥ 2

1− ᾱ
+ (55)

24 · ᾱ
1− ᾱ

(
σ

(1−
√
ᾱ)2

+
1

σ(1− ᾱ)− 2e
√
ᾱ

e3

σ

)
e3/σ

2

,

where ᾱ = (ϵN/K)/γ. The smallest solution γ will meet (55) with equality. For this reason the minimal solution γ will be
at most the right hand side of (55) where γ is replaced by its lower bound 2; this is allowed because this increases ᾱ to the
upper bound in (51) and we know that the right hand side of (55) increases in ᾱ up to the upper bound in (51) if the upper
bound satisfies

ϵN

2K
≤ h(σ).
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This makes requirement (54) slightly stronger – but in practice this stronger requirement is already satisfied because K is
several epochs of N iterations making ϵN

2K ≪ 1 while σ ≫ 1 for small ϵ implying that h(σ) is close to 1.

Notice that γ = 2 +O(ᾱ), hence, for small ᾱ we have γ ≈ 2. A more precise asymptotic analysis reveals

γ = 2 + (2 + 24 ·
(
σ +

e3

σ2

)
e3/σ

2

)ᾱ+O(ᾱ3/2).

Relatively large ᾱ closer to 1 will yield γ ≫ 2.

Summarizing
{(45), (47), (50), (54), (55)} ⇒ (43).

Combining all requirements – resulting in (57), (58), and (42), or equivalently (60), (61), and (42): The combination of
requirements (45) and (47) is equivalent to

α ≤
√

ϵ

γT
(56)

(notice that T and β are not involved in any of the other requirements including those discussed earlier in this discussion,
hence, we can discard (45) and substitute this in (47)). The combination of (50), (54), and (55) is equivalent to

ϵN

γK
≤ h(σ) with γ = γ

(
σ,

ϵN

K

)
(57)

(for the definition of h(.) see (54) and for γ(., .) see (55)).

We may now combine (56), (38), and (40) into a single requirement

si/N ≤ min

{
g(ϵ, δ),

√
ϵ

γT

}
(58)

(for the definition of g(., .) see (38)). This shows that (57), (58), and (42) (we remind the reader that the last condition is the
lower bound on σ ≥

√
2(ϵ+ ln(1/δ))/ϵ) implies (ϵ, δ)-DP by Theorem B.2.

Let us rewrite these conditions. We introduce the mean s̄ of all si defined by

s̄ =
1

T

T−1∑
i=0

si =
K

T

and we introduce the maximum smax of all si defined by

smax = max{s0, . . . , sT−1}.

We define θ as the fraction
θ =

smax

s̄
. (59)

This notation allows us to rewrite

si/N ≤
√

ϵ

γT

from (58) as

γ
K

N

s̄

N
θ2 ≤ ϵ.

From this we obtain that the requirements (57) and (58) are equivalent to

γ

(
σ,

ϵN

K

)
· K
N

s̄

N
θ2 ≤ ϵ ≤ γ

(
σ,

ϵN

K

)
· h(σ)K

N
(60)

and
θs̄ ≤ g(ϵ, δ)N. (61)

This alternative description shows that (60), (61), and (42) with definitions for h(.), γ(., .), g(., .), and θ in (54), (55), (38),
and (59) implies (ϵ, δ)-DP. This proves Theorem B.4 (after a slight rewrite of the definitions of functions h(.) and g(., .)).
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B.4. Proof of the Main Theorem

Theorem B.4 can already be used to a-priori set hyperparameters given DP and accuracy targets. Still, as discussed below, by
making slight approximations (leading to slightly stronger constraints) we obtain the easy to interpret Theorem 3.1 discussed
in Section 3.

We set σ as large as possible with respect to the accuracy we wish to have. Given this σ we want to max out on our privacy
budget. That is, we satisfy (35) with equality,

σ =

√
2(ϵ+ ln(1/δ))

ϵ
. (62)

We discuss (62) with constraints (32), (33), and (34) below:

Replacing (32) and (33): In practice, we need a sufficiently strong DP guarantee, hence, δ ≤ 1/N and ϵ is small enough,
typically ≤ 0.5. This means that we will stretch σ to at least

√
2 + 4 lnN . A local data set of size N = 10000 requires

σ ≥ 6.23; a local data set of size N = 100000 requires σ ≥ 6.93. For such σ ≥ 6 we have h(σ) ≥ h(6) = 0.42 (since
h(σ) is increasing in σ). (For reference, h(10) = 0.58, and for σ ≫ 1 we have h(σ) ≈ 1.) From (62) we infer that
g(
√

2(ϵ+ ln(1/δ))/ϵ) = g(σ) = min{1/(eσ), h(σ)}. One can verify that h(σ) − 1/(eσ) is positive and increasing for
σ ≥ 2.5, hence, g(σ) = 1/(eσ) for σ ≥ 6. This reduces requirement (32) to s̄ ≤ N/(eσθ) and requirement (33) to
ϵ ≤ 0.42 · γK/N . Notice that (34) in combination with ϵ ≤ γθ

eσK/N implies condition s̄ ≤ N/(eσθ). This implies that (32)
and (33) are satisfied for ϵ ≤ min{0.42 · γ, γθ/(eσ)} · KN or, equivalently, K ≥ ϵ ·max{2.4/γ, eσ/(γθ)} epochs of size N .
If θ ≤ 6.85, then σ ≥ 6 ≥ 0.88 · θ = 2.4 · θ/e, hence, max{2.4/γ, eσ/(γθ)} = eσ/(γθ) and this reduces the condition on
K to

K ≥ ϵσ · e

γθ
=
√
2ϵ(ϵ+ ln(1/δ)) · e/(γθ) epochs of size N,

where the equality follows from (62). In practical settings, K consists of multiple (think 50 or 100s of) epochs (of size
N ) computation and this is generally true. We conclude that (32) and (33) are automatically satisfied by (34) for general
practical settings with δ ≤ 1/N , ϵ typically smaller than 0.5, N ≥ 10000, θ ≤ 6.85, and K ≥

√
2ϵ(ϵ+ ln(1/δ)) · e/(γθ)

epochs, i.e.,
k ≥

√
2ϵ(ϵ+ ln(1/δ)) · e/(γθ),

where k = K/N as defined in Theorem 3.1. By using ϵ ≤ 0.5, we can further weaken this condition to k ≥√
1/2 + ln(1/δ)) · e/(γθ), or equivalently,

(γθ/e)2k2 ≥ 1/2 + ln(1/δ).

By using γθ ≥ 2, we obtain condition (7) in Theorem 3.1.

Remaining constraint (34): By using (62), (34) can be equivalently recast as an upper bound on σ,

σ ≤

√
2(ϵ+ ln(1/δ))

γθ2 · (K/N) · (s̄/N)
.

Here, γ is a function of σ because γ depends on ϵ in ᾱ which is a function of σ through (62). However, the definition of γ
shows that for small ϵ, γ is close to 2 and this gives

√
ln(1/δ)/(θ2 · (K/N) · (s̄/N)) as a good approximation of the upper

bound. Substituting s̄ = K/T yields

σ ≤ N
√
T

K

√
2(ϵ+ ln(1/δ))

γθ2
. (63)

For γ ≈ 2 and θ = 1 (constant sample size), this upper bound compares to taking c2z ≈
√
2 in (11); we go beyond the

analysis presented in (Abadi et al., 2016) in a non-trivial way.

If N
√
T/K is large enough, larger than the relatively small σ

√
θ2(γ/2)/(ϵ+ ln(1/δ)), then upper bound (63) is satisfied.

That is, for given K and N , we need T to be large enough, or equivalently the mean sample/mini-batch size s̄ = K/T small
enough. Squaring both sides of (63) and moving terms yields the equivalent lower bound

T ≥ γ

2

σ2θ2

ϵ+ ln(1/δ)
· (K/N)2,
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which after substituting (62) gives

T ≥ γθ2

ϵ
· (K/N)2,

which is condition (8) in Theorem 3.1. In other words T is at least a factor γθ2/ϵ larger than the square of the overall
amount of local SGD computations measured in epochs (of size N ). Notice that we have a lower bound on T rather than an
upper bound as in (12) from the theorem presented in (Abadi et al., 2016).

Remark Increasing Sample Size Sequence: We notice that polynomial increasing sample size sequences si ∼ qNip

have s̄ ≈ [qNT p+1/(p + 1)]/T and smax = qNT p, hence, θ = 1 + p. This shows that our theory covers e.g. linear
increasing sample size sequences as discussed in (Nguyen et al., 2021), where is explained how this implies reduced
round communication – another metric which one may trade-off against accuracy and total local number K of gradient
computations.

Remark Reusing the Local Data Set: We stress that T cannot be chosen arbitrarily large in Theorem 3.1 as it is restricted
by K = kN . Also k cannot grow arbitrarily large since kN = K ≥ T ≥ γθ2

ϵ · k
2, hence, k ≤ ϵ

γθ2 ·N . This upper bound
on k does impose a constraint after which (ϵ, δ)-DP cannot be guaranteed – so, K and, hence, T cannot increase indefinitely
without violating the privacy budget.17 Here we notice that repeated use of the same data set over multiple learning problems
(one after another) is allowed as long as the number of epochs of gradient computing satisfies the upper bound k ≤ ϵ

γθ2 ·N .
Hence, the larger N the more collaborative learning tasks the client can participate in. For typical values ϵ = 0.2, γθ2 ≈ 2,
and a data set of size N = 10000 we have k ≤ 1000, which may accommodate about 10-20 learning tasks.

Remark Choosing ϵ: We notice that, since T ≤ K = kN (this corresponds to the smallest possible mini-batch size s = 1),
lower bound (8) implies kN ≥ k2/ϵ, hence, ϵ ≥ k/N and we must have ϵ = Ω(1/N). Therefore, the smallest possible ϵ is
Θ(1/N) and leads to σ = Θ(

√
N lnN) according to (6). We notice that the theory in (Dinur & Nissim, 2003) for a similar

but not exactly the same setting of DP-SGD strongly suggests for DP-SGD that unless the added Gaussian perturbation is
as large as

√
N almost the whole database can be recovered by a polynomial (in N ) adversary; σ = Θ(

√
N lnN) seems

needed if one wants cryptographical strong security. However, in general, σ = Θ(
√
N lnN) is too large for sufficient

accuracy. In practice we choose ϵ = θ(1):

In order to attain an accuracy comparable to the non-DP setting where no noise is added, the papers cited in Section 2.1
generally require large ϵ (such that σ can be small enough) – which gives a weak privacy posture (a weak bound on the
privacy loss). For example, when considering LDP (see Section 2.1), 10% deduction in accuracy yields only ϵ = 50 in
(Bhowmick et al., 2019) and ϵ = 10.7 in (Naseri et al., 2021), while (Truex et al., 2019; Hao et al., 2020) show solutions
for a much lower ϵ = 0.5. Similarly, when considering CDP (see Section 2.1), in order to remain close to the accuracy of
the non-DP setting (Naseri et al., 2021) requires ϵ = 8.1, (Geyer et al., 2018) requires ϵ = 8, and (McMahan et al., 2018)
requires ϵ = 2.038.

The theory presented in this paper allows relatively small Gaussian noise for small ϵ: We only need to satisfy the main
equation (6). For example, in Section 4 simulations for the LIBSVM data set show (ϵ = 0.05, δ = 1/N)-DP is possible
while achieving good accuracy with σ ≈ 20. Such small ϵ is a significant improvement over existing literature.

C. Tight Analysis using Gaussian DP
(Dong et al., 2021) explain an elegant alternative DP formulation based on hypothesis testing. From the attacker’s perspective,
it is natural to formulate the problem of distinguishing two neighboring data sets d and d′ based on the output of a DP
mechanismM as a hypothesis testing problem:

H0 : the underlying data set is d versus H1 : the underlying data set is d′.

We define the Type I and Type II errors by

αϕ = Eo∼M(d)[ϕ(o)] and βϕ = 1− Eo∼M(d′)[ϕ(o)],

17We just derived that K = kN ≤ ϵ
γθ2

·N2. And we notice that besides the upper bound T ≤ K ≤ ϵ
γθ2

·N2, we can also directly

transform condition T ≥ γθ2

ϵ
· k2 into T ≤ ϵ

γθ2
· (N/s̄)2 by substituting k = s̄T/N and rearranging terms.
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where ϕ in [0, 1] denotes the rejection rule which takes the output of the DP mechanism as input. We flip a coin and reject
the null hypothesis with probability ϕ. The optimal trade-off between Type I and Type II errors is given by the trade-off
function

T (M(d),M(d′))(α) = inf
ϕ
{βϕ : αϕ ≤ α},

for α ∈ [0, 1], where the infimum is taken over all measurable rejection rules ϕ. If the two hypothesis are fully indistinguish-
able, then this leads to the trade-off function 1− α. We say a function f ∈ [0, 1]→ [0, 1] is a trade-off function if and only
if it is convex, continuous, non-increasing, and f(x) ≤ 1− x for x ∈ [0, 1]. We define a mechanismM to be f -DP if

T (M(d),M(d′)) ≥ f

for all neighboring d and d′. Proposition 2.5 in (Dong et al., 2021) is an adaptation of a result in (Wasserman & Zhou, 2010)
and states that a mechanism is (ϵ, δ)-DP if and only if the mechanism is fϵ,δ-DP, where

fϵ,δ(α) = max{0, 1− δ − eϵα, (1− δ − α)e−ϵ}.

We see that f -DP has the (ϵ, δ)-DP formulation as a special case. It turns out that the DP-SGD algorithm can be tightly
analysed by using f -DP.

Gaussian DP: In order to proceed (Dong et al., 2021) first defines Gaussian DP as another special case of f -DP as follows:
We define the trade-off function

Gµ(α) = T (N (0, 1),N (µ, 1))(α) = Φ(Φ−1(1− α)− µ),

where Φ is the standard normal cumulative distribution of N (0, 1). We define a mechanism to be µ-Gaussian DP if it is
Gµ-DP. Corollary 2.13 in (Dong et al., 2021) shows that a mechanism is µ-Gaussian DP if and only if it is (ϵ, δ(ϵ))-DP for
all ϵ ≥ 0, where

δ(ϵ) = Φ(− ϵ

µ
+

µ

2
)− eϵΦ(− ϵ

µ
− µ

2
). (64)

Subsampling: Besides implementing Gaussian noise, DP-SGD also uses sub-sampling: For a data set d of N samples,
Samples(d) selects a subset of size s from d uniformly at random. We define convex combinations

fp(α) = pf(α) + (1− p)(1− α)

with corresponding p-sampling operator
Cp(f) = min{fp, f−1

p }∗∗,

where the conjugate g∗ of a function g is defined as

g∗(y) = sup
x
{yx− g(x)}.

Theorem 4.2 in (Dong et al., 2021) shows that if a mechanismM on data sets of size N is f -DP, then the subsampled
mechanismM◦ Samples is Cs/N (f)-DP.

Composition: The tensor product f ⊗ g for trade-off functions f = T (P,Q) and g = T (P ′, Q′) is well-defined by

f ⊗ g = T (P × P ′, Q×Q′).

Let yi ←Mi(aux, d) with aux = (y1, . . . , yi−1). Theorem 3.2 in (Dong et al., 2021) shows that ifMi(aux, .) is f -DP
for all aux, then the composed mechanismM, which appliesMi in sequential order from i = 1 to i = T , is f⊗T -DP.

Tight Analysis DP-SGD: We are now able to formulate the differential privacy guarantee of DP-SGD since it is a
composition of subsampled Gaussian DP mechanisms. Theorem 5.1 in (Dong et al., 2021) states that DP-SGD in Algorithm
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1 is18

Cs/N (Gσ−1)⊗T -DP.

Since each of the theorems and results from (Dong et al., 2021) enumerated above are exact, we have a tight analysis.

Our Goal: We want to understand the behavior of the DP guarantee in terms of s, N , T , and σ. Our goal is to have an
easy interpretation of the DP guarantee so that we can select “good” parameters s, N , T , and σ a-priori; good in terms of
achieving at least our target accuracy without depleting our privacy budget. If we know how the differential privacy budget
is being depleted over DP-SGD iterations, then we can optimize parameter settings in order to attain best performance, that
is, best accuracy of the final global model (the most important target when we work with machine learning modelling).
According to our best knowledge, all the current-state-of-the art privacy accountants do not allow us to achieve this goal
because they are only privacy loss accountants and do not offer ahead-planning. It is not sufficient to only rely on a
differential privacy accountant (see e.g., (Zhu et al., 2021) as follow-up work of (Dong et al., 2021)) for a client to understand
when to stop helping the server to learn a global model.

When talking about accuracy, we mean how much loss in prediction/test accuracy is sacrificed by fixing a σ (and clipping
constant C). Our theory maps σ directly to an (ϵ, δ)-DP guarantee independent of the number of rounds T . This allows use
to characterize the trade-off between accuracy and privacy budget. All the current-state-of-the art privacy loss frameworks
do not offer this property.

We notice that (Dong et al., 2021) makes an effort to interpret the Cs/N (Gσ−1)⊗T -DP guarantee. Their Corollary 5.6
provides a precise expression based on integrals, themselves again depending on p = s/N and µ = σ−1 in our notation.
This still does not lead to the intuition we seek as we cannot extract how to select parameters σ, s and T given a data set of
size N , given a privacy budget, and given a utility that we wish to achieve. We further explain this point in next paragraphs.

In what follows, we seek a relationship between σ, s, T , ϵ, δ, and N for Gaussian DP based on Corollary 5.4 in (Dong et al.,
2021). Corollary 5.4 in (Dong et al., 2021) provides an asymptotic analysis which is a step forward to the kind of easy to
understand interpretation we seek for: It states that if both T →∞ and N →∞ such that s

√
T/N → c for some constant

c > 0 (and where s is a function of N that may tend to∞ as well), then the DP-SGD algorithm is µ-Gaussian DP for

µ = c · τ−1 with τ−1 =
√
2 ·
√

eσ−2Φ(3σ−1/2) + 3Φ(−σ−1/2)− 2. (65)

In Section C.1 we show that τ−1 = σ−1 + O(σ−2) and we show that for µ ≤ ϵ ≤ 1, µ-Gaussian DP translates to the
DP-SGD algorithm being (ϵ, δ)-DP for δ ≪ ϵ≪ 1 if

τ ≈
(c/2)

√
2(ln(1/δ) + ln(ϵ)−O(ln ln(1/δ)))

ϵ
with s

√
T/N → c.

We see a similar s
√
T/N dependency in Theorem B.1 by (Abadi et al., 2016). The difference is that Theorem B.1 holds in

a non-asymptotic setting. That is, T and N do not need to tend to∞ whereas the expression above does require taking
such a limit. Of course, one can analyse the convergence rate of achieving the limit µ given T and N tending to infinity.
When doing such an analysis one may find expressions of Gaussian DP guarantees as a function of T and N that hold for all
concrete values of T and N . This may lead to results that strengthen our Theorem B.1 (we leave this as an open problem). It
is clear that the above asymptotic result is still insufficient for our purpose: How do we a-priori select concrete parameters σ,
s, and T given concrete parameters for N , a given privacy budget and utility that we wish to achieve?

In this paper we decided to generalize the proof method of Theorem B.1 rather than working with the complex integrals that
provide the exact characterization of f -DP for the DP-SGD algorithm as stated above. This approach allows us to obtain
the non-asymptotic result of Theorem 3.1 which shows into large extent the independence of T , which is not immediately
understood from Theorem B.1 and the corollary discussed above. Section C.2 shows a first result on the tightness of our
Theorem 3.1. The advantage of our result is that it is easy to interpret and we do not need to fully rely on an accountant
method to keep track of spent privacy budget while participating in learning a global model based on local data.

18Their DP-SGD algorithm uses noise N (0, (2C)2σ2I) compared to N (0, C2σ2I) in our version of the DP-SGD algorithm. This is
related to the earlier footnote on probabilistic versus constant sample sizes. The analysis in the f -DP framework normalizes with respect
to 2C, while we normalize with respect to C. The end result is that for fixed σ the proven bounds in the f -DP framework also hold for
this paper. (Thus we do not need to compensate for a factor 2 and use σ/2 in the f -DP framework in order to compare with our DP-SGD
parameter setting.)
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C.1. Translation to (ϵ, δ)-DP

We first observe that by using ex = 1+ x+O(x2) and Φ(x) = 1
2 + e−x2/2

√
2π

(x+O(x3)) = 1
2 + x√

2π
+O(x3), a first order

approximation of τ−1 is equal to σ−1 +O(σ−2) (hence, τ−1 ≈ σ−1 for large σ).

For x ≥ 0, we have the approximation

Φ(−x) = e−x2/2

√
2π

(
1

x
− 1

x3
+O(

1

x5
)

)
.

Let y ≤ x. Together with −(x− y)2/2 = 2xy − (x+ y)2/2 we derive

Φ(−x+ y)− e2xyΦ(−x− y) =
e−(x−y)2/2

√
2π

(
1

x− y
− 1

(x− y)3
+O(

1

(x− y)5
)

−e−(x−y)2/2

√
2π

(
1

x+ y
− 1

(x+ y)3
+O(

1

(x+ y)5
))

=
e−(x−y)2/2

√
2π

(
2y

x2 − y2
− 6yx2 + 2y3

(x2 − y2)3
+O(

1

x5
))

=
e−x2(1−y/x)2/2

√
2π

(
2y

x2(1− (y/x)2)
+O(

y

x4
+

1

x5
))

If we assume
µ ≤ ϵ ≤ 1,

then (µ/2)/(ϵ/µ) = µ2/(2ϵ) ≤ ϵ/2 ≤ 1, ϵ/µ ≥ 1, and ϵ ≤ 1. We can use the above formulas and approximate (64) as
follows:

δ = Φ(− ϵ

µ
+

µ

2
)− eϵΦ(− ϵ

µ
− µ

2
)

=
e−(ϵ/µ)2(1−µ2/(2ϵ))2/2

√
2π

(
µ3

ϵ2(1− (µ2/(2ϵ))2)
+O(

µ5

ϵ5
)

)
.

This gives

1/µ =

√
2(ln(1/δ) + ln( µ3

√
2π(ϵ2−µ4/4)

+O((µϵ )
5)))

ϵ− µ2/2
,

hence,

τ =
(c/2)

√
2(ln(1/δ) + ln( µ3

√
2π(ϵ2−µ4/4)

+O((µϵ )
5)))

ϵ− µ2/2
with s

√
T/N → c and τ−1 = σ−1 +O(σ−2).

For small ϵ, we can approximate τ as

τ ≈
c ·
√
2(ln(1/δ) + ln( ϵ√

2π
(µϵ )

3 +O((µϵ )
5)))

ϵ
.

Since cτ−1 = µ ≤ ϵ, we may write µ = ϵ/b for some b ≥ 1. Notice that c/ϵ = τ/b. This leads to the approximation

b ≈

√
2(ln(1/δ) + ln(

ϵ√
2π

1

b3
+O(

1

b5
))).

For a concrete choice of N , we select in practice by default δ = 1/N and N = Ω(1/ϵ), that is, ϵ = Ω(1/N) (also notice
that good accuracy can only be achieved for σ small enough, that is, ϵ is generally orders of magnitude larger than 1/N ). For
this reason, we assume ϵ≫ δ (we fix ϵ and δ, i.e., we do not choose δ as a function of N , after which take the limit N →∞;
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notice that this is only a theoretical analysis in an attempt to understand the relationship between various parameters). Then
substituting

√
2 ln(1/δ) for b at the right hand side yields

b ≈
√
2(ln(1/δ) + ln(ϵ)−O(ln ln(1/δ))).

Substituting back in the expression for τ proves for δ ≪ ϵ≪ 1,

τ ≈
c
√
2(ln(1/δ) + ln(ϵ)−O(ln ln(1/δ)))

ϵ
with s

√
T/N → c and τ−1 = σ−1 +O(σ−2).

C.2. Asymptotic Tightness of Theorem 3.1

We consider the special case where T meets its lower bound: T = γθ2

ϵ · k
2 (notice that our experiments and understanding

show that this is a good setting for best accuracy). Let

c =

√
ϵ

γθ2
=

k√
T

=
K√
TN

=
s
√
T

N
,

where we consider a constant step size s (hence, θ = 1). Substituting this in the final formula for τ of Section C.1 yields for
ϵ≫ δ

τ ≈

√
ln(1/δ) + ln(ϵ)−O(ln ln(1/δ))

γϵ
.

Here, τ ≈ σ for σ ≫ 1 and we see that compared to Theorem 3.1 this formula attains a factor
√
2γ ≈ 2 smaller σ for the

same (ϵ, δ). This shows that in this asymptotic setting for N → ∞, T → ∞, ϵ ≫ δ, and σ ≫ 1, Theorem 3.1 is up to a
factor

√
2γ tight. In other words, the formula in Theorem 3.1 pays a factor in tightness in order to hold for general concrete

parameter settings (not just the asymptotic setting).

The factor
√
2γ seems large. However, if the lower bound on T can be tightened to T ≥ θ2

2ϵ ·k
2, then the constant c above can

be increased to c =
√
2ϵ/θ2 leading to a formula for τ that matches the formula for σ in Theorem 3.1 implying that it is tight

in the asymptotic setting. In other words, rather than expecting to be able to lower the constant 2 in σ =
√

2(ϵ+ ln(1/δ))/ϵ,
we can focus on how much the lower bound of T can be reduced by a small factor (notice that the derivations in Theorem
B.4 that lead to this lower bound may be tightened up). We expect the bound σ ≥

√
2(ϵ+ ln(1/δ))/ϵ to be quite tight,

while the lower bound T ≥ Tmin = γθ2

ϵ ·k
2 can at most be reduced by a factor 2γ to T ≥ Tmin asym = θ2

2ϵ ·k
2. For smaller

T < Tmin asym, the asymptotic setting for N →∞, T →∞, ϵ≫ δ, and σ ≫ 1 contradicts the tightness of the asymptotic
result (65) of the f -DP framework. This proves Theorem 3.2. We notice that this is also (unsurprisingly) confirmed by
experiments in Appendix D.4 where we implement the f -DP accountant in order to compute which ϵ is actually being
achieved.

Remark on Choosing a Larger T : Theorem 3.2 shows that in Theorem 3.1 T ’s required lower bound γθ2k2/ϵ cannot
be made smaller by more than a constant factor 2γ ≈ 4 (otherwise, this conflicts with an asymptotical result proved by
the f -DP framework). This shows that choosing T equal to the lower bound γθ2k2/ϵ is close to tight in order to achieve
(ϵ, δ)-DP.

Of course, larger T also satisfy lower bound (7) implying the same (ϵ, δ)-DP guarantee. We notice that a larger T can meet
γθ2 · k2/ϵ′ for a smaller ϵ′ leading to a close to tight (ϵ′, δ)-DP guarantee if we choose a larger σ, which can be done if this
still leads to sufficient accuracy. Intuitively, a T larger than the lower bound γθ2k2/ϵ invests in the potential of improved
differential privacy (i.e., ϵ′ ≤ ϵ) which we do not need if we only require the (ϵ, δ)-DP guarantee. Better is to sacrifice this
potential and meet the lower bound so that accuracy of the final global model is optimized. Since the lower bound can
at most be a constant factor 2γ ≈ 4 smaller, we cannot improve the accuracy much more by reducing T further without
violating the (ϵ, δ)-DP guarantee19.

19Notice that, especially for non-convex problems, T should also not be too small since we want a large enough number of rounds for
updating the global model regulary for convergence.
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C.3. Interpreting Theorem 3.1 in the f -DP Framework

As a theoretical consequence (side result), for fixed k, we formulate (ϵ, δ)-DP guarantees for varying ϵ which can be used to
show f -DP for a (non-trivial) trade-off function f that depends on a target ϵ and δ but does not depend on the choice of T in
the range γθ2k2/ϵ ≤ T ≤ K = kN (where sT = K = kN ):

In the f -DP framework, if a mechanism is f -DP, then it is (ϵ, δ)-DP for all (ϵ, δ) for which f ≥ fϵ,δ. When considering
DP-SGD for parameters σ and T and the other hyper parameters fixed, there exists some function hσ,T such that DP-SGD
is f -DP if and only if hσ,T ≥ f . This function implies (ϵ, δ)-DP for all hσ,T ≥ fϵ,δ. Conversely, if we want to realize
(ϵ, δ)-DP for some target privacy budget defined by (ϵ, δ), then we need to choose σ and T such that hσ,T ≥ fϵ,δ .

We notice that Theorem 3.1 can be cast in the f -DP framework as it allows us to formulate an appropriate (non-tight) ĥσ,T

for which DP-SGD is ĥσ,T -DP as follows: We first notice that by the definition of hσ,T we have

hσ,T ≥ ĥσ,T .

By fixing σ and T , we may freely choose (ϵ, δ) as long as the conditions of Theorem 3.1 are satisfied: (ϵ, δ) ∈ H(σ, T ) with

H(σ, T ) =

(ϵ, δ) :

σ ≥
√

2(ϵ+ ln(1/δ))/ϵ
δ ≤ 1/N
ϵ < 0.5

k ≥
√
2ϵ ln(1/δ) · e/(γ(σ, ϵ, k) · θ)
T ≥ γ(σ, ϵ, k) · θ2k2/ϵ

 ,

where γ is a function of σ, ϵ and k = K/N . Hyper parameters K and N (and, therefore also k) are fixed. For a given T ,
we consider a constant sample size s = K/T from round to round, hence, we use θ = 1 in the definition ofH(σ, T ). By
defining

ĥσ,T (α) = sup
(ϵ,δ)∈H(σ,T )

fϵ,δ(α),

we have that DP-SGD is ĥσ,T -DP.

Now consider a target epsilon ϵ = ϵtarget and define a new set

G(σ, ϵtarget) =

(ϵ, δ) :

σ ≥
√

2(ϵ+ ln(1/δ))/ϵ
δ ≤ 1/N
ϵ < 0.5

k ≥
√

2ϵ ln(1/δ) · e/(γ(σ, ϵ, k) · θ)
ϵ ≥ ϵtarget

 .

Notice that G(σ, ϵtarget) is independent of T , but does satisfy the property

G(σ, ϵtarget) ⊆ H(σ, T ) for T ≥ γθ2k2/ϵtarget.

Therefore,
gσ,ϵlow(α) = sup

(ϵ,δ)∈G(σ,ϵtarget)

fϵ,δ(α),

is also independent of T while it satisfies

ĥσ,T ≥ gσ,ϵtarget
for T ≥ γθ2k2/ϵtarget.

Together with hσ,T ≥ ĥσ,T we conclude

hσ,T ≥ gσ,ϵtarget
for T ≥ γθ2k2/ϵtarget.

This shows how Theorem 3.1 translates to the f -DP framework in that as long as the number of rounds is large enough, that
is, K ≥ T ≥ γθ2k2/ϵtarget, we have that there always remains some f -DP privacy guarantee given by gσ,ϵtarget . Notice
that gσ,ϵtarget is independent of T . So, even in the limit for larger T , not all of the privacy budget is being depleted. For
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larger T , fσ,T remains at least gσ,ϵtarget
. Since the f -DP framework and its resulting DP accountant provide a tight analysis,

this shows that an increasing number T of rounds revealing more and more local updates does not linearly increase the
privacy leakage! Instead, a larger T gives rise to more updates that each leak privacy and gives rise to subsampling of
smaller mini-batches which amplifies the differential privacy guarantee more, hence, less leakage per round. The total
resulting leakage remains bounded in that we can always guarantee gσ,ϵtarget

-DP (even for larger T ). This implies that the
tight f -DP based privacy accountant will have a limit (upper bound) on its reported privacy leakage for increasing T (≤ K).

D. Experiments
We provide experiments to support our theoretical findings, i.e., convergence of our proposed asynchronous distributed
learning framework with differential privacy (DP) to a sufficiently accurate solution. We cover strongly convex, plain convex
and non-convex objective functions over iid local data sets.

We introduce our experimental set up in Section D.1. Section D.2 provides utility graphs for different data sets and objective
functions. A utility graph helps choosing the maximum possible noise σ, in relation to the value of the clipping constant C,
for which decent accuracy can be achieved. Section D.3 provides detailed experiments for our asynchronous differential
privacy SGD framework (asynchronous DP-SGD) with different types of objective functions (i.e., strongly convex, plain
convex and non-convex objective functions), different types of constant sample size sequences and different levels of privacy
guarantees (i.e., different privacy budgets ϵ).

All our experiments are conducted on LIBSVM (Chang & Lin, 2011)1 , MNIST (LeCun & Cortes, 2010) 2, and CIFAR10 3

data sets.

D.1. Experiment settings

Simulation environment. For simulating the asynchronous DP-SGD framework, we use multiple threads where each thread
represents one compute node joining the training process. The experiments are conducted on Linux-64bit OS, with 16 cpu
processors, and 32Gb RAM.

Objective functions. Equation (66) defines the plain convex logistic regression problem. The weight vector w and the bias
value b of the logistic function can be learned by minimizing the log-likelihood function J :

J = −
N∑
i=1

[yi · log(σ̄i) + (1− yi) · log(1− σ̄i)], (plain convex) (66)

where N is the number of training samples (xi, yi) with yi ∈ {0, 1} and σ̄i is defined by

σ̄i =
1

1 + e−(wTxi+b)
,

which is the sigmoid function with parameters w and b. Our goal is to learn a vector w∗ which represents a pair w̄ = (w, b)
that minimizes J .

Function J can be changed into a strongly convex problem Ĵ by adding a regularization parameter λ > 0:

Ĵ = −
N∑
i=1

[yi · log(σi) + (1− yi) · log(1− σi)] +
λ

2
∥w∥2 , (strongly convex).

where w̄ = (w, b) is vector w concatenated with bias value b. In practice, the regularization parameter λ is set to 1/N (Roux
et al., 2012).

For simulating non-convex problems, we choose a simple neural network (LeNet) (LeCun et al., 1998) for MNIST data set
and AlexNet (Krizhevsky et al., 2012) for CIFAR10 data set with cross entropy loss function for image classification.

The loss functions for the strong, plain, and non-convex problems represent the objective function F (.).

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
2http://yann.lecun.com/exdb/mnist/
3https://www.cs.toronto.edu/ kriz/cifar.html
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Parameter selection. The parameters used for our distributed algorithm with Gaussian based differential privacy for strongly
convex, plain convex and non-convex objective functions are described in Table 2. The clipping constant C is set to 0.1 for
strongly convex and plain convex problems and 0.025 for non-convex problem (this turns out to provide good utility).

Table 2: Common parameters of asynchronous DP-SGD framework with differential privacy

# of clients n Diminishing step size η̄t Regular λ Clipping constant C
Strongly convex 5 η0

1+βt
‡ 1

N
0.1

Plain convex 5 η0
1+βt

or η0
1+β

√
t

N/A 0.1
Non-convex 5 η0

1+β
√
t

N/A 0.025

‡ The i-th round step size η̄i is computed by substituting t =
∑i−1

j=0 sj into the diminishing step size
formula.

For the plain convex case, we can use diminishing step size schemes η0

1+β·t or η0

1+β·
√
t
. In this paper, we focus our experiments

for the plain convex case on η0

1+β·
√
t
. Here, η0 is the initial step size and we perform a systematic grid search on parameter

β = 0.001 for strongly convex case and β = 0.01 for both plain convex and non-convex cases. Moreover, most of the
experiments are conducted with 5 compute nodes and 1 central server. When we talk about accuracy (from Figure 7 and
onward), we mean test accuracy defined as the fraction of samples from a test data set that get accurately labeled by the
classifier (as a result of training on a training data set by minimizing a corresponding objective function).

D.2. Utility graph

The purpose of a utility graph is to help us choose, given the value of the clipping constant C, the maximum possible noise
σ for which decent accuracy can be achieved. A utility graph depicts the test accuracy of model F (w∗ + n) over F (w∗),
denotes as accuracy fraction, where w∗ is a near optimal global model and n ∼ N (0, C2σ2I) is Gaussian noise. This shows
which maximum σ can be chosen with respect to allowed loss in expected test accuracy, clipping constant C and standard
deviation σ.

As can be seen from Figure 4 and Figure 5, for clipping constant C = 0.1, we can choose the maximum σ somewhere in the
range σ ∈ [18, 22] if we want to guarantee there is at most about 10% accuracy loss compared to the (near)-optimal solution
without noise. Another option is C = 0.075, where we can tolerate σ ∈ [18, 30] yielding the same accuracy loss guarantee.
When the gradient bound C gets smaller, our DP-SGD can tolerate bigger noise, i.e, bigger values of σ. However, we need
to increase the number K of iterations during the training process when C is smaller in order to converge and gain a specific
test accuracy – this is the trade-off. For simplicity, we intentionally choose C = 0.1, σ ≤ 20 and expected test accuracy loss
about 10% for our experiments with strongly convex and plain convex objective functions.

The utility graph is extended to the non-convex objective function in Figure 6. To keep the test accuracy loss less or equal to
10% (of the final test accuracy of the original model w∗), we choose C = 0.025 and noise level σ ≤ 12 for MNIST data set
(as shown in Figure 6(a)) and C = 0.025 and noise level σ ≤ 6.572 for CIFAR10 data set (as shown in Figure 6(b)). For
simplicity, we use this parameter setting for our experiments with the non-convex problem.

D.3. Asynchronous distributed learning with differential privacy

We consider the asynchronous DP-SGD framework with strongly convex, plain convex and non-convex objective functions
for different settings, i.e., different levels of privacy budget ϵ and different constant sample size sequences.

D.3.1. ASYNCHRONOUS DP-SGD WITH DIFFERENT CONSTANT SAMPLE SIZE SEQUENCES

The purpose of this experiment is to investigate which is the best constant sample size sequence si = s. This experiment
allows us to choose a decent sample size sequence that will be used in our subsequent experiments. To make the analysis
simple, we consider our asynchronous DP-SGD framework with Υ(k, i) defined as false if and only if k < i − 1, i.e.,
compute nodes are allowed to run fast and/or have small communication latency such that broadcast global models are at
most 1 local round in time behind (so different clients can be asynchronous with respect to one another for 1 local round).
We also use iid data sets. The detailed parameters are in Table 3.

The results from Figure 7 to Figure 8 confirm that our asynchronous DP-SGD framework can converge under a very small
privacy budget. When the constant sample size s = 1, it is clear that the DP-SGD algorithm does not achieve good accuracy
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Figure 4: Utility graph with various gradient norm C and noise level σ

Table 3: Basic parameter setting for strongly and plain convex problems

Parameter Value Note
η̄0 0.1 initial stepsize
Nc 10, 000 # of data points
K 50, 000 # of iterations
ϵ 0.04945
σ 19.29962
δ 0.0001
C 0.1 clipping constant
s {1, 5, 10, 15, 20, 26} constant sample size sequence

dataset LIBSVM iid dataset
n 5 # of nodes
Υ k ≥ i− 1 1−asynchronous round
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Figure 5: Utility graph with various gradient norm C and noise level σ

compared to other constant sample sizes even though this setting has the maximum number of communication rounds. When
we choose constant sample size s = 26 (this meets the upper bound for constant sample sizes for our small N = 10, 000
and small ϵ ≈ 0.05, see Theorem B.4), our DP-SGD framework converges to a decent test accuracy, i.e, the test accuracy
loss is expected less than or equal to 10% when compared to the original mini-batch SGD without noise. In conclusion,
this experiment demonstrates that our asynchronous DP-SGD with diminishing step size scheme and constant sample size
sequence works well under DP setting, i.e, our asynchronous DP-SGD framework can gain differential privacy guarantees
while maintaining an acceptable accuracy.

We also conduct the experiment for the non-convex objective function with MNIST and CIFAR10 data sets. The detailed
parameter settings can be found in Table 4 and Table 5. Here, we again consider our asynchronous setting where each
compute node is allowed to run fast and/or has small communication latency such that broadcast global models are at most 1
local round in time behind. As can be seen from Figure 9 (with MNIST data set), our proposed asynchronous DP-SGD still
converges under small privacy budget. Moreover, when we use the constant sample size s = 370 (this meets the upper bound
for constant sample sizes for our small N = 60, 000 and small ϵ ≈ 0.15, see Theorem B.4), we can significantly reduce the
communication cost compared to other constant sample sizes while keeping the test accuracy loss within 10%. The constant
sample size s = 10 (as well as s ≤ 10) shows a worse performance while this setting requires more communication rounds,
compared to other constant sample sizes. We can observe the same pattern for CIFAR10 data set as shown in Figure 10,
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Figure 6: Utility graph with various gradient norm C and noise level σ for MNIST and CIFAR10 data sets.

Table 4: Basic parameter setting for non-convex problem with MNIST data set

Parameter Value Note
η̄0 0.1 initial stepsize
Nc 60, 000 # of data points
K 360, 000 # of iterations
ϵ 0.15007
σ 12.10881
δ 1.667 · 10−5

C 0.025 clipping constant
s {10, 25, 50, 100, 200, 300, 370} constant sample size sequence

dataset MNIST iid dataset
n 5 # of nodes
Υ k ≥ i− 1 1−asynchronous round
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Figure 7: Effect of different constant sample size sequences

Table 5: Basic parameter setting for non-convex problem for CIFAR10 data set

Parameter Value Note
η̄0 0.1 initial stepsize
Nc 50, 000 # of data points
K 350, 000 # of iterations
ϵ 0.50102
σ 6.572
δ 2 · 10−5

C 0.025 clipping constant
s {10, 25, 50, 100, 300, 500, 689} constant sample size sequence

dataset CIFAR10 iid dataset
n 5 # of nodes
Υ k ≥ i− 1 1−asynchronous round
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Figure 8: Effect of different constant sample size sequences

where we can choose the constant sample size s ≤ 689 with N = 50, 000 data points and ϵ ≈ 0.5. While the constant
sample size s satisfying 300 ≤ s ≤ 689, the test accuracy gets the highest level while the constant sample size s ≤ 50
deteriorates the performance of accuracy significantly. This figure again confirms the effectiveness of our asynchronous
DP-SGD framework towards a strong privacy guarantee for all types of objective function.

D.3.2. ASYNCHRONOUS DP-SGD WITH DIFFERENT LEVELS OF PRIVACY BUDGET

We conduct the following experiments to compare the effect of our DP-SGD framework for different levels of privacy budget
ϵ including the non-DP setting (i.e., no privacy at all, hence, no noise). The purpose of this experiment is to show that the
test accuracy degradation is at most 10% even if we use very small ϵ. The detailed constant sample sequence s and noise
level σ based on Theorem B.4 are illustrated in Table 6. Other parameter settings, such as initial stepsize η0, are kept the
same as in Table 3.

As can be seen from Figures 11 and Figure 12, the test accuracy degradation is about 10% for ϵ = 0.04945 compared to the
other graphed privacy settings and non-DP setting. Privacy budget ϵ = 0.1, still significant smaller than what is reported in
literature, comes very close to the maximum attainable test accuracy of the non-DP setting.

We ran the same experiment for the non-convex objective function. The detailed setting of different privacy budgets is
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Figure 9: Effect of different constant sample size sequences
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Figure 10: Effect of different constant sample size sequences.

shown in Table 7. Note that we also set the asynchronous behavior to be 1 asynchronous round, and the total of iterations on
each compute node is K = 360, 000. Other parameter settings for the non-convex case, such as initial stepsize η0, are kept
the same as in Table 4. As can be seen from Figure 13 with MNIST data set, the test accuracy loss with ϵ ≈ 0.15 is less than
10% (the expected test accuracy degradation from utility graph at Figure 6). Another pattern can be found in Figure 14. By
selecting ϵ ≈ 0.5 for CIFAR10 data set, the test accuracy reduces less than 10%, compared to the non-DP setting. Note that
we use AlexNet for CIFAR10, which shows ≈ 0.74 maximum test accuracy in practice4.

4https://github.com/icpm/pytorch-cifar10
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Table 6: Different privacy budget settings for strongly and plain convex problems

Privacy budget (ϵ, δ) σ Sample size s

(0.04945, 0.0001) 19.29962 26
(0.1, 0.0001) 13.06742 55
(0.25, 0.0001) 8.59143 103
(0.5, 0.0001) 6.05868 168
(1.0, 0.0001) 4.27273 265
(2.0, 0.0001) 3.03241 400
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Figure 11: Effect of different levels of privacy budgets ϵ and non-DP settings

These figures again confirm the effective performance of our DP-SGD framework, which not only conserves strong privacy,
but also keeps a decent convergence rate to good accuracy, even for a very small privacy budget.
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Figure 12: Effect of different levels of privacy budgets ϵ and non-DP settings

Table 7: Different privacy budget settings for non-convex problem for MNIST data set

Privacy budget (ϵ, δ) σ Sample size s

(0.15007, 1.667 · 10−5) 12.10881 370
(0.2, 1.667 · 10−5) 10.48452 460
(0.25, 1.667 · 10−5) 9.37379 543
(0.5, 1.667 · 10−5) 6.63120 889
(0.75, 1.667 · 10−5) 5.41887 1168
(1.0, 1.667 · 10−5) 4.69244 1409
(2.0, 1.667 · 10−5) 3.31648 2159

D.4. Comparison to the f -DP Accountant

We have implemented a simplified differential privacy calculator based on Theorem 3.1 for computing the optimal privacy
budget (ϵ, δ) given the training hyper-parameters (σ, θ,N, k, C). This calculator has the follow steps:
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Table 8: Different privacy budget settings for non-convex problem for CIFAR10 data set

Privacy budget (ϵ, δ) σ Sample size s

(0.25, 2.0 · 10−5) 9.29838 417
(0.5, 2.0 · 10−5) 6.57192 689
(0.75, 2.0 · 10−5) 5.36937 909
(1.0, 2.0 · 10−5) 4.65014 1099
(1.5, 2.0 · 10−5) 4.16111 1267
(2.0, 2.0 · 10−5) 3.28831 1690
(3.0, 2.0 · 10−5) 2.68273 1994
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Figure 13: Effect of different levels of privacy budgets ϵ and non-DP settings

1. Set δ = 1/N , ϵ = 2 ln 1/δ
σ2−2 .

2. Set γ = 2 (because γ = 2 +O(ᾱ)) as the initial value.

3. According to Theorem 3.1, we compute Tmin as a result of next steps (3, 4, and 5) as a lower bound on T as follows:

• Compute ᾱ = ϵN
γK .

• Recompute the new γnew = 2
1−ᾱ + 24·ᾱ

1−ᾱ

(
σ

(1−
√
ᾱ)2

+ 1
σ(1−ᾱ)−2e

√
ᾱ

e3

σ

)
e3/σ

2

.

4. Repeat steps 3 until γnew − γ ≤ 0.0001γ or inequality (7) is violated. In the latter case the calculator cannot find a
solution of a set of hyperparameters that satisfies the privacy constraint (ϵ, δ) and we lower σ and increase ϵ accordingly
(in step 1) and repeat steps 2, 3, and 4.

5. Based on inequality (8) we compute minimal value Tmin = γθ2

ϵ k2. From the asymptotic tightness analysis in section
C.2 we learn that Tmin can at most be lowered to Tmin asym = θ2k2

2ϵ .

6. Corresponding to Tmin and Tmin asym, we set smax = kN
Tmin

and smax asym = kN
Tmin asym

7. We obtain the resulting set of parameters (ϵ, δ, σ, γ, θ, k,N, s, T ) for (s, T ) equal to (smax, Tmin) and
(smax asym, Tmin asym) respectively.
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Figure 14: Effect of different levels of privacy budgets ϵ and non-DP settings

This calculation helps us planning ahead the number of rounds T and the sampling rate s and we can choose ϵtarget by
defining an initial σ.

Given the hyper-parameters defined in Tables 3, 4 and 5, we use this calculator to compute ϵtarget and compared this with the
value ϵf−DP as a result from the exact/tight f -DP accountant from (Dong et al., 2021), see github.com/tensorflow/privacy.
This leads to Tables 9, 10, and 11. Since ϵf−DP is tight, we conclude that ϵtarget for Tmin asymp cannot be achieved, hence,
our provided formula for Tmin is indeed tight up to a factor 2γ as mentioned in the main body and studied in Appendix C.2.

Tmin and Tmin asym
γθ2k2

ϵ
θ2k2

2ϵ

smax = kN
Tmin

and smax asym = kN
Tmin asym

26 198
ϵtarget 0.0497 0.0497
ϵf−DP 0.0105 0.0533
Multiplication factor (ϵtarget/ϵf−DP ) 4.7234 0.9328

Table 9: Comparison of ϵtarget with ϵf−DP from the f -DP accountant for Table 3 where θ = 1, δ = 1/10000 and
σ = 19.29962 for LIBSVM dataset (N = 10000), k = 5.

Tmin and Tmin asym
γθ2k2

ϵ
θ2k2

2ϵ

smax = kN
Tmin

and smax asym = kN
Tmin min

288 3042
ϵtarget 0.1521 0.1521
ϵf−DP 0.0389 0.2097
Multiplication factor (ϵtarget/ϵf−DP ) 3.9147 0.7257

Table 10: Comparison of ϵtarget with ϵf−DP from the f -DP accountant for Table 3 where θ = 1, δ = 1/60000 and
σ = 12.10881 for MNIST dataset (N = 60000), k = 6.
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Tmin and Tmin asym
γθ2k2

ϵ
θ2k2

2ϵ

smax = kN
Tmin

and smax asym = kN
Tmin asym

406 7504
ϵtarget 0.5253 0.5253
ϵf−DP 0.1133 0.8239
Multiplication factor (ϵtarget/ϵf−DP ) 4.6372 0.6376

Table 11: Comparison of ϵtarget with ϵf−DP from the f -DP accountant for Table 3 where θ = 1, δ = 1/50000 and
σ = 6.572 for CIFAR10 dataset (N = 50000), k = 7.

E. Towards Dynamically Adapting DP-SGD Parameters

Figure 15: The flow chart of our proactive (asynchronous) DP-SGD framework.

In order to apply our theory in practice, we introduce a flow chart of our asynchronous DP-SGD learning from a client’s
perspective in Figure 15. Each client wants to participate in the collective learning of a global model that achieves a sufficient
target accuracy acctarget with respect to their test data set. That is, when a client tests the final global model against its own
private test set, then the client is satisfied if an accuracy acctarget is achieved. Such accuracy can only be achieved for certain
combinations of noise σ and clipping constant C. In particular, the final round introduces Gaussian noise with deviation
σ and this leads to inherent inaccuracy of the final global model. Experiments in Section 4 have shown that reducing the
clipping constant C allows a larger σ for attaining a good target accuracy acctarget (if a sufficient larger number K of
gradient computations have been executed). Here, we note that C cannot be reduced indefinitely without hurting accuracy;
this is because a reduced clipping constant into some extent plays the role of a reduced step size (or learning rate) and we
know that convergence to an accurate global model must start with a large enough step size. Therefore, before starting any
learning, we need to understand how utility relates to σ and the clipping constant C. This is reflected in the functionality
“Utility Graph” in the flow chart of Figure 15. Based on learning a local model (and based on a-priori information from
learning models on similar data sets), “Utility Graph” produces a set of pairs {(Ci, Ri)} together with a total number K of
gradient computations: For various clipping constants Ci, a range Ri of possible σ is output. That is, if σ ∈ Ri for clipping
constant C = Ci, then there is a good indication that this will lead to target accuracy acctarget of the final model after the
client has contributed K local gradient computations.

A second functionality in the flow chart is the “DP Calculator”. This calculator takes the pair (Ci, Ri) that allows the
maximum possible σ in Ri. This σ defines the best possible (ϵ, δ)-DP curve given our formula σ =

√
2(ϵ+ ln(1/δ))/ϵ.

That is, it allows the “smallest” possible (ϵ, δ) pairs. The “DP Calculator” checks whether the maximum σ allows the target
differential privacy budget of the client defined by (ϵtarget, δtarget). If not, then the client cannot participate in the collective
learning. If the target differential privacy budget does fit, then, given σ, ϵ = ϵtarget, δ = δtarget, K, and the client’s data set
size N , the “DP Calculator” computes the maximum possible sample size smax according to the conditions in Theorem
B.4. This in turn results in a number of rounds T = K/smax. We propose to choose the maximum possible sample size as
this leads to the best accuracy/utility in our experiments. This is because smax leads to the smallest number of rounds T ,
hence, the smallest number of times noise is added and aggregated into the global model at the server. (Also, as a secondary
objective, a smaller number of rounds means less round communication.)

As soon as the “DP Calculator” has calculated all parameters, the client executes T rounds of DP-SGD with sample
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(mini-batch) size s = smax. This is represented by the “FLwithDP” functionality in the flow chart of Figure 15. Once the T
rounds are done, the client estimates the accuracy acc of the last received global model based on the client’s (public) test
data set. Next, the client checks whether it is at least the target accuracy acctarget. If so, then the client stops participating.
That is, with each new global model received by the server, the clients test whether the accuracy is satisfactory; if not, then
the client will want to participate again. If the test accuracy acc is not sufficient, then the “DP Calculator” will work with a
new (Ci, Ri). The next subsection details the computations by the “DP Calculator” and explains the feedback loop in the
flow chart of Figure 15.

We remark that the client can use a complimentary differential privacy accountant to keep track of the exact privacy budget
that has been spent.

E.1. DP Calculator

We propose each local client to take control over its own privacy budget while making sure the locally measured test
accuracy of the final global model is acceptable. The main idea is to start with an initial σ = σ0 with appropriate clipping
constant C = C0 and an estimated number K = K0 of local gradient computations needed for convergence to “sufficient”
test accuracy (utility). For local data set size N , we want to compute proper parameter settings including the batch size
s = s0 for each round and the total number of rounds T = T0 (with K = sT ). Once the T rounds are finished, local test
data is used to compute the test accuracy of the final global model. If the accuracy is not satisfactory, then σ must be reduced
to a lower σ1 (and we may re-tune to a larger clipping constant C1). This leads to an additional (estimated) number of local
K1 gradient computations that need to be executed. The lower σ corresponds to worse differential privacy since a lower σ is
directly related to a higher ϵ for given δ = 1/N . The local client is in control of what ϵ is acceptable – and if needed, the
local client simply stops participating helping the central server learn a global model.

In order to apply our theory, we pretend as if the initial T rounds used the lower σ = σ1 – this means that our analysis
provides an advantage to the adversary as we assume less noise is used compared to what was initially actually used. Hence,
the resulting DP guarantee for σ1 will hold for all K = K0 +K1 local gradient computations. We use the new σ = σ1 and
K together with badge size s0 for the first T0 rounds to compute a new parameter setting for the next rounds; this includes
the number T1 of additional rounds (making T = T0 + T1) and the new batch size s1. The new batch size implies a new
average s̄ = (s0T0 + s1T1)/(T0 + T1) as well as a new variation θ1 > 1 of the sequence of batch sizes.

Once all T = T0 + T1 rounds are finished (or equivalently all K = K0 +K1 local gradient computations are finished), the
local client again computes the test accuracy of the last global model. If not acceptable σ is reduced again and we repeat
the above process. If the test accuracy is acceptable, then the local client stops participating, that is, the local client stops
gradient computations but continues to receive global models from the central server. As soon as the local client measures a
new unacceptable local test accuracy, the client will continue the above process and starts a new series of rounds based on σ.

Stopping participation and later continuing if needed best fits learning problems over large data: Here, each local client
samples its own local data set according to the ‘client’s behavior’. The local client wants to prevent as much leakage of its
privately selected local data set as possible. Notice that each local data set is too small for a local client to learn a global
model on its own – this is why local clients need to unite in a joint effort to learn a global model (by using distributed SGD).
Assuming all samples are iid (all local data sets are themselves sampled from a global distribution), the final global model
is not affected by having more or less contribution from local clients (as a result of different stopping and continuation
patterns). Notice that if local data sets would be heterogeneous, then the final global model corresponds to a mix of all
heterogeneous data sets and here it matters how much each local client participates (as this influences the mix).

The above procedure describes a proactive method for adjusting σ to lower values if the locally measured test accuracy
is not satisfactory. Of course, the local client sets an a-priori upper bound ϵtarget on the ϵ (with δ = δtarget = 1/N ), its
privacy budget. This privacy budget cannot be exceeded, even if the local test accuracy becomes unsatisfactory.

We notice that our theory is general in that it can be used to analyse varying sequences of batch sizes, which is needed for
our proactive method. We now describe in detail how to calculate parameter settings according to our theorems:

Suppose the local client has already computed for T0 + T1 + . . .+ Tj−1 rounds with badge sizes s0, s1, . . . , sj−1, hence,
K0 = s0T0,K1 = s1T1, . . . ,Kj−1 = sj−1Tj−1. The local client sets/fixes the total Kj of gradient computations it wants
to compute over the next Tj rounds. We want to compute a new sj and Tj . Notice that sj = Kj/Tj and s̄ =

∑j
i=0 siTi/T ,

where T =
∑j

i=0 Ti. We want to find a suitable sj .
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We start our calculation with sj = 1 and we rerun our calculation for bigger batch sizes until we reach a maximum. Given
a choice sj = s, we execute the following steps (we base the calculator on the slightly more complex but more accurate
Theorem B.4 of Appendix B):

1. Set δ = 1/N , compute Tj = Kj/sj given the input values Kj and sj , compute the corresponding s̄ (see above)
together with corresponding θ = max{si}/s̄. Compute K =

∑j
i=0 Ki.

2. Set γ = 2 (because γ = 2 +O(ᾱ)) as the initial value.

3. According to Theorem B.4, we compute ϵ, σ, and ᾱ as follows:

• Based on inequality (34), set ϵ as small as possible, that is, ϵ = γθ2s̄ K
N2 .

• We distinguish two cases:
j = 0: In case we want to determine s0, we compute σ0 = σ where σ meets (35) with equality, that is,

σ =
√
2(ϵ+ ln 1/δ)/ϵ.

j > 0: During previous computations we already selected a σj−1. As described above, we only perform these
calculations if the corresponding test-accuracy is not satisfactory. For this reason we want a lower σj < σj−1.
The local client chooses a smaller σj with possibly a larger clipping constant Cj for which better accuracy
within Kj local gradient computing steps is expected. We compute ϵ as a solution of σj =

√
2(ϵ+ ln 1/δ)/ϵ

and set ϵ to the maximum of this solution and the minimal possible ϵ = γθ2s̄ K
N2 computed above.

• Compute ᾱ = ϵN
γK .

4. Recompute the new γnew = 2
1−ᾱ + 24·ᾱ

1−ᾱ

(
σ

(1−
√
ᾱ)2

+ 1
σ(1−ᾱ)−2e

√
ᾱ

e3

σ

)
e3/σ

2

.

5. Repeat steps 3 and 4 with γ replaced by γnew until γnew − γ ≤ 0.0001γ, that is, γ has converged sufficiently.

6. The resulting set of parameters (ϵ, δ, σ, γ, θ,K,N) can only be used if inequalities (32) and (33) are satisfied and
ϵ ≤ ϵtarget.

• If these conditions are satisfied, then we save the parameters (s, ϵ, σ) and rerun the above calculation for bigger
sample size s. Otherwise, we output (s, ϵ, σ) of the previous run (as this corresponds to the maximum s and thus
minimal number of communication rounds) and terminate: We set σj = σ, sj = s, and Tj = Kj/sj . Our theory
proves that we satisfy (ϵ, δ = 1/N)-differential privacy.

• It may be that even the minimal batch size sj = 1 does not result in valid parameters (s, ϵ, σ). This means that the
local client cannot participate any more otherwise its required differential privacy guarantee cannot be met.
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