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Abstract

State-of-the-art neurosymbolic learning systems
use probabilistic reasoning to guide neural net-
works towards predictions that conform to logical
constraints over symbols. Many such systems as-
sume that the probabilities of the considered sym-
bols are conditionally independent given the input
to simplify learning and reasoning. We study
and criticise this assumption, highlighting how it
can hinder optimisation and prevent uncertainty
quantification. We prove that loss functions bias
conditionally independent neural networks to be-
come overconfident in their predictions. As a re-
sult, they are unable to represent uncertainty over
multiple valid options. Furthermore, we prove
that these loss functions are difficult to optimise:
they are non-convex, and their minima are usu-
ally highly disconnected. Our theoretical analysis
gives the foundation for replacing the conditional
independence assumption and designing more ex-
pressive neurosymbolic probabilistic models.

1. Introduction
Neurosymbolic learning studies neurosymbolic models that
combine neural perception and symbolic reasoning (Man-
haeve et al., 2021; Xu et al., 2018; Badreddine et al., 2022).
These models use logical constraints and data to create a loss
function for learning neural perception models (Giunchiglia
et al., 2022). When used effectively, neurosymbolic learning
methods can use these constraints to improve data efficiency.
However, researchers in the neurosymbolic learning commu-
nity have found optimising the parameters of the perception
models challenging (Marconato et al., 2023a; van Krieken
et al., 2022; Manhaeve et al., 2021). A major underlying
reason is that neurosymbolic learning cannot provide exact
feedback on how the neural perception model should behave.
We highlight this issue with a simple example.
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Figure 1. The conditional independence assumption discards
valid and potentially meaningful solutions. The tetrahedron (a
3-dimensional probability simplex) represents the distributions
over the options of the problem in Example 1.1: r refers to the red
light and g to the green light. The green triangle represents distri-
butions that assign zero probability to r ∧ g. The blue lines are the
distributions in the green triangle that an independent distribution
can represent. The left (resp. right) blue line represents the distri-
butions where the probability of r (resp. g) is zero. Independent
distributions cannot represent distributions in the dotted green line,
such as p2 that assigns equal probability to only the green or only
the red light being on.minima immoralia

Example 1.1. We consider a perception model responsible
for recognising the red and green lights on a traffic light. It
sees a traffic light that it believes to be simultaneously red
and green. A constraint specifies this is impossible, and the
neurosymbolic loss should penalise this. There are three
possible worlds: the model can output that the red light is
on, the green light is on, or neither. How do we choose
among these?

The set of all beliefs can be represented by the tetrahedron
in Figure 1. We argue that the perception model should
be able to express uncertainty over these three worlds, as
there is no evidence to conclude which one is correct. This
corresponds to the distributions in the green triangle at the
bottom of the figure. We should leave determining any
further preference to the provided data as the constraint
only specifies what worlds are possible but does not specify
which one is correct.

The majority of probabilistic methods for neurosymbolic
learning rely on a strong assumption: namely, that the differ-
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ent symbols of the world are independent when conditioned
on input data (Manhaeve et al., 2018; Xu et al., 2018). This
means that for some input image, a conditionally indepen-
dent perception model predicts two probabilities: one for
the green light being on and one for the red light being on.

What do we lose when we take this conditional indepen-
dence assumption? There is recent experimental evidence
that suggests that using expressive perception models over
conditionally independent ones improves performance on
neurosymbolic tasks (Ahmed et al., 2022a; 2023; Pryor et al.,
2023). We theoretically justify these results: the conditional
independence assumption causes neurosymbolic methods to
be biased towards deterministic solutions. This is because
minima of neurosymbolic losses have to deterministically
assign values to some variables. For instance, in Figure 1,
the blue lines represent distributions that state that either the
red light is off or the green light is off.

With the goal of better understanding the impact of the
conditional independence assumption, we provide a com-
putable characterisation of what can be represented. We
find that we can characterise this problem faithfully using
tools from logic (Quine, 1959) and computational homology
(Kaczynski et al., 2004), and prove that this bias towards
determinism holds generally. Furthermore, our characteri-
sation shows that the conditional independence assumption
can lead to training objectives that are challenging to op-
timise due to heavily disconnected minima. Our analysis
provides theoretical justifications for the benefits of using
more expressive perception models: the ability to properly
express uncertainty and smooth, convex loss landscapes.

2. Background and Notation
Probabilistic Neurosymbolic Learning. We consider a
probabilistic neurosymbolic learning (PNL) setting, where
a probabilistic neural perception model pθ(w|x) with pa-
rameters θ defines a distribution over worlds w ∈ {0, 1}n
(often called concepts (Barbiero et al., 2023; Marconato
et al., 2023a)) given high-dimensional inputs x ∈ X . A
constraint φ : {0, 1}n → {0, 1} is a boolean function on
worlds w. We say a world is possible if φ(w) = 1 and
assume φ has at least one possible world. The next example
illustrates this setting.

Example 2.1 (Learning with algorithms). MNIST Addi-
tion is a popular benchmark task in neurosymbolic learning
(Manhaeve et al., 2021). X is the set of pairs of MNIST
images. We represent worlds w with n = 20 variables
{w1,0, ..., w1,9, w2,0, ..., w2,9}, where wi,j denotes the ith
digit taking the value j. We have a set of labels represent-
ing possible sums Y = {0, . . . , 18}. The constraints φy

enforce that exactly one of w1,j and one of w2,k is true,
and ensures the pair of digits sums to the correct output:
φy(w) = ∃j,k∈{0,...,9}(j + k = y) ∧ w1,j ∧ w2,k. Here,

the constraints φy are parameterised by an observed output
y ∈ Y , which changes between inputs x.

We compute the probability that the model pθ(w|x) satisfies
the constraint φ1 for input x with:

pθ(φ = 1|x) =
∑

w∈{0,1}n

pθ(w|x)φ(w). (1)

Equation 1 is known as the (conditional) weighted model
count (WMC) in probabilistic and logical reasoning (Chavira
and Darwiche, 2008). The pθ(w|x) term can be under-
stood as a data-dependent factor that assigns probabilities
to different worlds, while the φ(w) term is a constraint-
dependent factor that filters out impossible worlds. Most
loss functions based on WMC (Xu et al., 2018; Manhaeve
et al., 2021) minimise the negative logarithm of the WMC
L(θ;x) = − log pθ(φ = 1|x), often called the semantic
loss. See Section 6 for a discussion on these methods.

The majority of current PNL approaches assume that the
probabilities pθ(wi = 1|x) of variables wi being true are
independent when conditioned on x. Then, perception mod-
els only have to predict n parameters in [0, 1]n instead of a
parameter for each of the 2n worlds, i.e.,

pθ(w|x) :=
n∏

i=1

pθ(wi|x). (2)

We call this the (conditional) independence assumption.2

PNL systems take advantage of this assumption to speed
up inference, reduce the number of trainable parameters,
and ease implementation (Xu et al., 2018; Manhaeve et al.,
2021; van Krieken et al., 2023; Ahmed et al., 2022a).

Example 2.2 (Semi-supervised learning with constraints).
A common application of neurosymbolic learning is semi-
supervised learning of the perception model pθ. Here, we
have a labelled dataset Dl = {(xi,wi)}|Dl|

i=1 and an unla-
belled dataset Du = {xi}|Du|

i=1 . Here, φ is a conjunction of
a set of constraints ϕi that relate the symbols in the world
w. The semantic loss L(θ) over the unlabelled data Du is
often added as a regularisation term to a supervised loss
function to bias the neural network towards solutions that
predict possible worlds (Xu et al., 2018).

1With abuse of notation, we use the symbol φ both for the
boolean function encoding the knowledge and for a binary random
variable of the knowledge being true or not.

2In the rest of the paper, we refer to this conditional inde-
pendence assumption as just “the independence assumption” for
readability.
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Figure 2. The loss landscape of the semantic loss for the traffic
light problem – brighter (resp. darker) regions correspond to
higher (resp. lower) semantic loss values.

3. The issues with the independence
assumption

The main problem in our setting is how to learn the per-
ception model pθ(w|x). The underlying assumption in
neurosymbolic learning is that there is a true distribution
over worlds p∗(w|x). This distribution is unknown, and
we cannot directly sample from p∗(w|x) to train pθ(w|x).
Instead, the feedback neurosymbolic learning methods pro-
vide is through the constraint φ, which induces a set of
possible worlds Wφ = {w ∈ {0, 1}n | φ(w) = 1}. If
the constraint is correct, then all worlds w with non-zero
probability p∗(w|x) are in Wφ. Therefore, neurosymbolic
learning methods should use the constraint φ as a filter on
what worlds are possible. We aim to answer the follow-
ing questions: can particular parameterisations of pθ(w|x)
implicitly bias the selection of possible worlds instead of
just filtering out impossible ones? And if so, how does this
hinder their ability to recover p∗(w|x) via learning?

3.1. The independence assumption biases towards
deterministic solutions

First, we show that common neurosymbolic learning meth-
ods are biased towards deterministic solutions. Returning to
Example 1.1, consider a simple setup with w consisting of
two binary variables r and g representing a red and green
light, and a constraint φ = ¬r ∨ ¬g which asserts that the
red and green lights cannot be on simultaneously.

In the remainder of the paper, we will fix the input x and
keep it implicit in our notation unless necessary. Using our
formula φ in Equation 1, we then get:3

3With some abuse of notation, we consider r and ¬g as events,
that is, p(r,¬g) := p(r = 1, g = 0).

pθ(φ = 1) = pθ(¬r,¬g) + pθ(¬r, g) + pθ(r,¬g)
= 1− pθ(r, g).

(3)

We can maximise this probability by simply enforcing
pθ(r, g) = 0. Then, the distribution over the remaining
worlds can be arbitrary – such distributions are represented
by the green triangle in Figure 1. However, taking the inde-
pendence assumption over variables, we get:

pθ(φ = 1) = 1− pθ(r) · pθ(g).

We plot the semantic loss for an independent distribution in
Figure 2 as a function of pθ(r) and pθ(g). The semantic loss
has its minima at the lines pθ(r) = 0 and pθ(g) = 0, biasing
the model towards deterministically choosing either the red
or green light being off, even though there is no evidence
available to conclude this. Therefore, when optimising this
function, we will come to a deterministic conclusion, which
is wrong in a fraction of cases that depends on the real-world
distribution of red and green lights being on.

Furthermore, an independent distribution cannot represent
the beliefs p1 and p2 highlighted in Figure 1, where p1 is
the uniform belief over the three possible worlds, while p2
is the equal belief in only the red light being on or only
the green light being on. In fact, we cannot represent any
distribution that assigns a non-zero probability to either
just the red or the green light being on: if the semantic
loss is minimised, then an independent distribution cannot
represent uncertainty among multiple equally valid options.

Does this bias towards determinism happen for all formulas
φ? We prove that this is indeed the case using the concept
of implicants (Quine, 1959): an implicant assigns values to
a subset of the variables {wi}ni=0 such that it ensures the
constraint φ is true. In our example, ¬r is an implicant of
φ, since both ¬r ∧ g and ¬r ∧ ¬g are possible worlds. Our
first theorem, which is formalised and proven in Section 4.2,
generalises this result to all formulas φ:

Theorem 3.1 (Implicants determine minima, informal). An
independent distribution pθ(w) minimises the semantic loss
if and only if it is deterministic for some variables, and those
variables form an implicant of φ.

We can, therefore, use the logical concept of implicants to
study to what optima independent distributions converge. If
the implicants are very restrictive, this greatly decreases the
number of minima. The more restrictive the implicants of
the formula are, the more the independent distributions will
be biased towards deterministic solutions, and the less they
will be able to quantify uncertainty.
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3.2. Minima under independence assumption are
non-convex and disconnected

Using the connection to implicants from Theorem 3.1, we
develop a geometric characterisation of the independent dis-
tributions that minimise the semantic loss. We emphasise
that we study convexity and connectedness in the space of
probability vectors over worlds, and not in the space of the
parameters of the model θ. Our characterisation allows for
an in-depth study of its topology using the tools of compu-
tational homology (Kaczynski et al., 2004). This allows us
to give the exact conditions on the constraints φ for which
the minima are convex and connected. These conditions are
valid only when we severely limit the types of constraints
we can use. Therefore, the resulting semantic loss functions
are usually highly non-convex and disconnected, and so
difficult to optimise. In contrast, for expressive distributions,
the semantic loss is always convex, as we show in Section
4.4.
Theorem 3.2 (Convexity, informal). The semantic loss is
convex over the set of independent distributions only when
the constraint φ is a formula of the form

∧L
i=1 li, where

each li is a literal (a variable or its negation).

We discuss this in detail in Section 4.4.2. The intuition
behind this result is that such formulas provide direct su-
pervision on L variables, and give no supervision on the
remaining n − L variables. Therefore, the loss function
is convex over the L variables, and the remaining n − L
variables can be chosen arbitrarily. Note that this is a very
restrictive condition: In many neurosymbolic settings, we
have no direct supervision, and the constraint just acts as a
filter on what worlds are possible.
Theorem 3.3 (Connectedness, informal). The independent
distributions that minimise the semantic loss are connected
only if the implicants of the constraint φ form a connected
graph between worlds.

In Section 4.4.3, we define a graph where the vertices are
the possible worlds Wφ that are connected when there is
an implicant that “covers” both worlds. If this graph is
connected, then so are the minima. This result is quite
abstract, so we provide two examples to illustrate it. For
the traffic light example, the graph is connected: The three
possible worlds are connected through the implicants ¬r
and ¬g. However, for the MNIST Addition task (Example
2.1), the graph contains no edges at all, which implies that
the minima are a set of disconnected vertices.

4. Characterising minima of the semantic loss
In this section, we will develop the mathematical machinery
to be able to characterise what it means for a distribution to
be a minimum of the semantic loss, and, in particular, for
independent distributions.

Section 4.1 discusses the expressivity of distributions and in-
troduces our notation. Section 4.2 characterises the minima
of the semantic loss for independent distributions. Sec-
tion 4.4.1 studies a minimal representation of those minima.
Finally, Section 4.4.2 shows when this set is convex, and
Section 4.4.3 when this set is connected. Both turn out to be
very rare. We provide proof sketches for most theorems in
the main text and leave the full proofs to Appendix G. For
ease of reading, we provide a table of notation in Table 1.

4.1. Expressive distributions

The expressiveness of a perception model pθ(w|x) (Ahmed
et al., 2022a) intuitively refers to how many distributions
over worlds it can represent. A fully expressive perception
model can represent any distribution p(w|x).

The set of all joint distributions over worlds is the (2n − 1)-
(probability) simplex having the standard unit vectors ei
as vertices: ∆ = {

∑2n

i=1 αiei :
∑2n

i=1 αi = 1,α ≥
0} ⊂ R2n . The vertices ei are one-hot representations
of the worlds wi ∈ {0, 1}n. We fix an arbitrary order-
ing w1, ...,w2n throughout. All probability distributions
p considered in this paper then correspond to the vector
(p(w1), . . . , p(w2n)) in ∆. With abuse of notation, we
say p ∈ ∆, referring to p as both this vector and a distribu-
tion.

We define possible distributions p ∈ ∆ as a distribution
that assigns all probability mass to possible worlds. An
equivalent statement is that p(w) = 0 for all impossible
worlds w ∈ {0, 1}n \Wφ (Marconato et al., 2023b). The
set of all possible distributions ∆φ ⊆ ∆ is a (|Wφ| − 1)-
simplex formed from the standard unit vectors associated
with the possible worlds Wφ. Since ∆φ is a simplex, it is a
convex set. Furthermore, the semantic loss L(p) is convex
over the set of distributions ∆ since the WMC is linear (see
Appendix E for a proof).

An expressive parameterisation θ 7→ pθ of the joint distri-
bution can represent any distribution p ∈ ∆: For each input
x ∈ X , there is a parameter θ such that p(w) = pθ(w|x).
A (parameter-inefficient) fully expressive parameterisation
is to predict a vector of 2n logits, which is then mapped to
∆ via softmax. Expressive parameterisations behave quite
differently in the example discussed in Section 3.1. They
can minimise the probability of the constraint φ in Equation
3 by simply setting pθ(r, g) = 0, and model any preference
over the remaining three worlds. This prevents the model
from having to deterministically choose that either the red
or green light is off and allows it to represent uncertainty.
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4.2. When do independent parameterisations satisfy the
constraint?

We next study the properties of independent distributions
that satisfy the constraint. An independent distribution pµ is
characterised by parameters µ4 in the n-hypercube [0, 1]n,
where µi is the probability that wi is true. To be precise,
pµ(wi) = µwi

i ·(1−µi)
1−wi is the probability mass function

of the Bernoulli random variable wi. We now formally
define implicants (Quine, 1959), which are related to the
deterministic components of µ:

Definition 4.1 (Deterministic assignments). A probability
µi ∈ [0, 1] is deterministic if µi ∈ {0, 1}. Otherwise, µi

is stochastic, that is, µi ∈ (0, 1). A partial assignment
wD = {wi}i∈D assigns values {0, 1} to a subset of the
variables w indexed by D ⊆ {1, . . . , n}. The deterministic
assignment of an independent distribution pµ is the partial
assignment wD = {µi}i∈D defined by its deterministic
factors D = {i|µi ∈ {0, 1}}.

Definition 4.2 (Implicants). We define the cover WwD
⊆

{0, 1}n of a partial assignment wD as the set that contains
all worlds w ∈ {0, 1}n that equal wD on the variables in D.
A partial assignment wD is an implicant of φ if its cover
only contains possible worlds. That is, wD |= φ.

Intuitively, an implicant assigns values to a subset of the
variables in w such that it ensures the constraint φ is true.
For the traffic lights example, the partial assignment ¬r is
an implicant of φ, since its cover (¬r∧ g and ¬r∧¬g) only
contains possible worlds. Our first result states that if we
have an implicant, we can easily create possible independent
distributions: Use the implicant as the deterministic part,
and assign any value in [0, 1] to the remaining factors. This
is because, for implicants, the value of the other variables
“does not matter” to the constraint φ.

Theorem 4.3 (Implicants determine possible independent
distributions). Let pµ be an independent distribution over
worlds. Let wD be pµ’s deterministic assignment. Then pµ
is possible for φ if and only if wD is an implicant of φ.

Proof. By independence of pµ, the support of pµ is the
cover WwD

of the deterministic assignment wD of µ, and
the remaining variables can be assigned any value with
some probability. Assume pµ is possible; then, for each w
in the support of pµ, w is a possible world. But then each
world in the cover WwD

of wD is possible, and so wD is
an implicant. Next, assume wD is an implicant. Then, each
world in the cover of wD is possible. But this is precisely
the support of pµ. So pµ is possible.

The more restrictive the constraint is over what worlds are
4If the perception model pθ is a neural network, µ would be

the output of its last layer. We drop the reference to θ as it is not
relevant for our analysis.

possible, the more variables the implicants assign values to.
Our example contains five implicants: ¬r ∧ g, r ∧¬g, ¬r ∧
¬g, ¬r, and ¬g. Therefore, the deterministic assignment of
pµ will need to contain at least one of ¬r and ¬g for pµ to
be possible.

4.3. Conditioned independent distributions

A common counterargument to the claim that independent
distributions are biased towards determinism is that we can
condition an independent distribution pµ on the constraint
φ. This is the distribution pµ(w|φ = 1) where the variables
wi become dependent due to conditioning on the constraint.
Furthermore, such a parameterisation is an n-dimensional
manifold inside the set of possible distributions, which can
cover far more distributions than those characterised in The-
orem 4.3. For instance, consider the independent distribu-
tion p(r) = p(g) = 1

2 . When conditioning on φ = ¬r∨¬g,
we get the uniform distribution over worlds p1 from Figure
1. In fact, we can cover the entire green triangle in Figure 1
in this way.

However, this argument does not hold in a learning setting
where we optimise towards a minimum of the semantic loss
(Equation 1). As we already showed, the uniform distribu-
tion over worlds p1 can not be represented by an indepen-
dent distribution alone. In fact, there are strict conditions
on when an independent distribution pµ conditioned on the
constraint φ can be represented by another independent
distribution qµ′ :

Theorem 4.4 (Representability of pµ(w|φ = 1)). Let pµ
have pµ(φ = 1) > 0 and deterministic assignment wE .
Then the following statements are equivalent:

1. the conditional distribution pµ(w|φ = 1) can be rep-
resented by another independent distribution qµ′ ;

2. there is an implicant wD that covers all possible
worlds in the support of pµ;

3. there is an implicant wD such that wE , φ |= wD.

Proof sketch. Under this condition, we can rewrite the con-
ditional distribution pµ(w|φ = 1) as an independent distri-
bution where the deterministic assignment is wD, and the
remaining factors are renormalised to sum to 1.

This theorem is rather subtle. In our example, an indepen-
dent distribution with deterministic assignment g “entails”
¬r: Since ¬g is not true, we need to make ¬r true to be
consistent with ¬r ∨ ¬g. Since ¬r is an implicant, an in-
dependent distribution can represent pµ(w|φ = 1). Any
distribution with pµ(g) = 1 will have a conditional distribu-
tion at the vertex (¬r, g), which is representable. Therefore,
the distributions for which we can represent pµ(w|φ = 1)
are those that either have pµ(g) = 1 or pµ(r) = 1 (but not
both, since then pµ(φ = 1) = 0). For general functions,
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this theorem states that a distribution can only represent a
conditional independent distribution if the unconditioned
distribution is deterministic in some variables.

4.4. The geometry of sets of possible independent
distributions

While the previous section studied possible independent
distributions individually, in the following section we study
entire sets of possible distributions from a geometric and
topological viewpoint. Our main result proves that all possi-
ble independent distributions are on a face of the hypercube
[0, 1]n and that we can compute which faces contain possi-
ble independent distributions.

We next define the set of all independent distributions
∆⊥⊥ ⊆ ∆. We calculate the probability of each world
from the parameters µ ∈ [0, 1]n. Then, we create a vector
in the set of all distributions ∆:

∆⊥⊥ =
{
pµ ∈ ∆ | µ ∈ [0, 1]n,

pµi =

n∏
j=1

µ
wi,j

j · (1− µj)
1−wi,j

} (4)

We consider all parameters of possible distributions in
[0, 1]n. Then, we compute the probability of each world wi

using Equation 2 and the Bernoulli mass function to create
a vector in ∆. This map from [0, 1]n to ∆ is a bijection
(see Lemma G.1), and so is a homeomorphism between
the n-cube [0, 1]n and ∆⊥⊥. In practice, this means we can
study topological properties both in parameter space and
distribution space. We will treat pµ as both a vector in ∆
and a distribution over worlds.

Independent distributions can only represent a subset of
the simplex ∆. We aim to understand this subset, and
in particular the set of possible independent distributions
∆⊥⊥

φ = ∆⊥⊥ ∩∆φ.

4.4.1. A REPRESENTATION OF ∆⊥⊥
φ

We next prove that the set of possible independent distri-
butions ∆⊥⊥

φ is formed by considering the set of all prime
implicants of φ. We find a useful representation of ∆⊥⊥

φ

using cubical sets (often called cubical complexes). Roth
(1958) was the first to use cubical sets to develop algorithms
that compute efficient representations of boolean functions,
noting the relation to implicants. Intuitively, a cubical set
is a union of (hyper)cubes of various dimensions. In our
representation, we use implicants to create a cube. We then
show a cubical set formed from such cubes is the set of
possible independent distributions.

The cube associated with an implicant fixes the coordinates
of the deterministic variables and uses the interval [0, 1] for
the free variables. For example, the implicants of the traffic

light problem form two cubes: For ¬r, the cube is {0} ×
[0, 1] (or: the first is false, and the second is “agnostic”) and
for ¬g, the cube is [0, 1]×{0}. We next discuss the relevant
background for these concepts.
Definition 4.5 (Elementary cubes). An elementary interval
I is {0}, {1}, or [0, 1]. An (elementary) n-cube C is the
Cartesian product of n elementary intervals C = I1 × · · · ×
In ⊆ [0, 1]n. We use “cube” to refer only to elementary
cubes unless mentioned otherwise. The dimension of a
cube is the number of elementary intervals Ii that are [0, 1].
Cubes of dimension 0 are called vertices and are points in
{0, 1}n, while cubes of dimension 1 are edges that connect
two vertices. A face C ′ of a cube C is a cube such that
C ′ ⊆ C.
Definition 4.6 (Cubical sets). X ⊆ [0, 1]n is a cubical
set if it is the finite union of a set of cubes {C1, ..., Ck}
(Kaczynski et al., 2004). With C(X) we denote all faces of
the cubes {C1, ..., Ck}, while with Ck we denote the faces
in C(X) of dimension k, called the k-cubes of X . A facet
C ∈ C(X) of X is a cube that is not contained in another
cube C ′ ∈ C(X).

Next, we need the notion of prime implicants (Quine, 1959).
Informally, an implicant is a prime implicant if, by remov-
ing any of its assignments, there will be extensions of the
implicant that are impossible worlds.
Definition 4.7 (Prime implicant). An implicant wD of φ is
a prime implicant if its cover WwD

is not contained in the
cover WwE

of another implicant wE , that is, WwD
̸⊂ WwE

for all implicants wE . With I = {wDi}mi=1 we denote the
set of all prime implicants of φ.

The set of prime implicants I can be found with the first
step of the Quine–McCluskey algorithm (Quine, 1952; Mc-
Cluskey, 1956). It creates a disjunctive normal form of φ
by considering their disjunction.

Finally, we introduce the cubical set corresponding to φ.
Definition 4.8 (Implicant cubes & cubical set of φ). Each
implicant wD defines an implicant cube CwD

: Its i-th ele-
mentary interval Ii is {wDi} if i ∈ D, and [0, 1] otherwise.
The cubical set Cφ of φ is the union of all prime implicant
cubes Cφ =

⋃
wD∈I CwD

.
Example 4.9. In the traffic light problem, the prime impli-
cants are ¬r and ¬g. ¬r ∧ ¬g is an implicant but is not
prime, as two proper subsets are also implicants.

The cubical set is Cφ = {0} × [0, 1] ∪ [0, 1] × {0}.
C0(Cφ) = {(0, 0), (0, 1), (1, 0)} is the vertices, while
C1(Cφ) = {{0} × [0, 1], [0, 1] × {0}} are the edges. The
first edge connects (0, 0) and (0, 1), and the second con-
nects (0, 0) and (1, 0). This cubical set corresponds to the
lines of minimal loss in the left plot of Figure 4.

The implicant cube CwD
contains the independent parame-
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ters µ for distributions pµ that deterministically return wD.
We present the basic properties of Cφ in Appendix F. The
most important results are that the set of cubes C(Cφ) is
equal to the set of all implicant cubes. Furthermore, the
prime implicant cubes are the facets of the cubical set Cφ.
This means we can exactly compute the combinatorial struc-
ture of Cφ from the prime implicants of φ.

Our next result states that the cubical set Cφ indeed repre-
sents the set of possible independent distributions.

Theorem 4.10 (Representing the set of possible independent
distributions). A parameter µ is in Cφ if and only if the
distribution pµ is possible for φ. That is, µ ∈ Cφ if and
only if pµ ∈ ∆⊥⊥

φ . Furthermore, the cubical set Cφ cannot
be represented as a union of fewer cubes.

Proof sketch. A distribution pµ using a parameter µ from
implicant cube CwD

fixes wD and allows any value in [0, 1]
for the remaining factors. This describes all possible inde-
pendent distributions by Theorem 4.3, so all possible inde-
pendent distributions are in the union of implicant cubes.

Next, we show that a parameter µ that is in the open interval
(0, 1) for all stochastic variables of a prime implicant cube
cannot be in another (prime) implicant cube. This is because
µ would be in the relative interior of CwD

, and we know
that the relative interiors of faces of a cubical set are disjoint
(Kaczynski et al., 2004). This shows that no smaller set of
implicants gets us to ∆⊥⊥

φ .

While we can compute this representation, it can also be
rather big. The number of prime implicants can be expo-
nential in the number of variables, and there are formulas
with Ω(3n/n) prime implicants (Chandra and Markowsky,
1978), above the number of worlds 2n. And as we proved,
we need all prime implicants: A minimal subset of prime
implicants that cover all possible worlds (for instance, the
prime implicants found in the second step of the Quine–
McCluskey method) does not always cover ∆⊥⊥

φ . See Ap-
pendix B.1 for a counterexample. In addition, computing
the combinatorial structure of the cubical set Cφ adds a
significant combinatorial overhead, as it is generated from
the prime implicants.

4.4.2. CONVEXITY OF SEMANTIC LOSS OVER
INDEPENDENT DISTRIBUTIONS

Next, we study when the semantic loss restricted to inde-
pendent distributions is convex. We already saw in Figure
4 that even for the simple traffic light formula, the set of
possible independent distributions is not convex. We now
prove this is almost always the case:

Theorem 4.11 (Convexity). The following statements are
equivalent: 1) There is exactly one prime implicant of φ;

2) Cφ is convex; 3) the semantic loss over the space of
independent distributions L(µ) is convex.

Proof sketch. If there is exactly one prime implicant, Cφ is
an implicant cube CwD

, which is clearly convex. If there is
more than one prime implicant, we can construct a convex
combination of two parameters that is not possible by noting
that the deterministic assignment of this convex combination
is not an implicant.

The convexity of the semantic loss is proven using Jensen’s
inequality and noting that we can marginalise out all the
stochastic variables. With more than one prime implicant,
we note that since its minima Cφ are non-convex, certainly
the semantic loss must also be non-convex.

The condition that there is a single prime implicant means
that the set of all possible worlds Wφ is described by fixing
some variables and letting the other variables be free. This is
essentially “supervised learning” on the variables in D and
absolutely no supervision for the other variables. This is an
uncommon scenario for most neurosymbolic settings, as we
can simply resort to standard supervised learning methods.

4.4.3. CONNECTEDNESS OF ∆⊥⊥
φ

We next study when the set of all possible independent
distributions ∆⊥⊥

φ is connected. For this, we introduce the
notion of a prime implicant graph:
Definition 4.12 (Prime implicant graph). Let G = (Wφ, E)
be the prime implicant graph of φ, where the vertices Wφ

is the set of possible worlds of φ and E = {(w1,w2) |
∃wD∈I : w1,w2 ∈ WwD

} is the set of edges.

In this graph, there is an edge between two possible worlds
w1 and w2 when there is an implicant that covers both w1

and w2. In our traffic light example, the prime implicant
graph has three vertices. There is an edge between the
first and the third ((0, 1) and (0, 0)) and the second and the
third ((1, 0) and (0, 0)). In the case of the XOR function
(Appendix B.2) (a ∧ ¬b) ∨ (¬a ∧ b), the graph has two
vertices (1, 0) and (0, 1), but no edges.
Theorem 4.13 (Connectedness). The connected compo-
nents of the space of possible distributions Cφ correspond
to the connected components in G. In particular, Cφ is a
connected space if and only if G is connected.

Proof sketch. The vertices of the prime implicant graph G
as points in {0, 1}n directly correspond to the vertices of
Cφ. When an edge exists between w1 and w2, both worlds
are covered by some prime implicant wD, and their deter-
ministic components must include wD, so w1,w2 ∈ CwD

.
Since all cubes are connected, w1 and w2 are connected in
CwD

⊆ Cφ. By induction, if there is a path in G between
w1 and w2, there is a path in Cφ between w1 and w2.
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This theorem shows that the connectedness depends on the
structure of the constraint. For the traffic light example,
∆⊥⊥

φ is connected: the three possible worlds are connected
through the two prime implicants ¬r and ¬g. However, ∆⊥⊥

φ

is disconnected for the XOR function, as its prime implicant
graph is disconnected. See Appendix B.2 for a visualisation.
The popular MNIST Addition task (Example 2.1) is another
example: Like XOR, ∆⊥⊥

φ is a set of disconnected vertices.
This brings challenges to training independent perception
models: Each disconnected part of the graph is a different
“global optimum”, and moving from one global optimum
to another will require a large change in parameters while
incurring a higher loss.

4.5. Computing the homology of ∆⊥⊥
φ

Our representation of the set of possible independent dis-
tributions is in the form of a cubical set. Cubical sets are a
useful representation tool for topological spaces in algebraic
topology, although simplicial complexes are more common
(Hatcher, 2002; Matoušek, 2008). Homology allows us to
use combinatorial, algebraic objects to study the topology
of cubical sets. In our case, these objects correspond to
the implicants of the formula. For finite cubical sets, the
problem of computing the homology is solved (Kaczynski
et al., 2004). This means we can associate every formula φ
with a homology which gives all the holes in the set. This
roughly tells us how “easy” this set is to traverse during
optimisation: A set with many holes will require more com-
plicated paths. We give an example of a formula with a hole
in Appendix B.3.

The algorithm behind computing the homology from a cu-
bical set is complicated, and involves both (abelian) group
theory and linear algebra. We refer the reader to Algorithm
3.78 in Kaczynski et al. (2004), which requires the facets of
the cubical set as input. In our case, this corresponds to the
set of all prime implicants, found by the Quine–McCluskey
algorithm (Quine, 1952). Then we construct matrices that
correspond to the boundaries of the cubes, and use linear al-
gebra to compute the Smith normal form. From this matrix,
the relevant groups can be constructed.

5. Empirical visualisations
To visualise what the possible distributions found by min-
imising the semantic loss look like, we compare independent
distributions and expressive distributions on the traffic light
problem in Figure 3. We modelled independent distribu-
tions with two real-valued parameters and a sigmoid, and
expressive distributions with 4 real-valued parameters and
a softmax. Then, we minimise the semantic loss to ensure
p(r, g) = 0. We use gradient descent for 10,000 iterations
with a learning rate of 0.1.

r, g

¬r, g r,¬g

¬r,¬g

Independent

p(r, g) = 0.7 p(r, g) = 0

r, g

¬r, g r,¬g

¬r,¬g

Softmax (expressive)

p(r, g) = 0.7 p(r, g) = 0

Figure 3. The minimisation of the semantic loss on the traffic light
problem for independent distributions (left) and expressive distri-
butions (right). The initial distributions have impossible beliefs
with p(r, g) = 0.7, plotted in the top-left triangle and the top trian-
gle within the tetrahedron. The resulting minima with p(r, g) = 0
are in the bottom triangle. Minima of the independent assumption
are as predicted by Theorem 4.10. The minima of the expressive
parameterisation cover differing areas in the bottom triangle, but
are close to the vertices.

We find that the minima of the independent distributions
are as predicted by Theorem 4.10: A union of two line
segments between the vertices ¬r, g and ¬r,¬g and the
vertices r,¬g and ¬r,¬g. The minima of the expressive
distributions are more uniformly distributed over the bottom
triangle, but are biased towards the vertices. Therefore,
using an expressive parameterisation is not sufficient to
ensure the model is calibrated, which is a common problem
in neural networks (Guo et al., 2017). In Appendix C, we
also experimented with adding an entropy maximisation
loss, which counteracts this bias. This is similar to how
BEARS (Marconato et al., 2024) encourages diversity.

6. Related work
Many PNL systems use the independence assumption we
discussed, such as semantic loss (Xu et al., 2018), Deep-
ProbLog (Manhaeve et al., 2018), DeepStochLog (Winters
et al., 2022), A-NeSI (van Krieken et al., 2023), NeurASP
(Yang et al., 2020), and Scallop (Huang et al., 2021). As
previously mentioned, this makes probabilistic reasoning
tractable, as computing Equation (1) is a #P-hard problem
in general. While they are not directly comparable, fuzzy
methods for neurosymbolic learning also implicitly make
this assumption (Serafini and Garcez, 2016; Badreddine
et al., 2022; van Krieken et al., 2022). We show that several
fuzzy logics also bias towards determinism in Appendix A,
although more work is needed to prove that this happens
with the same generality as for probabilistic methods.

However, several recent methods are also compatible with
more expressive distributions and show significant accuracy
improvements compared to methods relying on the indepen-
dence assumption. The pseudo-semantic loss (Ahmed et al.,
2023) uses a pseudo-log-likelihood approximation to the
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semantic loss to train autoregressive perception models. Ne-
uPSL (Pryor et al., 2023) uses energy-based models that can
perform joint inference over multiple variables. In semantic
probabilistic layers, Ahmed et al. (2022a) experiment with
an alternative parameterisation that increases expressivity
without losing tractability: namely, a mixture of independent
distributions (Vergari et al., 2021). We study these mixtures
thoroughly in Appendix D. In particular, we prove that using
two mixture components ensures the minima are connected.
However, to be able to mix between an arbitrary number
of possible worlds, we need at least as many components
as the size of a minimal prime implicant cover. This is ex-
ponential in the number of variables in general. BEARS
(Marconato et al., 2024) increases expressiveness by cre-
ating an ensemble of independent models, which has the
same expressiveness guarantees as mixtures of independent
distributions. BEARS explicitly uses this ensemble to in-
crease uncertainty calibration. Cerutti et al. (2022) consider
a Bayesian approach for probabilistic circuits, overcoming
the independence assumption to improve the estimation of
uncertainty.

The study of the theory of neurosymbolic learning is still
in its infancy. Marconato et al. (2023b) discuss Reasoning
Shortcuts, which are perception models that minimise the
semantic loss, yet learn to predict worlds that are different
from the ground truth. Since the independence assump-
tion biases to determinism, we hypothesise that independent
distributions are more likely than expressive models to con-
verge to a single reasoning shortcut: They cannot properly
express uncertainty between different reasoning shortcuts.
Several recent papers study how to best deal with reasoning
shortcuts (Marconato et al., 2024; Li et al., 2023a).

Furthermore, recent work has studied conditions for the
learnability of the perception model (Wang et al., 2023b)
and error bounds on its generalisation gap (Wang et al.,
2023a). The output layer of the perception model also af-
fects expressivity. If it is low-rank, that is, the number of
neurons is lower than the number of outputs, there is an ad-
ditional decrease in expressivity known as the softmax bot-
tleneck (Yang et al., 2018) or the sigmoid bottleneck in the
context of binary outputs (Grivas et al., 2024). Our results,
in particular Theorem 4.13, are also related to the connec-
tivity barrier in Monte Carlo approaches to neurosymbolic
learning over independent models (Li et al., 2023b). A fu-
ture study into this relation may provide insights in how to
speed up Monte Carlo methods in this setting.

7. Conclusion
We studied the independence assumption in neurosymbolic
learning, which characterises several popular methods. We
proved that this assumption biases neurosymbolic models
towards deterministic solutions. As a result, they lack the

ability to express uncertainty about multiple possibly valid
options. We then used tools from logic and computational
homology to study the structure of the set of possible in-
dependent distributions, and showed it is non-convex and
disconnected in general.

In future work, we want to study practical methods for
expressive neurosymbolic learning that properly represent
uncertainty about different valid worlds. Dropping the inde-
pendence assumption means that inference becomes much
more complex, so a thorough study of appropriate (approx-
imate) inference methods is needed. Our theory can be
extended to a thorough study of the trade-off between ex-
pressivity and tractability. Our analysis of the mixture of
independent distributions in Appendix D gives a stepping
stone towards this goal. Another option is to consider con-
straints on continuous variables. Furthermore, a thorough
study of the homology discussed in Section 4.5 may re-
veal further insights into the topology of the set of possible
distributions.

Impact statement
This paper presents foundational work to understand and
advance the field of neurosymbolic machine learning. As
such, there could be many potential societal consequences
of applications of our work, none of which, we feel, can be
easily predicted and specifically highlighted here.
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den, 2018. PMLR.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W. Cohen. Breaking the softmax bottleneck: A
high-rank RNN language model. In International Confer-
ence on Learning Representations, 2018. URL https:
//openreview.net/forum?id=HkwZSG-CZ.

Zhun Yang, Adam Ishay, and Joohyung Lee. NeurASP:
Embracing neural networks into answer set programming.
In Christian Bessiere, editor, Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intel-
ligence, IJCAI-20, pages 1755–1762. International Joint
Conferences on Artificial Intelligence Organization, July
2020. doi: 10.24963/ijcai.2020/243.

Günter M. Ziegler. Lectures on polytopes. Springer-Verlag,
New York, 1995.

11

https://openreview.net/forum?id=HkwZSG-CZ
https://openreview.net/forum?id=HkwZSG-CZ


On the Independence Assumption in Neurosymbolic Learning

Symbol Description Reference
w A world in {0, 1}n Sec. 2
x An high-dimensional input Sec. 2
θ Parameter of the perception model Sec. 2
φ A constraint of {0, 1}n → {0, 1} Sec. 2
pθ(w|x) The perception model Sec. 2
L(θ) The semantic loss Sec. 2
W The set of all worlds {0, 1}n Sec. 3
Wφ The set of possible worlds Sec. 3
∆ The set of all distributions over worlds Sec. 4.1
∆φ The set of possible distributions Sec. 4.1
∆⊥⊥ The set of independent distributions Sec. 4.4
∆⊥⊥

φ The set of possible independent distributions Sec. 4.4
µ A parameter for an independent distribution in [0, 1]n Sec. 4.2
pµ(w) An independent distribution parameterised by µ Sec. 4.2
wD A partial assignment to the variables in D. Usually an implicant Def. 4.1 and 4.2
WwD

The cover of a partial assignment (all worlds that extend it) Def. 4.2
I The set of all prime implicants Def. 4.7
C An (elementary) cube Def. 4.5
C(X) The set of all cubes in a cubical set X Def. 4.6
CwD

The cube corresponding to an implicant Def. 4.8
Cφ The cubical set of parameters in [0, 1]n that satisfy the knowledge φ Def. 4.8
G The prime implicant graph Def. 4.12

Table 1. Table of notation used in the paper. We use bold symbols x, w to denote vectors, both real and boolean. We use p and q,
possibly parameterised, to refer to distributions over w ∈ {0, 1}n. Since these correspond to vertices in ∆ (the simplex over all possible
worlds), we will treat p as both a vector and a distribution.

12
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Figure 4. Plots of neurosymbolic loss functions for the formula
¬r∨¬g using several t-norms. Left: Product t-norm, computed as
− log pθ(φ|x). This coincides with the semantic loss. Center: The
Gödel t-conorm 1−max(1− r, 1− g). Right: The Łukasiewicz
t-conorm 1−min(1, 2− r − g).

A. Bias towards determinism for Fuzzy Logic
Fuzzy Neurosymbolic Learning. While our paper focuses
on probabilistic methods, we shortly introduce relevant
background about fuzzy neurosymbolic learning (FNL).
Roughly, FNL methods construct a fuzzy evaluation func-
tion eφ : [0, 1]n → [0, 1]. eφ maps independent probability
distributions to fuzzy truth values in [0, 1] by relaxing the
logical connectives to operators on [0, 1] (Badreddine et al.,
2022). If the distribution is deterministic, then the fuzzy
truth becomes binary truth. For a discussion on fuzzy relax-
ations, see (van Krieken et al., 2022). We limit our discus-
sion to the three common fuzzy disjunctions (t-conorms):

Product: a ∨ b = a+ b− a · b,
Gödel: a ∨ b = max(a, b),

Łukasiewicz: a ∨ b = min(1, a+ b)

We plot the truth values of three common t-conorms for this
formula in Figure 4 as a function of p(r) and p(g). The
product t-conorms and Gödel t-conorms have their minima
at the lines p(r) = 0 and p(g) = 0, and have a similar
biasing effect as the semantic loss.

The Łukasiewicz t-conorm is minimised when p(r)+p(g) ≤
0.5 and does not bias towards a deterministic choice. This
may explain why Łukasiewicz t-conorms are often more ef-
fective in realistic settings (Giunchiglia et al., 2023). How-
ever, the Łukasiewicz logic has other problems, such as
vanishing gradients (van Krieken et al., 2022) and the fact
they do not converge to solutions where p(φ = 1) = 1.

B. Additional examples
In this appendix, we plot several example formulas that
illustrate the theory discussed in the paper.

a,¬b, c

¬a, b,¬c a, b, c

a, b,¬c

Pb∧¬c Pa∧b

Pa∧c

Figure 5. The full 3-simplex over possible worlds and the set of
possible independent distributions in blue for the formula discussed
in Section B.1. The Pϕ labels denote the set of distributions
characterised by the implicant ϕ, as defined in Proposition 4.10.

B.1. Minimal covers of prime implicants do not cover all
possible independent distributions

In Proposition 4.10, we showed that the set of all prime
implicants is necessary to cover all possible independent
distributions. In this appendix, we give a counterexample
to the idea that a minimal cover of prime implicants might
be sufficient to cover all possible independent distributions.
Such minimal covers are computed in the second step of
the Quine–McCluskey algorithm (Quine, 1952; McCluskey,
1956) to minimise the description length of the boolean
formula.

Definition B.1. A set of prime implicants I is a cover of φ
if
⋃

wD∈I WwD
= Wφ, that is, the union of their cover is

equal to the set of all possible worlds. A cover is minimal if
no smaller set of prime implicants is also a cover.

Consider a boolean formula on three variables with possible
worlds {(a, b, c), (a, b,¬c), (¬a, b,¬c), (a,¬b, c)}. We vi-
sualize the full simplex over possible worlds and the set of
possible independent distributions in Figure 5. The prime
implicants of this formula are {b ∧ ¬c, a ∧ c, a ∧ b, }. The
minimal cover of prime implicants is {b ∧ ¬c, a ∧ c}: The
worlds a ∧ b covers are a ∧ b ∧ c, which is also covered by
prime implicant a ∧ c, and a, b,¬c, which is also covered
by prime implicant b ∧ ¬c. However, by Theorem 4.3, the
distribution that deterministically assigns a ∧ b, but gives
0.5 probability to c, can be represented only using the prime
implicant a ∧ b: The other two prime implicants cannot
represent distributions where c is stochastic. Therefore, min-
imal covers of prime implicants do not cover all possible
independent distributions.

B.2. The XOR formula has disconnected minima

In Figure 6, we plot the semantic loss under the indepen-
dence assumption for the XOR formula φ = (a ∧ ¬b) ∨
(¬a ∧ b). Note that the minima of this function are in
(1, 0) and (0, 1), since the prime implicants are a ∧ ¬b and
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Figure 6. The loss landscape of the semantic loss under the inde-
pendence assumption for the XOR formula φ = (a∧¬b)∨ (¬a∧
b).

µa

µc µb

Ca∧b

Cb∧c

0, 0, 0
Ca∧¬c

1, 1, 1
C¬a∧c

C¬b∧¬c

C¬a∧¬b

Figure 7. An example of a formula where the set of possible inde-
pendent distributions has a hole. The formula is φ = (¬a∧¬b)∨
(¬a ∧ c) ∨ (b ∧ c) ∨ (a ∧ b) ∨ (a ∧ ¬c) ∨ (¬b ∧ ¬c). The blue
lines correspond to the set of possible independent distributions.
Cϕ is an implicant cube.

¬a∧b. These are clearly disconnected minima, and to move
from one minimum to the other, we would have to traverse
through the saddle point at (0.5, 0.5), meanwhile incurring
a significantly high loss.

B.3. The set of possible independent distributions can
have holes

In Figure 7 we show that there are formulas for which the set
of possible independent distributions ∆⊥⊥

φ has holes. Here,
the formula φ = (¬a ∧ ¬b) ∨ (¬a ∧ c) ∨ (b ∧ c) ∨ (a ∧
b) ∨ (a ∧ ¬c) ∨ (¬b ∧ ¬c) is defined by a disjunction of
prime implicants. We choose the prime implicants carefully
so that each face of the cube has exactly 2 edges. The set
highlighted in blue cannot be shrunk to a single point: It is
a hole in space. This hole will be detected by algorithms
that compute the homology of ∆⊥⊥

φ (see Section 4.5). How
relevant is this to optimisation? The presence of holes means
there is a cycle between different points, meaning we can

move from one point to another in multiple ways. In our
example, if one were to remove one of the prime implicants
from the formula, there is only one path through ∆⊥⊥

φ .

C. Entropy regularisation helps to calibrate
expressive models

We repeat the experiments in Section 5 for both the inde-
pendent and the softmax model with entropy regularisation.
We note that we maximise entropy, instead of minimising
the entropy, like in Neuro-Symbolic Entropy Regularisation
(Ahmed et al., 2022b). In particular, we use the loss function

Lα(θ) = (1− α)L(θ)− αH(pθ|φ), (5)

where we compute H(pθ|φ) = 1
3 (pθ(¬r, g) + pθ(r,¬g) +

pθ(¬r,¬g)).

We plot the results in Figure 8 for the independent model and
various values of α. We see that the entropy regularisation
does not help to calibrate the model. Rather, it biases the
model more towards the ¬r,¬g vertex. For larger values
of α, the minimum of the augmented loss no longer is a
minimum of the semantic loss. In fact, for α = 0.1, all
initial points converge to a minimum that floats just above
the bottom triangle. It assigns a probability of 0.023 to the
impossible world r, g.

The intuition for this is that the entropy regularisation is min-
imised only at the uniform belief p1 from Figure 1, which
is not representable by independent distributions. Then, by
minimising the augmented loss Lα, it trades off the closest
point to p1 and staying close to the bottom triangle.

For expressive distributions, the effect of entropy regularisa-
tion is quite different, which we plot in Figure 9. Again, the
parameter α trades off the original minima, which are close
to the vertices in the bottom triangle, to the uniform distribu-
tion p1. For α = 0.1, the minima are indeed all close to p1.
However, for appropriate values of α such as α = 0.01, the
minima almost distribute perfectly over the bottom triangle,
and it almost finds the conditioned version of the original
distribution. We note that finding the parameter α to get this
behaviour would be extremely challenging in practice.

D. The mixture of independent distributions
In this appendix, we study the mixture of independent dis-
tributions with k components. The main results here are
that for k ≥ 2, the space of possible distributions is con-
nected. Furthermore, we provide bounds on the number
of components needed to completely fill the space of all
possible distributions ∆φ. A lower bound is the number of
disconnected components in the prime implicant graph, and
an upper bound is the number of prime implicants. This
lower bound can be tricky: For example, the number of
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r, g

¬r, g r,¬g

¬r,¬g

independent, α = 0.0

p(r, g) = 0.7p(r, g) = 0

r, g

¬r, g r,¬g

¬r,¬g

independent, α = 0.005

p(r, g) = 0.7p(r, g) = 0

r, g

¬r, g r,¬g

¬r,¬g

independent, α = 0.01

p(r, g) = 0.7p(r, g) ≤ 0.003

r, g

¬r, g r,¬g

¬r,¬g

independent, α = 0.02

p(r, g) = 0.7p(r, g) ≤ 0.006

r, g

¬r, g r,¬g

¬r,¬g

independent, α = 0.05

p(r, g) = 0.7p(r, g) ≤ 0.013

r, g

¬r, g r,¬g

¬r,¬g

independent, α = 0.1

p(r, g) = 0.7p(r, g) ≤ 0.023

Figure 8. Minimising the semantic loss with entropy regularisation for the independent model.

r, g

¬r, g r,¬g

¬r,¬g

Softmax, α = 0.0

p(r, g) = 0.7 p(r, g) = 0

r, g

¬r, g r,¬g

¬r,¬g

Softmax, α = 0.005

p(r, g) = 0.7 p(r, g) = 0

r, g

¬r, g r,¬g

¬r,¬g

Softmax, α = 0.01

p(r, g) = 0.7 p(r, g) = 0
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¬r,¬g

Softmax, α = 0.02

p(r, g) = 0.7 p(r, g) = 0

r, g

¬r, g r,¬g

¬r,¬g

Softmax, α = 0.05

p(r, g) = 0.7 p(r, g) = 0

r, g

¬r, g r,¬g

¬r,¬g

Softmax, α = 0.1

p(r, g) = 0.7 p(r, g) = 0

Figure 9. Minimising the semantic loss with entropy regularisation for the joint model.
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disconnected components in the MNIST Addition task is
exponential in the number of digits.

The parameter space of this distribution is the Cartesian
product Θk = ∆k × [0, 1]k·n, where ∆k is the k + 1-
dimensional simplex. We map this parameter space to
the space of distributions over worlds ∆ with the map
fk·⊥⊥ : Θk → ∆, which we define as:

fk·⊥⊥(α,µ1, ...,µk)i =

k∑
m=1

αmf⊥⊥(µm)i (6)

where f⊥⊥ is defined as in Equation 7. Unlike f⊥⊥, this is
not a bijection, as multiple parameterisations can map to
the same distributions. We will refer to pθ = fk·⊥⊥(θ) as a
vector in ∆.

Lemma D.1. Consider a parameter θ ∈ Θk of a mixture
of k independent components. Then fk·⊥⊥(θ) is a possible
distribution if and only if all components i such that αi > 0
have a deterministic assignment that is an implicant.

Proof. The mixture of independents assigns some mass to
all independent distributions with αi > 0. For such an
independent distribution to be possible, by Proposition 4.3,
the deterministic assignment of this component has to be an
implicant. Conversely, assume there is a component with
αi > 0 that is not a possible distribution. Then, it assigns
some mass to an impossible world, and so must the mixture
of components. Therefore, the mixture is not a possible
distribution.

Let us now discuss the set of possible distributions for the
mixture distribution Pk,φ = fk·⊥⊥(Θk)∩∆φ. Conveniently,
if k ≥ 2, the set of minima of the semantic loss under the
mixture distribution is connected:

Proposition D.2. The set of possible mixture distributions
Pk,φ is connected for k ≥ 2.

Proof. Since ∆⊥⊥
φ ⊆ Pk,φ, any two points that are con-

nected in ∆⊥⊥
φ are also connected in ∆⊥⊥

φ k
.

Consider two points µ1,µ2 ∈ ∆⊥⊥
φ that are not connected.

Then we can create a convex combination between pµ1
and

pµ2
in Pk,φ by moving α1 from 1 to 0 and α2 from 0 to 1.

This convex combination is a possible distribution in Pk,φ

by Lemma D.1.

Consider two parameters θ1,θ2 ∈ Θk. We will construct
a path from pθ1 to pθ2 through Pk,φ. First, choose a com-
ponent i ∈ {1, ..., k} such that α1,i > 0. Next, contin-
uously map the convex mixture parameter from α1 to ei
(the i-th standard normal vector). Call the resulting param-
eter θ̂1. Since we do not change the mixture components
themselves, we never leave Pk,φ by Lemma D.1. Then,

pθ̂1
= f∆⊥⊥(µ1,i) = pµ1,i

is a possible independent distri-
bution. Consider some component j ∈ {1, ..., k} such that
α2, j > 0. As argued in the paragraphs above, there is a
path between pµ1,i

and pµ2,j
in Pk,φ. Consider θ̂2 to be θ2

but replacing α with ej such that pθ̂2
= pµ2,j

. Then, we
continuously map ej to α2,j to finally arrive at θ2.

Clearly, increasing the number of components is beneficial
to further covering the complete set of all possible distri-
butions ∆φ. But how parameter-efficient is the use of mix-
tures of independent distributions to cover this set? First,
we prove a straightforward lemma.

Lemma D.3. Consider a parameter θ ∈ Θk of a mixture
of k independent components such that pθ ∈ Pk,φ. Then
pθi > 0 if and only if there is a component m ∈ {1, ..., k}
such that αm > 0 and the deterministic assignment of µm

covers w.

Proof. Let pθi > 0. Then by Equation 6 there must be a
m ∈ {0, ..., k} with αm > 0 such that f⊥⊥(µm)i > 0. But
then, by Proposition 4.3, the deterministic assignment of
µm covers w.

Similarly, let the deterministic assignment of µm cover w
and let αm > 0. Then by Proposition 4.3, f⊥⊥(µm)i > 0.
But then by Equation 6, pθi > 0.

We next prove a significant lower bound:

Theorem D.4. The minimal number of mixture components
needed to assign some probability to all possible worlds is
the number of prime implicants in a minimal cover of prime
implicants I.

Proof. First, we prove that if a mixture distribution can
assign some probability to all possible worlds, then it has
at least |I| components. Assume otherwise. Then |I| −
1 components are enough to cover ∆φ. Consider some
distribution p ∈ ∆φ such that pi > 0 for all possible worlds
wi. Let θ ∈ Θ|I|−1 be parameters such that pθ = p, which
have to exist by assumption.

Let I ′ be the implicants formed from the independent pa-
rameters µi, i ∈ {1, ..., I − 1}. By Lemma D.3, the set of
worlds such that pθ(w) > 0 is W ′ =

⋂
wD∈I′ WwD

. This
set must equal Wφ by the assumption that pi > 0 for all
possible worlds. But this is a contradiction, since this would
make the set of implicants I ′ a cover of φ with |I| − 1 com-
ponents, which is smaller than the minimal cover of prime
implicants I.

Next, we prove that if the number of components is at least
|I|, then we can assign some probability to all possible
worlds. Define an order wD1, ...,wD |I| of a minimal cover
of prime implicants. Let µ1, ...,µ|I| be independent pa-
rameters such that µi is in the relative interior of CwD i
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(see Theorem 4.10 and its proof for a rigorous definition).
Use µ1, ...,µ|I| together with α such that αi > 0 for all
i ∈ {0, ..., |I|} to define parameters θ ∈ Θ|I|. Then, by
Lemma D.3, pθ assigns some probability to all possible
worlds.

Interestingly, here a minimal cover of prime implicants is
relevant, while for Theorem 4.10, we needed to consider the
set of all prime implicants (see also Appendix B.1). Figure
5 provides some intuition: b ∧ ¬c and a ∧ c form a minimal
set of prime implicants. By mixing between points on the
line segments Pb∧¬c and Pa∧c, we can, in fact, cover the
entire set of possible worlds.

Clearly, |I| is also a lower bound on the number of compo-
nents needed to completely cover φ. A simple upper bound
for the number of components needed to mix is |Wφ|, since
we can put a (deterministic) independent distribution on
each of the possible worlds and mix them via α. Another
lower bound is ⌈|Wφ|/(n+ 1)⌉, since fk,⊥⊥(Θk) is at most
a k · (n+ 1)-dimensional subspace of ∆.

Given Theorem D.4 and the other bounds, is using a mixture
of independents a parameter-efficient way to allow percep-
tion models to express more uncertainty? We would argue
not, at least not in general. For example, the size of the
minimal cover for MNIST Addition grows exponentially
with the number of digits considered, in fact, it is equal
to the number of possible worlds. But then we are using
|Wφ| · (n+ 1) parameters, which are n times more parame-
ters than necessary: The space of possible distributions is a
|Wφ|-dimensional subspace of ∆.

E. Convexity of semantic loss
In this Appendix, we show that the semantic loss is a convex
loss over the space of all possible distributions ∆ using
Jensen’s inequality and the fact that the WMC in Equation
1 is linear. Note that this does not mean it is convex with
respect to the parameters θ of the perception model. Let
p1, p2 ∈ ∆. Note that since ∆ is a convex set, λp1 + (1−
λ)p2 ∈ ∆. Then,

L(λp1 + (1− λ)p2)

=− log
( ∑

w∈Wφ

λp1(w) + (1− λ)p2(w)
)

=− log
(
λ

∑
w∈Wφ

p1(w) + (1− λ)
∑

w∈Wφ

p2(w)
)

≤− λ log
∑

w∈Wφ

p1(w)− (1− λ) log
∑

w∈Wφ

p2(w)

=λL(p1) + (1− λ)L(p2)

F. Cubical sets generated by prime implicants
To help understand our results geometrically and prove some
of the main theorems in Appendix G, we study the basic
properties of the cubical set Cφ. For background on poly-
topes, faces, face posets, and polyhedral complexes, see
Ziegler (1995), and for an introduction and basic properties
of cubical sets, see Kaczynski et al. (2004).

First, we define elementary cells, which allow us to access
the relative interior of a cube by changing intervals from a
closed set to an open set.

Definition F.1. Associated with each cube C = I1×...×In

is an (elementary) cell
◦
C =

◦
I1 × ...×

◦
In ⊆ C, where each

◦
Ii = Ii for the degenerate intervals [0, 0] and [1, 1], and
◦
Ii = (0, 1) for the nondegenerate interval [0, 1].

The following proposition allows us to associate implicants
to faces of Cφ.

Proposition F.2. The faces C(Cφ) of Cφ is the set of impli-
cant cubes.

Proof. Consider some face X ∈ C(Cφ). Since by definition
a face is an (elementary) cube, it can be represented by
I1 × ...× In, where each Ii is an elementary interval. Use
the degenerate intervals to create a partial assignment wD.
If wD was not an implicant, then by Theorem 4.3, any

µ ∈
◦
CwD

is not possible, which contradicts Theorem 4.10.
Therefore, X is an implicant cube.

Next, consider some implicant wD. By definition, there is a
prime implicant wE ⊆ wD that assigns to a subset of wD.
Therefore, the only difference between the implicant cubes
of wD and wE is that the latter has fewer nondegenerate
intervals. Therefore, CwD

⊆ CwE
, and so CwD

is a face of
CwE

. Therefore, CwD
is a face of Cφ.

Proposition F.3. The facets of Cφ are the prime implicant
cubes CwD

.

Proof. Consider some facet X of Cφ. By Proposition F.2,
the deterministic part of X is an implicant wD. Assume
wD is not a prime implicant. Then there is a deterministic
variable i that we can remove from wD and still have an
implicant wE . But then CwE

⊃ C, with C = being a face
of CwE

, which is in contradiction with the assumption that
C is a facet.

Proposition F.4. The vertices C0(Cφ) of Cφ is equal to the
set of possible worlds Wφ.

Proof. Let C0(Cφ) ⊆ {0, 1}n be the vertices of Cφ, which
by Proposition F.2 is the implicant cubes with no stochastic
variables, that is, it assigns a value to every variable and
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corresponds directly to a world. By the fact that it is an
implicant, this world has to be possible, that is, C0(Cφ) =
|Wφ|.

Proposition F.5. The vertices C0(CwD
) of (prime) impli-

cant cube CwD
is equal to the cover of wD.

Proof. Considering wD as the constraint that a world w
has to agree on the deterministic variables with wD, by
Proposition F.4, the vertices of CwD

are precisely such
worlds. This is the cover of wD.

G. Proofs of the main theorems
In this appendix, we give the proofs for the theorems in the
main paper. Understanding some of these proofs requires
understanding the connection of our problem to cubical
sets, which we give in Appendix F. We recommend going
through Appendix F before reading the proofs.

We start off by defining the transformation from independent
parameters to distributions and prove that it is a bijection.
First, let

f⊥⊥(µ)i =

n∏
j=1

µ
wi,j

j · (1− µj)
1−wi,j . (7)

be a function f⊥⊥ : [0, 1]n → ∆⊥⊥ that maps the parameters
µ to the set of independent distributions. Note that this is
the transformation used in Equation 4.

Lemma G.1. The map f⊥⊥ is a continuous bijection from
[0, 1]n to ∆⊥⊥5.

Proof. Define the function f−1
⊥⊥ : ∆⊥⊥ → [0, 1]n as

f−1
⊥⊥ (p)i = p(wi = 1) =

|W|∑
j=1

wj,ipj i ∈ 1, ..., n. (8)

Consider µ ∈ [0, 1]n. Since µ are the parameters of an
independent distribution, the marginal probability pµ(wi =
1) = µi. This is also by definition the sum of the probabili-
ties of all worlds wk with wk,i = 1, that is, f−1

⊥⊥ . Therefore,
f−1
⊥⊥ (f⊥⊥(µ))i = µi.

Next, consider p ∈ ∆⊥⊥. By the definition of ∆⊥⊥ in
Equation 4, there must be a parameter µ ∈ [0, 1]n such
that f(µ) = p, that is, p represents an independent dis-
tribution by definition. Therefore, the marginal proba-
bilities computed with f−1

⊥⊥ precisely describe p, and so
f⊥⊥(f

−1
⊥⊥ (p)) = p.

Next, we repeat the theorems from the main body of the text
and give their proofs.

5It is a bijection to ∆⊥⊥, but not to the codomain ∆.

Theorem 4.4 (Representability of pµ(w|φ = 1)). Let pµ
have pµ(φ = 1) > 0 and deterministic assignment wE .
Then the following statements are equivalent:

1. the conditional distribution pµ(w|φ = 1) can be rep-
resented by another independent distribution qµ′ ;

2. there is an implicant wD that covers all possible
worlds in the support of pµ;

3. there is an implicant wD such that wE , φ |= wD.

Proof. 2 → 1: Assume such an implicant wD of φ exists.
Then we rewrite the conditional distribution pµ(w|φ = 1)
as

pµ(w|φ = 1) =

∏n
i=1 µiφ(w)

pµ(φ = 1)
(9)

= I[w ∈ WwD
]

∏
i ̸∈D µi

pµ(φ = 1)
(10)

= I[w ∈ WwD
]
∏
i̸∈D

µipµ(φ = 1)n−|D|.

(11)

Here, I[w ∈ WwD
] is the indicator function that is 1 when

w is in the cover of wD. This is an independent distribution
qµ′ with deterministic assignment wD and parameters µ′

i =
µipµ(φ = 1)n−|D| for the stochastic variables. In the first
step, we used that φ(w) = 0 exactly when wD differs from
the implicant wD.

1 → 2: Assume there is no implicant wD as described in
2. Then, the deterministic assignment of the conditional
distribution pµ(w|φ = 1) is not an implicant, as if it was,
we could have constructed such an implicant. But then, by
Theorem 4.3, there must be a world w in the cover of the
deterministic assignment of q that is not possible. Since for
independent distributions, any worlds in the cover of the
deterministic assignment get positive probability, such an in-
dependent distribution must also assign positive probability
to this extension, yet pµ(w|φ = 1) = 0, so pµ(w|φ = 1)
cannot be represented by an independent distribution.

2 → 3: Assume all possible worlds in the support of pµ are
in the cover of the implicant wD. That means all worlds in
the cover of wE for which the constraint φ holds are also in
the cover of wD. Therefore, wE , φ |= wD.

3 → 2: Assume there is an implicant wD such that
wE , φ |= wD. By independence, the support of p con-
tains the worlds extending wE . By the entailment, its subset
of possible worlds is those that also extend wD.

Theorem 4.10 (Representing the set of possible independent
distributions). A parameter µ is in Cφ if and only if the
distribution pµ is possible for φ. That is, µ ∈ Cφ if and
only if pµ ∈ ∆⊥⊥

φ . Furthermore, the cubical set Cφ cannot
be represented as a union of fewer cubes.
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Proof. Consider some pµ ∈ ∆⊥⊥
φ . Then, by Theorem 4.3,

the deterministic part wE of µ is an implicant of φ. Let
wD ∈ I be any prime implicant that wE is an extension of,
which has to exist by construction. Clearly CwE

⊆ CwD
,

and so µ ∈ CwD
⊆ Cφ. Next, assume µ ∈ Cφ for some

wD ∈ I. wD is an implicant of φ, and so by Theorem 4.3,
pµ is possible for φ, hence pµ ∈ ∆⊥⊥

φ .

Next, we prove that there is no smaller set of cubes than the
set of prime implicant cubes that generate Cφ. Associated
with each implicant cube CwD

, is an (elementary) impli-

cant cell
◦
CwD

⊆ CwD
.

◦
CwD

is similarly defined as CwD
,

except it uses open intervals (0, 1) instead of closed inter-

vals [0, 1]. Let wD be a prime implicant and let µ ∈
◦
CwD

.
All cubes are equal to the union of cells inside it (Kaczyn-
ski et al. (2004), Proposition 2.15(v)). Since the different
cells in a cubical complex are disjoint (Kaczynski et al.
(2004), Proposition 2.15(iii)), µ is not in another implicant
cube.

Theorem 4.11 (Convexity). The following statements are
equivalent: 1) There is exactly one prime implicant of φ;
2) Cφ is convex; 3) the semantic loss over the space of
independent distributions L(µ) is convex.

Proof. 1 ↔ 2 follows directly from Kaczynski et al. (2004),
Proposition 2.80, by noting that the only rectangles in our
setting are the elementary cubes in [0, 1]. Since there is no
proof of Proposition 2.80 given in Kaczynski et al. (2004),
we provide it for completeness’ sake.

2 → 1: Assume there is exactly one prime implicant wD

of φ. Then Cφ is described by CwD
. This is an elementary

cube, which is convex.

1 → 2: Next, assume there is more than one prime impli-
cant. Consider two distinct prime implicants wD,wE ∈ I.
Consider µwD

∈ CwD
\ CwE

and µwE
∈ CwE

\ CwD
,

which have to exist by Proposition 4.10. Consider µ to be
any non-trivial convex combination of µwD

and µwE
. Note

that the deterministic assignment of µ is D̂ = {k ∈ D∩E :
wDk = wEk}. Since the prime implicants are different, at
least one of the following needs to hold:

1. There is a k ∈ D but k ̸∈ E. Then µk is stochastic,
and D̂ is a strict subset of D.

2. There is a k ∈ D ∩ E such that wDk ̸= wEk. By
the convex combination, µk is stochastic, as it assigns
probability mass to both wDk and wEk. Therefore, D̂
is a strict subset of D.

Since D is a prime implicant, removing any element from
D results in a deterministic assignment that is no longer an
implicant. Thus, by Theorem 4.3, pµ is not possible.

2 → 3: Assume there is exactly one prime implicant wD.
Then note that the only possible worlds are the cover WwD

.

The cover contains all assignments to the stochastic vari-
ables, i.e., the variables not in D. This means we can safely
marginalize those out:

pµ(φ = 1) =
∑

w∈WwD

pµ(w)

=
∑

w∈WwD

∏
i∈D

pµ(wDi)
∏

i∈{1,...,n}\D

pµ(wi)

=
∏
i∈D

pµ(wDi)
∑

w∈WwD

∏
i∈{1,...,n}\D

pµ(wi)

=
∏
i∈D

pµ(wDi)
∑

w∈WwD

pµ(w{1,...,n}\D)

=
∏
i∈D

pµ(wDi) = pµ(wD).

Given λ ∈ (0, 1), µ1,µ2 ∈ [0, 1]n, we define µλ =
λµ1 +(1−λ)µ2 for brevity. Rewriting, and using Jensen’s
inequality and some slightly laborious algebra, we find that

L(µλ) = − log pµλ
(φ = 1) = − log pµλ

(wD)

=− log
∏
i∈D

pµλ
(wDi)

=−
∑
i∈D

log(µλ
wDi
i (1− µλi)

1−wDi)

=−
∑
i∈D

wDi logµλi + (1−wDi) log(1− µλi)

=−
∑
i∈D

wDi log(λµ1i + (1− λ)µ2i)

+ (1−wDi) log(1− (λµ1i + (1− λ)µ2i))

=−
∑
i∈D

wDi log(λµ1i + (1− λ)µ2i)

+ (1−wDi) log(λ(1− µ1i) + (1− λ)(1− µ2i))

≤−
∑
i∈D

wDi(λ logµ1i + (1− λ) logµ2i)

+ (1−wDi)(λ log(1− µ1i) + (1− λ) log(1− µ2i))

=−
∑
i∈D

λ logµ1
wDi
i (1− µ1i)

1−wDi

+ (1− λ) logµ2
wDi
i (1− µ2i)

1−wDi

=− λ log pµ1
(φ = 1)− (1− λ) log pµ2

(φ)

=λL(µ1) + (1− λ)L(µ2).

3 → 2. Assume there is more than one prime impli-
cant. Using 1 → 2, this means Cφ is non-convex. There-
fore, there is a pair µ1,µ2 ∈ Cφ and λ ∈ (0, 1) such
that µλ = λµ1 + (1 − λ)µ2 ̸∈ Cφ. By Theorem
4.10, (µ1) = L(µ2) = 0 < L(µλ), as Cφ exactly de-
scribes the possible distributions where L(µ) = 0. There-
fore, L(µλ) > λL(µ1) + (1 − λ)L(µ2), proving non-
convexity.
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Theorem 4.13 (Connectedness). The connected compo-
nents of the space of possible distributions Cφ correspond
to the connected components in G. In particular, Cφ is a
connected space if and only if G is connected.

Proof. By Proposition F.4, the vertices of Cφ are precisely
the possible worlds Wφ. We say w1, ...,wn ∈ Wφ are
edge-connected if there exist edges E1, ..., En ∈ C1(Cφ)
such that wi and wi+1 are faces of Ei.

Consider an edge (w1,w2) ∈ E . Then there is a prime
implicant wD that covers both w1 and w2. Therefore, w1

and w2 are both in CwD
. Since CwD

is an (elementary)
cube, by Kaczynski et al. (2004), Proposition 2.51.1, w1

and w2 are edge-connected.

Let E ∈ C1(Cφ) be an edge with vertices w1 and w2. E
is a face of a prime implicant cube CwD

by Definition 4.6,
and by Proposition F.5, w1 and w2 are both in the cover
WwD

. Therefore, (w1,w2) ∈ E .

Combining these two results, we find that w1 and w2 are
edge-connected if and only if there is an edge between them
in G. Therefore, by Theorem 2.55 and Corollary 2.57 of
Kaczynski et al. (2004), the connected components of G and
Cφ coincide.
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