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Abstract
This paper explores the problem of generative
modeling, aiming to simulate diverse examples
from an unknown distribution based on observed
examples. While recent studies have focused on
quantifying the statistical precision of popular
algorithms, there is a lack of mathematical evalua-
tion regarding the non-replication of observed ex-
amples and the creativity of the generative model.
We present theoretical insights into this aspect,
demonstrating that the Wasserstein GAN, con-
strained to left-invertible push-forward maps, gen-
erates distributions that not only avoid replica-
tion but also significantly deviate from the empir-
ical distribution. Importantly, we show that left-
invertibility achieves this without compromising
the statistical optimality of the resulting generator.
Our most important contribution provides a finite-
sample lower bound on the Wasserstein-1 distance
between the generative distribution and the empir-
ical one. We also establish a finite-sample upper
bound on the distance between the generative dis-
tribution and the true data-generating one. Both
bounds are explicit and show the impact of key
parameters such as sample size, dimensions of
the ambient and latent spaces, noise level, and
smoothness measured by the Lipschitz constant.

1. Introduction
Generative modeling is a widely-used machine learning
technique that has found applications in various scientific
and industrial domains, including health (Yan et al., 2018;
Nie et al., 2017), climate (Gagne et al., 2020), finance
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(Wiese et al., 2020), energy (Fekri et al., 2019), physics
(Paganini et al., 2018), chemistry (Maziarka et al., 2020),
and biology (Repecka et al., 2021). The primary goal of
generative models is to simulate new examples by learning
from training data, while ensuring diversity and avoiding
the replication of examples from the training set.

Assessing the performance of a generative model can be
done qualitatively by evaluating the realism of the gener-
ated examples, which we refer to as accuracy. However,
accuracy should be balanced with another crucial property:
the diversity of generated examples and their difference
from the training examples. This property, referred to as
the generator’s creativity (Li et al., 2024), is essential to
avoid overfitting (producing examples that are slight modifi-
cations of those in the training set). Qualitative evaluation
of diversity is challenging due to the large size of training
sets, making it impossible to retain all the examples they
contain. Nonetheless, diversity is as important as accuracy,
particularly in applications where generative models aim to
enrich datasets in cases where data acquisition is expensive
or infeasible. Generating examples that closely resemble
the observed data diminishes the utility of such algorithms.

The success of deep neural nets in generative modeling has
attracted significant attention from the machine learning
community. The number of proposed methods in recent
years, following the influential work by (Goodfellow et al.,
2014), is extensive, making it impractical to cite all of them
here1. While many of these methods have been empiri-
cally validated and justified using heuristics, a more com-
prehensive mathematical quantification of their strengths
and limitations is often lacking.

The importance of diversity in generated examples is well-
acknowledged but presents practical challenges. Numer-
ous papers have empirically studied the issue of limited
diversity in learned distributions, proposing some solutions
(Dumoulin et al., 2017; Arora et al., 2017; 2018; Srivastava
et al., 2017). However, the majority of studies on diversity
have primarily targeted the mitigation of mode collapse.
This phenomenon occurs when certain examples in the train-

1For a comprehensive list, refer to https://github.com/
hindupuravinash/the-gan-zoo
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ing/testing set are overlooked by the learned distribution; as
a result, some test set examples are markedly dissimilar to
those generated by the learned distribution.

In this paper, we explore another aspect of diversity within
the learned distribution. We aim to ensure that the examples
it generates are not mere copies of the samples in the training
set but rather novel instances. To achieve this, we seek
to understand to what extent the learned distribution can
deviate from the empirical distribution of observations while
still closely adhering to the true underlying law.

From a theoretical standpoint, endeavors to address “mode
collapse” primarily involve proposing methodological en-
hancements that aim to achieve a better precision, where
the precision is understood as the closeness of the learned
distribution (in Wasserstein or KL, for instance) to the true
underlying law. The idea is that if the learned distribution
closely aligns with the true distribution in these metrics, it is
less likely to miss important modes of the true distribution.
However, none of these approaches quantifies the dissim-
ilarity between the learned distribution and the empirical
distribution of the training set. This is a critical consider-
ation, as the training process typically involves fitting the
empirical distribution with a parametric class. The ultimate
goal, however, is to generate examples that differ from those
in the training set.

Contributions The key insight of this paper is the following:
if the learned distribution is defined as the push-forward of
the uniform distribution by a smooth map, then ensuring
the push-forward map has a smooth left inverse prevents
overfitting to the empirical distribution and promotes cre-
ativity. Moreover, when left invertibility is imposed on an
already statistically optimal generator, it seems to retain its
optimality. This claim, though speculative, is supported by
our study of Wasserstein GANs (WGAN) (Arjovsky et al.,
2017; Gulrajani et al., 2017). We introduce LIPERM (Left-
Inverse Penalized Empirical Risk Minimizer), a penalized
version of WGAN that favors left invertibility of the push-
forward map. Our main result establishes a lower bound on
the Wasserstein-1 distance between the learned distribution
and its empirical counterpart. We then establish an upper
bound on the precision measured by an integral probability
metrics. It takes the form of a finite-sample risk bound de-
scribing the behavior of the learned generator as a function
of the sample size n and the dimension d of the latent space.
Importantly, these bounds are independent of the ambient
dimension D and are rate-optimal, as confirmed by lower
bounds in (Schreuder et al., 2021; Tang and Yang, 2023).

When the latent dimension d ⩾ 2, we prove that LIPERM’s
separation from any distribution concentrated on the train-
ing sample is at least of order n−1/d, while its precision is
established to be at most of order n−1/d. Notably, n−1/d is
the rate of approximating the true data-generating distribu-

tion with its empirical counterpart (Dudley, 1969; Boissard
and Gouic, 2014; Niles-Weed and Rigollet, 2022). Conse-
quently, a generative model separated from the empirical
distribution by a distance larger than n−1/d would have sub-
optimal precision. Thus, LIPERM, being sufficiently distant
from distributions replicating observed examples, ensures
diverse and novel example generation.

In Figure 1, we illustrate the explored framework on the task
of generating points on a 2D spiral using a 1D latent space.
In the left panel, the map g : [0, 1]→ R2 corresponds to a
generator with high diversity and a small left-inverse penalty
(LIP); the generated examples exhibit a wide range of vari-
ations and deviations from the training distribution. In the
second panel, the map g is inferior to the first one in terms
of diversity, resulting in less varied generated examples, and
it has a higher LIP. A closer examination reveals that for
certain points on the spiral that are close to each other, their
preimages under g are located far apart. This means that
the left-inverse of g has a large Lipschitz norm. Finally,
in the rightmost panel, g generates only a few examples,
producing a restricted set of outputs. It has a LIP equal to
+∞. This illustration highlights the connection between
diversity and the left-inverse penalty.

Prior work In recent years, a notable surge in papers has fo-
cused on mathematical aspects of generative models. Some
treat generative models as tools for distribution and density
estimation, establishing their optimality (Liang, 2021; Be-
lomestny et al., 2023; Biau et al., 2021; 2020; Uppal et al.,
2019; Kwon and Chae, 2024; Chae et al., 2023). The con-
vergence rate of adversarial generative models—under the
manifold assumption—independent of the ambient space
dimension, is highlighted in (Huang et al., 2022; Schreuder
et al., 2021; Tang and Yang, 2023; Stéphanovitch et al.,
2023) using integral probability metrics. The intricate rela-
tionship between minimax optimality and distribution learn-
ing is explored in (Chen et al., 2022).

The analysis of diffusion-based generative models is pre-
sented in (De Bortoli et al., 2021; Bortoli et al., 2022), while
the investigation of autoencoders and their relation to the
Langevin process is carried out in (Block et al., 2020). A
regularization scheme for training GANs, based on adding
a penalty on the weighted gradient-norm of the discrimi-
nator, is introduced in (Roth et al., 2017); see also (Petzka
et al., 2018). The theoretical characterization of the mode-
seeking behavior of general f -divergences and Wasserstein
distances, along with a guarantee for mixtures, is provided
in (Li and Farnia, 2023). In the context of generator in-
vertibility and mode collapse in GANs, (Bai et al., 2018)
suggest that invertible generators might effectively alleviate
mode collapse. (Xi and Bloem-Reddy, 2023) propose a
theoretical framework for analyzing the indeterminacies of
latent variable models.
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Figure 1. Illustration of the framework of this paper: generating points on a 2D spiral using a 1D latent space. The green arrows represent
the mapping g : [0, 1] → R2. Each arrow indicates how points from the latent space are mapped to positions in the 2D spiral.

The issue of generative models memorizing training data
and potentially copying from it has been emphasized in
early works such as (Nagarajan et al., 2018) and (Gulrajani
et al., 2019). Recent observations have further revealed
instances of duplicated training examples, particularly in
diffusion models for image generation and large language
models (Somepalli et al., 2023a;b; Daras et al., 2023; Carlini
et al., 2021; 2023; Jagielski et al., 2023). Advancing theo-
retical understanding in this realm could contribute to the
development of algorithms mitigating the risk of replication.

Notation For every integer d > 1, we denote by Ud the
uniform distribution on [0, 1]d. The norm ∥x∥ of an element
x from an Euclidean space is always the Euclidean norm.
We denote by E[X] the expectation of a random variable.
If necessary, we write EP [X] to stress that the expectation
is considered under the condition that X is drawn from P .
For a random vector X and a real number q ⩾ 1, we use
the notation ∥X∥Lq

= E1/q[∥X∥q]. For two subsets A and
B of some Euclidean spaces, and a positive number L, we
say that a function f : A→ B is L-Lipschitz-continuous, if
∥f(x)− f(x′)∥ ⩽ L∥x−x′∥ for every x,x′ ∈ A. The set
of all the L-Lipschitz continuous functions from A to B is
denoted by LipL(A→ B). The Dirac mass at a point x is
denoted by δx. The notation Pn,Z is often used to design the
empirical distribution (1/n)

∑n
i=1 δZi (Z can be replaced

by other letters). We set Vd = πd/2/Γ(1 + d/2) to be the
volume of the unit ball. Notation Idd stands for the identity
mapping Idd(x) = x on Rd, or any subset of it. For two
sets of functions G and H, we set GH the subset of G the
elements of which admit a left inverse function inH.

2. Left-Inverse-Penalized Empirical Risk
Let P ∗ be the distribution of training data X1, . . . ,Xn in
the D-dimensional Euclidean space RD equipped with the
Borel σ-algebra B(RD). While D is typically large, we
assume that the examples Xi may originate from latent vari-
ables in a lower-dimensional space of dimension d. This

is closely related to the so-called “manifold assumption”
(Fefferman et al., 2016; Narayanan and Mitter, 2010). To
capture this, several popular algorithms such as GAN or
WGAN, choose an integer d > 0 much smaller than D
and seek to learn a generative distribution P̂n as a smooth
transformation of the uniform distribution in [0, 1]d. This
is the setting considered in this paper: the trained genera-
tive distribution is chosen of the form Pg = g♯Ud, where
g : [0, 1]d → RD is called the push-forward map and Pg
defined by Pg(A) = P (g−1(A)), ∀A ∈ B(RD), is the
push-forward distribution.

In this paper, we study learned distributions obtained by
minimizing the penalized empirical risk using a suitable
penalty. LetH and G be two functional classes such that

H ⊂ LipLH
([0, 1]D → [0, 1]d),

G ⊂ LipLG
([0, 1]d → [0, 1]D).

Let d be a distance on the space of probability distributions.
For q ⩾ 1, we define the left inverse penalty

penH(g) = min
h∈H

∫
[0,1]d

∥h ◦ g(u)− u∥qdu

= min
h∈H
∥h ◦ g − Idd ∥qLq

. (LIP)

We then define the penalized empirical risk

L̂d,H
n (g) = d(g♯Ud, Pn,X) + λ penH(g) (1)

for a tuning parameter λ > 0. The learned generator is the
push-forward distribution ĝn♯Ud, with ĝn = ĝn(λ,G, d,H)
being a solution to the minimization problem

ĝn ∈ argmin
g∈G

L̂d,H
n (g). (LIPERM)

The choices of the distance d and of λ are important. For d
we will mainly use the Wasserstein-1 distance W1 or a more
general integral probability metric (IPM) defined by

dF (P,Q) = sup
f∈F

∣∣EP [f(X)]− EQ[f(X)]
∣∣, (IPM)
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where F is a set of test functions RD → R, and P,Q
are two probability measures on ([0, 1]D,B([0, 1]D)). The
Wasserstein-1 distance corresponds to an IPM with F being
the set of all 1-Lipschitz-continuous functions.

As for λ, the case λ = 0 corresponds to the standard setting
of minimal distance estimator including GAN, WGAN, and
their variants. The other extreme case λ = +∞ corresponds
to minimizing the training error d(g♯Ud, Pn,X) under the
constraint g ∈ GH. Although this constrained estimator has
some attractive properties, its computation might be more
challenging than that of penalized one.

Note that the sets G and H are entirely determined by the
user’s choice, as are d and λ. We refer to ĝn defined by
(LIPERM) as the left-inverse-penalized empirical risk mini-
mizer. Although most of our results will refer to the general
form (1) of the loss function, it might be useful for the reader
to keep in mind the central example corresponding to the
case d = W1 and q = 2 leading to the min-max problem

min
g∈G

max
h∈H

{
W1(g♯Ud, Pn,X) + λ

∫
∥h ◦ g(u)− u∥2 u

}
.

The rationale behind considering this learning procedure is
as follows: When training a generative model, the objective
is to produce a distribution that (a) is easy to sample from,
(b) is close to the distribution of the training data, and (c)
avoids replicating the examples in the training dataset. The
cost function in (LIPERM) consists of two terms, each con-
tributing to one of the last two desired properties. If the term
d(g♯Ud, Pn,X) is small, the generator g♯Ud closely approx-
imates the empirical distribution. Additionally, if penH(g)
is small, g is nearly invertible with a smooth inverse. In-
tuitively, when g possesses a smooth inverse, it disperses
the unit hypercube [0, 1]d across a large region in [0, 1]D

rather than concentrating around a small neighborhood of
the observations from the training set. In particular, the
following simple fact holds true.
Lemma 1. Any distribution Pg = g♯Ud defined by a push-
forward map g ∈ GH has no atom. In particular, it satisfies
Pg({X1, . . . ,Xn}) = 0.

This lemma implies, in particular, that if the learned dis-
tribution is defined by LIPERM with λ = +∞, then the
probability of generating an example that was present in the
training set is equal to zero.

Proof of Lemma 1. Clearly, for any x ∈ RD, P̂n({x}) =
Lebd

(
g−1(x)

)
. Since g has a left inverse, g−1(x) contains

at most 1 point, resulting in a Lebesgue measure of zero.

Motivated by practical convenience, instead of an exact
solution of LIPERM, we will consider an ε-approximate
solution satisfying

L̂d,H
n (ĝn,ε) ⩽ min

g∈G
L̂d,H
n (g) + ε, (LIPERMe)

where ϵ > 0 is a small number. It is clear that

Ld,H(ĝn) ⩽ LdH(ĝn,ε) ⩽ Ld,H(ĝn) + ε.

The subsequent sections aim to mathematically characterize
the properties of (LIPERMe).

The left-inverse penalty in our work is similar to methods
in deep learning, such as variational autoencoders (Kingma
and Welling, 2014) and Cycle-GAN (Zhu et al., 2017). Vari-
ational autoencoders learn a compact latent representation
and generate new examples by sampling from the learned
latent space, using the penalty ∥g ◦ h− IdD ∥L2

instead of
(LIP). Cycle-GAN focuses on style transfer and image-to-
image translation, enforcing cyclic consistency similar to
our LIP. Specifically, Cycle-GAN aims to satisfy the con-
ditions F ◦G(x) ≈ x and G ◦ F (y) ≈ y using two neural
networks that perform style transfer in opposite directions.

The resemblance between our left-inverse penalty and meth-
ods yielding favorable empirical results suggests that mini-
mizing the penalized empirical risk, though challenging, is
feasible. We leverage this resemblance in the accompanying
implementation, leading to experimental results reported in
Section 6.

3. Main Result: Deviation from the Empirical
Distribution

If the class G is rich, it is likely to contain a function ĝ
that overfits the training data: the distance W1(ĝ♯Ud, Pn,X)
might be very small or even zero. This type of overfitting
has been observed in practice, as highlighted in (Somepalli
et al., 2023a;b; Daras et al., 2023; Carlini et al., 2021; 2023;
Jagielski et al., 2023). This behavior is undesirable for most
generative modeling applications, such as image or music
generation. Simply resampling examples from the training
set is not the intended outcome.

The main finding in this paper is that overfitting to the empir-
ical distribution can be mitigated or substantially restrained
by imposing constraints on admissible generators, specif-
ically requiring them to have a smooth left inverse. This
holds true, particularly for the learned distribution defined
by (LIPERM) with λ = ∞, referred to as the hard con-
straint case. In this setting, we establish that the learned
distribution is significantly distant from the empirical distri-
bution. Furthermore, we extend this finding to generators
that are nearly left invertible, such as the generator defined
by (LIPERMe) with a λ > 0.

To demonstrate that the learned generator, ĝn, does not
replicate the examples from the training set, we exam-
ine the distance between the probability measure induced
by the generator, ĝn♯Ud, and any distribution Q satisfy-
ing Q({X1, . . . ,Xn}) = 1. A larger distance indicates a
greater dissimilarity, which is desirable.
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3.1. Warm-up: The Case of Hard Constraint (λ =∞)

We first consider the generator ĝn obtained by imposing
the hard constraint h ◦ g = Idd on feasible solutions. This
means that ĝn minimizes the distance, d, between g♯Ud and
the empirical distribution Pn,X , over the set of all g ∈ G for
which there exists h ∈ H satisfying h ◦ g = Idd.

While our main results apply to more general IPMs, we
primarily focus on the W1 distance. This choice of d is
particularly relevant due to its interpretation as an optimal
transport distance. It has found successful applications in
various fields, such as computer vision, economics and biol-
ogy (Ollivier et al., 2014; Peyré and Cuturi, 2019).

Proposition 1. Let X1, . . . ,Xn ∈ [0, 1]D. For any g :
[0, 1]d → [0, 1]D having an LH-Lipschitz-continuous left
inverse (that is there exists h : RD → Rd such that h ◦ g =
Idd), it holds that

W1(g♯Ud, Q) ⩾
1

2LH(1 + (2Vdn)1/d)
, (LB-hard)

where Q is any probability satisfying Q({X1, . . . ,Xn}) =
1 and2 Vd = πd/2/Γ(1 + d/2).

It is well-known (Dudley, 1969) that the W1 distance be-
tween the empirical and the true distribution is O(n−1/d).
It has also been recently proved that the rate n−1/d is op-
timal (Tang and Yang, 2023), in the sense that it cannot
be improved by any other learned distribution. Thus, if a
generator g̃n is rate-optimal, the triangle inequality yields
W1(g̃n♯Ud, Pn,X) ⩽ W1(g̃n♯Ud, P ∗) + W1(P

∗, Pn,X) =
O(n−1/d). Thus, if a learned generator is rate-optimal, its
maximal distance from the empirical distribution Pn,X of
the training set is of order n−1/d. This means, in view of our
result, that if a rate-optimal learned generator has a smooth
left inverse, it lays at a maximal distance from Pn,X .

To the best of our knowledge, Proposition 1 provides the
first mathematical quantification of the diversity of exam-
ples generated by the generator. It not only demonstrates
that the generator deviates maximally from the empirical dis-
tribution but also shows that it maintains the same minimum
distance from any distribution concentrated on n points.

3.2. The Case of Soft Constraint: λ ∈ (0,∞)

We now turn our attention to measuring the dissimilarity be-
tween the empirical distribution and the generator obtained
by LIPERMe when λ < +∞. We refer to this scenario as
the case of a soft constraint on left-invertibility. Recall that
the introduction of a penalized version of the optimization
problem, as opposed to the hard constraint, aims to enhance
computational tractability and facilitate implementation us-
ing available tools. On the downside, the lower bound on

2Vd is the volume of the unit ball in Rd.

the distance from the empirical distribution, as presented in
the following theorem, is slightly weaker than that for the
constrained generator.
Theorem 1. Let X1, . . . ,Xn ∈ [0, 1]D and H ⊆
LipLH

([0, 1]D → [0, 1]d). For any λ > 0,

W1(ĝn,ε♯Ud, Pn,X) ⩾
1

2LH(1 + (2Vdn)1/d)
−

1

LHλ1/q

(
inf
g∈GH

W1(g♯Ud, Pn,X) + ε
)1/q

,

where GH = {g ∈ G : pen(g) = 0}.
Corollary 1. If λ is chosen so that the inequality

λ ⩾ 8q(1 + (2Vdn)
q/d) inf

g∈GH
E
[
W1(g♯Ud, Pn,X)

]
, (2)

holds true, then

E
[
W1(ĝn♯Ud, Pn,X)

]
⩾

1

4LH(1 + (2Vdn)1/d)
.

The corollary tells us that if the penalty λ is not too small,
any generator satisfying (LIPERMe) has a deviation of the
order n−1/d from the empirical distribution. To gain some
understanding of how restrictive this constraint on λ is, let
us note that if there is a L∗-Lipschitz-continuous g∗ ∈ GH
such that W1(P

∗, g∗♯Ud) ⩽ σ∗, one can check that3

inf
g∈GH

E
[
W1(g♯Ud, Pn,X)

]
⩽
cL∗
√
d

n1/d
+ σ∗ (3)

where c is a universal constant.
Remark 1. In view of (2) and (3), when σ∗ = 0 and q = 2,
choosing the penalty parameter λ larger thanCdn1/d— for a
constant Cd that depends only on the dimension of the latent
space— is enough to guarantee that the generator LIPERMe
will significantly deviate from the empirical distribution.

Before closing this section, let us note that the inspection of
the proof shows that the claim of the last theorem holds true
if we replace W1 by any other distance dominating W1. In
particular, the claim is true for W2 and for dF with any F
containing all the 1-Lipschitz functions.

4. Precision of Left-Inverse-Penalized ERM
In this section, we assess the precision of a generator satisfy-
ing (LIPERMe) for d = dF , the integral probability metric
(IPM) based on a set of test functions F . We introduce two
parameters σ∗ and L∗, that quantify the “manifold assump-
tion”. More precisely, we say that P ∗ satisfies assumption
A(L∗, σ∗) if

∃ g∗ ∈ LipL∗

(
[0, 1]d → [0, 1]D

)
such that W1(g

∗♯Ud, P ∗) ⩽ σ∗.
A(L∗, σ∗)

3See Appendix B.4
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Figure 2. Handwritten digits generated by LIPERM, from left to right: λ = 0, 1, 4, 8. See Fig. 9 for higher-resolution images.

Figure 3. LIPERM on MNIST data. The behavior of the generator
loss and of the left-inverse penalty across the iterations.

This assumption accommodates both well-specified and mis-
specified scenarios. The former corresponds to A(L∗, 0),
where P ∗ is the push-forward of Ud by an L∗-Lipschitz-
continuous function. The latter corresponds to the case
A(L∗, σ∗) with σ∗ > 0, the parameter σ∗ indicating the
degree of the departure from a well-specified setting.

Theorem 2. Assume that F ⊆ Lip1(RD → R) and the
dimension of the latent space satisfies d > 2. If the ob-
servations X1, . . . ,Xn are i.i.d., drawn from P ∗ satisfying
A(L∗, σ∗) for some L∗, σ∗, then LIPERMe ĝn,ε satisfies

E[dF (ĝn,ε♯Ud, P ∗)] ⩽ inf
g∈G

{
dF (g♯Ud, P ∗) + λ penH(g)

}
+ 4σ∗ + ε+

cL∗
√
d

n1/d
, (UB)

where c > 0 is a universal constant.

Remark 2. If we assume that the oracle g∗ appear-
ing in A(L∗, σ∗) has a left-inverse that is LH-Lipschitz-
continuous, the upper bound provided by Theorem 2 be-
comes 5σ∗ + cL∗

√
dn−1/d. As proven in (Schreuder et al.,

2021; Tang and Yang, 2023), this upper bound is minimax-
rate-optimal. Notably, the ambient dimension does not ap-
pear in the upper bound.
Remark 3. The assumption d > 2 is not crucial for deriv-
ing an upper bound similar to (UB). In case of d ∈ {1, 2},
slight modifications occur in the last term: for d = 1, the
denominator becomes n1/2, and for d = 2, an additional
log n factor appears in the numerator. These adjustments are
derived by combining our proof, detailed in Appendix A.1,
with the corresponding approximation bounds for the uni-
form distribution in W1 distance, addressing the cases of
d ∈ {1, 2}.
Remark 4. When the true distribution P ∗ exhibits low sam-
ple diversity, LIPERMe struggles to provide a precise ap-

proximation. In this scenario, the upper bound in Theorem 2
tends to be large, as indicated by the constant σ∗.

5. Handling Functional Approximations
The generator (LIPERM) and its approximate version
(LIPERMe) rely on the functional classes G and H. Opt-
ing for smaller, parametric classes enhances computational
efficiency. Yet, for minimizing the bias term in (UB), it is es-
sential to choose G andH as large as possible. This prompts
the question: what if, during training, we substitute G andH
with smaller sets G0 andH0 possessing good approximation
properties? Neural networks, acknowledged as universal ap-
proximators for smooth functions (Yarotsky, 2017; Petersen
and Voigtlaender, 2018; Nakada and Imaizumi, 2020), are
compelling candidates for G0 andH0.

This consideration extends to the functional class F . While
we aim to gauge the precision of a generator using an IPM
with a broad F , replacing F with a smaller set during the
training process decreases computational complexity. The
next result shows the impact of replacing F ,G and H in
(LIPERMe) by smaller approximation classes.

Proposition 2. Let F ⊆ Lip1(RD → R) and d > 2. Let
pen be defined by (LIP) with q = 2. Assume that observa-
tions X1, . . . ,Xn are i.i.d. and drawn from P ∗, satisfying
A(L∗, σ∗) for some L∗, σ∗ > 0. Let F0 ⊆ F , G0 ⊆ G and
H0 ⊆ H be functional classes satisfying

sup
f∈F

inf
f0∈F0

∥f0 − f∥∞ ⩽ δF , (4)

sup
g∈G

inf
g0∈G0

∥g0 − g∥∞ ⩽ δG ,

sup
h∈H

inf
h0∈H0

∥h0 − h∥∞ ⩽ δH. (5)

Then, any learned generator ĝ0 = ĝ0n,ε satisfying

L̂
dF0

,H0
n (ĝ0n,ε) ⩽ min

g∈G0

L̂
dF0

,H0
n (g) + ε,

also satisfies L̂dF ,H
n (ĝ0n,ε) ⩽ ming∈G L̂

dF ,H
n (g) + ε + δ,

where δ = 2δF + 2
√
d δH +

(
1 + 2λ

√
dLH

)
δG .

Combining the results of this proposition with Theorem 2,
we obtain the following property: if F0, G0 and H0 are
chosen so that δF ⩽ ε/6, δG ⩽ ε/3(1 + 2λ

√
dLH)−1

and δH ⩽ d−1/2ε/6, see (4-5), then any ε-minimizer ĝ0 of
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L̂
dF0

,H0
n over G0 satisfies

E[dF (ĝ0♯Ud, P ∗)] ⩽ inf
g∈G

{
dF (g♯Ud, P ∗) + λ penH(g)

}
+ 4σ∗ +

cL∗
√
d

n1/d
+ 2ε.

This suggests that with appropriately chosen approxima-
tion classes, the learned generator can approach the perfor-
mance of the best generator from the class of all Lipschitz-
continuous functions g with a Lipschitz-continuous left-
inverse h. Notably, utilizing a set of “critics” F consisting
of neural networks that are δ-approximations of 1-Lipschitz
functions results in an error within 2δ of the error obtained
when trained with F = Lip1. Note that according to (Yarot-
sky, 2017, Theorem 1), one can achieve an error δF for F
the functions with derivatives bounded by 1 using ReLU
activated neural networks of depthO(log(1/δF )) and of the
number of weights and units O(δ−DF log(1/δF )). Further-
more, in view of Theorem 1,

W1(ĝ
0♯Ud, Pn,X) ⩾

1

2LH(1 + (2Vdn)1/d)
−

1

LHλ1/2

(
inf
g∈GH

W1(g♯Ud, Pn,X) + 2ε
)1/2

,

where c > 0 is a universal constant.

Finally, note that the last proposition can be used with G =
G0, a parametric set defined by neural networks with a given
architecture. Then δG = 0, which conveniently simplifies
the expression of δ. In addition, the approximation error
may be directly bounded using results from (Yang et al.,
2022; Lu and Lu, 2020).

6. Numerical Experiments
In this section, we aim to evaluate the performance of the
left-inverse-penalized WGANs. Our implementation4 fol-
lows the pseudo-code presented in Algorithm 1, and is in-
spired by the code accompanying (Gulrajani et al., 2017),
where WGANs with gradient penalty on the discrimina-
tor/critic network is discussed. We add the LIPERM penal-
ization to the objective function of the WGANs. All the
functional classes F0, G0, andH0 are represented by neural
networks, the architectures of which are presented in the
supplementary material. In all our experiments, we chose
ncritic = 5 and γ = 1 .

We conducted experiments on three widely used datasets:
Swiss Roll, MNIST and CIFAR 10. The results are briefly
summarized in this section. The main messages of these
experiments are that (a) it is possible to implement the
LIPERM algorithm and to get generators that are nearly

4Our code uses the framework of (Varuna Jayasiri, 2020) and
is available here.

Algorithm 1 WGAN-LIPERM. We take λ ∈ {0, 1, 4, 8},
Require: LIP coefficient λ, gradient penalty coefficient γ,

number of iterations Niter, number of critic iterations
per generator iteration ncritic, batch size m

Require: initial critic and generator parameters (w0,θ0),
initial left inverse network parameters ϕ0, k = 0.

1: repeat
2: k ← k + 1
3: for t = 1, ..., ncritic do
4: for i = 1, ...,m do
5: Draw x ∼ Pn,X (true examples)
6: Draw u ∼ Ud (latent variables)
7: Draw ϵ ∼ U [0, 1]
8: x̃← Gθ(u) (generated examples)
9: x̂← ϵx+ (1− ϵ)x̃

10: Ld ← Fw(x̃)− Fw(x)

11: L
(i)
d ← Ld + γ(∥∇x̂Fw(x̂)∥2 − 1)2

12: end for
13: w ← Adam(∇w 1

m

∑m
i=1 L

(i)
d , {w})

14: end for
15: for i = 1, ...,m do
16: Draw u ∼ Ud
17: L

(i)
g ← −Fw(Gθ(u)) + λ∥Hϕ(Gθ(u))− u∥2

18: end for
19: (θ,ϕ)← Adam(∇θ,ϕ

1
m

∑m
i=1 L

(i)
g , {(θ,ϕ)})

20: until k > Niter

invertible, that is they have a small left inverse penalty, (b)
the visual quality of the results does not deteriorate when
the penalty parameter λ is increased. As for the non repli-
cation, it seems that with the architectures and optimizers
used in the standard data sets considered in this section, the
replication or the lack of creativity is not an issue. There-
fore, we could not observe an increase in creativity due to
introducing the left inverse penalty.

Swiss Roll (Marsland, 2009): The Swiss Roll dataset con-
sists of 2D points arranged in a rolled structure, corrupted
by a 2D Gaussian noise with some standard deviation σ. We
used three values of σ = 3/2, 3/4, 3/8 We used a training
set of size 1000, a batch-size of 200 and run experiments
for each value of λ from {0, 1, 4, 8}. Fig. 4 and Fig. 8 in
Appendix show the training set and the points generated by
the learned distribution. These results are consistent with
the theory: for increasing but not very large values of λ the
accuracy of the generator is preserved. Note that it is known
(Srivastava et al., 2017) that training a generator for this data
is highly unstable. Plots in Fig. 7 confirm this instability
and show that, unfortunately, the left-inverse penalty does
not alleviate it. We also conducted additional unreported
experiments, training for over 4,000 epochs (up to 20,000
epochs), but observed no improvement in the results.
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Figure 4. Swiss Roll: samples generated by LIPERM WGAN (blue) and original data (orange) for λ = 0, 1, 4, 8 (left to right).

MNIST (LeCun, 1998): MNIST dataset is commonly
used for handwritten digit recognition. In this paper, we
train WGAN plus LIPERM penalty on MNIST and gen-
erate images for different values of LIPERM coefficient
λ ∈ {0, 1, 4, 8}. As shown in Fig. 3, the training process
seems to converge after nearly 60 epochs, when the batch
size is 512. The architectures of the networks used in this
experiment are presented in Table 2 in Appendix.

The results depicted in Fig. 2 suggest that the generated
images when λ = 1, 4, 8 are as good as those for the vanilla
WGAN (λ = 0). Furthermore, the right plot of Fig. 3 shows
that the implementation we used effectively minimizes the
LIP and that the final result is almost left invertible.

CIFAR-10 (Krizhevsky, 2009): Finally, to demonstrate
that our method can also be applied on real-world images,
we perform experiments on CIFAR-10 dataset. For Gener-
ator network we employ ResNet-style architecture and for
Discriminator and Inverse-Generator we use simpler con-
volutional networks. For more architectural details, please
refer to our implementation.

Results and generated samples are presented in Figure 5
and Figure 6. One can observe that increasing λ does not
decrease the quality of generated samples. Indeed, the in-
ception scores as well as the generator losses depicted in
Figure 5 seem to show that the choice of λ has almost no
impact on the accuracy. However, according to the right plot
of the same figure, the generator corresponding to λ = 8
has the smallest penalty and, therefore, is closer to be left
invertible.

7. Summary, Conclusion and Limitations
In this paper, we have presented a theoretical analysis of
training generative models with two key properties: avoid-
ance of replication of the observed examples and conver-
gence to the true distribution at a minimax optimal rate.
Our main contribution is that the existence of a smooth
left-inverse implies the first one of these properties. We
further introduced the left-inverse-penalized empirical risk
minimization LIPERM framework, with a penalty encourag-
ing the generator to possess a smooth inverse. We showed,
both theoretically and empirically, that LIPERM and its ap-

proximate version LIPERMe enjoy the mentioned desirable
properties.

Limitations The incorporation of left invertibility poses cer-
tain computational challenges. While our numerical experi-
ments indicate that these difficulties are not insurmountable,
optimization errors will likely be dominant in most appli-
cations. Our work does not explicitly handle choosing d,
the dimension of the latent space. One approach to address
this is considering the Bourgain theorem (Bourgain, 1985),
as in (Xiao et al., 2018). The choice of d may also influ-
ence the Lipschitz constant L∗, which plays a pivotal role.
The interplay between these quantities needs to be better
understood; the methodology developed in (Jordan and Di-
makis, 2020; 2021; Wang and Manchester, 2023) might help
in this task. Extending our analysis to functional classes
with higher smoothness and diffusion models is non-trivial.
On a related note, considering distances between distribu-
tions that are not IPMs, such as the Sinkhorn divergence
(Genevay et al., 2018; Luise et al., 2020) cannot be done
using the methodology of this paper. These challenges pose
interesting questions for future research.
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Appendix
The purpose of this appendix is twofold: to present the proofs of all the mathematical claims presented in the main
paper and to provide some additional experimental results. We illustrate the effect of the penalization parameter λ on
the trained generator using the LIPERMe framework. The code that can be used to reproduce all the experiments can
be found here https://github.com/TigranGalstyan/LIPERM_annotated_deep_learning_paper_
implementations/tree/liperm/labml_nn/gan/wasserstein/gradient_penalty/liperm.

A. Proof of the upper bound on the risk
The proof of Theorem 2, provided below, relies on repeated use of the triangle inequality, the near-minimization property
of LIPERMe, as well as on exploiting Lipschitz continuity assumptions. The final bound is derived by combining these
inequalities with the approximation bound in the Wasserstein-1 distance of the uniform distribution by its empirical
counterpart.

This result demonstrates that under mild assumptions, the generator trained by LIPERMe achieves the optimal rate for
any choice of λ. Therefore, there is flexibility in selecting λ to enforce dissimilarity with the training examples without
compromising accuracy.

A.1. Proof of Theorem 2

Let g be an arbitrary element from G. The proof begins by using the triangle inequality multiple times, resulting in the
following sequence of inequalities:

dF (ĝn,ϵ♯Ud, P ∗) ⩽ dF (ĝn,ϵ♯Ud, Pn,X) + dF (Pn,X , P
∗)

= dF (ĝn,ϵ♯Ud, Pn,X) + λ penH(ĝn,ϵ)− λ penH(ĝn,ϵ) + dF (Pn,X , P
∗)

⩽ dF (g♯Ud, Pn,X) + λ penH(g) + ϵ− λ penH(ĝn,ϵ) + dF (Pn,X , P
∗)

⩽ dF (g♯Ud, P ∗) + λ penH(g) + ϵ− λ penH(ĝn,ϵ) + 2dF (Pn,X , P
∗).

In the second inequality, we use the fact that ĝn,ε is an ε-minimizer of (LIPERM), whereas in the last line, the triangle
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inequality is applied. As the left-inverse penalty is always nonnegative, the last display implies:

dF (ĝn,ϵ♯Ud, P ∗) ⩽ inf
g∈G

{
dF (g♯Ud, P ∗) + λ penH(g)

}
+ 2dF (Pn,X , P

∗) + ϵ

⩽ inf
g∈G

{
dF (g♯Ud, P ∗) + λ penH(g)

}
+ 2dF (Pn,X , g

∗♯Ud) + 2σ∗ + ϵ. (6)

The last line follows from A(L∗, σ∗) and the triangle inequality. By applying A(L∗, σ∗) again, we can establish the existence
of independent random variables Ui ∼ Ud such that E[∥Xi − g(Ui)∥] ⩽ σ∗, for every i ∈ [n]. This implies that

dF (Pn,X , g
∗♯Ud) = sup

f∈F

∣∣∣ 1
n

n∑
i=1

f(Xi)− E[f ◦ g∗(U)]
∣∣∣

= sup
f∈F

{∣∣∣ 1
n

n∑
i=1

(
f(Xi)− f ◦ g∗(Ui)

)
+

1

n

n∑
i=1

(
f ◦ g∗(Ui)− E[f ◦ g∗(U)]

)∣∣∣}

⩽
1

n

n∑
i=1

∥∥Xi − g∗(Ui)
∥∥+ sup

ψ∈LipL∗

∣∣∣ 1
n

n∑
i=1

(
ψ(Ui)− E[ψ(U)]

∣∣∣.
Here, we used the fact that F ⊆ Lip1([0, 1]

D → R) and that the composition of a 1-Lipschitz-continuous and an L∗-
Lipschitz-continuous functions is itself L∗-Lipschitz continuous. Taking the expectation and employing the dual formulation
of the Wasserstein-1 distance, we arrive at

E[dF (Pn,X , g∗♯Ud)] ⩽
1

n

n∑
i=1

E[
∥∥Xi − g∗(Ui)

∥∥] + L∗E[W1(Pn,U ,Ud)]

⩽ σ∗ + L∗E[W1(Pn,U ,Ud)]. (7)

Here, P̂n,U is the empirical distribution of the sample U1, . . . ,Un. Finally, using the well-known bound on the error of the
empirical distribution in the Wasserstein-1 distance (for example, see (Niles-Weed and Rigollet, 2022, Proposition 1)), we
obtain:

E[W1(Pn,U ,Ud)] ⩽
c
√
d

n1/d
.

Combining this bound with (6) and (7), we get the stated upper bound.

B. Proofs for the deviation of the generative distribution from the empirical distribution
B.1. Lower bounding the distance between the uniform distribution and any discrete distribution

Proposition 3. Assume that F contains all the 1-Lipschitz-continuous functions from Rd to R. For any set of points
a1, . . . ,an ∈ [0, 1]d and any set of weights w1, . . . , wn ⩾ 0 summing to one, we have

dF
(
Ud,

n∑
i=1

wiδai

)
⩾

1

2 + 2(2Vdn)1/d
,

where Ud is the uniform distribution on [0, 1]d with Vd =
πd/2

Γ( d
2+1)

being the volume of the unit ball5 in Rd.

Proof. Let A = {a1, . . . ,an} and define the function

gA : [0, 1]d → [0, 1], gA(x) = min
(
1,min

a∈A
∥x− a∥

)
,

We start the proof by noticing that for any A ⊆ Rd the function gA is 1-Lipschitz. Therefore, we have {gA : A ⊆ Rd} ⊆
Lip1 ⊆ F . Therefore,

dF
(
Ud,

n∑
i=1

wiδai

)
⩾ sup

A

(∫
[0,1]d

gA(x) dx−
n∑
i=1

wigA(ai)

)
= sup

A

∫
[0,1]d

gA(x) dx.

5Γ is Euler’s gamma function.
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We denote by B(x0, r) the ball in Rd with center x0 and radius r, B(x0, r) = {x ∈ Rd : ∥x− x0∥ ⩽ r}. Let us define
Ai = B(ai, r), for i = 1, . . . , n. Using this notation we arrive at∫

[0,1]d
gA(x) dx ⩾

∫
(∪n

i=1Ai)c∩[0,1]d
min

(
1, min

y∈A
∥x− y∥

)
dx

⩾
∫
(∪n

i=1Ai)c∩[0,1]d
min

(
1, r

)
dx. (8)

We now state an auxiliary lemma, the proof of which is deferred to the end of the section.

Lemma 2. Let S = [0, 1]d with d ∈ N and let µ be a probability measure on [0, 1]d admitting a density (with respect to the
Lebesgue measure) bounded by some constant b <∞. For any r > 0 and k ∈ N, if B1, . . . , Bk ⊆ Rd are balls of radius r
such that

µ
(
B1 ∪ . . . ∪Bk

)
> 1/2

then,

rd >
1

2bkVd
· r−d, where Vd = Vol(B(0, 1)). (9)

Let us choose r = (2nVd)
−1/d. This value of r does not satisfy (9). In view of Lemma 2, this implies that

µ
(
A1 ∪ . . . ∪An

)
⩽ 1/2.

Since µ = Ud is a probability measure on [0, 1]d, we get

µ
(
(A1 ∪ . . . ∪An)c ∩ [0, 1]d

)
> 1/2.

Combining this with (8), we arrive at

dF
(
Ud,

n∑
i=1

wiδai

)
⩾ (1/2)min(1, (2Vdn)

−1/d).

In other terms, if n ⩾ (2Vd)
−1, then

dF
(
Ud,

n∑
i=1

wiδai

)
⩾

1

2
(2Vdn)

−1/d =
1

2(d+1)/d
(Vdn)

−1/d

otherwise

dF
(
Ud,

n∑
i=1

wiδai

)
⩾

1

2
.

Putting together the inequalities from the last two displays concludes the proof of the desired lower bound.

Proof of Lemma 2. Let ν be the Lebesgue measure on [0, 1]d. We know that µ(A) =
∫
A
φ(x) ν(dx) with a probability

density function φ satisfying 0 ⩽ φ(x) ⩽ b for all x ∈ [0, 1]d. Therefore,

1

2
< µ(B1 ∪ . . . ∪Bk) ⩽

k∑
j=1

µ(Bj) =

k∑
j=1

∫
Bj

φ(x) ν(dx) ⩽
k∑
j=1

b · ν(Bj) (10)

Moreover, we know that ν(Bj) = Vdr
d for all j = 1, . . . k. Combining this inequality with (10), we get

1

2
< kbVd r

d.

This yields rd > 1
2bk Vd

.
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B.2. Proof of Proposition 1

Recall that

dF (g♯Ud, Pn,X) = sup
f∈F

∣∣∣∣ ∫
[0,1]d

f(g(u)) du− 1

n

n∑
i=1

f(Xi)

∣∣∣∣.
In addition, there exists an LH-Lipschitz-continuous function h such that h ◦ g = Idd and

∥h(x)− h(x′)∥ ⩽ LH∥x− x′∥ ∀x,x′ ∈ RD.

In order to establish the lower bound on dF (g♯Ud, Pn,X), we use the fact that F contains all the functions of the form ψ ◦ h,
where ψ : [0, 1]d → R is any (1/LH)-Lipschitz-continuous function. Indeed, since h is LH-Lipschitz, the function ψ ◦ h
belongs to Lip1 ⊆ F . Therefore,

dF (g♯Ud, Pn,X) ⩾ sup
ψ∈Lip

L
−1
H

{∫
[0,1]d

(ψ ◦ h ◦ g︸︷︷︸
=Idd

)(u) du− 1

n

n∑
i=1

(ψ ◦ h)(Xi)

}

= sup
ψ∈Lip

L
−1
H

{∫
[0,1]d

ψ(x) dx− 1

n

n∑
i=1

ψ(Zi)

}
,

where we have used the notation Zi = h(Xi), for i = 1, . . . , n. Clearly, ψ ∈ LipL−1
H

is equivalent to LHψ ∈ Lip1. This
implies that

dF (g♯Ud, Pn,X) ⩾
1

LH
sup
ψ∈Lip1

{∫
[0,1]d

ψ(u) du− 1

n

n∑
i=1

ψ(Zi)

}
.

The right-hand side of the inequality above is precisely the W1 distance between the uniform measure on [0, 1]d and the
empirical distribution of Z1, . . . ,Zn. Therefore, we arrive at

dF (g♯Ud, Pn,X) ⩾
1

LH
W1

(
Ud,

1

n

n∑
i=1

δZi

)
⩾

1

2LH(1 + (2Vdn)1/d)
,

where the last inequality follows from Proposition 3.

B.3. Proof of Theorem 1

Let ĥn be a function fromH attaining the minimum minh∈H ∥h◦ ĝn,ϵ− Idd ∥qLq
. SinceF contains all 1-Lipschitz continuous

functions, it also contains all the functions of the form f = ψ ◦ ĥn, for ψ ∈ Lip(1/LH). Using the notation Zi = ĥn(Xi),
this implies that

dF (ĝn,ϵ♯Ud, Pn,X) = sup
f∈F

∣∣∣∣ ∫
[0,1]d

f(ĝn,ϵ(x))dx−
1

n

n∑
i=1

f(Xi)

∣∣∣∣
⩾ sup
ψ∈Lip

L
−1
H

{∫
[0,1]d

(ψ ◦ ĥn ◦ ĝn,ϵ)(x) dx−
1

n

n∑
i=1

(ψ ◦ ĥn)(Xi)

}

⩾
1

LH
sup
ψ∈Lip1

{∫
[0,1]d

(ψ ◦ ĥn ◦ ĝn,ϵ,︸ ︷︷ ︸
≈Idd

)(u) du− 1

n

n∑
i=1

ψ(Zi)

}
.

By adding and subtracting the term
∫
[0,1]d

ψ(u) du, we arrive at

dF (ĝn,ϵ♯Ud, Pn,X) ⩾
1

LH
sup
ψ∈Lip1

∣∣∣∣ ∫
[0,1]d

ψ(u) du− 1

n

n∑
i=1

ψ(Zi)

∣∣∣∣− 1

LH
sup
ψ∈Lip1

∥∥ψ(ĥn ◦ ĝn,ϵ)− ψ∥∥L1

⩾
1

LH

(
W1(Ud, P̂n,Z)−

∥∥ĥn ◦ ĝn,ϵ − Idd
∥∥
L1

)
⩾

1

LH

(
W1(Ud, P̂n,Z)− penH(ĝn,ϵ)

1/q
)
. (11)
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Here, the second inequality follows from the Lipschitz-continuity of ψ, whereas the last inequality is a consequence of the
facts that the L1 norm on [0, 1]d is dominated by the Lq norm given q ⩾ 1, and that ĥn is a minimizer of ∥h ◦ ĝn − Idd ∥q
overH. We use the same lower bound here

W1(Ud, P̂n,Z) ⩾
1

2 + 2(2Vdn)1/d
. (12)

To complete the proof we need to find an upper bound on the second term of the right-hand side of (11). Given (LIPERM),
we know that for any g ∈ G it holds

dF (ĝn,ϵ♯Ud, Pn,X) + λ penH(ĝn,ϵ) ⩽ dF (g♯Ud, Pn,X) + λ penH(g) + ϵ.

Since the distance dF is always nonnegative, by choosing g from G0 the last term of the last display vanishes and we get

λ penH(ĝn,ϵ) ⩽ inf
g∈G0

dF (g♯Ud, Pn,X) + ϵ. (13)

Combining inequalities (11), (12) and (13) we obtain the claim of the theorem.

B.4. Proof of inequality (3)

Using the fact that g∗ ∈ GH and the triangle inequality, we get

inf
GH

E
[
W1(g♯Ud, Pn,X)

]
⩽ E

[
W1(g

∗♯Ud, Pn,X)
]

⩽ E
[
W1(g

∗♯Ud, g∗♯Pn,U )
]
+ E

[
W1(g

∗♯Pn,U , Pn,X)
]
. (14)

Let Ui ∼ Ud be n iid random vectors drawn from the uniform distribution (they will be defined more specifically later in the
proof). Let Pn,U be the empirical distribution of U1, . . . ,Un. Recall that (see, for example, (Niles-Weed and Rigollet, 2022,
Proposition 1))

E[W1(Ud, Pn,U )] ⩽
c
√
d

n1/d
.

This implies that

E
[
W1(g

∗♯Ud, g∗♯Pn,U )
]
⩽ L∗E

[
W1(Ud, Pn,U )

]
⩽
cL∗
√
d

n1/d
. (15)

On the other hand, it is clear that

E[W1(g
∗♯Pn,U , Pn,X)] ⩽ E

[
(1/n)

n∑
i=1

∥g∗(Ui)−Xi∥
]

= E
[
∥g∗(U1)−X1∥

]
. (16)

If we assume now that U1 is chosen in such a way that the joint distribution of g∗(U1) and X1 is the optimal coupling
between the marginal distributions of these two random vectors, we get

E
[
∥g∗(U1)−X1∥

]
= W1(g

∗♯Ud, P ∗) ⩽ σ∗. (17)

Combining (16) and (17), we get

E[W1(g
∗♯Pn,U , Pn,X)] ⩽ σ∗. (18)

Finally, inequalities (15) and (18), in conjunction with (14), yield

inf
GH

E
[
W1(g♯Ud, Pn,X)

]
⩽
cL∗
√
d

n1/d
+ σ∗.
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C. Proof of the risk bound when trained with approximated functional classes
Although Proposition 2 was stated for the case q = 2 only, we provide the proof for any q ⩾ 1. Replacing q by 2 in the final
expression of this proof leads to the claim of the proposition.

C.1. Proof of Proposition 2

We consider a trained generator ĝ0n,ε satisfying

dF0
(ĝ0n,ε♯ Ud, Pn,X) + penH0

(ĝ0n,ε) ⩽ dF0
(g♯Ud, Pn,X) + penH0

(g) + ε, for all g ∈ G0 (19)

and our goal is to upper bound the expression dF (ĝ
0
n,ε♯ Ud, Pn,X). Using Lemma 3, we have

dF (ĝ
0
n,ε♯ Ud, Pn,X) ⩽ dF0(ĝ

0
n,ε♯ Ud, Pn,X) + 2δF . (20)

The first term of the right-hand side can be upper bounded as follows:

dF0(ĝ
0
n,ε♯ Ud, Pn,X) ⩽ dF0(ĝ

0
n,ε♯ Ud, Pn,X) + λpenH0

(ĝ0n,ε)

⩽ inf
g0∈G0

(
dF0

(g0♯ Ud, Pn,X) + λpenH0
(g0)

)
+ ε

⩽ inf
g0∈G0

(
dF0

(g0♯ Ud, Pn,X) + λpenH(g0)
)
+ ε+ qd(q−1)/2δH

⩽ inf
g0∈G0

(
dF (g0♯ Ud, Pn,X) + λpenH(g0)

)
+ ε+ qd(q−1)/2δH. (21)

where we used the positiveness of the penalty function for the first inequality, inequality (19) for the second inequality,
Lemma 5 for the third inequality and the fact that F0 ⊆ F for the fourth inequality.

The last step is to use Lemma 6, which allows to upper bound the inf over G0 by the inf over G, modulo an additive error
term proportional to δG . More precisely,

inf
g0∈G0

(
dF (g0♯ Ud, Pn,X) + λpenH(g0)

)
⩽ inf
g∈G

(
dF (g♯Ud, Pn,X) + λpenH(g)

)
+

(
1 + λqd(q−1)/2LH

)
δG . (22)

Combining (20), (21) and (22), we get the inequality

dF (ĝ
0
n,ε♯ Ud, Pn,X) ⩽ inf

g∈G

(
dF (g♯Ud, Pn,X) + λpenH(g)

)
+ ε+ 2δF + qd(q−1)/2δH +

(
1 + λqd(q−1)/2LH

)
δG︸ ︷︷ ︸

=:δ

.

This completes the proof.

C.2. Impact of approximating F on the IPM

Lemma 3. If F0 is such that inf
f0∈F0

∥f − f0∥ ⩽ δ for every f ∈ F , then

dF (P,Q)− dF0(P,Q) ⩽ 2δ for all distributions P,Q.

Proof. Recall the definition of dF (P,Q) = supf∈F
∣∣EP [f(X)]− EQ[f(X)]

∣∣. This implies that

dF (P,Q)− dF0
(P,Q) = sup

f∈F
inf

f0∈F0

( ∣∣EP [f(X)]− EQ[f(X)]
∣∣︸ ︷︷ ︸

independent of f0

−
∣∣EP [f0(X)]− EQ[f0(X)]

∣∣︸ ︷︷ ︸
independent of f

)
⩽ sup
f∈F

inf
f0∈F0

∣∣EP [f(X)]− EQ[f(X)]− EP [f0(X)]− EQ[f0(X)]
∣∣ (|a| − |b| ⩽ |a− b|)

⩽ sup
f∈F

inf
f0∈F0

(∣∣EP [f(X)]− EP [f0(X)]
∣∣+ ∣∣EQ[f(X)]− EQ[f0(X)]

∣∣) (triangle ineq.)

⩽ sup
f∈F

inf
f0∈F0

(
EP [|f(X)− f0(X)|︸ ︷︷ ︸

⩽∥f−f0∥∞

] + EQ[|f(X)− f0(X)|︸ ︷︷ ︸
⩽∥f−f0∥∞

]
)

⩽ sup
f∈F

inf
f0∈F0

∥f − f0∥∞ ⩽ 2δ.

This completes the proof of the lemma.
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C.3. Impact of approximatingH on the Left-Inverse-Penalty

Before analyzing the sensitivity of the left-inverse-penalty to the deviations fromH, we need an auxiliary lemma.

Lemma 4. If a, b are arbitrary numbers from some interval [0, C], and q ⩾ 1, then

|aq − bq| ⩽ qCq−1|b− a|.

Proof. Let us first assume that c ∈ [0, 1]. For any q ⩾ 1,

|cq − 1| ⩽ q|c− 1|.

Then for a, b ∈ R such that 0 ⩽ a ⩽ b, we have

|aq − bq| = bq
∣∣(a/b)q − 1

∣∣ ⩽ qbq
∣∣∣a
b
− 1

∣∣∣ = qbq−1|b− a|.

The claim of the lemma follows by upper bounding b by C.

Lemma 5. IfH0 is such that min
h0∈H0

∥h− h0∥∞ ⩽ δ for all h ∈ H, then

penH0
(g)− penH(g) ⩽ qd(q−1)/2δ, for all g ∈ G.

Proof. Recall that penH(g) = minh∈H ∥h ◦ g − Idd ∥qLq
. This yields

penH0
(g)− penH(g) = min

h0∈H0

∥h0 ◦ g − Idd ∥qLq
−min
h∈H
∥h ◦ g − Idd ∥qLq

= max
h∈H

min
h0∈H0

(
∥h0 ◦ g − Idd ∥qLq

− ∥h ◦ g − Idd ∥qLq

)
We apply Lemma 4 with

a = ∥h0 ◦ g − Idd ∥Lq
=

(∫
[0,1]d

∥∥h0(g(u))︸ ︷︷ ︸
∈[0,1]d

− u︸︷︷︸
∈[0,1]d

∥q du
)1/q

⩽
√
d

b = ∥h ◦ g − Idd ∥Lq
⩽
√
d.

This leads to

∥h0 ◦ g − Idd ∥qLq
− ∥h ◦ g − Idd ∥qLq

⩽ qd(q−1)/2
∣∣∣∥h0 ◦ g − Idd ∥Lq

− ∥h ◦ g − Idd ∥Lq

∣∣∣ (|∥a∥ − ∥b∥| ⩽ ∥a− b∥)

⩽ qd(q−1)/2∥h0 ◦ g − Idd−h ◦ g + Idd ∥Lq

⩽ qd(q−1)/2∥h0 ◦ g − h ◦ g∥Lq

= qd(q−1)/2∥h0 − h∥∞ ⩽ qd(q−1)/2δ.

This completes the proof of the lemma

C.4. Impact of approximating G on the Penalized Empirical Risk

As in the main text, here also we assume that the elements of the setH are all Lipschitz-continuous with a Lipschitz constant
bounded by LH.

Lemma 6. Let P be an arbitrary distribution and F ⊆ Lip1(RD → R). If G0 is such that ming0∈G0
∥g − g0∥∞ ⩽ δ for

every g ∈ G, then the following is true:

min
g0∈G0

(
dF (g0♯ Ud, P ) + λpenH(g0)

)
⩽ inf
g∈G

dF (g♯Ud, P ) + λpenH(g) +
(
1 + λqd(q−1)/2LH

)
δ.
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Proof. Let g be any function from G and g0 be the element of G0 satisfying ∥g − g0∥∞ ⩽ δ. On the one hand, for this
function g0, we have

dF (g0♯ Ud, P )− dF (g♯Ud, P ) = sup
f∈F

∣∣∣EUd
[f(g0(U))]− EP [f(X)]

∣∣∣− sup
f∈F

∣∣∣EUd
[f(g(U))]− EP [f(X)]

∣∣∣
⩽ sup
f∈F

∣∣∣EUd

[
f(g0(U))− f(g(U))

]∣∣∣
⩽ sup
f∈F

EUd

[∣∣∣f(g0(U))− f(g(U))
∣∣∣]

⩽ sup
f∈F

EUd

[∥∥g0(U)− g(U)
∥∥] ⩽ δ. (23)

Here, the inequality of the second line follows from sup |F | − sup |G| ⩽ sup(|F | − |G|) ⩽ sup |F −G|, while the first
inequality of the last line is a consequence of the assumption that the functions from F are all 1-Lipschitz.

On the other hand,

penH(g0)− penH(g) = min
h∈H
∥h ◦ g0 − Idd ∥qLq

−min
h∈H
∥h ◦ g − Idd ∥qLq

⩽ ∥h∗ ◦ g0 − Idd ∥qLq
− ∥h∗ ◦ g − Idd ∥qLq

,

where h∗ is the minimizer of ∥h ◦ g − Idd ∥qLq
overH. Combining with Lemma 4, we get

penH(g0)− penH(g) ⩽ qd(q−1)/2
∣∣∣∥h∗ ◦ g0 − Idd ∥Lq

− ∥h∗ ◦ g − Idd ∥Lq

∣∣∣
⩽ qd(q−1)/2∥h∗ ◦ g0 − Idd−h∗ ◦ g + Idd ∥Lq

= qd(q−1)/2∥h∗ ◦ g0 − h∗ ◦ g∥Lq

⩽ qd(q−1)/2∥h∗ ◦ g0 − h∗ ◦ g∥∞
⩽ qd(q−1)/2LH∥g0 − g∥∞
⩽ qd(q−1)/2LHδ. (24)

Combining (23) and (24), we get that for any g ∈ G, there is a g0 ∈ G0 such that

dF (g0♯ Ud, P ) + λpenH(g0) ⩽ dF (g♯Ud, P ) + λpenH(g) +
(
1 + λqd(q−1)/2LH

)
δ.

This completes the proof of the lemma.

D. Numerical experiments
This section contains some tables and plots that we could not include in the main paper due to the space restrictions. Recall
that our experiments were done on three data sets: Swiss roll, MNIST and CIFAR-10. In these experiments, we trained a
distribution using the Wasserstein GAN with a left inverse penalty.

(a) Discriminator Loss (b) Generator Loss (c) Inverse Generator Loss (d) Wasserstein distance

Figure 7. Evolution of various losses across the iterations in the experiment on Swiss Roll data generated with the noise magnitude
σ = 1.5.
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(a) λ = 0. (b) λ = 1. (c) λ = 2. (d) λ = 4. (e) λ = 8.

(f) λ = 0. (g) λ = 1. (h) λ = 2. (i) λ = 4. (j) λ = 8.

(k) λ = 0. (l) λ = 1. (m) λ = 2. (n) λ = 4. (o) λ = 8.

Figure 8. Swiss Roll data: training set and examples generated from the learned distribution, when the noise magnitude is σ = 3/2 (top
row), σ = 3/4 middle row and σ = 3/8 (bottom row). LIPERM was trained with λ = 0, 1, 2, 4, 8.

(a) λ = 0. (b) λ = 1.

(c) λ = 4. (d) λ = 8.

Figure 9. Handwritten digits generated by LIPERM for different values of λ.
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U1

U2

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

X1

X2

Input layer
dim = 2 1st hid. layer

dim = 512
2nd hid. layer

dim = 512
3rd hid. layer

dim = 512

Output layer
dim = 2

THE GENERATOR NETWORK

Layer Operation

1 Linear + ReLU
latent_DIM→ DIM

2 Linear + ReLU
DIM→ DIM

3 Linear + ReLU
DIM→ DIM

Out Linear
DIM→ out_DIM

X1

X2

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

Y

Input layer
dim = 2 1st hid. layer

dim = 512
2nd hid. layer

dim = 512
3rd hid. layer

dim = 512

Output layer
dim = 1

THE CRITICS NETWORK

Layer Operation

1 Linear + ReLU
out_DIM→ DIM

2 Linear + ReLU
DIM→ DIM

3 Linear + ReLU
DIM→ DIM

Out Linear
DIM→ 1

X1

X2

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

U1

U2

Input layer
dim = 2 1st hid. layer

dim = 512
2nd hid. layer

dim = 512
3rd hid. layer

dim = 512

Output layer
dim = 2

THE LEFT INVERSE NETWORK

Layer Operation

1 Linear + LeakyReLU
out_DIM→ DIM

2 Linear + LeakyReLU
DIM→ DIM

3 Linear + LeakyReLU
DIM→ DIM

Out Linear
DIM→ latent_DIM

Table 1. Neural network architectures for the generator g, the critic f and the left inverse h used in the experiments conducted on Swiss
Roll datasets. In this case, latent_DIM = out_DIM = 2, DIM = 512.
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(a) Discriminator Network Architecture used in our experiments on MNIST data set.

Conv2d + Conv2d + Conv2d +
Layer LeakyReLu BatchNorm2d + BatchNorm2d + Conv2d

LeakyRelu LeakyRelu

Input dim 28× 28 14× 14 7× 7 3× 3
Nb input channels 1 256 512 1024
Kernel size 4 4 3 3
Stride 2 2 2 1
Padding 1 1 0 0
Output dim 14× 14 7× 7 3× 3 1× 1
Nb output channels 256 512 1024 1

(b) Generator Network Architecture used in our experiments on MNIST data set.

ConvTranspose2d ConvTranspose2d ConvTranspose2d
Layer +BatchNorm2d +BatchNorm2d +BatchNorm2d ConvTranspose2d

+ReLu +Relu +Relu

Input dim 1× 1 3× 3 7× 7 3× 3
Nb input channels 100 1024 512 256
Kernel size 3 3 4 4
Stride 1 2 2 2
Padding 0 0 1 1
Output dim 3× 3 7× 7 14× 14 28× 28
Nb output channels 1024 512 256 1

(c) Inverse Generator Network Architecture used in our experiments on MNIST data set.

Conv2d + Conv2d + Conv2d +
Layer LeakyReLu BatchNorm2d + BatchNorm2d + Conv2d Linear

LeakyRelu LeakyRelu

Input dim 28× 28 14× 14 7× 7 3× 3 100
Nb input channels 1 256 512 1024 1
Kernel size 4 4 3 3 -
Stride 2 2 2 1 -
Padding 1 1 0 0 -
Output dim 14× 14 7× 7 3× 3 1× 1 100
Nb output channels 256 512 1024 100 1

Table 2. Neural network architectures for the generator g, the critic f , and the lest inverse h used in the experiments conducted on MNIST
dataset. The negative slope parameter of the LeakyReLU is set to 0.2.
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