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Abstract

The second-order properties of the training loss
have a massive impact on the optimization dy-
namics of deep learning models. Fort & Scherlis
(2019) discovered that a large excess of positive
curvature and local convexity of the loss Hessian
is associated with highly trainable initial points
located in a region coined the “Goldilocks zone”.
Only a handful of subsequent studies touched
upon this relationship, so it remains largely unex-
plained. In this paper, we present a rigorous and
comprehensive analysis of the Goldilocks zone
for homogeneous neural networks. In particular,
we derive the fundamental condition resulting in
excess of positive curvature of the loss, explaining
and refining its conventionally accepted connec-
tion to the initialization norm. Further, we relate
the excess of positive curvature to model confi-
dence, low initial loss, and a previously unknown
type of vanishing cross-entropy loss gradient. To
understand the importance of excessive positive
curvature for trainability of deep networks, we
optimize fully-connected and convolutional ar-
chitectures outside the Goldilocks zone and ana-
lyze the emergent behaviors. We find that strong
model performance is not perfectly aligned with
the Goldilocks zone, calling for further research
into this relationship.

1. Introduction

Every neural network gives rise to a high-dimensional op-
timization space spanned by its trainable parameters. The
complex geometry of these spaces and embedded loss land-
scapes has been an area of prolific research since the incep-
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tion of machine learning models. The training loss Hessian
and its properties have received a lot of attention, as they of-
fer key insights into generalization (Hochreiter & Schmidhu-
ber, 1997; Keskar et al., 2017), convergence speed (Becker
et al., 1988), and broader optimization dynamics (Jastrzgb-
ski et al., 2020; Cohen et al., 2021).
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Figure 1. The Goldilocks zone is an area of excess of positive
curvature of the loss. Left: Originally, the Goldilocks zone is ob-
served for a narrow range of initialization scales. Middle: Setting
the appropriate softmax temperature 71" allows for excess positive
curvature at initialization of any norm. Right: Recreating the
Goldilocks zone at an unscaled initialization just by varying 7'.

While the Hessian is extensively studied throughout training
and at convergence, fewer works focus on the initializa-
tion stage. Recently, Fort & Scherlis (2019) discovered
the Goldilocks zone—a region of the optimization space
marked by excessive positive curvature Tr(H) /|| H|| r and
local convexity of the loss Hessian H (see Figure 1). The
anomalous readings of these metrics are recorded at a certain
distance from the origin of the configuration space where
some widely used initialization schemes such as Xavier
(Glorot & Bengio, 2010) and Kaiming (He et al., 2015) are
found. Thus, the Goldilocks zone is believed to be a hollow
centered spherical shell that contains a high density of suit-
able initial points. Indeed, an appropriate parameter norm
is crucial to avoid exploding and vanishing signals, and it
seems reasonable that initializations of extreme norm (out-
side the Goldilocks zone) might suffer from this notorious
issue. However, internal covariate shift is largely solved
in practice by BatchNorm (Ioffe & Szegedy, 2015), and it
can be directly accounted for in some special cases. For
example, given an L-layer homogeneous network f,¢ with
an a-scaled initialization (Dinh et al., 2017), the appropriate
logit variance and gradient norm can be restored by apply-
ing a carefully selected softmax temperature 7 = o* and
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learning rate 7 = O(a?). These adjustments ensure that
fap follows exactly the same training trajectory and has
the same initial excess of positive curvature as fy (Figure
1). Thus, contrary to the original claims by Fort & Scherlis
(2019), the Goldilocks zone cannot be characterized by the
initialization norm alone and is not even a subset of the
configuration space. Instead, we find a more fundamental
condition governing the excess of positive curvature of the
loss in Section 3.

Previous works also attempted to describe the Goldilocks
zone more formally. Fort & Ganguli (2019) develop an
abstraction, the random logit model, in which they show
that prevalence of positive curvature of cross-entropy loss
vanishes with increased logit variance. Cohen et al. (2021)
attribute the decrease in cross-entropy sharpness during op-
timization to the collapse of the softmax distribution, which
also has implications for the Goldilocks zone. However, the
phenomenon of excessive positive curvature—its relation
to the initialization norm and trainability—remains unex-
plained. In this work, focusing on homogeneous networks,
we derive a comprehensive description of the Goldilocks
zone from the Gauss-Newton decomposition (Section 3)
of the cross-entropy loss Hessian and formally associate
excess of positive curvature with certain properties of the
network (Section 4). In particular, we show that near-zero
curvature results from a relatively low spectral norm of the
G-term in the Hessian decomposition due to either saturated
softmax or vanishing logit gradients, which naturally arise
for high- and low-norm initializations, respectively. Inside
the Goldilocks zone, we prove that the highest excess of
positive curvature is observed for networks with low confi-
dence, which in turn is associated with low initial loss and,
for balanced datasets, with vanishing expected loss gradient.

When the conditions governing positive curvature of the
loss are established, we inquire about their relation to model
trainability and optimization dynamics. Fort & Scherlis
(2019) find that optimization on random subspaces of the pa-
rameter space converges only if they intersect the Goldilocks
zone. For unconstrained optimization, Gur-Ari et al. (2018)
discovered that gradients are mainly confined to a low-rank
subspace spanned by the Hessian top eigenvectors and van-
ish along flatter directions. Since the excess of positive
curvature manifests a larger separation between bulk and
outlier eigenvalues, it should then be associated with a more
robust top-eigenspace and, intuitively, a more informative
training signal. Motivated to unveil this relationship, we use
gradient descent to optimize homogeneous networks using
a wide spectrum of initialization norms and learning rates
and taxonomize the emergent behaviors. Interestingly, we
find that successful training is not necessarily well aligned
with the Goldilocks zone. We demonstrate setups where the
slightest increase in the initialization norm of LeNet-5 leads
to degenerate learning despite happening well within bound-

aries of the Goldilocks zone. These dynamics are marked
by an increasing amount of zero logits and, to the best of
our knowledge, we are the first to report this behavior.

Contributions. This paper conducts an extensive study
of the Goldilocks zone of homogeneous neural networks,
both analytically and empirically. Our code is available at
https://GitHub.com/avysogorets/goldilocks-zone.

¢ In Section 3, we demonstrate that the Goldilocks zone
is not characterized by the initialization norm alone,
refining prior beliefs of Fort & Scherlis (2019). Instead,
we derive a more fundamental condition resulting in
excess of positive curvature and find that it disappears
due to saturated softmax on one end and vanishing
logit gradients on the other.

e In Section 4, we closely study the interior of the
Goldilocks zone and analytically associate excess of
positive curvature with low model confidence, low ini-
tial loss, and low cross-entropy gradient norm.

* In Section 5, we report the evolution and performance
of scaled homogeneous networks when optimized by
gradient descent both inside and outside the Goldilocks
zone. Our investigation shows that excess of positive
curvature is an imperfect estimator of the initialization
trainability and exhibits a range of interesting effects
for initializations on the edge.

2. Preliminaries & Notation

We begin by introducing the technical scope of this study,
notation, and the essential background. We consider a stan-
dard K-way classification problem D = {(X*,y*)}\,
with targets y* € [K]. A neural network fy, parameterized
by a vector § € R”, computes K logits {2}/, associated
to a probability distribution p via the softmax function o1
with a temperature parameter 7":
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By default, ' = 1, in which case we refer to softmax
simply as o. The corresponding cross-entropy loss is
{(p,y) = —log p,. The Hessian matrix H € R”*¥ holds
the second derivatives of the loss at 0: H;; = §%(/00;00;.
In principle, all of the above quantities depend on one par-
ticular or a batch of inputs (X*, y*); we use the superscript
1 to make this dependence explicit where needed. Since
we are often concerned with the magnitude of network out-
puts at different parameter scales, we assume the inputs are
standardized and bounded.
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Homogeneous networks. We restrict our analysis to ho-
mogeneous models satisfying f.o = a” fy for any scalar
a > 0 where L is the number of layers in f. This is a rather
technical assumption: homogeneous models are widely used
in practice and include ReLU networks without biases. Fort
& Scherlis (2019) focus on initially homogeneous models
by setting biases to zero. Inhomogeneous networks encom-
pass a wide range of architectures and design choices that
require case-by-case analysis depending on the source of
inhomogeneity (e.g., non-zero biases, residual connections,
inhomogeneous activation functions, etc.). Many inhomo-
geneous cases may be quite degenerate in the context of
initialization scaling. For example, upscaling the initial-
ization of TanH-networks simply saturates the activations,
blocking any signal propagation. Downscaling these net-
works sufficiently hard makes them into linear models. For
another example, consider ReLU networks with non-zero
biases and at least one hidden layer, which are inhomoge-
neous due to the different scales of biases and activations in
hidden layers. When a@ < 1, the output signal is dominated
by biases; when o >> 1 biases vanish in magnitude com-
pared to the corresponding activations, making the model
almost homogeneous. In Section 6, we revisit inhomoge-
neous models and suggest how our analyses can be extended
to these architectures as well.

Excess of positive curvature. In their work, Fort &
Scherlis (2019) define the Goldilocks zone rather informally
as a region of excessive positive curvature of the loss, which
can be unmistakably identified in Figure 1. of positive
curvature of the loss is defined as the excess of positive
eigenvalues {\; }2 ; of a loss Hessian H:

Te(H) S0\
e~ 5P e

i=1""

@

Throughout the remainder of the paper, we refer to this
quantity simply as positive curvature for fluid presentation.
Another metric used by Fort & Scherlis (2019) is local con-
vexity of the loss, which refers to the fraction of positive
eigenvalues of H. These two metrics are intimately related
and can detect the Goldilocks zone independently of each
other, so we focus only on positive curvature throughout
this paper. Since computing the full Hessian is intractable
for most modern architectures, Fort & Scherlis (2019) sub-
stitute it with a projection Hy; = RT HR onto a low-rank
random subspace with basis defined by a sparse matrix
R € RP*? with orthogonal columns. Given an initial-
ization 6, this amounts to computing the Hessian of the
training loss of the model parameterized by RO + 0 with
respect to latent d-dimensional parameters 6 at the origin
of the chosen low-rank space, which is much more acces-
sible. We adopt the same strategy and assume that the
first- and second-order derivatives with respect to 6 more

generally represent derivatives with respect to trainable d-
dimensional parameters, which can be latent parameters 6
or the original model weights if we letd = P and R = Ip.
This technical nuisance affects none of our analyses, but
we add further comments as it becomes necessary. We ver-
ify the validity of this practical approach by comparing it
to Hutchinson’s stochastic trace estimation in Appendix F
(Hutchinson, 1990).

3. Revisiting the Goldilocks Zone

Fort & Scherlis (2019) introduced the Goldilocks zone as
aregion of the parameter space with an excess of positive
curvature and local convexity of the loss function, as defined
in Section 2. Starting from a gold standard Kaiming initial-
ization 0, Fort & Scherlis (2019) record these statistics over
aray {afy: @ > 0} and read unusually high values when «
falls within a relatively narrow range centered around o = 1
(Figure 1 left). Moreover, they find that SGD constrained
to a random subspace is successful only if it intersects the
Goldilocks zone. Based on these observations, the authors
suggest that the Goldilocks zone is a thick, hollow spherical
shell about the origin in the configuration space, which is
densely populated with initial points amenable for training.

A simple example shows that, strictly speaking, this visually
appealing representation needs revision. For homogeneous
models, the a-scale transformation § — af with o > 0
effectively scales the underlying configuration space by «
(Dinh et al., 2017). We shall derive next that the cross-
entropy loss landscape scales together with the configuration
space when the softmax temperature satisfies T = o,
restoring positive curvature of the loss of the scaled model
fap to that of the original model fy (see the middle plot
in Figure 1). Thus, we argue that initialization norm has a
coincidental relationship to the Goldilocks zone, calling for
a refined, analytically driven characterization.

Gradients and Hessian of scaled models. We begin by
simplifying the notation for clarity of presentation. Denote
a scaled model f,g by f’ and adopt a similar notation for
all of its attributes (0’ = a0, etc.). The chain rule allows us
to express gradients of the cross-entropy loss as

o 1 O0zy 0z
% T *WJFZUT(Zk)i . 3)

By virtue of homogeneity, the logit gradients of the scaled
model f’ satisfy 9z,/00" = o109z, /06. For the special
case of T = o', we have o,z (2},) = o (24), giving Vg £ =
a~1Vg. This tells us that the a-scaled model f’ follows
exactly the same optimization trajectory as f if the ratio
of their respective learning rates is o%. This factor ensures
equal update norms relative to parameter norms across the
two models. To derive a similar relationship for the Hessians
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of " and f, we turn to the Gauss-Newton decomposition
(Sagun et al., 2016; Fort & Ganguli, 2019; Papyan, 2020).
For a single training sample, we have:

Zzazk V2€ 8zc+§:
kc 89 —
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G-term (G) H-term (H)

“

where V2¢ = diag(p) — pp' is the Hessian of the loss
with respect to the logits and V¢ = p — OH(y) where
p is the softmax output and OH(y) is a one-hot encoded
tagret (Cohen et al., 2021). To emphasize the depen-
dence of the G-term and H-term on p we sometimes re-
fer to them as G(p) and H(p), respectively. Note that
G(p) = J "[diag(p) — pp"]J where J is the Jacobian ma-
trix. For the a-scaled model f’ used together with soft-
max o, we similarly get V2,0 = T2 [diag(p') — p'p"" ],
V. ¢/ =T~ (p'—OH(y)). Combining this with homogene-
ity of gradients, we derive the Gauss-Newton decomposition
of the Hessian of f”:

H =G +H = H(P). 5)
Linearity of differentiation ensures that this equation is valid
for the full-batch Hessian, too. Indeed, the full G-term
and the full H-term are just the averages of the per-sample
quantities G* and H* defined in Equation (4), respectively.
Thus, we will abuse this notation and refer to their full
counterparts in the same way where appropriate. In this
case, the probability vectors p and p’ can be viewed as
matrices.

Returning to our discussion on the shape of the Goldilocks
zone, we remark that T = o yields H' = o~ 2H (as
this temperature ensures p = p’). Since the measures of
positive curvature and local convexity are robust to scaling
of the Hessian matrix, we conclude that initialization of any
norm can be in the Goldilocks zone provided an appropriate
softmax temperature (see Figure 1). Now that the connection
between the initialization norm and the Goldilocks zone is
much less credible, we leverage Equation (5) to establish
the fundamental principles governing positive curvature in
neural networks.

Gauss-Newton decomposition. The Gauss-Newton de-
composition in Equation (4) is a common entry point for
many studies on the Hessian of large neural networks. The
Hessian exhibits a “bulk-outlier” eigenspectrum with the
majority of eigenvalues small and clustered around zero
and only a handful of large positive outliers (Sagun et al.,
2016; Gur-Ari et al., 2018; Ghorbani et al., 2019). This
decomposition is inherited from the individual spectra of G
and ‘H with the top and the bulk eigenvalues attributed to

these two terms, respectively. We present a survey of works
concerned with this phenomenon in Appendix A.

Rediscovering the Goldilocks zone. We are now in po-
sition to describe the exact conditions that result in preva-
lence of positive curvature—the hallmark of the Goldilocks
zone. The eigenstructures of the individual terms in the
Gauss-Newton decomposition of the Hessian suggest that
the G-term is the one and only source of positive curvature
of the loss, and so

19112 2 117112 (6)

is a necessary and sufficient condition for the Goldilocks
zone. We observe this exact correspondence in Figure
2. Otherwise, when ||G’||2 is sufficiently small relative to
I’ ||2, the bulk-like eigenspectrum of the H-term swallows
the outliers of the G-term and is inherited by the Hessian, re-
sulting in a near-zero positive curvature. This sudden change
in the eigenstructure is known as the BBP phase transition
(Baik et al., 2005; Fort & Ganguli, 2019). Normally (when
a = 1and T = 1), we expect the above inequality to be
true. Figure 2 (bottom) confirms that the G-term has an
edge over the H-term within a neighborhood around the
unaltered model (orange bar), which also corresponds to the
Goldilocks zone.
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Figure 2. Positive curvature (top) and spectral norm (bottom) of
the Hessian, G-term, and H-term across initialization scales. We
computed these quantities on a low-rank subspace with d = 50.
Left: LeNet-300-100 (fully-connected) on FashionMNIST; Right:
LeNet-5 (convolutional) on CIFAR-10.

Therefore, it is left to understand when and why Equation (6)
is violated. Figure 2 reveals that this occurs at sufficiently
low or sufficiently high values of « given a fixed temperature
T = 1. For a > 1, the norm of the G-term plummets to
zero when the logit variance becomes sufficiently large for
the softmax output p’ to collapse to a one-hot distribution
for all training samples. In this scenario, diag(p’) — p'p’"
is identically zero, as has been observed by Cohen et al.
(2021) in the context of progressive sharpening. For us, this

implies that G’ (p') = J'T [diag(p’) — p'p’T]J" is identically
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zero as well, making the Hessian equal to the H-term. Fort
& Ganguli (2019) observed the causal relationship between
the increased logit variance and vanishing positive curvature
but never explained it analytically.

For o < 1, on the other hand, the G-term does not com-
pletely vanish; in fact, it achieves the largest excess of pos-
itive eigenvalues at low initialization scales (see the top
plots in Figure 2), suggesting that higher entropy predic-
tions should generally be associated with larger positive
curvature. According to Equation (5), [|G’|l2 = O(a?L~2)
while |H/||2 = O(al~2). Thus, the G-term simply decays
faster than the H-term as o — 0, eventually letting it domi-
nate in the Gauss-Newton decomposition. The higher decay
rate of the G-term comes from the cross-class product of
logit gradients that vanish as O(a~!) each. Thus, we call
this phenomenon vanishing logit gradient and emphasize
that vanishing loss gradient can in fact co-occur with high
positive curvature as we demonstrate in the next section.

4. Features of the Goldilocks Zone

In this section, we inquire about the properties of the interior
of the Goldilocks zone. In particular, we will associate
extreme values of positive curvature with certain features
of the network, initialization, and the data. To this end, we
study the spectral properties of the G-term that, provided
Equation (6) holds, transfer to the loss Hessian as well.
Equation (5) reveals that G'(p) o G(p) for the same p, so
that structural changes in the eigenspectrum of the G-term at
scaled initializations are due to the changing softmax output
p alone. Therefore, we can drop the superscript and study
the behavior of G as a function of p, which is the goal of this
section. In particular, we will find that positive curvature is
associated with low model confidence, which, in turn, leads
to vanishing expected loss gradients for balanced datasets
and low initial loss.

At the basis of our analysis is the random model introduced
by Fort & Ganguli (2019). They observed that same-logit
gradients cluster across training samples, and that the K
corresponding logit gradient means cy, are nearly orthogo-
nal to each other. In light of this observation, they model
cx ~ N(0,021p) and, for every input X*, let the corre-
sponding k-th logit gradient be Vg fi,(X*) = ¢i, + e}, with
iid residuals e} ~ N(0,02Ip). Recall from Section 2
that, in practice, we compute positive curvature by project-
ing the Hessian onto a low-rank hyperplane given by an
orthonormal basis R € RF*? o we actually care about
gradients with respect to the d-dimensional trainable param-
eters. Conveniently, the random model still holds in this
low-rank subspace since the corresponding gradients are just
RTc, + R el where RT¢j, ~ N(0,021,) and R e} ~
N(0,021,) as linear transformations of isotropic Gaussian
variables by R | satisfying RT R = I;. Thus, we drop the

j
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Figure 3. Excess of positive eigenvalues of the true G-term G and
the expected G-term EG from Equation (8) computed using logits
associated with different initialization scales (model confidence).
We used a low-rank subspace with d = 50. Error bands represent
min/max across 3 seeds. Left: LeNet-300-100 on FashionMNIST;
Right: LeNet-5 on CIFAR-10.

transformation and simply assume ¢, ~ N(0,021,) and
el ~ N(0,021;). Note that, in particular, the variance of
logit gradients and the corresponding residuals does not de-
pend on d. We make two more simplifying assumptions and
require cy, to be pairwise orthogonal and have equal squared
length [, [|* = Eflex | = do?.

For a single training sample, let C' and E be k x d matrices
of logit gradient means and the corresponding residuals (i.e.,
Cy, = ¢k and Ej, = ey), respectively; the Jacobian is then
J=C+FEandsoG = (C+E)"[diag(p) —pp'|(C+ E).
Taking expectation over data, we get

E.G = C[diag(p) — pp"]C + (1 — ||p||*)o?1,

diag(p) —pp" 0
= do? MR TP O ( plett )
where in the second line, we switch to the orthonormal basis
of the normalized logit gradient means c;. We can now
compute the excess of positive eigenvalues of E.G directly
from its elements. Assuming that p is not one-hot, we get

Tr(E.G) B \/&(af +02) @®)
[BGlr o1 1 20202 4 dotr;?

—_—d=10

single sample

— =50 == multiple samples

ﬁ d=150
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Figure 4. Left: The dependence of excess of positive eigenvalues
on the dimension d of the low-rank hyperplane used to compute the
projected G-term. Right: I/ 2 of the matrix diag(p) — pp | where
vectors p are produced by scaling 30 different logit sets by o €
[1072,10%] (30 pink curves). The red curve corresponds to I';, *

computed for the average matrix 5 iO:1 diag(p*) — ptp* .
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Figure 5. The effects of the average softmax output Q and the actual target prior () on the batch gradient. (a): Cosine similarity of
gradients computed on different datasets (SVHN, CIFAR-10, and a randomly generated dataset) at the same initialization of LeNet-5
(downscaled by @ = 0.01 when Q = uniform). To achieve ) # uniform, we inject artificial class imbalance by subsampling datasets
using a procedure suggested by Cui et al. (2019). (b): Given a fixed unscaled initialization of LeNet-5, we sample 2,000 different
class priors  uniformly from a probability simplex A1g. For each of them, we sample a subset of CIFAR-10 with 5, 000, compute the
cross-entropy gradient, and plot its norm against ||Q — Q||2. As we predicted, the norms follow a linear trend with the predicted slope (o2

was estimated on the entire CIFAR-10 dataset; d = P = 61, 170).

where T'), is the excess of positive eigenvalues of diag(p) —
pp' as defined in Equation (2). For the expected G-term
computed on a batch of samples with potentially differ-
ent softmax probabilities p*, I'), computes excess of posi-
£ Yo, diag(p) —
p*p* . Having empirically estimated values o2 and o2, we
use Equation (8) to compute the excess of positive eigen-
values of E.G on real softmax outputs p found by scaling
initialization, and find that it approximates the excess of pos-
itive eigenvalues of the true G-term across varying model
confidence levels very well (Figure 3).

tive eigenvalues of the average matrix

Positive curvature & dimension d. We can now explain
the dependence of positive curvature on the dimension d of
the hyperplane used to project the model parameters, which
was first noticed by Fort & Scherlis (2019), see the left plot
in Figure 4. Indeed, according to Equation (8), larger d are
associated with higher excess of positive eigenvalues of the
expected G-term given the same softmax outputs p.

Positive curvature & model confidence. Figure 2 shows
that excess of positive eigenvalues of the G-term monotoni-
cally decreases, reaching zero at some « > 1 due to a col-
lapsing softmax. Since larger « are associated with colder
softmax distributions, it is natural to hypothesize that excess
of positive eigenvalues of the G-term is inversely related to
model confidence. Equation (8) reveals that excess of posi-
tive eigenvalues of the expected G-term is directly related
to that of diag(p) — pp " and is larger for smaller values of
r, 2. Despite the seemingly nice form of this matrix, I',, is
difficult to analyze algebraically; still, a few general remarks
shed light on the above relationship. First, Equation (7) can
be used to show that EG has a “bi-level” eigenspectrum
that yields maximal excess of positive eigenvalues when the
softmax output p is uniform (Appendix B). Second, as seen
from Equation (2), excess of positive eigenvalues of any
rank-r positive semidefinite matrix is just the ratio of L1

and L2 norms of its  non-zero eigenvalues, which is known
to fall between 1 and /r. Therefore, I'), € [1,VK — 1],
and it achieves its maximal value when p is uniform. In Ap-
pendix C, we prove that I'), — 1 as p collapses to a one-hot
vector due to the increasing initialization scale . More-
over, Figure 4 (right) reveals that I',, is, in fact, monotonic
between its extreme values with respect to the entropy of p.
Overall, this suggests that I,/ 2 in Equation (8) grows with
model confidence, which supports our hypothesis.

Model confidence & vanishing gradients. In Section 3,
we saw that vanishing logit gradients associated with small-
norm network initializations diminish the role of the G-term
in the Gauss-Newton decomposition, leading to zero pos-
itive curvature of the loss. The term “vanishing gradients”
commonly refers to the condition of signal decay during
backpropagation to deeper layers, emerging either due to sat-
urated activation functions or small spectral radii of parame-
ter matrices (Bengio et al., 1994; Pascanu et al., 2013). The
vanishing logit gradients observed at low initialization scales
of homogeneous networks fall in the latter category. Using
the random model of Fort & Ganguli (2019), we derive
yet another, previously unknown type of vanishing cross-
entropy gradients caused by the match between the average
softmax output of the model Q = Ep ~ % Zu p* and
the dataset prior @ = EOH(y) ~ 3., OH(y") where
expectation is taken over the data distribution. To this end,
consider the expected batch cross-entropy loss gradient:

2y, | BLXK
K A~

By the orthogonality assumption on logit gradient means cx,
the norm of this quantity is do2||Q) — Q|| In Figure 5b, we
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confirm this linear relationship on LeNet-5 shockingly well.
Normally, randomly-initialized models are biased and have
non-uniform average priors Q, so that ||Q — Q|| > 0. In
this case, we expect loss gradients computed on two poten-
tially unrelated but balanced datasets to have considerable
overlap as both should align with the non-zero expected
gradient. Indeed, Figure 5a shows that gradients of LeNet-5
computed on CIFAR-10 and on random images drawn from
a standard Gaussian have cosine similarity > 0.7 when
priors @ and Q disagree, which is quite noteworthy for a
61,170-dimensional space. In contrast, for low-confident
models that always predict uniform distribution (e.g., when
a < 1, see Figure 5a right), logit gradients cancel each
other out when computed on a large balanced batch. Hence,
rather counterintuitively, we derive that large positive cur-
vature is associated with low-norm cross-entropy gradients
for balanced datasets.

Model confidence & initial loss. Fort & Scherlis (2019)
observed that initializations with higher positive curva-
ture tend to also have lower initial loss, which is often
considered favorable for learning (Agarwala et al., 2023).
Now, this relationship comes naturally since both phe-
nomena are associated with low-confidence models. In-
deed, the expected cross-entropy loss on samples from
class k is E,|,—(—log px), which is lower bounded by
—log E,|,—kpx by virtue of Jensen’s inequality. If the soft-
max output p is independent of the input’s class identity y—
a reasonable assumption for randomly-initialized models—
then the lower bound is just — log Ep;, = — log Qk Thus,
the total expected loss is no less than Zle (—log Qr) >
K log K with equality when the expected model prediction
Q is uniform. In principle, the model does not have to
always be uncertain for Q to be uniform; the predictions
can even be one-hot if all classes are equally-likely to be
chosen. However, this symmetry is practically unachievable
for randomly-initialized models, not to mention that the
above bound becomes quite loose when the model makes
confident mistakes. The right plot in Figure 6 confirms that
lower initial losses correspond to higher average entropy of
softmax output and, hence, larger positive curvature.
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Figure 6. The interplay between model confidence (avg. softmax
entropy), loss gradient norm, positive curvature, and the initial
loss value. Given a single balanced batch of 3,000 CIFAR-10
images, we sampled 2,000 Kaiming initializations for LeNet-5
and computed the above statistics for each of them.

Summary. In this Section, we scrutinized the interior of
the Goldilocks zone by presenting novel observations and
justifying some existing claims made in previous studies. In
particular, we related high positive curvature to low model
confidence, vanishing expected full-batch gradients for bal-
anced datasets, and low initial loss, as is once again demon-
strated in Figure 6.
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Zero logits
Lazy learning

Goldilocks zone large-norm initializations
Figure 7. Overview of the training outcomes observed in this study.
Homogeneous networks with large-norm initializations either di-
verge, develop an increasing number of samples with zero logits,
or learn in the lazy regime. Homogeneous networks with small-
norm initializations diverge as long as their output remains uniform
and either circle back to the Goldilocks zone and train normally,
or continue diverging with a potential to develop zero logits and
remain trapped in that regime.

5. Connections to Optimization

Previous works suggest that, in a standard setup (i.e., within
the Goldilocks zone), the top eigenspace of the training
loss Hessian plays an important role during optimization.
Gur-Ari et al. (2018) demonstrate that gradients are largely
confined to that space, and Ben Arous et al. (2023) prove
this phenomenon for two-layer neural networks. Outside
the Goldilocks zone, where Equation (6) no longer holds,
the loss curvature vanishes along all directions and so gra-
dient descent must behave differently. In this section, we
characterize the behavior of gradient descent outside the
Goldilocks zone and identify some failure modes that result
in poor convergence or generalization as shown in Figure 7.

Experimental setup. We optimize «-scaled homoge-
neous networks using vanilla full-batch gradient descent
for 20,000 epochs. In particular, we use a fully-connected
LeNet-300-100 with two hidden layers on FashionMNIST
(Xiao et al., 2017) and a convolutional LeNet-5 with 4 hid-
den layers on CIFAR-10 (LeCun et al., 1998; Krizhevsky,
2009), all implemented in PyTorch (Ansel et al., 2024). We
set softmax temperature to 7' = 1 to link the Goldilocks
zone to the initialization norm. Recall from Section 3 that
logit gradients of the a-scaled network f’ are o1 times
the respective logit gradients of the unscaled model f, so
we multiply a preset learning rate 79 by a®~% to ensure
that updates are initially commensurate to the weights of
/. In fact, this correction factor ensures that f’ has exactly
the same training dynamics as f provided that logit gradi-
ents are combined using the same softmax output p = p’
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to compute the update vector as indicated in Equation (3).
From this perspective, our experiments essentially constitute
an ablation study examining the effects of extreme model
(un)confidence, which corresponds to the exterior of the
Goldilocks zone in our setup.

Main results. Our findings are summarized in Figure 7.
As long as the softmax ouptut remains uniform (o < 1), ho-
mogeneous models remain in the divergence regime charac-
terized by an increase of the parameter norm in accordance
with previous studies (Liu et al., 2023). Once the weights
become sufficiently large for the predictions to become non-
uniform, the network circles back to the Goldilocks zone
and trains normally thereafter provided that the learning rate
is approximately admissible, i.e., n = noa®~L < 2/||H||2
(Lewkowycz et al., 2020; Cohen et al., 2021; Wang et al.,
2022). Hence, in Figure 8 (left) we observe a linear sepa-
ration between trainable and divergent setups that extends
well into the low-norm initialization region and way beyond
the Goldilocks zone (see Appendix E for further discussion).
When the learning rate is too high, however, the network
breezes past the Goldilocks zone and either diverges to infin-
ity or develops an increasing amount of zero logits (middle
column in Figure 8). This happens as some negative weights
grow much faster than the positive ones, promoting zero
activations within the network by virtue of ReL.U.
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Figure 8. Training statistics of LeNet-300-100 (top) and LeNet-
5 (bottom) optimized with gradient descent across initialization
scales a and base learning rates 79. Left: maximum achieved
training accuracy. Test accuracy exhibits the same general patterns
and is omitted. Middle: maximum achieved parameter norm;
azure values correspond to models that develop over 75% zero
logits and never recover from this regime. Right: product of the
effective learning rate = 1o~ with the initial loss curvature
|| H ||2; inadmissible configurations with values above 2 are shown
in pink. The highlighted strip corresponds to the Goldilocks zone
where the G-term is dominant (cf. Figure 2).
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Figure 9. Training curves of LeNet-300-100 optimized with full-
batch gradient descent on FashionMNIST across different base
learning rates 7o (note that the effective learning rate is oo~ ).
Left: low-confidence initialization with o = 0.01. Right: high-
confidence initialization with o = 1, 000.

Homogeneous networks with large-norm initializations
(o > 1) exhibit a more diverse collection of behaviors.
Previous works suggest that these models adhere to the lazy
learning regime characterized by approximately linear op-
timization dynamics (Chizat et al., 2019; Moroshko et al.,
2020; Kumar et al., 2023). We confirm this observation
for LeNet-300-100 but not for LeNet-5. Figure 9 shows
that, while the training error of LeNet-300-100 reaches zero,
the test accuracy saturates at 75%, which is 10% lower
than that of the unscaled network, suggesting lazy learning.
In contrast, even the slightest increase in the initialization
norm drives LeNet-5 to be completely untrainable (Figure 8
bottom-left), which is not well-aligned with the Goldilocks
zone (Figure 8 bottom-right). In these cases, the network
fails to train and develops zero logits (Figure 8 bottom-
center). Unlike the case with o < 1, however, here zero
logits often emerge when the weights are completely bal-
anced, presenting a rather mysterious phenomenon.

Liu et al. (2023) and our own experiments show that net-
works with large initialization and no regularization nei-
ther diverge nor circle back to the Goldilocks zone. Thus,
as long as these models are inaccurate, their loss remains
extremely large and scales exponentially with « (Fort &
Scherlis, 2019). Thus, we hypothesize that, unable to learn
meaningful representations, gradient descent finetunes the
weights of confident but inaccurate networks to make logits
of misclassified samples zero in an attempt to reduce the
exploding loss to just log( K )—the value of cross-entropy
under uniform softmax distribution. In favor of this intu-
ition, we discover that models trained on random labels tend
to develop zero logits as well. This condition arises early
in training and disappears, provided that the labels remain
fixed, as the network memorizes the correct output. On the
other hand, it only gets worse if labels are randomized on
every iteration, in which case the lowest possible loss is
achieved by always making uniform predictions.
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Goldilocks zone & trainability. The observations above
reveal that homogeneous networks may not only converge
when initialized outside the Goldilocks zone but also fail
to learn when optimized well within its boundaries (Fig-
ure 8). The former occurs as the model circles back to the
Goldilocks zone (o« < 1) or when it learns the lazy so-
lution (o > 1), and the latter—as it develops zero logits.
Indeed, LeNet-5 does not perform above random for any
o > 1.8 and any learning rate, whereas the corresponding
Goldilocks zone spans « € [1, 18]. Lastly, Figure 8 simply
illustrates that phase transitions between different optimiza-
tion regimes are not necessarily aligned with the Goldilocks
zone, which is naturally highlighted in the right plots. Thus,
we argue that positive curvature of the loss by itself is not
a precise metric to evaluate the quality of initializations in
terms of network trainability and generalization, and that
further investigations are needed to clarify this connection.

6. Conclusion

This paper studies the Goldilocks zone of neural network
initializations in the context of homogeneous architectures,
both analytically and empirically. We demonstrate that the
excess of positive curvature of the training loss requires
a robust top eigenspace of the Hessian inherited from its
positive semi-definite component, the G-term and not a par-
ticular initialization norm per se. Normally, the G-term
dominates in the Gauss-Newton decomposition of the Hes-
sian but vanishes, for example, at extreme initialization
scales or softmax temperatures, which is formally shown in
Equation (5). We study properties of the G-term itself and
relate high positive curvature to low model confidence, low
initial cross-entropy loss, and a previously unknown type
of vanishing gradient caused by the match between class
priors found in the data and computed by the model. Finally,
we report the training behavior of homogeneous networks
optimized by gradient descent from a wide variety of initial-
ization norms and uncover interesting training modalities
at the edges of the Goldilocks zone (Figure 7). Further-
more, we find that the connection between successful model
training and the Goldilocks zone needs reconsideration. For
example, homogeneous networks sometimes develop zero
logits for an increasing number of inputs even when initial-
ized and trained within the Goldilocks zone; thus, we argue
against using positive curvature of the loss as a reliable
estimate of the model performance.

Limitations & future work. The scope of our study is
limited to homogeneous neural networks. At the same time,
the methodology developed in our study is applicable to
inhomogeneous models and does not require scaling of the
initialization that could potentially introduce unexpected
and difficult to analyze degeneracies to the model (e.g.,
saturation of the activation functions such as TanH or Sig-

moid). Recall that our analyses in Section 3 indicates that
the Goldilocks zone can be exactly replicated by adjusting
the logit temperature 7" instead of a-scaling the initializa-
tion, see Figure 1 and Equation (5). Thus, in our study
of the Goldilocks zone and positive curvature, a-scaling
of the initialization norm can be equivalently replaced by
varying T'. This does not imply that our conclusions for
homogeneous architectures transfer to inhomogeneous ones.
Instead, our findings in Section 3 allow for repeating the
analyses and experiments regarding the Goldilocks zone
presented in Sections 4 and 5 for any type of model without
having to scale the initialization.

Even though we scope our study at the initialization stage
to conform with previous research, much of our analysis
is more generally applicable at any point of the parameter
space, including any points along training. All arguments
in Section 3 remain valid because the Hessian exhibits the
"bulk+outlier" eigenspectrum throughout optimization (in
fact, as Papyan (2020) shows, it becomes even more pro-
nounced with training) inherited from the H- and G-terms,
respectively. All properties derived in Section 4 that do not
explicitly assume random weights (e.g., initial loss) hold
more generally beyond initialization because the adopted
random model developed by Fort & Ganguli (2019) does. In
their paper, they empirically confirmed that logit gradients
cluster around their corresponding means not only at initial-
ization, but also throughout training and at the solution.

In addition, while we comprehensively studied the behaviors
of scaled homogeneous models when optimized by gradient
descent, the conclusions might change with adaptive algo-
rithms such as AdaGrad or Adam as these optimizers are
known to effectively escape flat loss regions (Orvieto et al.,
2022). We note that existing studies propose logit normal-
ization for calibration not only after but also during training
to improve convergence and generalization (Wei et al., 2022;
Agarwala et al., 2023). Given the connection between model
confidence and the Goldilocks zone unveiled in our study,
future research may investigate how these methods affect
positive curvature or, more generally, the eigenspectrum of
the loss Hessian. Finally, our findings demonstrate the need
for alternative measures to evaluate the quality of network
initializations as positive curvature fails to faithfully capture
model performance after training.
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A. Hessian Decomposition: Related Works

The Gauss-Newton decomposition in Equation (4) is a common entry point for many studies on the Hessian of large neural
networks. The Hessian exhibits a “bulk-outlier” eigenspectrum with the majority of eigenvalues small and clustered around
zero and only a handful of large positive outliers (Sagun et al., 2016; Gur-Ari et al., 2018; Ghorbani et al., 2019). This
decomposition is inherited from the individual spectra of G and H with the top and the bulk eigenvalues attributed to these
two terms, respectively. A few observations offer an intuitive explanation for this claim.

First, the G-term can be rewritten in matrix form as G(p) = J ' [diag(p) — pp"]J where J is the logit Jacobian. The matrix
diag(p) — pp" is positive semi-definite, so G has non-negative eigenvalues. At the same time, G computed on a single
training sample is at most rank K — 1, suggesting that the full G-term should be low-rank, especially for overparameterized
architectures and small training datasets (Pennington & Bahri, 2017). Moreover, Fort & Ganguli (2019) find empirically
that logit gradients on same-class training samples considerably overlap, which implies that eigenspaces of the G-terms of
different data samples align. In support of this claim, Papyan (2019b) shows that the top eigenvectors of the Hessian are
attributable to high magnitude gradient class means. This agrees with a common observation that the Hessian has K outlier
eigenvalues. Recent studies argue that the corresponding eigenvectors encode the decision boundary of the network, and that
more outliers emerge for more complex decision boundaries (e.g., after training from an adversarial initialization) (Liu et al.,
2020; Sabanayagam et al., 2023). This observation can potentially correspond with a three-level hierarchical decomposition
of the G-term demonstrated by Papyan (2020), which reveals additional clusters of smaller outliers.

The H-term, on the other hand, has a continuous bulk of small eigenvalues, as independently verified by a number of studies
(Papyan, 2019a). Assuming that H is a Wigner random matrix, Pennington & Bahri (2017) find its limiting spectral density
to be consistent with experiments on randomly-initialized ReLU networks without biases. They also note that the H-term has
a block off-diagonal structure for ReLU networks, which in particular implies that it has zero excess of positive curvature.
In the context of Neural Tangent Kernel (NTK), a kernel-based model for optimization dynamics, logits depend linearly on
model parameters, and so H is identically zero (Jacot et al., 2018).

This pervasive analytical and empirical evidence suggests that, normally, the G-term has a pronounced bulk+outlier
eigenspectrum that dominates the bulk eigenvalues found in the H-term. Pennington & Bahri (2017) note that the eigenspaces
of these two matrices are in a nearly generic position and do not align in any special way. To this end, spiked matrix theory
suggests that the Hessian eigenspectrum should be well approximated by the combination of individual eigenspectra of G
and H (Perry et al., 2018). Since outlier eigenvalues of the Hessian are particularly important, researchers often drop the
H-term from Equation (4) and focus on the G-term alone (Sagun et al., 2016; Fort & Ganguli, 2019; Cohen et al., 2021;
Wang et al., 2022).

B. Eigenvalues of EG

Under the assumptions of the random model on logit gradient clustering described in Section 4, Equation (7) offers a clear
picture of the eigenstructure of the expected G-term. In particular, it consists of a constant bulk plus K — 1 outliers:

M(ELG) = {(1 = Ipl?)o? +do2di i< K -1,
(1—|lpll*)o2 otherwise.

where )\; is the i-th largest eigenvalue of the matrix diag(p) — pp". Since this is a rank-1 update to a diagonal matrix,
its eigenvalues are interlaced with those of diag(p); more precisely, for all i € [K — 1], pr, > A\i > pg, +. Where index
{k;}E , sorts elements of p in non-increasing order (Bunch et al., 1978). This, for example, immediately proves that when
p is uniform, all K — 1 outlying eigenvalues of E.G are identically 1/K as they get squeezed between values py. The
same “bi-level” eigenstructure emerges when the expected G-term is taken across multiple training samples, as long as their
softmax output remains uniform, as is the case for completely unconfident models (o < 1).

C. The Limiting Behavior of diag(p) — pp '

Recall that the positive semi-definite matrix diag(p) — pp" of rank K — 1 defined for some probability distribution p over
K classes is identically zero when p is one-hot. In this section, we derive a few limiting properties of this matrix as the
distribution p gets colder. To this end, for any € > 0 and 2 < S < K, let p(S, €) be defined as pr, = € for k € [S — 1],
ps =1 — (S — 1)e, and zero otherwise. In other words, p(.S, €) has S non-zero entries with S — 1 of them equal to e.
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Excess of positive eigenvalues I',.  In Section 4, we defined I',, to be the excess of positive eigenvalues of the matrix
diag(p) — pp'. By inspecting the elements of this matrix, we find

2 K K o\?
2 Tr(diag(p) — ppT)} _ (Ek:l Pk = D ket Pk)
P [ |diag(p) — ppT £ St (P = P2)2 + Y pse PR

Note that I', is undefined when p is one-hot, but we can still analyze its limiting behavior. Rewriting Equation (10) for a
distribution p(S, €) defined above, we get

Fz(Se)i62(452—SS+4)+O(63) S—1
P T T892 1 8 - 2) + O(e3) S+2

While this limit evaluates to 3 when S = 10 (the number of classes in the datasets considered in this study), this is typically
not how softmax output p collapses as we increase logit variance. Assuming no two logits are identically the same, we
should eventually get p = p(2, €) with the two largest logits associated with non-zero softmax probabilities. In this realistic
scenario, the limiting value of I‘% is 1, as observed in Figure 4. Note that some trajectories of I,/ 2 over the entropy of the
underlying softmax distribution p seem to converge to a smaller number before eventually reaching 1. These trajectories
correspond to logits with several close high values, so that more than two entries in the softmax output remain positive as we
increase the initialization scale.

(10)

: 2
= lmT}(S,¢) = 4 (11)

The eigenspectrum. As argued above, just before the softmax output p succumbs to the increasing logit variance and
collapses to a one-hot vector, it necessarily has the form p(2, €). In this case, up to a rearrangement of some rows and
columns,

€ —€ 0
. T —€ € 0 )
diag(p) —pp' = | . . . .| +0()k. (12)
0 0 0 O

It is easy to see that, neglecting the O(€?) terms, this matrix has a single non-zero eigenvalue equal to 2¢. In Appendix D,
we present some interesting observations about the corresponding eigenvector.
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Figure 10. The pre-collapse regime of LeNet-300-100 on FashionMNIST. Top row: the top eigenvector of the first layer’s Hessian is
reshaped into the weight matrix dimensions (300 x 784), averaged across the hidden dimension (300), and reshaped as an input image
(28 x 28). Note that the above heatmaps have different scales. As we gently increase v, only one input sample (a picture of a bag in this
case) remains uncertain, taking full control of the G-term and representing the principle curvature direction for the input layer. Bottom:
The collapse of per-sample softmax entropies H(p*) and the corresponding positive curvature of the loss.

D. The Pre-collapse Regime

Having examined positive curvature of low-confident models in Section 4, we focus our analysis on the other end of the
Goldilocks zone associated with high model confidence. Recall that excess of positive eigenvalues of a positive semi-definite
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matrix is lower bounded by 1. Figure 2 illustrates this property for the G-term: as we increase o, Tr(G)/||G|| r approaches
1, remains level for a short time (we call this the pre-collapse regime), and then suddenly drops to 0. This property even
transfers to the full Hessian, as seen from Figure 2. Further, in the pre-collapse regime of fully-connected architectures, we
mysteriously observe that the principle curvature direction of the first layer’s Hessian aligns with one particular sample from
the dataset (Figure 10). It turns out that we have all the necessary tools to explain this surprising behavior. As we increase «,
the G-terms G* of individual samples approach zero because diag(p*) — prpt T does; however, they do so at different rates.
When « falls within a very specific narrow range, there is only one sample 1 (the least confidently classified one) left with
a large enough G-term, so that G = % Zg GH =~ GHo. At this point, the top Hessian eigenspace comes from that of G+°
alone, which is spanned by the corresponding logit gradients. Since logit gradients with respect to parameters in the input
layer are just the input vector itself, it manifests as the top eigenvector of the Hessian. Furthermore, in Appendix C, we
show that G(p) has only one non-zero eigenvalue when p is on a knife edge from collapsing to a one-hot vector, so that
excess of positive eiegnvalues of G*° and, hence, of the full Hessian, approaches 1 in the pre-collapse regime.

E. More Connections to Optimization

In this section, we elaborate on the phenomena summarized in Section 5. In particular, we present more details about the
optimization behaviors observed when scaled homogeneous networks are trained by gradient descent.

Low-confidence initializations (o < 1). Initially, the
softmax output of these models is numerically uniform 10°
for sufficiently small o due to vanishing logit variance.
We observe that, as long as it stays uniform, the model
remains in a divergence regime characterized by the in-
crease of parameter norm ||0; ||, gradient norm || g; || and ]
the alignment cos(6;, —g;). Similarly, Liu et al. (2023) R 2000 4000 6000 0 1000 2000 3000
report parameter growth during the early training stage terations frerations

of down-scaled networks (see Figure 1 in their paper).
Once the parameter norm grows large enough for the
prediction to become non-uniform, networks either be-
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Figure 11. Training dynamics of the USO model and networks with
low initialization norm (o < 1), all for LeNet-300-100 on FashionM-
NIST and 770 = 0.0002. Left: The divergence paths of networks with

gin training normally or, if the learning rate is too high,
continue diverging. The left plots in Figure 8 reveal
that the maximum admissible base learning rate 7, that
yields convergence is linearly related to «, forming a
linear “staircase”-like separation between trainable and
non-trainable setups.

To understand this relationship, recall that classical opti-
mization theory suggests that, for quadratic loss functions,

a < 1 that initially have a uniform softmax output. The parameter
magnitudes of these networks are shown after rescaling back by o ~*
for a fair comparison with the USO model. The a-scaled networks
follow the same exact divergence path as the USO model until their
weights grow large enough to make softmax output non-uniform.
Right: Properties of the divergence (USO model): cosine similarity
between the current parameter vector 6, and (1) the initial point 6o,
(2) current negative loss gradient —g:. The red curve represents the
training error achieved when training LeNet-300-100 initialized at

the parameter vector of the current USO model rescaled to an appro-
priate magnitude: ||0o||0:|0:]| " where 6y is the original Kaiming
initialization.

gradient-based methods converge when n < 2/||H ||z and
diverge otherwise (Wang et al., 2022). This result was
confirmed in deep learning with more complex loss func-
tions, although slightly larger learning rates are often
admissible, too (Lewkowycz et al., 2020; Cohen et al., 2021). Assuming that the loss curvature || H || is approximately
constant when different a-scaled networks escape the divergence regime and re-enter the Goldilocks zone, this requirement
translates to noae~! = 2/O(1), which corresponds to the linear separation between trainable and divergent models seen in
the left plots in Figure 8. This extension of the convergence region well into o < 1 suddenly ends at sufficiently small o.. In
this case, it is the limited number of epochs that prevents networks with smaller initialization reach the Goldilocks zone.
Still, we believe that this phase transition should inevitably emerge at some, possibly smaller, value of o due to the adverse
effects of remaining in the divergence regime for arbitrarily long.

To study these adverse effects, we propose a “uniform softmax output” (USO) model, which is a normally initialized
network that always receives updates as if its softmax output is uniform, regardless of its actual predictions. In other
words, on every training iteration, we manually curate the update direction by combining logit gradients using coefficients
pr = 1/K — 1{y = k}. Equation 3 then implies that the USO model and the down-scaled networks with uniform output
have exactly the same evolution for the same base initialization because they receive identical updates. Figure 11 (left)
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confirms that low-confidence networks evolve according to the USO model until their parameters grow large enough for
the softmax output to become non-uniform, at which point they re-enter the Goldilocks zone. On the other hand, the USO
model never escapes the divergence regime by design, allowing us to study the properties of scaled models with arbitrarily
small « as they continue diverging. Figure 11 (right) demonstrates that longer divergence is associated with a more severe
rotation of the parameter vector, which significantly affects its trainability even after fixing its magnitude, as evident from
the training error shown in red. Thus, we expect that for sufficiently small values of o > 0, scaled networks cannot train
normally by the time they reach the Goldilocks zone. Furthermore, longer divergence entails larger gradients, so that a
network may just overshoot the Goldilocks zone altogether unless 7 is appropriately adjusted.

High-confidence initializations (o« > 1). For large-
norm initializations, homogeneous networks are overly

—— pre-trained B — a=18
confident and compute one-hot softmax outputs for all 5085 — ::d;:ne £ Z: 39
input samples. While both architectures considered in E 2501 —
. . . . . . . . 9 a0
this study exhibit similar optimization patterns for o < 1, % 0.50 2 ,
. Lo . . . gos 2%
their behavior is remarkably different in this scenario. = 8
For LeNet-300-100, we find that predictions remain one- ~ ~  [E==5============= 1 0
.. S . © QD e 0 S 9 N S S
hot throughout training for admissible step sizes where DN N N + P
learning is possible. In fact, on every iteration, each logio(@) iterations

training sample requires the learning rate to fall into a very
specific narrow range for its softmax output to become
non-degenerate, and these ranges are wildly different for
different samples. Therefore, it is not possible to tune

Figure 12. Left: Evaluating the features learned by LeNet-300-100
at different initialization scales. We train a linear classifier on data
representations extracted from the penultimate layer of scaled net-

the st ize & thi ¢ | fident traini works at convergence (solid) as well as randomly initialized unscaled
¢ step size 1o escape this extremely conhident training networks (dashed). Error bands represent min/max across 3 seeds.

regime. Further, note from Figure 9 (left) and Figure Right: The proportion of training samples with all logits equal zero
8 (top-left, top-right) that LeNet-300-100 reaches zero 4 computed by LeNet-5 throughout optimization.

training error as long as the learning rate is admissible at

initialization. These solutions, however, do not generalize well; the right plot in Figure 9 shows that test accuracy of a trained
LeNet-300-100 saturates at 75% across all learning rates shown, which is 10% lower than that of the unscaled network. This
observation suggests that LeNet-300-100 with high-norm initializations adhere to the lazy learning regime in accordance
with previous studies even though our optimization methodologies differ (Chizat et al., 2019). To verify this claim, we
train a linear classifier on features of the trained a-scaled LeNet-300-100 and find them only marginally better than those
extracted from a randomly initialized network (see the left plot in Figure 12). At the same time, features learned within the
Goldilocks zone exhibit much better generalizability. Thus, even in our setup, gradient descent applied to networks with
large initialization can be in the well-studied lazy regime. (Allen-Zhu et al., 2019; Du et al., 2019).

F. Alternative Estimation of Positive Curvature

—— LeNet-300-100 (FashionMNIST) —— LeNet-5 (CIFAR-10) As stated in Section 2, following the original work of Fort &
Scherlis (2019), we estimate positive curvature of the loss by
projecting the Hessian down onto a low-dimensional hyperplane
using a sparse orthogonal transformation, and computing the
quantity in Equation (2) explicitly for this smaller matrix. Alter-
natively, we could use the Hutchinson’s stochastic trace estima-
tion method to approximate the trace and the norm of the orig-
inal Hessian H (Hutchinson, 1990). In this approach, we use
1

Hessian-vector products to compute Tr(H) ~ =37 = Haz,

and |H||% ~ LY (Hax;) T (Ha;) forz; ~ {+1,—1}F. As

Figure 13. Comparing methods for estimating positive curva- . T m ¢ .
ture of the loss. Left: our method adopted from (Fort &  Figure 13 illustrates, Hutchinson’s method agrees with the one

Scherlis, 2019) Right: Hutchinson’s stochastic trace estima-  adopted in this study fairly well, capturing the boundaries and
tion. shape of the Goldilocks zone.
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