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Abstract

Neural network compression has been an increas-
ingly important subject, not only due to its practi-
cal relevance, but also due to its theoretical impli-
cations, as there is an explicit connection between
compressibility and generalization error. Recent
studies have shown that the choice of the hyper-
parameters of stochastic gradient descent (SGD)
can have an effect on the compressibility of the
learned parameter vector. These results, however,
rely on unverifiable assumptions and the resulting
theory does not provide a practical guideline due
to its implicitness. In this study, we propose a
simple modification for SGD, such that the out-
puts of the algorithm will be provably compress-
ible without making any nontrivial assumptions.
We consider a one-hidden-layer neural network
trained with SGD, and show that if we inject ad-
ditive heavy-tailed noise to the iterates at each
iteration, for any compression rate, there exists
a level of overparametrization such that the out-
put of the algorithm will be compressible with
high probability. To achieve this result, we make
two main technical contributions: (i) we prove a
“propagation of chaos” result for a class of heavy-
tailed stochastic differential equations, and (ii) we
derive error estimates for their Euler discretiza-
tion. Our experiments suggest that the proposed
approach not only achieves increased compress-
ibility with various models and datasets, but also
leads to robust test performance under pruning,
even in more realistic architectures that lie beyond
our theoretical setting.
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1. Introduction
Obtaining compressible neural networks has become an in-
creasingly important task in the last decade, and it has essen-
tial implications from both practical and theoretical perspec-
tives. From a practical point of view, as the modern network
architectures might contain an excessive number of param-
eters, compression has a crucial role in terms of deploy-
ment of such networks in resource-limited environments
(O’Neill, 2020; Blalock et al., 2020). On the other hand,
from a theoretical perspective, several studies have shown
that compressible neural networks should achieve a better
generalization performance due to their lower-dimensional
structure (Arora et al., 2018; Suzuki et al., 2020a;b; Hsu
et al., 2021; Barsbey et al., 2021; Sefidgaran et al., 2022).

Despite their evident benefits, it is still not yet clear how to
obtain compressible networks with provable guarantees. In
an empirical study, Frankle & Carbin (2018) introduced the
“lottery ticket hypothesis”, which indicated that a randomly
initialized neural network will have a sub-network that can
achieve a performance that is comparable to the original
network; hence, the original network can be compressed to
the smaller sub-network. This empirical study has formed
a fertile ground for subsequent theoretical research, which
showed that such a sub-network can indeed exist (see e.g.,
Malach et al., 2020; Burkholz et al., 2021; da Cunha et al.,
2022). However, it is not clear how to develop an algorithm
that can find it in a feasible amount of time.

Another line of research has developed methods to enforce
compressibility of neural networks by using sparsity en-
forcing regularizers (see e.g., Papyan et al., 2018; Aytekin
et al., 2019; Chen et al., 2020; Lederer, 2023; Kengne &
Wade, 2023). While they have led to interesting algorithms,
these typically require higher computational resources due
to the increased complexity of the problem. On the other
hand, due to the nonconvexity of the overall objective, it
is also not trivial to provide theoretical guarantees for the
compressibility of the resulting network weights.

Recently it has been shown that the training dynamics can
have an influence on the compressibility of the algorithm
output. In particular, motivated by the research that pro-
duced empirical and theoretical evidence that heavy tails
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might arise in stochastic optimization (see e.g., Martin &
Mahoney, 2019; Simsekli et al., 2019; Şimşekli et al., 2019;
Şimşekli et al., 2020; Zhou et al., 2020; Zhang et al., 2020;
Camuto et al., 2021), Barsbey et al. (2021) and Shin (2021)
showed that the network weights learned by stochastic gra-
dient descent (SGD) will be compressible if we assume that
they are heavy-tailed and that there exists a certain form of
statistical independence within the network weights. These
studies illustrated that, even without any modification to the
optimization algorithm, the learned network weights can
be compressible depending on the algorithm hyperparam-
eters (such as the step size, i.e. learning rate, or the batch
size). Even though the tail and independence conditions
were recently relaxed by Lee et al. (2022), the resulting
theory regards only the initialization and hence does not
provide a fully practical guideline.

In this paper, we focus on single-hidden-layer neural net-
works with a fixed second layer (i.e., the setting used in
previous work, De Bortoli et al., 2020) trained with vanilla
SGD, and show that, when the iterates of SGD are simply
perturbed by heavy-tailed noise with infinite variance (sim-
ilar to the settings considered in Şimşekli, 2017; Nguyen
et al., 2019; Şimşekli et al., 2020; Huang et al., 2021; Zhang
& Zhang, 2023), the assumption made by Barsbey et al.
(2021) in effect holds. More precisely, denoting the number
of hidden units by n and the step size of SGD by η, we
consider the mean-field limit, where n goes to infinity and η
goes to zero. We show that in this limiting case, the columns
of the weight matrix will be independent and identically dis-
tributed (i.i.d.) with a common heavy-tailed distribution.
Then, we focus on the finite n and η regime and we prove
that for any compression ratio (to be specified in the next
section), there exists a number N , such that if n ≥ N and
η is sufficiently small, the network weight matrix will be
compressible with high probability. Figure 1 illustrates the
overall approach and specifies our notion of compressibility.

To prove our compressibility result, we make two main tech-
nical contributions. We first consider the case where the step
size η → 0, for which the SGD recursion perturbed with
heavy-tailed noise yields a system of heavy-tailed stochas-
tic differential equations (SDE) with n particles. As our
first technical contribution, we show that as n → ∞ this
particle system converges to a mean-field limit, which is a
McKean-Vlasov-type SDE that is driven by a heavy-tailed
process (Jourdain et al., 2007; Liang et al., 2021; Caval-
lazzi, 2023). We obtain a rate of convergence n−1/2 in the
presence of α-stable noises with α ∈ (1, 2), which is faster
than the best-known rates, as recently proven by Cavallazzi
(2023). This result indicates that a propagation of chaos
phenomenon (Sznitman, 1991) emerges1: in the mean-field

1Here, chaos refers to statistical independence: when the parti-
cles are initialized independently, they stay independent through
the whole process although their common distribution may evolve.

Figure 1: The illustration of the overall approach. We con-
sider a one-hidden-layer neural network with n hidden units,
which results in a weight matrix of n columns (first layer).
We show that, when SGD is perturbed with heavy-tailed
noise, as n → ∞, each column will follow a multivariate
heavy-tailed distribution in an i.i.d. fashion. This implies
that a small number of columns will have significantly larger
norms compared to the others; hence, the norm of the overall
weight matrix will be determined by such columns (Gribon-
val et al., 2012). As a result, the majority can be removed
(i.e., set to zero), which we refer to as compressibility.

regime, the columns of the weight matrix will be i.i.d. and
heavy-tailed due to the injected noise.

Next, we focus on the Euler discretizations of the particle
SDE to be able to obtain a practical, implementable algo-
rithm. As our second main technical contribution, we derive
strong-error estimates for the Euler discretization (Kloe-
den et al., 1992) and show that for sufficiently small η, the
trajectories of the discretized process will be close to the
one of the continuous-time SDE, in a precise sense. This
result is similar to the ones derived for vanilla SDEs (e.g.,
Mikulevičius & Xu, 2018) and enables us to incorporate the
error induced by using a finite step size η to the error of the
overall procedure.

Equipped with these results, we finally prove a high-
probability compression bound by invoking (Gribonval et al.,
2012; Amini et al., 2011), which essentially shows that an
i.i.d. sequence of heavy-tailed random variables will have a
small proportion of elements that will dominate the whole
sequence in terms of absolute values (to be stated formally
in the next section). This establishes our main contribu-
tion. Here, we shall note that similar mean-field regimes
have already been considered in machine learning (see e.g.,
Mei et al., 2018; Chizat & Bach, 2018; Rotskoff & Vanden-
Eijnden, 2018; Jabir et al., 2019; Mei et al., 2019; De Bor-
toli et al., 2020; Sirignano & Spiliopoulos, 2022). However,
these studies all focused on particle SDE systems that ei-
ther converge to deterministic systems or that are driven by
Brownian motion. While they have introduced interesting
analysis tools, we cannot directly benefit from their analysis
in this paper, since the heavy tails are crucial for obtain-
ing compressibility, and the Brownian-driven SDEs cannot
produce heavy-tailed solutions in general. Hence, as we

2



Implicit Compressibility of Networks Trained with Heavy-Tailed SGD

consider heavy-tailed SDEs in this paper, we need to use
different techniques to prove mean-field limits, compared to
the prior art in machine learning.

To validate our theory, we conduct experiments with various
neural networks and datasets. Our results show that, even
with a minor modification to SGD (i.e., injecting heavy-
tailed noise), the proposed approach can achieve compress-
ibility with negligible computational overhead and with a
slight compromise from the training and test error. Our find-
ings further demonstrate that our methodology generalizes
beyond our theoretical results, and produces models that
are not only compressible, but robust in terms of test per-
formance in fully connected neural networks with single or
multiple hidden layers, and convolutional neural networks,
implying that our approach is indeed a promising one in
terms of its practical implications.

2. Preliminaries and Technical Background
Notation. For a vector u ∈ Rd, denote by ‖u‖ its Eu-
clidean norm, and by ‖u‖p its `p norm. For a contin-
uous function f ∈ C(Rd1 ,Rd2), denote by ‖f‖∞ :=
supx∈Rd1 ‖f(x)‖ its L∞ norm. For a family of n (or ∞)
vectors, the indexing ·i,n (or ·i,∞) denotes the i-th vec-

tor in the family. In addition, for random variables,
(d)
=

means equality in distribution, and the space of probabil-
ity measures on Rd is denoted by P(Rd). For a matrix
A ∈ Rd1×d2 , its Frobenius norm is denoted by ‖A‖F =√∑d1

i=1

∑d2

j=1 |ai,j |2. Unless otherwise noted, E denotes
the expectation over all the randomness taken into consider-
ation.

Alpha-stable processes. A centered random variable
X ∈ Rd is called α-stable with the stability parameter
α ∈ (0, 2], if X1, X2, . . . are independent copies of X ,

then n−1/α
∑n

j=1Xj
(d)
= X for all n ≥ 1 (Samoradnit-

sky, 2017). Stable distributions appear as limiting dis-
tributions in the generalized central limit theorem (CLT)
(Gnedenko & Kolmogorov, 1954). In the one-dimensional
case (d = 1), we call X a symmetric α-stable random
variable if its characteristic function is of the following
form: E[exp(iωX)] = exp(−|λω|α) for ω ∈ R and
some λ ∈ R+.

For symmetric α-stable distributions, the case α = 2 cor-
responds to the Gaussian distribution, while α = 1 corre-
sponds to the Cauchy distribution. An important property
of α-stable distributions is that in the case α ∈ (1, 2), the
p-th moment of an α-stable random variable is finite if and
only if p < α; hence, the distribution is heavy-tailed. In
particular, E[|X|] < ∞ and E[|X|2] = ∞, which can be
used to model phenomena with heavy-tailed observations.

In the experiments, we consider the three most common

types of α-stable random vectors that have been used in
finance (Mandelbrot, 1963; Cont, 2001), statistical physics
(Montroll & Bendler, 1984), and engineering literature
(Nikias & Shao, 1995). We first describe these random
vectors and then provide some intuition regarding their be-
havior.

• Type-I. Let Z ∈ R be a symmetric α-stable random
variable. We then construct the random vector X such
that all the coordinates of X is equated to Z. In other
words X = 1dZ, where 1d ∈ Rd is a vector of ones.
With this choice, X admits the following characteristic
function: E [exp(i〈u,X〉] = exp(−|〈u,1d〉|α);

• Type-II. X has i.i.d. coordinates, such that each compo-
nent of X is a symmetric α-stable random variable in R.
This choice yields the following characteristic function:
E [exp(i〈u,X〉] = exp(−

∑d
i=1 |ui|α);

• Type-III. X is a rotationally invariant α-stable random
vector with the characteristic function E [exp(i〈u,X〉] =
exp(−‖u‖α).

Notice that when added to a parameter vector (e.g. corre-
sponding to a neuron), Type-I noise disturbs all parameters
in the same direction and magnitude, e.g. acting like a ran-
dom bias node scaled by the input. In contrast, Type-II
noise constitutes an i.i.d. perturbation that affects each pa-
rameter separately, allowing some of the noise components
to be very large while others are small, and/or in opposite
directions. Lastly, due to the heavy-tailed distribution of its
norm, Type-III noise vectors are likely to include elements
that are simultaneously large or small in magnitude, yet
these elements can vary among themselves in magnitude
and direction. Also note that the Type-II and Type-III noises
reduce to a Gaussian distribution when α = 2, i.e., the
characteristic function becomes exp(−‖λu‖2).

We define a more general class of random process, called
the α-stable Lévy process, which extends the Brownian
motion. Formally, α-stable processes are stochastic pro-
cesses (Lα

t )t≥0 with independent and stationary α-stable
increments, and have the following definition:

• Lα
0 = 0 almost surely,

• For any 0 ≤ t0 < t1 < · · · < tN , the increments Lα
tn −

Lα
tn−1

are independent,

• For any 0 ≤ s < t, the difference Lα
t − Lα

s and (t −
s)1/αLα

1 have the same distribution,

• Lα
t is stochastically continuous, i.e. for any δ > 0 and
s ≥ 0, P(‖Lα

t − Lα
s ‖ > δ) → 0 as t→ s.

To fully characterize an α-stable process, we further need
to specify the distribution of Lα

1 . Along with the above
properties, the choice for Lα

1 will fully determine the process.
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For this purpose, we will again consider the previous three
types of α-stable vectors: We will call the process Lα

t a
Type-I process if Lα

1 is a Type-I α-stable random vector. We
define the Type-II and Type-III processes analogously. Note
that, when α = 2, Type-II and Type-III processes reduce to
the Brownian motion. For notational clarity, occasionally,
we will drop the index α and denote the process by Lt.

Compressibility of heavy-tailed processes. One inter-
esting property of heavy-tailed distributions in the one-
dimensional case is that they exhibit a certain compress-
ibility property. Informally, if we consider a sequence of
i.i.d. random variables coming from a heavy-tailed distri-
bution, a small portion of these variables will likely have a
very large magnitude due to the heaviness of the tails, and
they will dominate all the other variables in magnitude (Nair
et al., 2022). Therefore, if we only keep this small number
of variables with large magnitude, we can “compress” (in
a lossy way) the whole sequence of random variables by
representing it with this small subset.

Concurrently, Amini et al. (2011); Gribonval et al. (2012)
provided formal proofs for these explanations. Formally,
Gribonval et al. (2012) characterized the family of probabil-
ity distributions whose i.i.d. realizations are compressible.
They introduced the notion of `p-compressibility - in terms
of the error made after pruning a fixed portion of small (in
magnitude) elements of an i.i.d. sequence, whose common
distribution has diverging p-th order moments. More pre-
cisely, letXn = (x1, . . . , xn) be a sequence of i.i.d. random
variables such that E [|x1|α] = ∞ for some α ∈ R+. Then,
for all p ≥ α and 0 < κ ≤ 1 denoting by X(κn)

n the bκnc
largest ordered statistics2 of Xn, the following asymptotic
on the relative compression error holds almost surely:

lim
n→∞

‖X(κn)
n −Xn‖p
‖Xn‖p

= 0

Built upon this fact, Barsbey et al. (2021) proposed struc-
tural pruning of neural networks (the procedure described
in Figure 1) by assuming that the network weights provided
by SGD will be asymptotically independent. In this study,
instead of making this assumption, we will directly prove
that the network weights will be asymptotically independent
in the two-layer (i.e. single-hidden-layer) neural network
setting with additive heavy-tailed noise injections to SGD.

3. Problem Setting and the Main Result
We consider a single-hidden-layer overparametrized net-
work of n units and use the setup provided in (De Bortoli
et al., 2020). Our goal is to minimize the expected loss in a

2In other words, X(κn)
n is obtained by keeping only the largest

(in magnitude) κn elements of Xn and setting all the other ele-
ments to 0.

supervised learning regime, where for each data z = (x, y)
distributed according to π(dx,dy),3 the feature x is in
X ⊂ Rd and the label y is in Y . We denote by θi,n ∈ Rp

the parameter for the i-th unit, and the parametrized model
is denoted by hx : Rp → Rl. The mean-field network is the
average over models for n units:

fΘn(x) = (1/n)
∑n

i=1
hx(θ

i,n),

where Θn = (θi,n)ni=1 ∈ Rp×n denotes the collection of pa-
rameters in the network and x ∈ X is the feature variable for
the data point. In particular, the mean-field network corre-
sponds to a two-layer neural network with the weights of the
second layer fixed to be 1/n and Θn are the parameters of
the first layer. While this model is less realistic than the mod-
els used in practice, we believe that it is desirable from a the-
oretical point of view, and this defect can be circumvented
upon replacing hx(θi,n) by hx(ci,n, θi,n) = ci,nhx(θ

i,n),
where ci,n and θi,n represent weights of the last layer and
previous layers respectively. However, to obtain similar
results in this setup as in our paper, stronger assumptions
are inevitable and the proof should be more involved, which
is left for future work, e.g., our framework has the potential
to be extended to cases when the number of units in differ-
ent layers goes to infinity one by one as in (Sirignano &
Spiliopoulos, 2022).

Given a loss function ` : Rl×Y → R+, the goal (for each n)
is to minimize the expected loss taken over the distribution
over the whole dataset π,

R(Θn) = E(x,y)∼π [` (fΘn(x), y)] . (1)

One of the most popular approaches to minimize this loss
is the stochastic gradient descent (SGD) algorithm. In this
study, we consider a simple modification of SGD, where we
inject a stable noise vector to the iterates at each iteration.
For notational clarity, we will describe the algorithm and
develop the theory over gradient descent, where we will
assume that the algorithm has access to the true gradient ∇R
at every iteration. However, since we are already injecting a
heavy-tailed noise with infinite variance, our techniques can
be adapted for handling the stochastic gradient noise (under
additional assumptions, e.g., De Bortoli et al., 2020), which
typically has a milder behavior compared to the α-stable
noise4.

Let us set the notation for the proposed algorithm. Let θ̂i,n0 ,
i = 1, . . . , n, be the initial values of the iterates, which
are n random variables in Rd distributed independently

3Note that for a finite dataset, π can be seen as a measure
supported on finitely many points.

4In (Simsekli et al., 2019) the authors argued that the stochas-
tic gradient noise in neural networks can be modeled by using
stable distributions. Under such an assumption, the effect of the
stochastic gradients can be directly incorporated into Lα

t .
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according to a given initial probability distribution µ0. Then,
we consider the gradient descent updates with step size ηn,
which is perturbed by i.i.d. α-stable noises σ · η1/αXi,n

k for
each unit i = 1, . . . , n, α ∈ (1, 2) and some σ > 0:

θ̂i,nk+1 = θ̂i,nk − ηn [∂θi,nR(Θn
k )] + σ · η1/αXi,n

k (2)

where the scaling factor η1/α in front of the stable noise
enables the discrete dynamics of the system to homogenize
to SDEs as η → 0. Here σ is fixed to be a constant. In
practice, we tune the step size η according to the number of
neurons n, hence influencing the noise level. At this stage,
we do not have to determine which type of stable noise (e.g.,
Type-I, II, or III) we shall consider as they will all satisfy
the requirements of our theory. However, our empirical
findings will illustrate that the choice will affect the overall
performance.

We now state the assumptions that will imply our theoretical
results. The following assumptions are rewritings with a cer-
tain degree of relaxation (in terms of the order of moments)
of (De Bortoli et al., 2020, Assumption A1).

Assumption 3.1. • Regularity of the model: for each
x ∈ X , the function hx : Rp → Rl is two-times
differentiable, and there exists a function Ψ : X → R+

such that for any x ∈ X ,

‖hx(·)‖∞ + ‖∇hx(·)‖∞ + ‖∇2hx(·)‖∞ ≤ Ψ(x).

• Regularity of the loss function: there exists a function
Φ : Y → R+ such that

‖∂1`(·, y)‖∞ + ‖∂21`(·, y)‖∞ ≤ Φ(y)

• Moment bounds on Φ(·) and Ψ(·): there exists a posi-
tive constant B such that

E(x,y)∼π[Ψ
2(x)(1 + Φ2(y))] ≤ B2.

Let us remark that Assumption 3.1 includes the smoothness
and boundedness assumptions that have been made in the
mean field literature (Mei et al., 2018; 2019) and are satis-
fied by several smooth activation functions, including the
sigmoid and hyper-tangent functions.

We now proceed to our main result. Let Θ̂n
k ∈ Rp×n be the

matrix with columns being the parameters θ̂i,nk , i = 1, . . . , n
obtained by the recursion (2) after k iterations. We will now
compress Θ̂n

k by pruning its columns with small norms.
More precisely, fix a compression ratio κ ∈ (0, 1), compute
the norms of the columns of Θ̂n

k , i.e., ‖θ̂i,nk ‖. Then, keep
the bκnc columns, which have the largest norms, and set
all the other columns to zero in entirety. Finally, denote by
Θ̂

(κn)
k ∈ Rp×n, the pruned version of Θ̂n

k .

Theorem 3.1. Suppose that Assumption 3.1 holds. For any
α ∈ (1, 2), if we fix k > 0, κ ∈ (0, 1) and ε > 0 sufficiently
small, with probability 1− ε, there exists N ∈ N+ such that
for all n ≥ N and η such that η ≤ n−α/2−1, the following
upper bound on the relative compression error holds:∥∥∥Θ̂(κn)

k − Θ̂n
k

∥∥∥
F∥∥∥Θ̂n

k

∥∥∥
F

≤ ε. (3)

This bound shows that, thanks to the heavy-tailed noise in-
jections, the weight matrices will be compressible at any
compression rate, as long as the network is sufficiently over-
parametrized and the step size is sufficiently small. We note
that (3) can be extended to an error bound on the outputs of
the neural network by using similar techniques as in (Bars-
bey et al., 2021, Lemma S1). Furthermore, Theorem 3.1
also enables us to directly obtain a generalization bound by
invoking (Barsbey et al., 2021, Theorem 4)5.

4. Proof Strategy and Intermediate Results
In this section, we gather the main technical contributions
with the purpose of demonstrating Theorem 3.1. We begin
by rewriting (2) in the following form:

θ̂i,nk+1 − θ̂i,nk = ηb(θ̂i,nk , µ̂n
k ) + σ · η1/αXi,n

k (4)

where µ̂n
k = 1

n

∑n
i=1 δθ̂i,n

k
is the empirical distribu-

tion of parameters at iteration k and δ is the Dirac
measure, and the drift is given by b(θi,nk , µn

k ) =

−E[∂1`(µn
k (hx(·)), y)∇hx(θ

i,n
k )], where ∂1 denotes the

partial derivative with respect to the first parameter and

µn
k (hx(·)) :=

1

n

n∑
i=1

hx(θ
i,n
k ) = fΘn

k
(x).

It is easy to check that b(θi,nk , µn
k ) = −n∂θi,nR(Θn). By

looking at the dynamics from the perspective of empirical
distributions, we can treat the evolution of the parameters
as a system of evolving probability distributions µn

k : the
empirical distribution of the parameters during the training
process will converge to a limit as η goes to 0 and n goes to
infinity.

We start by linking the recursion (2) to its limiting case
where η → 0. The limiting dynamics can be described by
the following system of SDEs:

dθi,nt = b(θi,nt , µn
t )dt+ σdLi,n

t (5)

5This bound would imply that with high probability, the gener-
alization gap for (slightly modified) 0− 1 loss function is roughly

of order O(
√

κnp logN
N

), where N is the number of data points
and p is the data dimension.
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where µn
t = 1

n

∑n
i=1 δθi,n

t
and (Li,n

t )t≥0 are independent

α-stable processes such that Li,n
1

(d)
= Xi,n

1 . We can now see
the recursion (2) as an Euler discretization of (5) and then
we have the following strong uniform error bound for the
discretization.

Lemma 4.1. Let (θi,nt )t≥0 be the solutions to SDE (5) and
(θ̂i,nk )k∈N+

be given by SGD (2) with the same initial con-
dition θi,n0 and α-stable Lévy noise Li,n

· , i=1,. . . ,n. Under
Assumption 3.1, for any T > 0, if ηk ≤ T , there exists a
constant C depending on B, T, α such that

E
[
sup
i≤n

‖θi,nηk − θ̂i,nk ‖
]
≤ C(ηn)1/α.

In comparison to the standard error estimates in the Euler-
Maruyama scheme concerning only the step size η, the
additional n-dependence is because here we consider the
supremum of the approximation error over all i ≤ n, which
involves the expectation of the supremum of the modulus of
n independent α-stable random variables.

Next, we start from the system (5) and consider the case
where n → ∞. In the limit, we obtain the following
McKean-Vlasov-type stochastic differential equation:

dθ∞t = b(θ∞t , [θ
∞
t ])dt+ dLt (6)

where (Lt)t≥0 is an α-stable process and [θ∞t ] denotes the
distribution of θ∞t . The existence and uniqueness of a strong
solution to (6) are given by Cavallazzi (2023). Moreover,
for any positive T , E

[
supt≤T ‖θ∞t ‖α

]
< +∞. This SDE

with measure-dependent coefficients turns out to be a useful
mechanism for analyzing the behavior of neural networks
and provides insights into the effects of noise on the learning
dynamics.

In this step, we will link the system (5) to its limit (6),
which is a strong uniform propagation of chaos result for the
weights. The next result shows that, when n is sufficiently
large, the trajectories of weights asymptotically behave i.i.d.
according to (6).

Lemma 4.2. Following the existence and uniqueness of
strong solutions to (5) and (6), let (θi,∞t )t≥0 be solutions
to the McKean-Vlasov equation (6) and (θi,nt )t≥0 be solu-
tions to (5) associated with the same realization of α-stable
processes (Li

t)t≥0 for each i. Suppose that (Li
t)t≥0 are in-

dependent. Then there exists C depending on T,B such
that

E
[
sup
t≤T

sup
i≤n

|θi,nt − θi,∞t |
]
≤ C√

n

Our result differs from the existing literature by taking the
supremum over the indices i before taking the expectation,
which is obviously stronger than taking the supremum over i

outside the expectation. It is also worth mentioning that the
O(n−1/2) decreasing rate here is better, if α < 2, than the
state of the art (Cavallazzi, 2023) with classical Lipschitz
assumptions on the coefficients of SDEs. The reason is that
here, thanks to Assumption 3.1, we can benefit from the
one-hidden-layer neural network structure.

Finally, we are interested in the distributional properties of
solutions to the McKean-Vlasov equation (6). The follow-
ing result establishes that their marginal distributions have
diverging second-order moments, hence, they are heavy-
tailed.

Lemma 4.3. Let (Lt)t≥0 be an α-stable process. For any
time t, let θt be the solution to (6) with initialization θ0
which is independent of (Lt)t≥0 such that E [‖θ0‖] < ∞,
then the following holds for t > 0,

E
[
‖θ∞t ‖2

]
= +∞.

We remark that the result is weak in the sense that details on
the tails of θt with respect to α and t are implicit. However,
it renders sufficient for our compressibility result in Theo-
rem 3.1. Now, having proved all the necessary ingredients,
Theorem 3.1 is obtained by accumulating the error bounds
proven in Lemmas 4.1 and 4.2, and applying (Gribonval
et al., 2012, Proposition 1) along with Lemma 4.3.

Note that, due to the multiplicative noise in plain SGD (with-
out additional injected noise), the iterates might already pos-
sess a heavy-tailed behavior (Gurbuzbalaban et al., 2021;
Hodgkinson & Mahoney, 2021; Pavasovic et al., 2023).
However, this behavior does not directly result in compress-
ibility as some notion of independence between the columns
of Θ̂n

k is necessary (Amini et al., 2011; Gribonval et al.,
2012; Silva & Derpich, 2015).

Additional theoretical results. In the Appendix, we in-
vestigate two other properties of the considered scheme.
In Appendix A, we prove that when the injected noise is
not heavy-tailed (i.e., α is set to 2 and the noise becomes
Gaussian) and when the step-size goes to zero, the obtained
network weights cannot be compressible in terms of the
notion we defined in Theorem 3.1. This shows that heavy
tails are instrumental in order to guarantee compressibility
in our specific compression definition.

In Appendix B, we investigate the effects of the heavy tails
on the training loss. In particular, we upper-bound the ex-
pected gradient norm, i.e., E‖∇R(Θ̂n

k )‖2 and show that
the gradient norm will be bounded by two terms: (i) one
term that linearly goes to zero as K increases, (ii) another
term, that scales up with the noise scale σ. This result high-
lights the fact that injecting heavy-tailed noise introduces
a trade-off: while the noise is beneficial in terms of com-
pressibility, it might hurt the optimization performance. In
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α Test Acc. Pruning Ratio Test Acc. a.p.
none 94.15± 0.51 11.42± 0.04 94.12± 0.85
1.75 94.15± 0.51 49.38± 22.72 90.50± 10.64
1.8 94.15± 0.51 37.22± 14.51 93.26± 1.85
1.9 94.15± 0.51 25.90± 11.02 93.56± 1.41

Table 1: ECG5000, Type-I noise, n = 2K.

α Test Acc. Pruning Ratio Test Acc. a.p.
none 94.16± 0.28 11.44± 0.01 93.75± 1.77
1.75 94.16± 0.28 54.72± 18.46 90.12± 5.42
1.8 94.16± 0.28 44.90± 11.04 91.45± 6.36
1.9 94.16± 0.28 30.86± 8.11 93.21± 1.02

Table 2: ECG5000, Type-I noise, n = 10K.

the next section, we investigate this trade-off in a number of
experiments.

5. Empirical Results
In this section, we validate our theory with empirical results.
Our goal is to investigate the effects of the heavy-tailed
noise injection in SGD in terms of compressibility and the
train/test performance. For our experiments we use the
ECG5000 (Baim et al., 2000), MNIST (LeCun et al., 2010),
CIFAR-10, and CIFAR-100 (Krizhevsky, 2009) datasets. By
slightly stretching the scope of our theoretical framework,
we also train the weights of the second layer instead of
fixing them to 1/n. We start our experiments with a single-
hidden-layer neural network with ReLU activations and the
cross-entropy loss, applied on classification tasks. We then
examine how well our results generalize to more complex
architectures by conducting experiments using fully con-
nected neural networks (FCN) with more hidden layers, as
well as using convolutional neural networks (CNN).

For SGD, the step size is chosen to be small enough to
approximate the continuous dynamics given by the McKean-
Vlasov equation in order to stay close to the theory, but
also not too small so that SGD converges in a reasonable
amount of time. We fix the batch size to be as large as
possible within memory constraints. For all experiments,
the training was continued until reaching 95% accuracy on
the training set. As for the noise level σ, we try a range of
values for each dataset and n, and we choose the largest σ
such that the perturbed SGD converges, without a dramatic
performance cost to the pruned model. Intuitively, we can
expect that smaller α with heavier tails will lead to lower
relative compression error. However, it does not guarantee
better test performance: we will investigate the trade-offs
between compression error and test performance more in
detail below. All the experimentation details are given in
Appendix E, in addition to the extended versions of the

results presented here, and our source code includes the
relevant implementation details6.

5.1. Experiments with ECG5000

We first consider the ECG5000 dataset and investigate the
effects of α and n on compressibility and performance. We
repeat the experiments 10 times and report means and stan-
dard deviations in Tables 1-4. Here, for different cases, we
monitor the training and test accuracies before and after
pruning (a.p.), as well as the pruning ratio: the percentage
of the weight matrix that can be pruned while keeping the
90% of the squared norm of the original matrix7. For brevity
we present training accuracies in Appendix E.

Using Type-I noise, the results of our first experiment (Table
1) show that even for a moderate number of neurons n = 2K,
the heavy-tailed noise results in a significant improvement
in the compression capability of the neural network. For
α = 1.9, we can see that the pruning ratio increases to
25.90%, whereas vanilla SGD can only be compressible
with a rate 11.42%, with only a slight decrease in pruned test
performance for the noise-added model. We also observe
that decreasing α (i.e., increasing the heaviness of the tails)
results in a better compression rate; yet, there is a trade-
off between this rate and the test performance. In Table 2,
we repeat the same experiment for n = 10K. We observe
that the previous conclusions become even clearer in this
case, as our theory applies to large n. For the case where
α = 1.75, we obtain a pruning ratio of 54.72% with test
accuracy 90.12%, whereas for vanilla SGD the ratio is only
11.44% with a test accuracy of 93.75%.

We also investigate the impact of noise type, where we set
n = 10K and use the same setting as in Table 2. Tables 3-4
illustrate the results. We observe that the choice of the
noise type moderately impacts compressibility and accuracy.
Type-III noise seems to demonstrate a similar pattern to
Type-I, while achieving a worse compression rate overall.
On the other hand, although Type-II noise improves on Type-
I in its performance under α = 1.75, it loses on performance
and/or compression in the other two α values. Accordingly,
we conclude Type-I noise to obtain a better trade-off overall,
and proceed to the remaining experiments with it.

5.2. Experiments with MNIST

In our next experiment, we consider the MNIST dataset,
set n = 5K and use Type-I noise. Table 5 illustrates the
results as the average and the standard deviation of 5 runs.
Similar to the previous results, we observe that the injected

6https://github.com/mbarsbey/imp_comp
7The pruning ratio has the same role of 1−κ, where we fix the

compression error to 0.1 and find the smallest κ that satisfies this
error threshold.

7



Implicit Compressibility of Networks Trained with Heavy-Tailed SGD

α Test Acc. Pruning Ratio Test Acc. a.p.
1.75 94.17± 0.51 54.40± 18.92 93.41± 2.24
1.8 94.72± 1.22 39.85± 13.66 91.68± 3.13
1.9 94.62± 0.36 22.05± 9.87 93.31± 2.05

Table 3: ECG5000, Type-II noise, n = 10K.

α Test Acc. Pruning Ratio Test Acc. a.p.
1.75 94.35± 0.64 51.25± 16.55 91.93± 3.13
1.8 94.10± 0.49 38.09± 16.67 92.74± 2.23
1.9 94.51± 0.47 21.92± 9.56 93.18± 2.83

Table 4: ECG5000, Type-III noise, n = 10K.

noise has a visible benefit on compressibility. When α =
1.9, our approach doubles the compressibility of the vanilla
SGD (from 10.58% to 23.82%), while pruned test accuracy
decreases only by ∼ 1%. On the other hand, when we
decrease α, the pruning ratio goes up to 40.63%, while only
compromising ∼ 3% of pruned test accuracy.

5.3. Experiments with CIFAR-10 and CIFAR-100

We now test our approach with datasets and model architec-
tures that are relatively more realistic in a machine learning
setting (see Appendix E for full details). First, we conduct
experiments with the CIFAR-10 dataset using the architec-
ture in the MNIST experiments above, where we set n = 5K
and use Type-I noise. We present our results as the average
and standard deviation of 5 runs in Table 6. We observe
that the results are similarly positive for CIFAR-10, where
dramatic improvements in compressibility are obtained for
a small cost to pruned test performance.

Importantly, in most practical discussions of compressibility
(Blalock et al., 2020), it is also desired that the compressed
network is robust to compression in terms of performance:
That is, the pruned network is expected to maintain its test
performance in the face of pruning. To compare the net-
works trained under our approach to vanilla SGD in terms
of robustness, we progressively prune more of the columns
of each model, and examine the models’ test accuracy under
increasing pruning ratios (e.g. 0.1, 0.2, . . . ). The results are
presented in Figure 2’s column (a). Here we plot models’
absolute and relative accuracy as a function of pruning ratio,
where relative test accuracy refers to the test accuracy of a
pruned model in proportion to its unpruned test accuracy.
Our findings unequivocally demonstrate the advantage of
our approach: Networks trained with heavy-tailed noise (of
all three αs) are not only more compressible, but are also
more robust to pruning in terms of performance.

Robustness with More Complex Architectures Inspired
by the robustness results presented, we then test whether our

α Test Acc. Pruning Ratio Test Acc. a.p.
none 96.00± 0.48 10.58± 0.01 95.95± 0.47
1.75 95.01± 0.15 40.63± 8.55 92.89± 1.70
1.8 94.95± 0.16 36.05± 6.53 93.27± 1.33
1.9 95.44± 0.24 23.82± 5.89 94.94± 0.81

Table 5: MNIST, Type-I noise, n = 5K.

α Test Acc. Pruning Ratio Test Acc. a.p.
none 56.71± 0.38 11.60± 0.09 56.31± 0.50
1.75 51.60± 0.22 49.67± 2.30 51.48± 0.27
1.8 52.36± 0.31 41.01± 1.36 52.03± 0.27
1.9 52.60± 0.41 30.25± 1.95 52.65± 0.36

Table 6: CIFAR-10, Type-I noise, n = 5K.

results generalize to more complex, and arguably more real-
istic architectures. Though this means venturing beyond our
theoretical setting, we find it crucial from a practical point
of view to examine whether our methodology obtains ro-
bustness in such contexts. For this purpose, we train a CNN
model, a slightly modified version of the VGG11 model
(Simonyan & Zisserman, 2015) as described in Appendix
E, and conduct training on CIFAR-10 dataset with noiseless
and noise-added networks. The results in column (b) of
Figure 2 again demonstrate the advantage of our approach:
the noise-added networks are much more robust to pruning
compared to those trained with noiseless SGD. We present
similar results with a larger CNN model in Appendix E.

Lastly, we test our approach using a more challenging clas-
sification dataset, CIFAR-100. To match the complexity of
the task, this time we utilize an FCN with 4 hidden layers of
width 2048. We again conduct training until 95% training
accuracy. The results can be seen in column (c) of Figure 2,
and are consistent with the preceding results: noise-added
networks are consistently more robust to pruning than their
clean-trained counterpart.

6. Conclusion
We provided a methodological and theoretical framework
for provably obtaining compressibility in mean-field neural
networks. Our approach requires minimal modification for
vanilla SGD and has the same computational complexity.
By proving discretization error bounds and propagation of
chaos results, we showed that the resulting algorithm is guar-
anteed to provide compressible parameters. We tested our
approach through several experiments, where we showed
that in most cases the proposed approach achieves high
compressibility, while only slightly compromising accu-
racy. Moreover, we showed that our methodology produces
models that are more robust to pruning in terms of test
performance, even with architectures that are beyond our
theoretical setting, speaking to the promise of our approach

8
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Figure 2: Absolute and relative test accuracies for various
models and datasets after pruning, as a function of pruning
ratio. Column (a): CIFAR-10, FCN with a single hidden
layer, n = 5K. Column (b): CIFAR-10, CNN. Column (c):
CIFAR-100, FCN with 4 hidden layers, n = 2048.

from a practical point of view.

The limitations of our approach are as follows: (i) we con-
sider mean-field networks, it would be of interest to gener-
alize our theoretical results to more sophisticated architec-
tures, (ii) adaptive optimizers are frequently used in various
fields of machine learning, thus extending our results from
standard SGD to such optimization schemes would be bene-
ficial, (iii) making the dependence between k and n explicit
to have a clearer understanding of the required level of
overparametrization would be of great interest, (iv) a more
detailed understanding of how data distribution, learning
rate, noise type, and architecture interact to produce com-
pressibility would be helpful for extending our results to
various application domains.
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partially supported by the French government under man-
agement of Agence Nationale de la Recherche as part of
the “Investissements d’avenir” program, reference ANR-
19-P3IA-0001 (PRAIRIE 3IA Institute) and the European
Research Council Starting Grant DYNASTY – 101039676.

References
Amini, A., Unser, M., and Marvasti, F. Compressibility

of deterministic and random infinite sequences. IEEE
Transactions on Signal Processing, 59(11):5193–5201,
2011.

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. Stronger
generalization bounds for deep nets via a compression
approach. In International Conference on Machine Learn-
ing, volume 80, pp. 254–263. PMLR, 2018.

Aytekin, C., Cricri, F., and Aksu, E. Compressibil-
ity loss for neural network weights. arXiv preprint
arXiv:1905.01044, 2019.

Baim, D. S., Colucci, W. S., Monrad, E. S., Smith, H. S.,
Wright, R. F., Lanoue, A., Gauthier, D. F., Ransil, B. J.,
Grossman, W., and Braunwald, E. The BIDMC Conges-
tive Heart Failure Database, 2000.

Barsbey, M., Sefidgaran, M., Erdogdu, M. A., Richard, G.,
and Simsekli, U. Heavy tails in SGD and compressibility
of overparametrized neural networks. Advances in Neural
Information Processing Systems, 34:29364–29378, 2021.

Blalock, D., Ortiz, J. J. G., Frankle, J., and Guttag, J. What
is the state of neural network pruning? arXiv preprint
arXiv:2003.03033, 2020.

Burkholz, R., Laha, N., Mukherjee, R., and Gotovos, A. On
the existence of universal lottery tickets. arXiv preprint
arXiv:2111.11146, 2021.

Camuto, A., Wang, X., Zhu, L., Holmes, C., Gürbüzbalaban,
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Implicit Compressibility of Overparametrized Neural Networks via
Heavy-Tailed Noisy Gradient Descent

APPENDIX

The supplementary material is organized as follows.

• In Appendix A, we discuss incompressibility under injection of Gaussian noise.

• In Appendix B, we provide insights about the local convergence properties of the SGD algorithm described in the
paper.

• In Appendix C, we provide technical lemmas that are useful for proving Theorem 3.1, Lemma 4.1, and Lemma 4.2.

• In Appendix D, we provide proofs of the theoretical results in the main paper.

• In Appendix E, we present experimental details and extended results for our experiments.

• In Appendix F, implications of our work on federated learning are discussed.

A. Incompressibility of the Brownian Case
In this section, we show that injection of Gaussian noise rather than heavy-tailed noise does not result in compressibility in
the sense of the notion defined in Theorem 3.1. More precisely, consider the following SDE, which is equivalent to (5) if
α = 2:

dθi,nt = b(θi,nt , µn
t )dt+ σdBi,n

t (7)

where Bi,n
t , i = 1, . . . , n, denote n independent Brownian motion. The next result shows that the neural network trained

according to (7) is not compressible, in the sense that there exists at least one value of the compression level κ for which the
conclusion of Theorem 3.1 does not hold.

Proposition A.1. Suppose that Assumption 3.1 holds and let Θ̂n
t ∈ Rp×n be the matrix with columns being all the

parameters θi,nt , i = 1, . . . , n obtained by the recursion (7). Then, there exists a relative compression error ε such that for
any κ > 0,

lim sup
n→∞

∥∥∥Θ̂(κn)
t − Θ̂n

t

∥∥∥
F∥∥∥Θ̂n

t

∥∥∥
F

> ε.

Proof. In the mean-field scaling regime, (De Bortoli et al., 2020, Theorem 10) showed that when the SDEs are driven by
Brownian motions, the iterates of SGD have finite second-order moments. Whereas independent samples of Gaussian
random variables are not compressible in the sense of Theorem 3.1, see (Gribonval et al., 2012, Proposition 1). This
completes the proof.

B. Local Convergence of SGD with α-Stable Noise
In this part, we provide insights about the local convergence properties of the SGD algorithm described by (2), as guided by
(Şimşekli et al., 2019, Theorem 5).

Proposition B.1. Let n be the number of neurons in the one-hidden-layer neural network and recall that Θ̂n
k represents the

matrix with columns being the individual neuron weights at iteration k of the SGD described by (2). Under Assumption 3.1,
for some 0 < γ < α− 1 and if ση1/α−1 > 1, we have

min
0≤k≤K−1

E‖∇R(Θ̂n
k )‖2 ≤ R(Θ̂n

0 )−R∗

Knη
+

2(2B)2+γσ1+γ

(1 + γ)n2
η

γ+1−α
α .

If particular, if η is chosen such that η ∈ (n2α/(γ+1−α)+ε, σα/(α−1)) for some ε > 0 small enough, the upper bound goes
to 0 as K and n go to infinity.
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Proof. It suffices to show that A3 and A7 in (Şimşekli et al., 2019) holds with step size ηn, M = 2B/n (in A3) and
σ1+γ
γ = 2(2B/n)1+γ(ση1/α−1)1+γ (in A7), where B is the constant in Assumption 3.1.

Since bounded Lipschitz-functions are γ-Holder continuous for every γ ∈ (0, 1] (see Lemma B.1), the γ-Holderness A3
follows from Lemma C.1 follows directly from Assumption 3.1 by taking γ ∈ (0, α− 1).

It is not hard to see that the noise ση1/α−1Xi,n
k of the noisy stochastic gradient noise in (2) is unbiased. Then it remains to

verify that the gradient descent updates satisfy certain moment bounds. To this end, note that we have

E
[
‖∇R(Θn

k )− ση1/α−1Xi,n
k /n‖1+γ |Θ̂n

k

]
≤21+γE

[
∇R(Θn

k )‖1+γ |Θ̂n
k

]
+ 21+γE

[
‖ση1/α−1Xi,n

k /n‖1+γ
]

≤(2B)1+γ(ση1/α−1/n)1+γ + (2B/n)1+γ

≤2(2B/n)1+γ(ση1/α−1)1+γ

Finally, using (Şimşekli et al., 2019, Theorem 5) completes the proof.

Lemma B.1. If f is an L-Lipschitz-function which is bounded by M , then for every γ ∈ (0, 1],

‖f(x)− f(y)‖ ≤ max(L, (2M)1−γLγ)‖x− y‖γ .

Proof. For any x, y in the domain of definition of f , if ‖x− y‖ ≤ 1, since f is

‖f(x)− f(y)‖ ≤ L‖x− y‖ = L‖x− y‖1−γ‖x− y‖γ ≤ L‖x− y‖γ .

Otherwise if ‖x− y‖ ≥ 1,

‖f(x)− f(y)‖ ≤ ‖f(x)− f(y)‖1−γ‖f(x)− f(y)‖γ ≤ (2M)1−γLγ‖x− y‖γ .

This completes the proof.

C. Technical Lemmas
Lemma C.1. Under Assumption 3.1, it holds that

‖b(θ1, µ1)− b(θ2, µ2)‖ ≤ B ·
(
‖θ1 − θ2‖+ Ex∼π

[
|µ1(hx(·))− µ2(hx(·))|2

] 1
2
)
.

Moreover, ‖b(·, ·)‖∞ ≤ B, and if µ1 = 1
n

∑n
i=1 δθi

1
, µ2 = 1

n

∑n
i=1 δθi

2
,

‖b(θ1, µ1)− b(θ2, µ2)‖ ≤ B‖θ1 − θ2‖+
B

n

n∑
i=1

‖θi1 − θi2‖.

Proof. Recall that
b(θ, µ) = −E [∂1`(µ(hx(·)), y)∇hx(θ)] .

Then it follows from the triangular inequality that

‖b(θ1, µ1)− b(θ2, µ2)‖ ≤ ‖b(θ1, µ1)− b(θ2, µ1)‖+ ‖b(θ2, µ1)− b(θ2, µ2)‖. (8)

The first term is upper bounded by

‖b(θ1, µ1)− b(θ2, µ1)‖ ≤E
[
‖∂1`(·, y)‖∞ · ‖∇2hx‖∞

]
· ‖θ2 − θ1‖

≤E [Φ(y)Ψ(x)] · ‖θ1 − θ2‖

≤
(
E
[
Φ2(y)Ψ2(x)

])1/2 · ‖θ1 − θ2‖
≤B · ‖θ1 − θ2‖.

(9)
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The second term is upper bounded by

‖b(θ2, µ1)− b(θ2, µ2)‖ ≤E
[
‖∂21`(·, y)‖∞ · ‖∇hx(·)‖∞ · |µ1(hx(·))− µ2(hx(·))|

]
≤
(
E
[
Φ2(y)Ψ2(x)

])1/2 E [|µ1(hx(·))− µ2(hx(·))|2
]1/2

≤B · E
[
|µ1(hx(·))− µ2(hx(·))|2

]1/2
.

(10)

The first inequality then follows by combining (8), (9) and (10).

For the boundedness of b in the norm infinity, it is not difficult to see that

b(θ, µ) = −E[∂1`(µ(hx(·)), y)∇hx(θ)]
≤ E [Φ(y)Ψ(x)]

≤ B.

The proof of the last inequality follows by using the first bound and the Cauchy-Schwarz inequality as

‖b(θ1, µ1)− b(θ2, µ2)‖ ≤B‖θ1 − θ2‖+
1

n
Ex∼π

( n∑
i=1

hx(θ
i
1)− hx(θ

i
2)

)2
1/2

≤B‖θ1 − θ2‖+
1

n
Ex∼π

‖∇hx‖∞( n∑
i=1

‖θi1 − θi2‖

)2
1/2

≤B‖θ1 − θ2‖+
1

n
Ex∼π[Ψ

2(x)]1/2 ·
n∑

i=1

‖θi1 − θi2‖

≤B‖θ1 − θ2‖+
B

n

n∑
i=1

‖θi1 − θi2‖.

This completes the proof.

C.1. Propagation of Chaos

Lemma C.2. Let (Lt)t≥0 be an α-stable Lévy process and let (Ft)t≥0 be the filtration generated by (Lt)t≥0. Then under
Assumption 3.1, given the the initial condition X0 = ξ, there exists a unique adapted process (Xt)t∈[0,T ] for all integrable
datum ξ ∈ L1(Rp) such that

Xt = ξ +

∫ t

0

b(Xt, [Xt])dt+ Lt.

Moreover the first moment of the supremum of the process is bounded

E
[
sup
t≤T

‖Xt‖
]
< +∞.

Proof. The proof follows from Theorem 1 in (Cavallazzi, 2023) by Lemma C.1 where β is set to 1.

C.2. Compression

Lemma C.3. Consider a non-integrable probability distribution µ taking values in R+ such that EX∼µ[X] = +∞. Let
X1, . . . , Xn be n i.i.d. copies distributed according to µ. Then for any C positive,

P

[
1

n

n∑
i=1

Xi ≤ C

]
n→∞−−−−→ 0.
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Proof. Using the assumption that µ is non-integrable, let K be a cutoff level for µ such that

EX∼µ[max(X,K)] = C + 1.

Therefore by the law of large numbers, when goes to infinity,

lim
n→∞

1

n

n∑
i=1

max(Xi,K) = C + 1 almost surely.

Finally, note that
1

n
lim inf
n→∞

n∑
i=1

Xi ≥
1

n
lim
n→∞

n∑
i=1

max(Xi,K),

which is lower bounded by (C + 1) almost surely. Thus the probability that 1
n

∑n
i=1Xi be smaller than C vanishes for

large (infinite) values of n.

D. Proofs
D.1. Proof of Lemma 4.3

Proof. Recall that θt = θ0 +
∫ t

0
b(θs, [θs])ds+ Lt, then

E
[
‖θt‖2

]
=E

[〈
θ0 +

∫ t

0

b(θs, [θs])ds+ Lt, θ0 +

∫ t

0

b(θs, [θs])ds+ Lt

〉]
=E

[∥∥∥∥θ0 + ∫ t

0

b(θs, [θs])ds

∥∥∥∥2
]
+ 2E

[〈
θ0 +

∫ t

0

b(θs, [θs])ds,Lt

〉]
+ E

[
‖Lt‖2

]
≥E

[
‖Lt‖2

]
− 2E [‖θ0‖ · ‖Lt‖]− 2E [t‖b(·)‖∞ · ‖Lt‖]

≥E
[
‖Lt‖2

]
− 2E [‖θ0‖]E [‖Lt‖]− 2Bt · E [‖Lt‖] ,

where the last inequality follows from the independence between the initialization θ0 and the diffusion noise (Lt)t≥0 and by
using Lemma C.1. The proof is completed by noticing that

E
[
‖Lt‖2

]
= ∞ and E [‖θ0‖] ,E [‖Lt‖] <∞.

D.2. Proof of Lemma 4.2

Proof. By identification of the diffusion process (Li,n
t )t≥0 in (5) and (6), the difference of their solutions θi,nt and θi,∞t for

all t ∈ [0, T ] satisfies

θi,nt − θi,∞t =

∫ t

0

[b(θi,ns , µn
s )− b(θi,∞s , [θi,∞s ])]ds,

where µt =
1
n

n∑
i=1

δθi,n
t

and [θi,∞t ] denotes the distribution of θi,∞t . Using Lemma C.1,

‖θi,nt − θi,∞t ‖ ≤B
∫ t

0

‖θi,ns − θi,∞s ‖ds+B

∫ t

0

Ex∼π

[
|µn

s (hx(·))− [θi,∞s ](hx(·))|2
]1/2

ds

≤B
∫ t

0

sup
i≤n

‖θi,ns − θi,∞s ‖ds+B

∫ t

0

Ex∼π

[
|µn

s (hx(·))− µ̄n
s (hx(·))|2

]1/2
ds

+B

∫ t

0

Ex∼π

[
|µ̄n

s (hx(·))− [θi,∞s ](hx(·))|2
]1/2

ds

(11)
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where µ̄n
s := 1

n

n∑
i=1

δθi,∞
s

, the empirical measure of θi,∞s for i = 1, . . . , n. the last inequality follows from Cauchy-Schwarz

inequality. Moreover we have

Ex∼π[|µn
s (hx(·)− µ̄n

s (hx(·))|2]1/2 ≤Ex∼π

∣∣∣∣∣‖∇hx‖∞n

n∑
i=1

‖θi,ns − θi,∞s ‖

∣∣∣∣∣
2
1/2

≤Ex∼π[Ψ
2(x)]1/2 · 1

n

n∑
i=1

‖θi,ns − θi,∞s ‖

≤B sup
i≤n

‖θi,ns − θi,∞s ‖.

Plugging the above estimate into (11) yields

‖θi,nt − θi,∞t ‖ ≤ B(1 +B)

∫ t

0

sup
i≤n

‖θi,ns − θi,∞s ‖ds+B

∫ t

0

Ex∼π

[
|µ̄n

s (hx(·))− [θi,∞s ](hx(·))|2
]1/2

ds. (12)

Taking the supremum over i = 1, . . . , n and t, and using the fact that

sup

∫
·
(·) ≤

∫
·
sup(·),

we get

sup
t≤T

sup
i≤n

‖θi,nt − θi,∞t ‖ ≤B(1 +B)

∫ T

0

sup
t≤s

sup
i≤n

‖θi,nt − θi,∞t ‖ds

+B

∫ t

0

Ex∼π

[
|µ̄n

s (hx(·))− [θi,∞s ](hx(·))|2
]1/2

ds.

(13)

Let us now estimate E
[
|µ̄n

s (hx(·))− [θi,∞s ](hx(·))|2|x
]1/2

, the expectation under the stable diffusion, rather than the
expectation over the data distribution, where the 1/

√
n convergence rate comes from. Indeed for fixed x, hx(θi,∞s ),

i = 1, . . . , n are bounded i.i.d. random variables with mean value [θi,∞s ](hx(·)). Therefore

E
[
|µ̄n

s (hx(·))− [θi,∞s ](hx(·))|2|x
]1/2

=E

∣∣∣∣∣ 1n
n∑

i=1

hx(θ
i,∞
s )− [θi,∞s ](hx(·))

∣∣∣∣∣
2
∣∣∣∣∣∣x
1/2

≤ 1√
n
‖hx(·)‖∞ ≤ Ψ(x)√

n
.

(14)

Finally, combining (13), (14), the integrability condition Lemma C.2 and using Fubini’s theorem, we get

E
[
sup
r≤t

sup
i≤n

‖θi,nr − θi,∞r ‖
]
≤ B(1 +B)

∫ t

0

E
[
sup
r≤s

sup
i≤n

‖θi,nr − θi,∞r ‖
]
ds+

BtEx∼π[Ψ(x)]√
n

.

Finally, by Gronwall’s inequality we get

E
[
sup
t≤T

sup
i≤n

‖θi,nt − θi,∞t ‖
]
≤ (1 +B)

(
BT√
n
+
B2T 2 exp(BT (1 + Ex∼π[Ψ(x)]))

2
√
n

)
.

This completes the proof of Lemma 4.2.
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D.3. Proof of Lemma 4.1

Proof. Similar to in the proof of Lemma 4.2, we have

sup
i≤n

‖θi,nη − θ̂i,n1 ‖ ≤ sup
i≤n

∫ η

0

‖b(θi,nt , µn
t )− b(θ̂i,n0 , µn

0 )‖dt

≤B
∫ η

0

sup
i≤n

‖θi,nt − θi,n0 ‖+ 1

n

n∑
j=1

‖θj,nt − θj,n0 ‖dt

≤B
∫ η

0

2‖b‖∞ · t+ sup
i≤n

‖Li,n
t ‖+ 1

n

n∑
j=1

‖Lj,n
t ‖dt

Recall that ‖b‖∞ ≤ B, therefore by taking the expectation and the scaling of the stable process Li,n
t , we get

E
[
sup
i≤n

‖θi,nη − θ̂i,n1 ‖
]
≤B

∫ η

0

2Bt+ t1/α · E

sup
i≤n

‖Li,n
1 ‖+ 1

n

n∑
j=1

‖Lj,n
1 ‖

dt

≤B2η2 +
Bα · E

[
supi≤n ‖L

i,n
1 ‖+ ‖Lα

1 ‖
]

α+ 1
η1+1/α.

(15)

Denote by C ′ := E
[
supi≤n ‖L

i,n
1 ‖+ ‖Lα

1 ‖
]

and ψt(ξ) the solution of (5) at time t with initial condition ξ ∈ Rn×d, which

is the matrix of n vectors ψi,n
t (ξ) ∈ Rd, i = 1, . . . , n. At time T which is a multiple of η,

θi,nT − θ̂i,nT/η =

T/η−1∑
k=0

ψi,n
T−ηk(Θ̂

n
k )− ψi,n

T−η(k+1)(Θ̂
n
k+1), (16)

where Θ̂n
k is the matrix of θ̂i,nk . Similarly, for each of the terms inside the summation above,

ψi,n
T−ηk(Θ̂

n
k )− ψi,n

T−η(k+1)(Θ̂
n
k+1) =

[∫ η(k+1)

ηk

bi,n(ψt−ηk(Θ̂
n
k ))dt+ dLi,n

t − (θ̂i,nk+1 − θ̂i,nk )

]

−
∫ T

η(k+1)

(
bi,n(ψt−ηk(Θ̂

n
k ))− bi,n(ψt−η(k+1)(Θ̂

n
k+1))

)
dt.

(17)

Note that the first term in the big bracket is the difference of one-step increment started from Θ̂n
k . It follows from (15) that

E

[
sup
i≤n

∥∥∥∥∥
∫ η(k+1)

ηk

bi,n(ψt(Θ̂
n
k ))dt+ dLi,n

t − (θ̂i,nk+1 − θ̂i,nk )

∥∥∥∥∥
]
≤B2η2 +

Bα · C ′

α+ 1
η1+1/α. (18)

For the second integral term, similarly we have

E
[
sup
i≤n

‖bi,n(ψt−ηk(Θ̂
n
k ))− bi,n(ψt−η(k+1)(Θ̂

n
k+1))‖

]
≤B · E

[
sup
i≤n

‖ψi,n
t−ηk(Θ̂

n
k )− ψi,n

t−η(k+1)(Θ̂
n
k+1)‖

]
+
B

n

n∑
j=1

E
[
‖ψj,n

t−ηk(Θ̂
n
k )− ψj,n

t−η(k+1)(Θ̂
n
k+1)‖

] (19)

Combining (17), (18) and (19) we get

E
[
sup
i≤n

‖ψj,n
T−ηk(Θ̂

n
k )− ψj,n

T−η(k+1)(Θ̂
n
k+1)‖

]
≤B2η2 +

2Bα · C ′

α+ 1
η1+1/α + 2B ·

∫ T

η(k+1)

E
[
sup
i≤n

‖ψi,n
t−ηk(Θ̂

n
k )− ψi,n

t−η(k+1)(Θ̂
n
k+1)‖

]
dt.
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Next it follows from Gronwall’s inequality that

E
[
sup
i≤n

‖ψj,n
T−ηk(Θ̂

n
k )− ψj,n

T−η(k+1)(Θ̂
n
k+1)‖

]
≤ exp(2BT )

(
B2η2 +

2Bα · C ′

α+ 1
η1+1/α

)
.

Finally, combining with (16) we obtain

E
[
sup
i≤n

‖θi,nT − θ̂i,nT/η‖
]
≤ T exp(2BT )

(
B2η +

2Bα · C ′

α+ 1
η1/α

)
.

Then it follows by Lemma D.1 that for some constant C ′
α that depends on α, we have

C ′ = E
[
sup
i≤n

‖Li,n
1 ‖+ ‖Lα

1 ‖
]
≤ C ′

α(n
1/α + 1).

This completes the proof of Lemma 4.1.

Lemma D.1. Take n i.i.d. α-stable random variables Xi such that there exists Cα > 0, for t sufficiently large and
i = 1, . . . , n, P[‖Xi‖ ≥ t] ≥ Cαt

−α. If 1 < α < 2, then there exists C ′
α such that for n sufficiently large,

E
[
sup
i≤n

‖Xi‖
]
≤ C ′

αn
1/α

Proof. It is not difficult to see from the condition P[‖Xi‖ ≥ t] ≥ Cαt
−α that for large t, it holds that

P
[
sup
i≤n

‖Xi‖ ≥ t

]
= 1−

n∏
i=1

P[‖Xi‖ < t] ≤ 1−
(
1− Cαt

−α
)n ≤ Cαnt

−α.

Then, for large n we get

E
[
sup
i≤n

‖Xi‖
]
=

∫ ∞

0

P
[
sup
i≤n

‖Xi‖ ≥ t

]
dt

=

−∞∑
k=−1

∫ (n/2k)1/α

(n/2k+1)1/α
P
[
sup
i≤n

‖Xi‖ ≥ t

]
dt+

∫ n1/α

0

P
[
sup
i≤n

‖Xi‖ ≥ t

]
dt

≤n1/α
−∞∑
k=−1

2−k/αP
[
sup
i≤n

‖Xi‖ ≥ (n/2k+1)1/α
]
+ n1/α

≤Cαn
1/α

−∞∑
k=−1

2k+1−k/α + n1/α

≤C ′
αn

1/α

where in the last inequality we set C ′
α = 1 + 21+1/α/(2− 21/α). This completes the proof of Lemma D.1.

D.4. Proof of Theorem 3.1

Definition D.1 (k-term approximation error (Gribonval et al., 2012)). The best k-term approximation error σk(x) of a
vector x is defined by

σk(x) = inf
‖y‖0≤k

‖x− y‖,

where ‖y‖0 is the l0-norm of y, which counts the non-zero coefficients of y. Without mentioned explicitly, ‖x‖ denotes the
square norm of x.
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Proof. Denote by ŵn
t = (‖θ̂1,nbt/ηc‖, . . . , ‖θ̂

n,n
bt/ηc‖) and w∗

t = (‖θ1,∞t ‖, . . . , ‖θn,∞t ‖), where the components θi,∞t are
independent solutions to (6) in Lemma 4.2. Note that the definition of Frobenius matrix norm ‖ · ‖F gives that

‖Θ̂{κn}
bt/ηc − Θ̂n

bt/ηc‖F = ‖σ〈κn〉(ŵn
t )‖, ‖Θ̂n

bt/ηc‖F = ‖w?
t ‖, (20)

Therefore it suffices to prove Theorem 3.1 for ŵn
t . It follows from Lemma 4.2 and Lemma 4.1 that there exists a constant C

independent of n for which

E
[
sup
i≤n

‖θ̂i,nbt/ηc − θi,∞t ‖
]
≤ C

3
√
n

Then by the Markov’s inequality we get

P
[
sup
i≤n

‖θ̂i,nbt/ηc − θi,∞t ‖ > C

ε
√
n

]
≤ ε/3. (21)

Denote by E the event

E :=

{
sup
i≤n

‖θ̂i,nbt/ηc − θi,∞t ‖ ≤ C

ε
√
n

}
.

If supi≤n ‖θ̂
i,n
bt/ηc − θi,∞t ‖ ≤ C

ε
√
n

and ‖σbκnc(ŵn
t )‖ ≥ ε‖ŵn

t ‖, we obtain

‖σbκnc(w?
t )‖ ≥ ‖σbκnc(ŵn

t )‖ − κn
C

ε
√
n

≥ ε‖ŵn
t ‖ − C

√
nκ/ε

≥ ε(‖w?
t ‖ − C

√
n/ε)− C

√
nκ/ε

= ε‖w?
t ‖ − C

√
n(1 + κ/ε)

Therefore plugging in (21), we get

P
[
‖σbκnc(ŵn

t )‖ ≥ ε‖σbκnc(ŵn
t )‖
]

≤P
[
‖σbκnc(ŵn

t )‖ ≥ ε‖σbκnc(ŵn
t )‖, Ec

]
+ P

[
‖σbκnc(ŵn

t )‖ ≥ ε‖σbκnc(ŵn
t )‖, E

]
≤P
[
sup
i≤n

‖θ̂i,nbt/ηc − θi,∞t ‖ > C

ε
√
n

]
+ P

[
‖σbκnc(w?

t )‖ ≥ ε‖w?
t ‖ − C

√
n(1 + κ/ε)

]
≤ε/3 + P

[
‖σbκnc(w?

t )‖ ≥ ε‖w∗
t ‖ − C

√
n(1 + κ/ε)

]
(22)

Moreover, there exists N ′ > 0 such that for all n ≥ N ′,

P
[
‖σbκnc(w?

t )‖ ≥ ε‖w∗
t ‖ − C

√
n(1 + κ/ε)

]
≤P
[
‖w?

t ‖ ≤ 2C
√
n(1 + κ/ε)

]
+ P

[
‖σbκnc(w?

t )‖ ≥ ε

2
‖w?

t ‖
]

=P
[
1

n
‖w?

t ‖2 ≤ 4C2(1 + κ/ε)2
]
+ P

[
‖σbκnc(w?

t )‖ ≥ ε

2
‖w?

t ‖
]

≤ε/3 + P
[
‖σbκnc(w?

t )‖ ≥ ε

2
‖w?

t ‖
]
,

(23)

where the last inequality follows from Lemma C.3. By the independence of the n coordinates of the vetor w?
t , Lemma 4.3

and [GCD12, Proposition 1, Part 2], there exists N ′′ > 0, for all n ≥ N ′′,

P
[
‖σbκnc(w?

t )‖ ≥ ε

2
‖w?

t ‖
]
≤ ε/3. (24)

Finally, combining (20), (22), (23) and (24) terminates the proof.
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E. Experimental Details and Additional Results
E.1. Software and Hardware Requirements

The experiments have been implemented in Python, using the deep learning framework PyTorch. Experiments were run on
the server of an educational institution, using NVIDIA 1080 and 1080 Ti GPUs. The experiments published in the main
paper and the Appendix amounted to an estimated GPU time of 1200 hours in total. Pruning and analysis is estimated to
have taken an additional 40 GPU hours. We refer the reader to our source code for further implementation details8.

E.2. Datasets

The ECG5000 dataset (Baim et al., 2000) consists of 5000 20-hour long electrocardiograms interpolated by sequences of
length 140 to discriminate between normal and abnormal heart beats of a patient that has severe congestive heart failure.
After random shuffling, we use 500 sequences for the training phase and 4500 sequences for the test phase. The MNIST
database (LeCun et al., 2010) of black and white handwritten digits consists of a training set of 60,000 examples and a
test set of 10,000 examples of dimensions 28 x 28. CIFAR-10 and CIFAR-100 are two other image classification datasets
(Krizhevsky, 2009), including 32 x 32 x 3 color images of objects or animals, making up 10 and 100 classes, respectively.
We use the default split of 50,000 training and 10,000 test examples.

E.3. Models and Training Hyperparameters

The models used in the experiments are fully connected networks (FCN) and convolutional neural networks (CNN). All
models include ReLU activations, and do not include any bias nodes nor any advanced layer structures such as batch
normalization or residual connections. Due to the number of parameters being low compared to other layers, last linear
layers of the models are not added noise during training, and are not included in pruning or computation of pruning ratios
during evaluation. As described in the paper, we use FCNs with 1 or 4 hidden layers in different experiments. The CNN
used in the experiments is a modified version of VGG11 (Simonyan & Zisserman, 2015), and has the structure

128,M, 256,M, 512, 512,M, 1024, 1024,M, 1024, 1024,M,

followed by a final linear layer, where the numbers refer to convolutional layer widths with 3 x 3 filters, followed by ReLU
activation functions, and M ’s refer to 2 x 2 max pooling operations. In Appendix E.5 we experiment with a larger version of
this model, abbreviated as CNN-L, this time following the layer ordering of VGG16 (Simonyan & Zisserman, 2015), with
the following structure:

128, 128,M, 256, 256,M, 512, 512, 512,M, 1024, 1024, 1024,M, 1024, 1024, 1024,M.

All models in all experiments are trained until 95% training accuracy, after which the training is concluded. As described in
the main paper, no adaptive optimizers has been used in any of the experiments. For each experiment, σ values have been
selected to be as large as possible, without incurring divergence during the training or dramatic performance loss to the
pruned model (training accuracy > 0.90). In experiments on robustness to pruning, the σ that lead to largest area under
the pruning-accuracy curve was selected. Learning rates, batch sizes, and σ values have been provided in the Table 7. We
note that the batch sizes for CIFAR-10 + CNN and CIFAR-100 experiments have been selected to be considerably smaller
than in MNIST and other CIFAR-10 experiments, due to the former being more memory intensive. Given the very limited
additional computational overhead of our method, our approach can easily be combined with standard hyperparameter
selection methods, such as using a held-out validation set.

E.4. Extended Results

Tables 8-13 include the extended version of the results presented in the main paper in Tables 1-6, with training set accuracies
before and after pruning (a.p.) included.

E.5. Results with a Larger CNN Model

To see whether our results continue to hold as we increase model size, we train a larger convolutional neural network
(CNN-L, described in Appendix E.5) model on CIFAR-10, and examine model’s robustness against pruning. We train the

8https://github.com/mbarsbey/imp_comp
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Experiment LR B σ (α = 1.75) σ (α = 1.8) σ (α = 1.9)

ECG5000, FCN, n = 2K, Type-I 0.0001 500 0.40 0.30 0.25
ECG5000, FCN, n = 10K, Type-I 0.0001 500 1.10 1.20 0.80
ECG5000, FCN, n = 10K, Type-II 0.0001 500 2.00 1.90 3.60
ECG5000, FCN, n = 10K, Type-III 0.0001 500 5.25 3.90 2.75

MNIST, FCN, n = 5K, Type-I 0.25 5000 0.001 0.00125 0.0011
CIFAR-10, FCN, Type-I (Table 6) 0.10 5000 0.0003 0.0003 0.0003

CIFAR-10, FCN, Type-I (Fig. 2(a)) 0.10 5000 0.0001 0.0001 0.0001
CIFAR-10, CNN, Type-I 0.01 100 0.000075 0.0001 0.000075
CIFAR-100, FCN, Type-I 0.01 100 0.00005 0.000075 0.00009

Table 7: Hyperparameters for the experiments presented in the main paper and the appendices, including learning rate (LR),
batch size (B), and chosen noise scales (σ) for various noise tail indices (α).

α Train Acc. Test Acc. Pruning Ratio Train Acc. a.p. Test Acc. a.p.
no noise 95.02± 0.06 94.15± 0.51 11.42± 0.04 94.76± 0.84 94.12± 0.85

1.75 95.02± 0.06 94.15± 0.51 49.38± 22.72 91.46± 10.64 90.50± 10.64
1.8 95.02± 0.06 94.15± 0.51 37.22± 14.51 93.84± 1.92 93.26± 1.85
1.9 95.02± 0.06 94.15± 0.51 25.90± 11.02 94.08± 2.12 93.56± 1.41

Table 8: ECG5000, Type-I noise, n = 2K.

α Train Acc. Test Acc. Pruning Ratio Train Acc. a.p. Test Acc. a.p.
no noise 95.02± 0.06 94.16± 0.28 11.44± 0.01 94.40± 2.12 93.75± 1.77

1.75 95.02± 0.06 94.16± 0.28 54.72± 18.46 90.20± 5.79 90.12± 5.42
1.8 95.02± 0.06 94.16± 0.28 44.90± 11.04 91.52± 7.43 91.45± 6.36
1.9 95.02± 0.06 94.16± 0.28 30.86± 8.11 93.44± 1.43 93.21± 1.02

Table 9: ECG5000, Type-I noise, n = 10K.

α Train Acc. Test Acc. Pruning Ratio Train Acc. a.p. Test Acc. a.p.
1.75 95.32± 0.32 94.17± 0.51 54.40± 18.92 93.88± 2.10 93.41± 2.24
1.8 95.48± 0.70 94.72± 1.22 39.85± 13.66 92.28± 3.28 91.68± 3.13
1.9 95.56± 0.49 94.62± 0.36 22.05± 9.87 93.58± 3.32 93.31± 2.05

Table 10: ECG5000, Type-II noise, n = 10K.

α Train Acc. Test Acc. Pruning Ratio Train Acc. a.p. Test Acc. a.p.
1.75 95.28± 0.36 94.35± 0.64 51.25± 16.55 92.30± 3.47 91.93± 3.13
1.8 95.26± 0.39 94.10± 0.49 38.09± 16.67 93.50± 1.93 92.74± 2.23
1.9 95.56± 0.52 94.51± 0.47 21.92± 9.56 93.58± 3.60 93.18± 2.83

Table 11: ECG5000, Type-III noise, n = 10K.

model with a learning rate of 0.001 and a batch size of 100, fix α = 1.8, and select σ to be 0.0001 for Type-I and Type-III
noises, and 0.000075 for Type-II noise. The results are presented in Figure 3, and suggest that benefits conferred by our
methodology continue to hold as we increase model size and baseline performance. The performance differences between
Type-I and the other noises highlight the investigation of the effect of noise type on compressibility and robustness as a
fruitful future research direction, as discussed in Section 6.
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α Train Acc. Test Acc. Pruning Ratio Train Acc. a.p. Test Acc. a.p.
no noise 96.32± 0.68 96.00± 0.48 10.58± 0.01 96.30± 0.67 95.95± 0.47
1.75 95.48± 0.20 95.01± 0.15 40.63± 8.55 93.14± 1.54 92.89± 1.70
1.8 95.42± 0.25 94.95± 0.16 36.05± 6.53 93.62± 1.32 93.27± 1.33
1.9 95.88± 0.36 95.44± 0.24 23.82± 5.89 95.30± 0.89 94.94± 0.81

Table 12: MNIST, Type-I noise, n = 5K.

α Train Acc. Test Acc. Pruning Ratio Train Acc. a.p. Test Acc. a.p.
no noise 96.52± 0.85 56.71± 0.38 11.60± 0.09 96.13± 0.91 56.31± 0.50
1.75 95.56± 0.24 51.60± 0.22 49.67± 2.30 95.28± 0.23 51.48± 0.27
1.8 95.86± 0.36 52.36± 0.31 41.01± 1.36 95.61± 0.51 52.03± 0.27
1.9 96.08± 0.21 52.60± 0.41 30.25± 1.95 96.17± 0.21 52.65± 0.36

Table 13: CIFAR-10, Type-I noise, n = 5K.

F. Implications on Federated Learning
The federated learning (FL) setting (McMahan et al., 2017; Ramage & McMahan, 2017) is one in which there are a number
of devices or clients, say n; all equipped with the same neural network model and each holding an independent own dataset.
Every client learns an individual (or local) model from its own dataset, e.g., via Stochastic Gradient Descent (SGD). The
individual models are aggregated by a parameter server (PS) into a global model and then sent back to the devices, possibly
over multiple rounds of communication between them. The rationale is that the individually learned models are refined
progressively by taking into account the data held by other devices; and, at the end the training process, all relevant features
of all devices’ datasets are captured by the final aggregated model.

The results of this paper are useful towards a better understanding of the compressibility of the models learned by the various
clients in this FL setting. Specifically, viewing each neuron of the hidden layer of the setup of this paper as if it were a
distinct client, the results that we establish suggest that if the local models are learned via heavy-tailed SGD this would
enable a better compressibility of them. This is particularly useful for resource-constrained applications of FL, such as in
telecommunication networks where bandwidth is scarce and latency is important.
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Figure 3: Absolute and relative test accuracies for CNN-L model trained on CIFAR-10, as a function of pruning ratio.
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