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Abstract
Sample labeling is the most primary and fun-
damental step of semi-supervised learning. In
literature, most existing methods randomly la-
bel samples with a given ratio, but achieve un-
promising and unstable results due to the ran-
domness, especially in multi-view settings. To
address this issue, we propose a Dynamic Multi-
view Labeling Strategy with Shared and Specific
Information. To be brief, by building two clas-
sifiers with existing labels to utilize decoupled
shared and specific information, we select the
samples of low classification confidence and la-
bel them in high priorities. The newly generated
labels are also integrated to update the classifiers
adaptively. The two processes are executed al-
ternatively until a satisfying classification per-
formance. To validate the effectiveness of the
proposed method, we conduct extensive experi-
ments on popular benchmarks, achieving promis-
ing performance. The code is publicly available
at https://github.com/wanxinhang/
ICML2024_decouple_then_classify.

1. Introduction
With the rapid development of information techniques, mil-
lions of unlabeled data are generated and collected. How to
label them for the downstream tasks is vital in many fields
(Wan et al., 2024b; Tu et al., 2023; Wan et al., 2024a; Liang
et al., 2023; Liu et al., 2022; 2023a;b; Wen et al., 2023b; Yu
et al., 2023b;a; Yan et al., 2024). For instance, it is beneficial
to recommend items personally for different types of users

1College of Computer, National University of Defense Tech-
nology, Changsha, China 2College of Systems Engineering,
National University of Defense Technology, Changsha, China
3Intelligent Game and Decision Lab, Academy of Military Sci-
ences, Beijing, China. Correspondence to: Xinwang Liu <xinwan-
gliu@nudt.edu.cn>, En Zhu <enzhu@nudt.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

in the recommendation system. However, labeling them is
challenging and expensive because the number of users is
vast. In light of this, semi-supervised learning, which aims
to partition data into several groups with limited labeled
data, has been proposed recently and achieved great success
(Cai et al., 2020; Holmes et al., 2021; Yang et al., 2024a;b;
Zhang et al., 2024). Given an unlabeled dataset, most ex-
isting semi-supervised methods randomly select samples
to label and train the model with them. However, for a
given label ratio, the results frequently fluctuate a lot when
the model is trained on different annotated instances. The
reason is that samples contain different information and con-
tribute variously to the model. Therefore, selecting samples
that convey richer information to annotate is significant to
reduce the label cost and attain better performance (Ren
et al., 2021; Cao et al., 2020).

Active learning addresses the abovementioned problem by
interactively selecting valuable samples from the unlabeled
dataset to label and retraining the model (Wang et al., 2022a;
He et al., 2023b;a). Nevertheless, most focus on data from
a single source and overlook multi-view data. Multi-view
data is widespread in the world with multimedia improves
by leaps and bounds; for instance, a person can be described
by his appearance, social networks, sound, etc. (Liu et al.,
2021a; Wang et al., 2022c; Liang et al., 2022; Wen et al.,
2023a; Wan et al., 2022; 2023; Liu et al., 2024; Yu et al.,
2024a;b). How to label multi-view data and reduce the label
cost is crucial to the analysis and utilization of multi-view
data. Unfortunately, annotating data from multiple sources
is challenging since the views usually contain two pieces
of information, i.e., the shared and specific information
(SSI), the efficient utilization of them and labeling the data
is more complicated than labeling single-view data. Some
samples might be easier to classify via shared information or
the opposite. Existing semi-supervised multi-view (SSMV)
methods frequently concentrate on the shared or specific
information individually or get trouble decoupling and utiliz-
ing them (Shen et al., 2023; Xu et al., 2022). Despite some
methods gaining two pieces of information adequately, the
random selection of instances to annotate leads to unstable
results (Wang et al., 2022b; Wu et al., 2023a).
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Figure 1. The basic framework of our proposed algorithm. First, we extract the shared and specific information (SSI) with the auto-encoder
and decouple it with a view discriminator. Then, we utilize the two pieces of information to train two classifiers separately with existing
labels. We interactively train the model and use it to select valuable samples to label until a promising classifier is achieved.

To this end, we propose a Dynamic Multi-view Labeling
Strategy with Shared and Specific Information (DMVLS) to
handle these problems. Concretely, we attain SSI via auto-
encoders to ensure the quality of the extracted knowledge.
Meanwhile, a view discriminator is leveraged to conduct a
view classification task to decouple them adequately. After
attaining decoupled and high-quality information, we equip
each piece of information with a classifier to attain the pre-
dicted label since some samples might be more accessible to
predict via shared information or the opposite. In summary,
our loss consists of three parts, i.e., the reconstruction loss,
the view discrimination loss, and the classification loss. We
first randomly select some samples as cold start to train the
model. Then, for the rest of the unlabeled samples, if a
sample is hard to predict via both SSI, it is regarded as an
uncertain sample and needs to be labeled. Pseudo labels
are generated with samples of high confidence and consis-
tent results in the two classifiers. We interactively select
samples to label and retrain the model with the newly gen-
erated labels to boost the classification performance. The
framework of our proposed method is shown in Fig. 1. Our
contributions are as follows:

1. We propose an efficient algorithm to tackle the sam-
ple labeling task in semi-supervised multi-view learn-
ing, termed the Dynamic Multi-view Labeling Strategy
with Shared and Specific Information. The samples of
low classification confidence are labeled as high pri-
orities. Meanwhile, pseudo labels are generated with
samples of high confidence and consistent results in
the two classifiers.

2. We utilize a view discriminator to decouple the shared
and specific information extracted via the encoder. To

further ensure the generated information with high
quality, the decoder is used to recover the original
matrices and minimize the reconstruction loss.

3. To validate the effectiveness of the proposed method,
we conduct extensive experiments on popular bench-
marks, achieving promising performance.

2. Related Work
In this section, we introduce the work most related to our
method, including semi-supervised multi-view classification
and active learning.

2.1. Semi-supervised Multi-view Classification

Semi-supervised classification, which aims to partition sam-
ples into several categories with limited labeled samples and
a considerable number of unlabeled samples, has achieved
great attention in many fields such as anomaly detection,
computer vision, medical diagnosis, etc (Xu et al., 2021;
Zhmoginov et al., 2022). The early methods frequently pay
attention to scenarios where data is collected from a sin-
gle source. For instance, the authors in (Blum & Mitchell,
1998) train two predictors, and then each predictor gener-
ates pseudo labels as the training samples for the other to
train. The process ends when all the unlabeled samples are
annotated with pseudo labels. The emerging graph-based
methods utilize label propagation with a graph structure,
most of which are under the framework of GCN (Kipf &
Welling, 2016; Wu et al., 2023b). GCNI overcomes the
over-smoothing of GCN with a vanilla GCN model. Then,
to enrich the supervision signals (Chen et al., 2020), CG3

utilizes both data similarities and graph structure to improve
the performance of GCN (Wan et al., 2021).
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The burgeoning multi-view data benefits the development of
semi-supervised multi-view classification (SSMVC) (Wang
et al., 2021; Huang et al., 2021). MV-GCN (Yuan et al.,
2021) integrates multiple graphs to fuse node representa-
tions by contrastive learning. MMatch (Wang et al., 2022d)
achieves multi-view consistent classification among multi-
ple views. SMDDRL combines deep metric learning and
density clustering to generate pseudo labels for unlabeled
samples (Jia et al., 2020). Despite current methods improv-
ing SSMVC from diverse perspectives, all of them randomly
label samples with a given label ratio, resulting in unpromis-
ing and unstable results.

2.2. Active Learning

Active learning is proposed to reduce label costs and has
been studied recently. The main issue of active learning is
the design of the selector, which selects new data points to la-
bel from the unlabeled samples at each iteration (Zhou et al.,
2021; Kothawade et al., 2021). It can be roughly divided
into three types, including uncertainty (Nguyen et al., 2022),
model influence (Liu et al., 2021b), and the sample distribu-
tion methods (Liu et al., 2021c). Among them, the most pop-
ular one is the uncertainty method, which can be further cat-
egorized into marginal sampling(Ducoffe & Precioso, 2018),
best-versus-second best (BvSB) (Joshi et al., 2009), max-
imum confidence uncertainty (MCU) (Chen et al., 2018).
MBAL selects instances based on a global margin or a com-
bination of the margin of local classifiers (Roth & Small,
2006). MALF utilizes (AL-Sammarraie & Karaca, 2023)
BvSB to select valuable samples and conducts dimension
reduction as a pre-processing. MLAL designs a multi-label
technique to take advantage of the correlations of speed mea-
surements with MCU (Bellarmino et al., 2023). MVSS-AL
extends active learning in the multi-view domain to handle
hyperspectral image classification (Yu et al., 2022). M3L
focuses on the multi-label task of multi-view multi-instance
data (Yu et al., 2022) and selects the most informative bag-
label pair for the query.

Despite some active learning methods being combined with
multi-view applications, all of them fail to decouple and
utilize shared and specific information simultaneously. To
overcome this, we propose A Dynamic Multi-view Labeling
Strategy with Shared and Specific Information (DMVLS)
in the next section.

3. Methodology
The methodology of DMVLS is introduced in this section.
We first give the notation summary of our method, then
summarize the motivation and challenge. After that, the
design of our method is provided.

3.1. Notation Summary

In our paper, the multi-view data with n samples is denoted
as {Xv}Vv=1, where Xv ∈ Rdv×n, dv represents the feature
dimension of v-th view, and V is the view number. X ∈
Rd×n is the is the concatenated feature and d =

∑V
v=1 dv.

The labeling budget of each iteration is set as B, which
indicates that we select B samples each round to label. In
the initial case, we randomly select some samples XL

0 to
label and their label set is YL

0 . Then for the t-th round, we
select the valuable samples to label based on the labeled
sample set XL

0 ∪XL
1 ∪· · ·∪XL

t−1 and the unlabeled sample
set X−XL

0 ∪XL
1 ∪ · · · ∪XL

t−1.

3.2. Motivation

Most SSMVC methods adopt GCN to attain the predicted
labels, but they heavily rely on the input graph, and the
space complexity is high, which is unsuitable for large-scale
situations. Also, existing methods neglect SSI; some sam-
ples are more easily distinguished via shared or specific
information, so decoupling the SSI and utilizing them subse-
quently is essential. How to choose the informative samples
to annotate is another issue that needs to be addressed. The
most popular method is random selection, but it results in
unstable results, annotating valuable samples is beneficial
to reduce the label cost and improve the classification ac-
curacy. Therefore, it is necessary to propose a method to
attain decoupled and high-quality SSI and utilize them to
attain the classification results with valuable labeled data.

3.3. The extraction of SSI

Many multi-view methods attempt to attain high-quality SSI
to conduct the downstream tasks. However, the traditional
methods are trapped into a shallow model and fail to extract
adequate knowledge (Luo et al., 2018; Zhou et al., 2020),
while deep models fail to provide the representation power
with theoretical proof (Xia et al., 2021; Li et al., 2023;
2024). Fortunately, the auto-encoder (AE) could encode the
original feature into a low-dimensional latent space with the
representative capacity of neural networks and decode it to
fit the raw data. In our framework, we adopt it to extract
SSI among views.

V + 1 AEs with four layers are utilized to extract the SSI
from multi-view data. Considering that the obtained SSI
is utilized to conduct the downstream classification task
and reconstruct the raw features, we impose two layers
with shared parameters among the AEs to facilitate the
subsequent process. Let z0,vi = xv

i and z0,V+1
i = xi, for

the extraction of SSI, we attain it via the following formula:

z1,vi = σ
(
W1,v

ae z
0,v
i + b1,v

ae

)
, (1)

z2,vi = σ
(
W2

aez
1,v
i + b2

ae

)
, (2)
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where 1 ≤ v ≤ V + 1, W1,v
ae ∈ Rd1

ae×dv , W2
ae ∈

Rd2
ae×d1

ae , b1,v
ae ∈ Rd1

ae , and b2
ae ∈ Rd2

ae are the weights
and bias of corresponding layers, and σ(·) denotes the acti-
vation function.

Given that each view contains two pieces of information,
i.e., SSI, we first combine them to attain the comprehen-
sive knowledge of each view, then reconstruct the original
features as follows:

z3,vi = σ
(
W3

ae

(
z2,vi + z2,V+1

i

)
+ b3

ae

)
, (3)

z4,vi = σ
(
W4,v

ae z
3,v
i + b4,v

ae

)
. (4)

where 1 ≤ v ≤ V .

To ensure the quality of SSI, we minimize the reconstruction
loss as:

Lre =

V∑
v=1

n∑
i=1

∥∥∥xv
i − z4,vi

∥∥∥2
2
. (5)

3.4. The decoupling of SSI

Most existing multi-view learning methods attempt to attain
SSI, but they frequently neglect to decouple them, which
inevitably affects the subsequent utilization of SSI (Luo
et al., 2018). Inspired by (Jia et al., 2020), we develop a
view discriminator to separate them, and the input of the
view discriminator is

{
Z2,v

}V+1

v=1
.

Considering that the specific information is extracted from
an individual view, it ought to be irrelevant to other views.
Given a view classifier, it is expected to classify the spe-
cific information into the view to which it belongs. On the
contrary, the shared information is obtained from all views,
the view classifier tends to generate an indiscriminate result.
We leverage a 3-layer network to design the view classi-
fier. For the extracted SSI, we attain the result of the view
discriminator as

rl,vi = σ
(
Wl

vcr
l−1,v
i + bl

vc

)
, (6)

where 1 ≤ v ≤ V + 1, 1 ≤ l ≤ 3, r0,vi = z2,vi .

We adopt Kullback-Leibler divergence DKL to measure the
loss of view classification. For the view-specific informa-
tion, the loss is:

Lvc1 =

V∑
v=1

n∑
i=1

DKL (qv
i ∥pv

i ) , (7)

where qv
i is a one-hot vector and the v-th element equal to 1

and other elements are zero, pv
i = softmax(r3,vi ).

The view discrimination loss of shared information is calcu-
lated via:

Lvc2 =

n∑
i=1

DKL

(
qV+1
i ∥pV+1

i

)
, (8)

where qV+1
i is a V -dimensional vector and each element is

1/V .

The total loss of view discriminator is:

Lvc = Lvc1 + Lvc2. (9)

3.5. The utilization of SSI

After attaining the disassociated SSI, how to utilize it to
conduct the subsequent semi-supervised classification task
is significant. In a multi-view classification task, some
samples might be easier to classify via specific knowledge or
the opposite. Unlike current methods that concatenate SSI to
train the classifier, we leverage two pieces of information to
train the classifiers separately, which benefits the subsequent
sample selection in the next section.

Two three-layer classifiers are adopted to train the SSI of la-
beled data individually, and each is equipped with the same
dimension in each layer. In Section 3.3, we add SSI to attain
comprehensive knowledge for each view. Therefore, for the
classification of the specific information, we first sum the
specific information in each view to attain a comprehensive
understanding as:

Zspe =

V∑
v=1

Z2,v. (10)

Then, we obtain the classification result concerning specific
information via:

Hl
spe = σ

(
Wl

speH
l−1
spe + bl

spe

)
, (11)

where H0
spe = Zspe, W1

spe ∈ Rd1
spe×d2

ae .

For the shared information, we furnish the classifier with
the same structure of specific information to obtain H3

share.

Then, the classification loss is calculated as follows:

Lclass1 =

nl∑
i=1

DKL (yi∥p
spe
i ) , (12)

and

Lclass2 =

nl∑
i=1

DKL

(
yi∥pshare

i

)
, (13)

where nl denotes the number of existing labeled data, yi rep-
resents the label indicator matrix, pspe

i = softmax(H3
spe),

pshare
i = softmax(H3

share).

The final classification loss is the sum of them:

Lclass = Lclass1 + Lclass2. (14)
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3.6. The Loss Function

In summary, the total loss of our framework comprises three
parts: the reconstruction loss, view discrimination loss, and
the classification loss. The quality of the extracted SSI is
ensured via reconstruction loss, and the high-quality SSI
is decoupled and utilized separately via view discrimina-
tion loss and classification loss. The loss function of our
proposed method is as follows:

L = Lre + λ1Lvc + λ2Lclass. (15)

where λ1 and λ2 are the hyper-parameters to balance the
losses.

3.7. Sample Labeling with Uncertainty

Sample labeling is the most primary and fundamental step of
semi-supervised learning. However, current SSMVC meth-
ods often neglect the significance of sample labeling and
randomly select samples to label, resulting in unpromising
and unstable results (Zhang et al., 2020; Wang et al., 2022d).
Inspired by active learning (AL), we interactively annotate
highly uncertain samples from the unlabeled sample set
until the classification performance is promising.

Given that two classifiers are leveraged to classify the sam-
ples, how to evaluate the uncertainty of each sample is
different from the existing AL methods. In our scenario,
we first train the classifiers via Eq. (15) and utilize it to
predict the labels of the unlabeled data. Suppose a sample
is challenging to predict via specific information and shared
knowledge. In that case, it is regarded as a valuable sample
for clarifying the decision boundary, and we annotate it and
put it into the labeled set. The mathematical formulation is
written as:

si = 1− max
1≤k≤K

pspe
i ∗ max

1≤k≤K
pshare
i . (16)

where si is the score of i-th sample, and K denotes the
number of label categories.

After training classifiers with existing labels, we score the
unlabeled samples via Eq.(16). Samples with higher scores
are more uncertain, and we label the top B samples.

Conversely, a sample with the consistent predicted label in
two classifiers of high confidence is regarded as a reliable
sample. Therefore, we generate the pseudo label and add it
to the labeled sample set with its pseudo label.

We alternately train the model and utilize it to choose sam-
ples to label to boost the classification performance. The
whole process of our proposed method is summarized in
Algorithm 1.

Additionally, compared with existing semi-supervised multi-
view classification methods, our proposed method possesses
the following merits:

Algorithm 1 A Dynamic Multi-view Labeling Strategy with
Shared and Specific Information.

Input: Multi-view dataset {Xv}Vv=1, initial labeled set Xl
0,

the maximize labeled number nmax, labeled number of
each round B, hyper-parameters λ1, λ2, learning rate
α, epoch number M .

Output: The predicted labels of the unlabeled sample set.
1: Initialize the network parameters Θ in the AEs, view

discriminator, and the classifiers, T = nmax

B .
2: for t = 1 to T do
3: for m = 1 to M do
4: Obtain the outputs Z4,v , P v , P spe, P share.
5: Compute the loss value via Eq. (5), (9), (14), and

(15).
6: Update Θ via back propagation.
7: end for
8: Obtain the output pspe

i , pshare
i of unlabeled samples.

9: Calculate the scores of unlabeled samples via Eq.
(16), then label the top B samples, add them to the
labeled sample set Xl

t.
10: Generate the pseudo labels of high confidence and

consistent results in the two classifiers, then add them
to the labeled sample set Xl

t.
11: end for
12: The final predicted label of the unlabeled sample i is

argmax1≤k≤K pki . (pi = max
(
pspe
i ,pshare

i

)
).

• Sample selection. Unlike existing methods that ran-
domly select samples to annotate, we interactively train
the model with existing labels and utilize the trained
model to label the samples of low confidence.

• Scalability. Compared with the graph-based methods,
our method is under an auto-encoder framework; the
space complexity is linear, respecting sample number,
which is more suitable for large-scale data.

• High-quality representation. We extract the SSI in a la-
tent space and reconstruct the raw features to ensure its
quality with the auto-encoder. Meanwhile, a view dis-
criminator is leveraged to decouple SSI for subsequent
utilization.

• Reliability. Given that in multi-view classification,
some samples are more accessible to classify via shared
information or the opposite. We utilize decoupled SSI
to train the classifiers separately, then leverage them
to select the unreliable samples to label and reliable
instances to generate the pseudo labels.

4. Experiments
In this section, we first conduct comprehensive experiments
on six widespread datasets to show the superiority of our pro-
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posed method over several state-of-the-art semi-supervised
multi-view classification methods. After that, we record the
classification performance changes with the selected sample
number. Then, we conduct an ablation study to demonstrate
the effectiveness of critical components of our framework.
After that, we visualize the learned representation.

4.1. Experimental Setup

4.1.1. DATASETS

Six widespread datasets are used in our experiments, in-
cluding Handwritten, BDGP, Cora, CiteSeer, STL10, and
YTB10. The number of samples ranges from 2000 to 38654.
The detailed information is summarized in Table 1. The
source of these datasets is reported in the Appendix A.1
owing to the limited space.

Table 1. Datasets used in our experiments.

Dataset Samples Views Categories
Handwritten 2000 2 10

BDGP 2500 3 5
Cora 2708 4 7

CiteSeer 3312 4 6
STL10 13000 4 9
YTB10 38654 4 10

4.1.2. COMPARED METHODS

To demonstrate the superiority of our proposed method,
we conduct comprehensive experiments to compare our
DMVLS with various baselines, including MVAR (Tao et al.,
2017), Co-GCN (Li et al., 2020), ERL-MVSC (Huang et al.,
2021), DSRL (Wang et al., 2022b), IMvGCN(Wu et al.,
2023a), the details of the compared algorithms are given in
the Appendix A.2 because of the limited space.

4.1.3. SETTINGS

In our implementation, we fix the hyper-parameters λ1 = 1,
λ2 = 25, and the learning rate α equals to 10−3. Initially,
we randomly select 0.05n samples to label as cold start like
existing semi-supervised classification methods. Addition-
ally, we conduct the process ten times and report the average
values to eliminate the randomness. Then, B = 0.025n sam-
ples are annotated at each round. The training process ends
when half of the samples are labeled. Additionally, tanh(·)
is adopted as the activation function for all datasets. Adam
optimizer is applied to update the network parameters Θ.

For the compared methods, all baselines’ parameter settings
are tuned by their papers’ suggestions. We randomly select
the labeled samples ten times for each label ratio and re-

port the average results and standard deviation (std). The
accuracy (ACC) is adopted as the measured metric in our
experiments.

All the experiments are conducted on a machine with Intel
Core i9-10850K CPU @ 3.60GHz, 64GB RAM, and Nvidia
RTX 3090 GPU.

4.2. Results

To show the superiority of our proposed method, we record
the classification results under different label ratios on six
datasets in Table 2. From the table, we have the following
observations:

• Our proposed DMVLS is superior to existing methods
on all datasets under different label ratios. For instance,
it outperforms the second-best method over 1.60%,
15.12%, 13.98%, 20.36%, 18.15%, and 0.08% when
half of the samples are labeled. The improvements in
other label ratios are also promising, which shows the
effectiveness of DMVLS.

• Compared with existing methods, our method is more
suitable for large-scale data. Most Graph-based meth-
ods fail to handle extensive data since they utilize label
propagation with the graph structure, which undergoes
quadratic space complexity respecting the sample num-
ber. On the contrary, our proposed method adopts the
AE structure, and the complexity is linear to the sample
number.

• Our proposed method is more stable than existing meth-
ods. Compared with the five competitors, the std results
of our method are smaller. The reason is that the perfor-
mance is guaranteed since we select valuable samples
to label, while the compared methods annotate samples
randomly, and the results fluctuate a lot.

4.3. The Effect of Sample Selection

To analyze the effect of the label strategy of our method, we
plot the classification performance varying with label ratios
on six datasets in Fig. 2. Additionally, we document more
detailed results in the Appendix A.3 due to the limited space.
The figure shows that the classification results obviously
increase with the growing label ratio, while the performance
of the compared ones does not grow significantly. Due
to the sample selection strategy, our method selects the
uncertain samples to label and clarify the decision boundary.
Then, we retrain the model to improve the classification
performance. On the contrary, existing semi-supervised
multi-view classification methods fail to choose valuable
samples to label and are sensitive to the chosen labeled
samples. For instance, MVAR attains worse performance
with larger label ratios on Citeseer, and the performance of
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Table 2. Empirical evaluation and comparison of our method with five compared methods on six benchmark datasets in terms of ACC.
Note that ’-’ indicates the method fails to run smoothly due to the out-of-memory error, and the best results are marked in bold.

Ratio Methods Handwritten BDGP Cora CiteSeer STL10 YTB10
MVAR 48.14±2.06 79.41±1.93 59.92±1.15 64.22±1.15 56.88±0.66 -

Co-GCN 87.06±3.46 74.83±0.40 50.16±1.24 60.41±0.81 29.99±1.05 99.54±1.12
ERL-MVSC 95.48±0.77 37.24±1.78 75.59±1.98 62.57±1.69 58.23±0.64 -

DSRL 97.06±0.49 18.77±1.48 66.53±2.12 50.44±2.66 47.99±0.22 -
IMvGCN 93.89±0.56 71.01±0.69 77.74±0.76 71.07±0.71 60.12±0.32 99.61±0.44

20%

Ours 98.35±0.42 91.38±0.19 82.36±0.97 72.99±0.99 54.46±0.87 100.00±0.00
MVAR 35.21±1.22 80.74±0.73 63.45±0.94 63.35±0.94 60.59±0.40 -

Co-GCN 89.81±2.58 71.13±3.41 46.96±4.16 62.43±0.30 33.07±2.14 99.77±0.10
ERL-MVSC 97.00±0.50 40.79±2.21 81.70±0.65 66.81±1.18 61.69±0.39 -

DSRL 98.21±0.15 20.02±0.36 71.75±0.02 52.72±2.55 49.87±0.34 -
IMvGCN 94.39±0.44 69.90±1.62 77.99±0.59 70.97±1.18 60.59±0.19 99.92±0.05

30%

Ours 99.48±0.32 95.67±0.25 88.58±0.58 78.68±0.87 63.00±0.44 100.00±0.00
MVAR 71.92±1.42 82.77±0.34 67.06±1.32 62.73±1.32 61.79±0.54 -

Co-GCN 88.86±3.80 73.23±2.80 49.19±1.39 63.05±0.42 31.42±0.74 99.84±0.01
ERL-MVSC 97.82±0.37 44.91±3.42 83.30±0.71 70.39±0.78 63.14±0.38 -

DSRL 98.42±0.41 20.04±0.33 70.77±2.48 54.83±2.85 51.32±0.10 -
IMvGCN 94.10±0.63 70.19±2.18 78.17±0.53 71.69±0.87 60.55±0.14 99.72±0.50

40%

Ours 99.94±0.08 96.88±0.19 92.86±1.15 82.51±0.35 70.41±0.24 100.00±0.00
MVAR 82.16±1.24 84.67±1.54 70.52±1.31 61.45±1.31 62.88±0.79 -

Co-GCN 89.33±2.38 74.76±1.27 48.40±1.10 63.63±1.10 31.48±0.75 99.86±0.02
ERL-MVSC 97.98±0.44 45.70±1.59 84.42±1.05 72.26±1.47 64.01±0.43 -

DSRL 98.40±0.29 20.08±0.75 74.37±0.58 55.90±2.47 52.54±0.35 -
IMvGCN 93.84±0.78 69.81±1.21 78.67±0.32 71.97±0.76 60.59±0.23 99.92±0.07

50%

Ours 99.97±0.05 97.47±0.24 96.22±0.63 86.97±0.78 75.63±0.37 100.00±0.00

Co-GCN and IMvGCN almost stays unchanged on different
label ratios on all datasets.

4.4. Ablation Study

In our framework, we first decouple the SSI via a view dis-
criminator and then utilize it to conduct the subsequent clas-
sification task with two individual classifiers. Meanwhile,
the sample selection strategy is beneficial for choosing valu-
able samples to label and clarifying the decision boundary.
To investigate the effectiveness of the main components of
our framework, we conduct an ablation study and compare
our method with four methods when half of the samples
are labeled, and the results on other label ratios are given
in Appendix A.6. By removing the loss Lvc, Lclass1, and
Lclass2 separately, we study the validity of the view discrim-
inator and the utilization of SSI. Also, we randomly select
samples for each label ratio to annotate instead of labeling
samples with a specific strategy to study the effectiveness of
our label strategy. The results are reported in Table 3. From
the table, it is seen that the performance diminishes when
each element of our framework is removed, which shows
the effectiveness of our framework. Furthermore, it is seen
that some samples might be easier to classify via specific

knowledge or the opposite in semi-supervised multi-view
classification. For instance, the method merely utilizing
shared information performs better on STL10 but works
worse on CiteSeer than the one just leveraging specific in-
formation. Therefore, the attempt to decouple the SSI and
exploit two pieces of information respectively is necessary
in semi-supervised multi-view classification.

4.5. Visualization

In order to intuitively demonstrate the superiority of the rep-
resentation learning of our proposed DMVLS, we visualize
the learned representations via the t-SNE algorithm (van der
Maaten & Hinton, 2008) when half of the samples are la-
beled on Handwritten, BDGP, Cora, and YTB10, and the
results are plotted in Fig. 3. From the figure, we observe that
our algorithm tends to generate separable representations on
these datasets, and the learned representation is favourable
to the subsequent classification process, ensuring the model
assigns accurate class labels. We attribute the success of
representation learning to the extraction and decoupling of
SSI with AE and the view discriminator.
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Figure 2. The classification performance of our method and the compared algorithms varies with different label ratios on six benchmark
datasets.

Table 3. The ablation study of our method in terms of ACC when half of the samples are labeled. The best results are marked in bold.

Ratio Methods Handwritten BDGP Cora CiteSeer STL10 YTB10

50%

Remove Lvc 99.97±0.05 97.00±0.36 94.83±0.50 84.77±1.64 74.77±0.78 100.00±0.00
Remove Lclass1 99.87±0.05 95.87±0.34 95.65±0.55 73.62±13.01 73.54±2.04 100.00±0.00
Remove Lclass2 99.87±0.12 96.96±0.34 95.62±0.34 86.09±0.21 64.65±7.33 100.00±0.00

Random selection 96.42±1.02 87.60±0.38 82.01±0.55 69.57±1.61 62.79±0.69 99.99±0.01
Ours 99.97±0.05 97.47±0.24 96.22±0.63 86.97±0.78 75.63±0.37 100.00±0.00

Handwritten BDGP

Cora YTB10

Figure 3. T-SNE visualization of our method on four datasets.

5. Conclusion
This paper proposes a Dynamic Multi-view Labeling Strat-
egy with Shared and Specific Information method to label
multi-view instances. Precisely, we extract and decouple the
shared and specific information of multi-view data via the
auto-encoder and view discriminator. Then, the two pieces
of information are utilized to train the classifiers separately.
We select the samples of low classification confidence and
label them in high priorities. We interactively select samples
to label and retrain the model with the newly generated la-
bels to boost the classification performance. Comprehensive
experiments demonstrate the superiority of our algorithm
and the effectiveness of the critical components. In the
future, we aim to study how to choose the initial training
samples as a warm start.
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A. Appendix
A.1. Datasets

We conduct our experiments on the widely used datasets, including Handwritten1, BDGP2, Cora3, CiteSeer4, STL105, and
YTB10 6. Specifically, Handwritten is an image dataset containing handwritten digits. BDGP dataset consists of images and
text modalities. Cora and Citeseer are citation network datasets. STL10 and YTB10 are face image datasets.

A.2. The Compared Methods

The source code and the details of the compared methods are summarized as follows:

1. Scalable multi-view semi-supervised classification via adaptive regression (MVAR)7. It proposes a regression-based
loss functions with ℓ2,1 matrix norm for each view and the combine the view loss with a linear weighted combination.

2. Co-GCN for Multi-View Semi-Supervised Learning (Co-GCN)8. It adaptively exploits the graph information from the
multiple views with combined Laplacians and utilizes GCN to conduct classification.

3. Embedding Regularizer Learning for Multi-View Semi-Supervised Classification (ERL-MVSC)9. ERL-MVSC inte-
grates diversity, sparsity, and consensus to manipulate multi-view data dexterously.

4. Learning Deep Sparse Regularizers With Applications to Multi-View Clustering and Semi-Supervised Classification
(DSRL)10. It proposes a deep sparse regularizer learning model that learns data-driven sparse regularizers adaptively.

5. Interpretable Graph Convolutional Network for Multi-View Semi-Supervised Learning (IMvGCN)11. It equips GCN
with a deep layer of interpretability.

A.3. The Effect of Sample Selection

To further investigate the effect of the sample selection strategy, we document the performance changes with each label
ratio compared with the random selection method in Fig. 4. From the figure, it is observed that the performance of our
proposed method consistently improves when the label ratio gets larger, and it outperforms the random selection method on
all datasets. Therefore, the sample selection strategy is better than the random selection.

A.4. Complexity Analysis

To show the time efficiency of our proposed method, we report the time complexity of our method and the competitors in
Table 4. From the table, it is obtained that our method demonstrates a great advantage over the compared ones in terms of
time complexity.

A.5. Convergence Analysis

To investigate the convergence of our proposed method, we conduct the convergence analysis in this section. The loss value
varying with epochs is plotted in Fig. 5. From the figure, it is obtained that the loss gradually decreases and converges to a
value, which verifies the convergence of our method experimentally.

1https://archive.ics.uci.edu/ml/datasets/Multiple+Features
2https://www.fruitfly.org/
3http://linqs-data.soe.ucsc.edu/public/lbc/
4https://linqs.org/datasets/#citeseer-doc-classification
5https://cs.stanford.edu/˜acoates/stl10
6http://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
7https://github.com/taohong08
8https://github.com/cheunglei/AAAI-20-Co-GCN/blob/master/Co-GCN
9https://github.com/huangsuj/ERL-MVSC

10https://github.com/chenzl23/DSRL
11https://github.com/ZhihaoWu99/IMvGCN
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Figure 4. The classification performance varies with different label ratios on six benchmark datasets.

Table 4. Time complexity analysis of our method and the competitors.

Method Time Complexity
MVAR O

(
n2

)
Co-GCN O

(
n3

)
ERL-MVSC O

(
n2

)
DSRL O

(
n2

)
IMvGCN O

(
n2

)
Ours O (n)
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Figure 5. Convergence analysis of our method on six benchmark datasets.

A.6. Ablation Study

We report the results of our ablation study with different label ratios in Table 5. From the table, we can conclude that the
performance drops when any of the components of our framework is removed, showing the effectiveness of the critical
component of our method.

A.7. Results on larger data

We do not report the results on larger datasets because the compared methods suffer from an out-of-memory error. In the
appendix, we conduct experiments to show the results of them. We conduct experiments on CIFAR1012, MNIST13, and
YTB5014. Specifically, CIFAR10 is an image dataset with 4 views, it includes 60000 samples from 9 clusters. MNIST is an
image dataset with 4 views. It comprises 70000 samples from 9 clusters. YTB50 is an image dataset containing 4 views. It
has 126054 points from 50 clusters. The results are shown in Table 6.

A.8. Limitations and Future Work

We randomly label some samples and train the model as a cold start. Then, we interactively select samples to label under
our selection strategy and retrain the model with existing labels. In the future, we plan to investigate how to select the initial
training samples. Also, in our paper, we select 2.5% samples to label at each round. The number of samples to label is worth
studying. Additionally, the cost between the label cost and classification loss could be balanced via a specific strategy. We
could design a strategy to balance them in the future.

12https://www.cs.toronto.edu/˜kriz/cifar.html
13http://yann.lecun.com/exdb/mnist/
14http://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+Games+Dataset
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Table 5. The ablation study of our method in terms of ACC. The best results are marked in bold.

Ratio Methods Handwritten BDGP Cora CiteSeer STL10 YTB10

20%

Remove Lvc 97.83±0.11 91.08±0.32 82.81±0.63 70.2±0.63 54.32±2.58 100.00±0.00
Remove Lclass1 95.52±4.04 91.08±0.48 80.81±2.71 58.56±11.73 51.90±5.07 100.00±0.00
Remove Lclass2 92.25±9.15 90.85±1.65 81.39±1.04 71.24±0.81 44.73±6.60 100.00±0.00

Random selection 93.87±1.18 84.65±0.53 76.98±1.44 65.39±1.13 52.31±3.56 99.98±0.01
Ours 98.35±0.42 91.38±0.19 82.36±0.97 72.99±0.99 54.46±0.87 100.00±0.00

30%

Remove Lvc 99.21±0.21 95.42±0.19 88.13±0.70 76.84±0.62 62.68±1.88 100.00±0.00
Remove Lclass1 99.35±0.34 95.18±0.11 87.83±2.17 63.18±13.05 59.13±4.77 100.00±0.00
Remove Lclass2 97.52±3.25 94.99±0.66 88.27±0.04 77.61±0.65 51.25±6.44 100.00±0.00

Random selection 95.21±0.09 85.72±0.18 79.12±0.58 68.06±1.17 55.62±3.51 99.98±0.01
Ours 99.48±0.32 95.67±0.25 88.58±0.58 78.68±0.87 63.00±0.44 100.00±0.00

40%

Remove Lvc 99.92±0.07 96.44±0.74 92.56±0.16 81.23±1.12 70.24±1.26 100.00±0.00
Remove Lclass1 99.78±0.10 95.96±0.23 92.27±1.27 68.41±13.35 67.56±2.76 100.00±0.00
Remove Lclass2 99.72±0.22 96.75±0.09 92.54±0.71 82.31±0.40 57.63±7.54 100.00±0.00

Random selection 95.26±0.41 86.79±0.18 80.76±1.11 68.05±0.72 61.10±1.00 99.98±0.01
Ours 99.94±0.08 96.88±0.19 92.86±1.15 82.51±0.35 70.41±0.24 100.00±0.00

50%

Remove Lvc 99.97±0.05 97.00±0.36 94.83±0.50 84.77±1.64 74.77±0.78 100.00±0.00
Remove Lclass1 99.87±0.05 95.87±0.34 95.65±0.55 73.62±13.01 73.54±2.04 100.00±0.00
Remove Lclass2 99.87±0.12 96.96±0.34 95.62±0.34 86.09±0.21 64.65±7.33 100.00±0.00

Random selection 96.42±1.02 87.60±0.38 82.01±0.55 69.57±1.61 62.79±0.69 99.99±0.01
Ours 99.97±0.05 97.47±0.24 96.22±0.63 86.97±0.78 75.63±0.37 100.00±0.00

Table 6. The ACC results of our method on three large-scale datasets.

Datasets 20% 30% 40% 50%
CIFAR10 61.40±0.88 66.45±0.56 71.04±1.12 75.55±0.77
MNIST 99.85±0.08 99.96±0.01 99.97±0.00 99.98±0.00
YTB50 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
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