
EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

Shengjie Wang * 1 2 3 Shaohuai Liu * 1 4 Weirui Ye * 1 2 3 Jiacheng You 1 Yang Gao† 1 2 3

Abstract
Sample efficiency remains a crucial challenge in
applying Reinforcement Learning (RL) to real-
world tasks. While recent algorithms have made
significant strides in improving sample efficiency,
none have achieved consistently superior perfor-
mance across diverse domains. In this paper, we
introduce EfficientZero V2, a general framework
designed for sample-efficient RL algorithms. We
have expanded the performance of EfficientZero
to multiple domains, encompassing both contin-
uous and discrete actions, as well as visual and
low-dimensional inputs. With a series of improve-
ments we propose, EfficientZero V2 outperforms
the current state-of-the-art (SOTA) by a signifi-
cant margin in diverse tasks under the limited data
setting. EfficientZero V2 exhibits a notable ad-
vancement over the prevailing general algorithm,
DreamerV3, achieving superior outcomes in 50
of 66 evaluated tasks across diverse benchmarks,
such as Atari 100k, Proprio Control, and Vision
Control.

1. Introduction
Reinforcement learning (RL) has empowered computers to
master diverse tasks, such as Go (Silver et al., 2018), video
games (Ye et al., 2021), and robotics control (Hwangbo et al.,
2019; Andrychowicz et al., 2020; Akkaya et al., 2019). How-
ever, these algorithms require extensive interactions with
their environments, leading to significantly increased time
and computational costs (Petrenko et al., 2023; Chen et al.,
2022). For example, an RL-based controller requires nearly
100M interactions to reorient complex and diverse object
shapes using vision input (Chen et al., 2023). Furthermore,
building certain simulators for daily housework could be

*Equal contribution 1Institute for Interdisciplinary Information
Sciences, Tsinghua University, Beijing, China 2Shanghai Qi Zhi
Institute, Shanghai, China 3Shanghai Artificial Intelligence Labo-
ratory, Shanghai, China 4Texas A&M University. Correspondence
to: Yang Gao <gaoyangiiis@mail.tsinghua.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Low-dim 
Observation

High-dim 
Observation

Discrete 
Control

Continuous  
Control

EfficientZero V2

Dreamer V3Dense 
Reward

Sparse 
Reward

SOTA in each domain

Figure 1. Comparison between EfficientZero V2, DreamerV3 and
other SOTAs in each domain. We evaluate them under the Atari
100k, DMControl Proprio, and DMControl Vision benchmarks.
We then set the performance of the previous SOTA as 1, allowing
us to derive normalized mean scores for both EfficientZero V2 and
Dreamer V3. EfficientZero V2 surpasses or closely matches the
previous SOTA in each domain.

challenging. If gathering data in real-world settings, the
process tends to be time-consuming and expensive. Conse-
quently, it is crucial to explore and develop RL algorithms
to achieve high-level performance with limited data.

Previous studies have introduced a range of algorithms
aimed at enhancing sample efficiency, including TD-MPC
series (Hansen et al., 2022; 2023), EfficientZero (Ye et al.,
2021), and the Dreamer series (Hafner et al., 2019; 2021;
2023). Despite these advancements, these algorithms do not
consistently attain superior sample efficiency across multi-
ple domains. For example, TD-MPC (Hansen et al., 2022)
leverages Model Predictive Path Integral (MPPI) (Rubin-
stein, 1997) control for planning. The huge computational
burden in planning hinders its application in vision-based
RL. EfficientZero (Ye et al., 2021) employs the Monte-
Carlo Tree Search (MCTS) algorithm, which masters dis-
crete control. However, EfficientZero is unable to handle
high-dimensional action spaces, especially in continuous
control scenarios. DreamerV3 (Hafner et al., 2023) is a
universal algorithm that extends to diverse tasks in a wide
range of domains. However, as shown in Fig. 1, DreamerV3
still has noticeable performance gaps to the state-of-the-art
(SOTA) algorithms in each domain. Thus, there remains an
open question on how to achieve both high performance and
sample efficiency across various domains at the same time.

1



EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

In this paper, we propose EfficientZero-v2 (EZ-V2), which
can master tasks across various domains with superior sam-
ple efficiency. EZ-V2 successfully extends EfficientZero’s
strong performance to continuous control, demonstrating
strong adaptability for diverse control scenarios. The main
contributions of this work are as follows.

• We propose a general framework for sample-efficient
RL. Specifically, it achieves consistent sample effi-
ciency for discrete and continuous control, as well as
visual and low-dimensional inputs.

• We evaluate our method in multiple benchmarks, out-
performing the previous SOTA algorithms under lim-
ited data. As shown in Fig.1, the performance of EZ-
V2 exceeds DreamerV3, a universal algorithm, by a
large margin covering multiple domains with a data
budget of 50k to 200k interactions.

• We design two key algorithmic enhancements: a
sampled-based tree search for action planning, ensur-
ing policy improvement in continuous action spaces,
and a search-based value estimation strategy to more
efficiently utilize previously gathered data and mitigate
off-policy issues.

2. Related work
2.1. Sample Efficient RL

Sample efficiency in RL algorithms remains an essential di-
rection for research. Inspired by advances in self-supervised
learning, many RL algorithms now employ this approach
to enhance the learning of representations from image in-
puts. For instance, CURL (Laskin et al., 2020) employs
contrastive learning on hidden states to augment the effi-
cacy of fundamental RL algorithms in image-based tasks.
Similarly, SPR (Schwarzer et al., 2020) innovates with a
temporal consistency loss combined with data augmenta-
tions, resulting in enhanced performance.

Furthermore, Model-Based Reinforcement Learning
(MBRL) has demonstrated high sample efficiency and
notable performance in both discrete and continuous control
domains. SimPLE (Kaiser et al., 2019), by modeling the
environment, predicts future trajectories, thereby achieving
commendable performance in Atari games with limited
data. TD-MPC (Hansen et al., 2022) utilizes data-driven
Model Predictive Control (MPC) (Rubinstein, 1997) with
a latent dynamics model and a terminal value function,
optimizing trajectories through short-term planning and
estimating long-term returns. The subsequent work,
TD-MPC2 (Hansen et al., 2023), excels in multi-task
environments. The TD-MPC series employs MPC to
generate imagined latent states for action planning. In
contrast, our method employs a more efficient action

planning module called Sampling-based Gumbel Search,
leading to lower computational costs. Dreamer (Hafner
et al., 2019), a reinforcement learning agent, develops
behaviors from predictions within a compact latent space
of a world model. Its latest iteration, Dreamer V3 (Hafner
et al., 2023), is a general algorithm that leverages world
models and surpasses previous methods across a wide range
of domains. It showcases its sample efficiency by learning
online and directly in real-world settings (Wu et al., 2022).
Although long-horizon planning in Dreamer V3 (Hafner
et al., 2023) enhances the quality of the collected data, an
imagination horizon of H = 15 may be excessively long,
potentially leading to an accumulation of model errors.

2.2. MCTS-based Work

AlphaGo (Silver et al., 2016) is the first algorithm to defeat
a professional human player in the game of Go, utilizing
Monte-Carlo Tree Search (MCTS) (Coulom, 2006) along
with deep neural networks. AlphaZero (Silver et al., 2017)
extends this approach to additional board games such as
Chess and Shogi. MuZero (Schrittwieser et al., 2020), aspir-
ing to master complex games without prior knowledge of
their rules, learns to predict game dynamics by training an
environment model. Building upon MuZero, EfficientZero
(Ye et al., 2021) achieves superhuman performance in Atari
games with only two hours of real-time gameplay, attributed
to the self-supervision of the environment model. How-
ever, applying MuZero to tasks with large action spaces
significantly increases the computational cost of MCTS due
to the growing number of simulations. Gumbel MuZero
(Danihelka et al., 2021) effectively diminishes the complex-
ity of search within vast action spaces by implementing
Gumbel search, although it does not extend to continuous
action domains. Sample MuZero (Hubert et al., 2021) pro-
poses a sampling-based MCTS that contemplates subsets
of sampled actions, thus adapting the MuZero framework
for continuous control. Recent developments have also seen
MuZero applied in stochastic environments (Antonoglou
et al., 2021) and its value learning augmented by path con-
sistency (PC) optimality regularization (Zhao et al., 2022).
Our method notably enhances Gumbel search for contin-
uous control and requires only half the number of search
simulations compared to Sample MuZero (Hubert et al.,
2021).

3. Preliminary
3.1. Reinforcement Learning

Reinforcement Learning (RL) can be formulated as a
Markov Decision Process (MDP) (Bellman, 1957). An
MDP in this context is formalized as a tuple (S,A, T,R, γ),
where s ∈ S represents states, a ∈ A denotes actions,
T : S ×A → S is the transition function, R : S ×A → R

2



EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

𝑠!

𝑠!"##

𝑠!"#$

𝑠!"#%

.

.

.

𝑎!" … 𝑎!# 𝑠!"#&

Simulation

𝑠!"##

𝑠!"#$

𝑠!"#'

.

.

.

SH Phase   

𝑎!#

𝑎!#

𝑎!$

𝑎!&

𝑎!%

𝑎!$

𝑎!'

iteration

𝑎!∗
𝑠!"#∗

𝑣!

𝑝!

𝑎! 𝑎!$"

𝑠! �̂�!"# �̂�!"$𝒢

𝑟! 𝑟!$"

𝑢!

𝑠!"#

Sampling-based
Gumbel Search 

𝑎%∗
𝑧!𝑣!

𝑝! 𝜋!

A B

𝑧! 𝜋!

𝑧!

𝜋!
Improved 
Policy

Search-based 
Value

Sequential Halving (SH)

Sampling

ℋ 𝒜

ℋ

𝒜

𝒢

ℋ

ℋ

Training Objective 

Final Action

Consistency Loss

Supervised Loss

𝑢!$"

Sampling-based Gumbel Search 

Phase 1

TargetPredict

𝑠!"#�̂�!"#
Next 
State

𝑢𝑡𝑟𝑡Reward

𝑧𝑡𝑣𝑡Value

𝜋𝑡𝑝𝑡Policy

Figure 2. Framework of EZ-V2. (A) How EZ-V2 trains its model. The representation H takes observations as inputs and outputs the state.
The dynamic model G predicts the next state and reward based on the current state and action. Sampling-based Gumbel search outputs the
target policy πt and target value zt. (B): How the sampling-based Gumbel search uses the model to plan. The process contains action
sampling and selection. The iterative action selection outputs the recommended action a∗

S , search-based value target (target value), and
improved policy (target policy).

is the reward function associated with a particular task,
and γ is the discount factor. The goal in RL is to find
an optimal policy π∗ that maximizes the expected sum
of discounted rewards over time, formally expressed as
maxπ E [

∑∞
t=0 γ

tR(st, at)], where at is an action taken ac-
cording to the policy π at state st. In this work, to improve
sample efficiency, we learn a model of the environment dur-
ing training. Meanwhile, planning with the learned model
makes action selection more efficient.

3.2. Gumbel-Top-k Trick

The Gumbel-Top-k trick (Kool et al., 2019) can choose the
top n actions without replacement in a categorical distribu-
tion π. Specifically, the action sample A can be sampled by
the Gumbel-Max trick, which is defined as follows.(

g ∈ Rk
)
∼ Gumbel(0)

A = argmax
a

(g(a) + logits(a))
(1)

where logits(a) is the logit of the action a, and g is a vector
of k Gumbel variables. Hereafter, we can sample n actions
without replacement.

A1 = argmax
a

(g(a) + logits(a))

...
An = argmax

a/∈{A1,...,An−1}
(g(a) + logits(a)).

(2)

Furthermore, we denote the set of n top actions by
argtop(g + logits, n) = A1, A2, ..., An.

3.3. EfficientZero

3.3.1. NEWTORK STRUCTURE

EfficientZero algorithm learns a predictive model in a latent
space and then performs planning over actions using this
model. Specifically, the components of EfficientZero consist
of a representation function, a dynamic function, a policy
function, and a value function, which are formulated as
follows.

• Representation Function: H : st = H(ot)

• Dynamic Function: G : ŝt+1, rt = G(st, at)

• Policy Function: P : pt = P(st)

• Value Function : V : vt = V(st)

Among these components, ot represents the current observa-
tion, st is the current latent state, and ŝt+1 is the predicted
next state. The representation function learns a compact
state representation of the input ot. The dynamic function
predicts the next state ŝt+1 and the reward rt. The policy
function outputs the current policy pt, and the value func-
tion provides the value estimation vt at the current state.
All components are implemented as neural networks. EZ-
V2 uses a similar network structure (see Figure 2), with
details of the architecture for each component provided in
Appendix G. The main difference is that the action embed-
ding block A encodes the action at as a latent vector within
the dynamic function.

3



EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

3.3.2. TRAINING PROCESS

For the dynamic function, EfficientZero employs a super-
vised learning method using the true reward ut. Further-
more, EfficientZero introduces temporal consistency (Ye
et al., 2021), which strengthens the supervision between the
predicted next state ŝt+1 and the true next state st+1. Using
the learned model, an MCTS method is used for planning
actions. The method can generate the target policy πt and
target value zt for further supervised learning of the policy
and value functions. Simultaneously, it outputs the recom-
mended action a∗S for interaction with the environment. The
iterative process of interaction and training enhances the ac-
curacy of the dynamic function’s predictions and gradually
improves the policy and value functions. EZ-V2 inherits
the training process of EfficientZero but replaces the MCTS
method with a sampling-based Gumbel search, ensuring
policy improvement in continuous action spaces. Figure 2
(A) intuitively illustrates the training process of EZ-V2.

All parameters of the components are trained jointly to
match the target policy, value, and reward.

Lt = λ1LR(ut, rt) + λ2LP(πt, pt)

+ λ3LV(zt, vt) + λ4LG(st+1, ŝt+1)
(3)

where ut denotes the environmental reward, πt is the tar-
get policy from the search and zt represents the target
value from the search. LR, LP and LV all represent su-
pervised learning losses. LG is the temporal consistency
loss (Schwarzer et al., 2020), which enhances the similarity
between the predicted next state ŝt+1 with the next state
st+1 and is formulated as:

LG (st+1, ŝt+1) = Lcos (sg (P1 (st+1)) , P2 (P1 (ŝt+1)))
(4)

where Lcos is the negative cosine similarity loss and sg
means the stop gradient operator. The asymmetric design of
employing P1 and P2 follows the setting in SimSiam (Chen
& He, 2021). More details about the architecture also can
be found in EfficientZero (Ye et al., 2021). To enhance the
prediction accuracy of the model, we unroll the loss with
lunroll steps to train the model.

L =
1

lunroll

lunroll −1∑
i=0

Lt+i (5)

More details of the training pipeline can be found in Ap-
pendix H.

4. Method
4.1. Overview

EZ-V2 is built upon EfficientZero, a model-based algorithm
that performs planning using MCTS within a learned envi-
ronment model. EZ-V2 successfully extends EfficientZero’s

high sample efficiency to various domains. To realize this
extension, EZ-V2 addresses two pivotal questions:

• How to perform efficient planning using tree search in
high-dimensional and continuous action spaces?

• How to further strengthen the ability to utilize stale
transitions under limited data?

Specifically, we propose a series of improvements. We
construct a sampling-based tree search for policy improve-
ment in continuous control. Furthermore, we propose a
search-based value estimation method to alleviate off-policy
issues in replaying stale interaction data. The differences
compared to EfficientZero are detailed in Appendix A.

4.2. Policy Learning with Tree Search

The policy learning in EZ-V2 consists of two stages: (i) ob-
taining the target policy from tree search and (ii) supervised
learning using the target policy. The tree search method
we propose guarantees policy improvement as defined in
Definition 4.1 and enhances the efficiency of exploration
in a continuous action space. The training objective aims
to refine the policy function by aligning it with the target
policy obtained from the tree search.

Definition 4.1 (Policy Improvement). A planning method
over actions satisfies policy improvement if the following
inequality holds at any given state s.

q(s, a∗S) ≥ Ea∼pt
[q(s, a)] (6)

where a∗S is the recommended action from the planning
method, pt is the current policy, and q is the Q-value func-
tion with respect to pt.

4.2.1. TARGET POLICY FROM TREE SEARCH

In this paper, we choose the tree search method as the im-
provement operator, which can construct a locally superior
policy over actions (policy improvement) based on a learned
model. Each node of the search tree is associated with a
state s, and an edge is denoted as (s, a). The tree stores the
estimated Q-value of each node and updates it through sim-
ulations. Finally, we select an action that strikes a balance
between exploitation and exploration, based on the Q-value.

More specifically, the basic tree search method we adopt is
the Gumbel search (Danihelka et al., 2021). This method
is recognized for its efficiency in tree searching and its
guarantee of policy improvement. At the onset of a search
process, the Gumbel search samples K actions using the
Gumbel-Top-k trick (Section 3.2). It then approaches the
root action selection as a bandit problem, aiming to choose
the action with the highest Q-value. To evaluate the set
of sampled actions, we employ a bandit algorithm known

4



EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

as Sequential Halving (Karnin et al., 2013). However, the
Gumbel search primarily investigates planning in discrete
action spaces.

To support high-dimensional continuous control, we design
a sampling-based Gumbel search, as depicted in Fig. 2 (B).
Given the challenges posed by high-dimensional and large
continuous action spaces, striking a balance between explo-
ration and exploitation is crucial for the performance of tree
search, especially when using a limited number of sampled
actions. To address this challenge, we propose an action
sampling method that not only achieves excellent explo-
ration capabilities but also ensures that the search method
satisfies policy improvement as defined in Definition 4.1.

Our method is implemented as follows. Given any state s,
we sample K actions. A portion of these actions originates
from the current policy pt, while another portion is sampled
from a prior distribution p′t. We denote the complete action
set as AS = [AS1, AS2], where AS1 and AS2 represent the
two portions, respectively. This design enhances exploration
because AS2 can introduce actions that have a low prior
under the current policy pt. The bandit process then selects
the action a∗S from the action set AS with the highest q(s, a),
expressed as a∗S = argmaxa∈AS

(q(s, a)). This process
guarantees policy improvement as outlined in Definition 4.1,
because:

q(s, a∗S) ≥ max

(∑
a∈AS1

q(s, a)

|AS1|
,

∑
a∈AS2

q(s, a)

|AS2|

)
≥
∑

a∈AS1
q(s, a)

|AS1|
= Ea∼pt [q(s, a)], as |AS1| → ∞

(7)

where |AS1| represents the number of actions in AS1. The
first line holds because a∗S is the action with the highest
q(s, a) in AS and [AS1, AS2] = AS . We apply the law of
large numbers to transition from line 2 to 3. In practical im-
plementation, we model the current policy pt as a Gaussian
distribution, and the sampling distribution p′t is a flattened
version of the current policy. Our experiments demonstrate
that this design facilitates exploration in continuous control.

For action sampling at non-root nodes, we modify the sam-
pling method to reduce the variance in the estimation of
Q-values. Specifically, actions at non-root nodes are sam-
pled solely from the current policy pt. Additionally, the
number of actions sampled at non-root nodes is fewer than
those at the root node. This reduction in the number of
sampled actions at non-root nodes facilitates an increase in
search depth, thereby avoiding redundant simulations on
similar sampled actions.

Upon completing the sampling-based Gumbel search, we
obtain the target policy. We construct two types of target

policies. The first is the recommended action a∗S obtained
from the tree search. In addition to a∗S , the search also
yields q(s, a) for the visited actions. To smooth the target
policy, we build the second type as a probability distribution
based on the Q-values of root actions (for more details, see
Appendix B).

4.2.2. LEARNING USING TARGET POLICY

In this part of the process, we distill the target policy πt into
the learnable policy function pt. We aim to minimize the
cross-entropy between pt and the target policy πt:

LP(pt, πt) = Ea∼πt
[− log pt(a)] (8)

Additionally, in high-dimensional action spaces, we utilize
the other target a∗S :

LP(pt, a
∗
S) = − log pt (a

∗
S) (9)

Compared with Equation (8), Equation (9) facilitates early
exploitation in tasks with a large action dimension, such as
the ‘Quadruped walk’ in DM Control (Tassa et al., 2018).
We provide an intuitive example to illustrate its advantage
in Appendix C.

4.3. Search-based Value Estimation

Improving the ability to utilize off-policy data is crucial
for sample-efficient RL. Sample-efficient RL algorithms of-
ten undergo drastic policy shifts within limited interactions,
leading to estimation errors for early-stage transitions in
conventional methods, such as N -step bootstrapping and
TD-λ. EfficientZero proposed an adaptive step bootstrap-
ping method to alleviate the off-policy issue. However,
this method utilizes the multi-step discount sum of rewards
from an old policy, which can lead to inferior performance.
Therefore, it is essential to enhance value estimation to
better utilize stale transitions.

We propose leveraging the current policy and model to con-
duct value estimation, which we term Search-Based Value
Estimation (SVE). The expanding search tree generates
imagined trajectories that provide bootstrapped samples for
root value estimations. We now use the mean of these em-
pirical estimations as target values. Notably, this value esti-
mation method can be implemented within the same process
as the policy reanalysis proposed by MuZero (Schrittwieser
et al., 2021), thereby not introducing additional computa-
tional overhead. The mathematical definition of SVE is as
follows.

Definition 4.2 (Search-Based Value Estimation). Using
imagined states and rewards ŝt+1, r̂t = G(ŝt, ât) obtained
from our learnable dynamic function, the value estimation
of a given state s0 can be derived from the empirical mean

5



EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

of N bootstrapped estimations, which is formulated as

V̂S(s0) =

∑N
n=0 V̂n(s0)

N
(10)

where N denotes the number of simulations, V̂n(s0) is the
bootstrapped estimation of the n-th node expansion, which
is formulated as

V̂n(s0) =

H(n)∑
t=0

γtr̂t + γH(n)V̂ (ŝH(n)) (11)

where H(n) denotes the search depth of the n-th iteration.

Through the imagined search process with the newest policy
and model, SVE provides a more accurate value estimation
for off-policy data. Furthermore, investigating the nature of
estimation errors is critical. We derive an upper bound for
the value estimation error, taking into account model errors,
as illustrated in Theorem 4.3.

Corollary 4.3 (Search-Based Value Estimation Error).
Define st, at, rt to be the states, actions, and rewards result-
ing from current policy π using true dynamics G∗ and re-
ward function R∗, starting from s0 ∼ ν and similarly define
ŝt, ât, r̂t using learned function G. Let reward function R to
be Lr−Lipschitz and value function V as LV −Lipschitz.
Assume ϵs, ϵr, ϵv as upper bounds of state transition, re-
ward, and value estimations respectively. We define the
error bounds of each estimation as

max
n∈[N ],t∈[H(n)]

E
[
∥ŝt − st∥2

]
≤ ϵ2s (12)

max
n∈[N ],t∈[H(n)]

E
[
∥R(st)−R∗(st)∥2

]
≤ ϵ2r (13)

max
n∈[N ],t∈[H(n)]

E
[
∥V(st)− V∗(st)∥2

]
≤ ϵ2v (14)

within a tree-search process. Then we have errors

MSEν(V̂S)

≤ 4

N2

N∑
n=0

H(n)∑
t=0

γ2t(L2
rϵ

2
s + ϵ2r) + γ2H(n)(L2

V ϵ
2
s + ϵ2v)


(15)

where N is the simulation number of the search process.
H(n) denotes the depth of the n-th search iteration.

The detailed proof can be found in Appendix E.1. SVE pos-
sesses several advantageous properties, such as a convergent
series coefficient and bounded model errors. Intuitively, the
estimation error bound will converge to 0 when the dynamic
function approaches optimality, denoted as ϵ → 0.

Theorem 4.3 shows that model inaccuracies can amplify
SVE’s estimation error, especially in the early training
stages or when sampling fresh transitions. To address this,

we introduce a mixed value target, combining multi-step
TD-targets for early training and fresh experience sampling.
The mixed target is defined as:

Vmix =


∑l−1

i=0 γ
iut+i + γlvt+l, if it < T1

or is > |D| − T2

V̂S, otherwise
(16)

Here, l is the horizon for the multi-step TD method. The
variable it denotes the current training step, while T1 refers
to the initial steps. The term is indicates the sampling index
from the buffer. The buffer size is represented by |D|, and
T2 is the designated threshold for assessing the staleness of
data. More details can be found in Appendix F.

5. Experiment
In this section, we aim to evaluate the general sample effi-
ciency of EZ-V2 on a total of 66 diverse tasks. The tasks
include scenarios with low and high-dimensional observa-
tion, discrete and continuous action spaces, and dense and
sparse rewards. We then present an ablation study on the
sampling-based Gumbel search and mixed value target we
propose.

5.1. Experimental Setup

To assess sample efficiency, we measure algorithm perfor-
mance with limited environment steps. In discrete control,
we use the Atari 100k benchmark (Brockman et al., 2016),
encompassing 26 Atari games and limiting training to 400k
environment steps, equivalent to 100k steps with action
repeats of 4.

For continuous control evaluation, we utilize the DeepMind
Control Suite (DMControl; (Tassa et al., 2018)), comprising
various tasks in classical control, locomotion, and manipu-
lations. Referring to the categorizations in Sample MuZero
(Hubert et al., 2021), tasks are divided into easy and hard
categories. The easy tasks use half the interaction data of
the hard tasks. We establish the following benchmarks:

• Proprio Control 50k for easy tasks with low-
dimensional state inputs.

• Proprio Control 100k for hard tasks with low-
dimensional state inputs.

• Vision Control 100k for easy tasks with image obser-
vations.

• Vision Control 200k for hard tasks with image obser-
vations.

Each benchmark includes 10 tasks. Action repeats are set
to 2 and the maximum episode length is 1000 for all 4

6



EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

Table 1. Scores achieved on the Atari 100k benchmark indicate that EZ-V2 achieves super-human performance within just 2 hours of
real-time gameplay. Our method surpasses the previous state-of-the-art, EfficientZero. The results for Random, Human, SimPLe, CURL,
DrQ, SPR, MuZero, and EfficientZero are sourced from (Ye et al., 2021).

Game Random Human SimPLe CURL DrQ SPR MuZero EfficientZero DreamerV3 BBF EZ-V2 (Ours)

Alien 227.8 7127.7 616.9 558.2 771.2 801.5 530.0 808.5 959 1173.2 1557.7
Amidar 5.8 1719.5 88.0 142.1 102.8 176.3 38.8 148.6 139 244.6 184.9
Assault 222.4 742.0 527.2 600.6 452.4 571.0 500.1 1263.1 706 2098.5 1757.5
Asterix 210.0 8503.3 1128.3 734.5 603.5 977.8 1734.0 25557.8 932 3946.1 61810.0
Bank Heist 14.2 753.1 34.2 131.6 168.9 380.9 192.5 351.0 649 732.9 1316.7
BattleZone 2360.0 37187.5 5184.4 14870.0 12954.0 16651.0 7687.5 13871.2 12250 24459.8 14433.3
Boxing 0.1 12.1 9.1 1.2 6.0 35.8 15.1 52.7 52.7 85.8 75.0
Breakout 1.7 30.5 16.4 4.9 16.1 17.1 48.0 414.1 31 370.6 400.1
ChopperCmd 811.0 7387.8 1246.9 1058.5 780.3 974.8 1350.0 1117.3 420 7549.3 1196.6
Crazy Climber 10780.5 35829.4 62583.6 12146.5 20516.5 42923.6 56937.0 83940.2 97190 58431.8 112363.3
Demon Attack 152.1 1971.0 208.1 817.6 1113.4 545.2 3527.0 13003.9 303 13341.4 22773.5
Freeway 0.0 29.6 20.3 26.7 9.8 24.4 21.8 21.8 0 25.5 0.0
Frostbite 65.2 4334.7 254.7 1181.3 331.1 1821.5 255.0 296.3 909 2384.8 1136.3
Gopher 257.6 2412.5 771.0 669.3 636.3 715.2 1256.0 3260.3 3730 1331.2 3868.7
Hero 1027.0 30826.4 2656.6 6279.3 3736.3 7019.2 3095.0 9315.9 11161 7818.6 9705.0
Jamesbond 29.0 302.8 125.3 471.0 236.0 365.4 87.5 517.0 445 1129.6 468.3
Kangaroo 52.0 3035.0 323.1 872.5 940.6 3276.4 62.5 724.1 4098 6614.7 1886.7
Krull 1598.0 2665.5 4539.9 4229.6 4018.1 3688.9 4890.8 5663.3 7782 8223.4 9080.0
Kung Fu Master 258.5 22736.3 17257.2 14307.8 9111.0 13192.7 18813.0 30944.8 21420 18991.7 28883.3
Ms Pacman 307.3 6951.6 1480.0 1465.5 960.5 1313.2 1265.6 1281.2 1327 2008.3 2251.0
Pong -20.7 14.6 12.8 -16.5 -8.5 -5.9 -6.7 20.1 18 16.7 20.8
Private Eye 24.9 69571.3 58.3 218.4 -13.6 124.0 56.3 96.7 882 40.5 99.8
Qbert 163.9 13455.0 1288.8 1042.4 854.4 669.1 3952.0 13781.9 3405 4447.1 16058.3
Road Runner 11.5 7845.0 5640.6 5661.0 8895.1 14220.5 2500.0 17751.3 15565 33426.8 27516.7
Seaquest 68.4 42054.7 683.3 384.5 301.2 583.1 208.0 1100.2 618 1232.5 1974.0
Up N Down 533.4 11693.2 3350.3 2955.2 3180.8 28138.5 2896.9 17264.2 - 12101.7 15224.3

Normed Mean 0.000 1.000 0.443 0.381 0.357 0.704 0.562 1.943 1.120 2.247 2.428
Normed Median 0.000 1.000 0.144 0.175 0.268 0.415 0.227 1.090 0.490 0.917 1.286

benchmarks, in line with previous studies (Hafner et al.,
2023; Hansen et al., 2023).

We choose strong baselines for each domain, which include
SAC (Haarnoja et al., 2018), DrQ-v2 (Yarats et al., 2021),
TD-MPC2 (Hansen et al., 2023), DreamerV3 (Hafner et al.,
2023), EfficientZero (Ye et al., 2021), and BBF (Schwarzer
et al., 2023). For more details on the implementation, please
refer to Appendix I.

5.2. Comparison with Baselines

Atari 100k: The performance of EZ-V2 on the Atari 100k
benchmark is elaborated in Table 1. When scores are nor-
malized against those of human players, EZ-V2 attains a
mean score of 2.428 and a median score of 1.286, surpass-
ing the previous state-of-the-art, BBF (Schwarzer et al.,
2023) and EfficientZero (Ye et al., 2021). In contrast to
BBF, our method employs fewer network parameters and a
lower replay ratio. Such enhancements in performance and
computational efficiency are attributed to the learning of
the environment model and the implementation of Gumbel
search in action planning. Moreover, EZ-V2 necessitates
fewer search simulations compared to EfficientZero and still
manages to achieve superior performance. The utilization of
a mixed value target decisively mitigates off-policy issues
associated with using outdated data, marking a substantial
advancement beyond the adaptive step bootstrapping target

used by EfficientZero.

Proprio Control: The results in Table 2 showcase that our
method achieves a mean score of 723.2 across 20 tasks
with limited data. While the performance of the current
state-of-the-art, TD-MPC2, is comparable to that of EZ-V2,
our method achieves faster inference times. TD-MPC2’s
planning with MPPI involves predicting 9216 latent states
to attain similar performance levels. In contrast, EZ-V2’s
tree search-based planning only utilizes 32 imagined latent
states, resulting in lighter computational demands.

Vision Control: As shown in Table 2, our method achieves a
mean score of 726.1, surpassing the previous state-of-the-art,
DreamerV3, by 45%. Notably, it sets new records in 16 out
of 20 tasks. Furthermore, our method demonstrates signifi-
cant improvements in tasks with sparse rewards, as shown
in Fig. 7. For instance, in the ‘Cartpole-Swingup-Sparse’
task, our method scores 763.6 compared to DreamerV3’s
392.4. This substantial progress is attributed to two key
algorithmic modifications: the planning with tree search,
which ensures policy improvement and offers excellent ex-
ploratory capabilities, and the mixed value target, which
enhances the accuracy of value learning, especially with
stale data.

As a general and sample-efficient RL framework, EZ-V2
consistently demonstrates high sample efficiency in tasks
featuring low and high-dimensional observations, discrete

7



EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

Table 2. Scores achieved on the Proprio Control 50/100k and Vision Control 100/200k benchmarks (with 3 seeds run for each) demonstrate
that EZ-V2 consistently maintains sample efficiency, whether with proprioceptive or visual inputs. The tasks are categorized into easy and
hard groups as proposed by (Hubert et al., 2021). The results of DreamerV3 are sourced from the official data (Hafner et al., 2023).

Benchmark Proprio Control 50k Vision Control 100k
Task SAC TD-MPC2 DreamerV3 EZ-V2 (Ours) CURL DrQ-v2 DreamerV3 EZ-V2 (Ours)

Cartpole Balance 997.6 962.8 839.6 947.3 963.3 965.5 956.4 911.7
Cartpole Balance Sparse 993.1 942.8 559.0 999.2 999.4 1000.0 813.0 951.5
Cartpole Swingup 861.6 826.7 527.7 805.4 765.4 756.0 374.8 747.8
Cup Catch 949.9 976.0 729.6 969.8 932.3 468.0 947.7 954.7
Finger Spin 900.0 965.8 765.8 837.1 850.2 459.4 633.2 927.6
Pendulum Swingup 158.9 520.1 830.4 825.4 144.1 233.3 619.3 726.7
Reacher Easy 744.0 903.5 693.4 940.3 467.9 722.1 441.4 946.3
Reacher Hard 646.5 580.4 768.0 795.4 112.7 202.9 120.4 961.5
Walker Stand 870.0 973.9 767.3 953.6 733.8 426.1 939.5 944.9
Walker Walk 813.2 965.5 475.2 944.0 538.5 681.5 771.2 888.8

Proprio Control 100k Vision Control 200k
Acrobot Swingup 44.1 303.2 62.8 297.7 6.8 15.1 67.4 231.8
Cartpole Swingup Sparse 256.6 421.4 172.7 795.4 8.8 81.2 392.4 763.6
Cheetah Run 680.9 614.4 400.8 677.8 405.1 418.4 587.3 631.6
Finger Turn Easy 630.8 793.3 560.5 310.7 371.5 286.8 366.6 799.2
Finger Turn Hard 414.0 604.8 474.2 374.1 236.3 268.4 258.5 794.6
Hopper Hop 0.1 84.5 9.7 186.5 84.5 26.3 76.3 206.4
Hopper Stand 3.8 807.9 296.1 795.4 627.7 290.2 652.5 805.7
Quadruped Run 139.7 742.1 289.0 510.6 170.9 339.4 168.0 384.8
Quadruped Walk 237.5 853.7 256.2 925.8 131.8 311.6 122.6 433.3
Walker Run 635.4 780.5 478.9 657.2 274.7 359.9 618.2 475.3

Mean 552.0 740.9 517.1 723.2 437.3 410.3 498.5 726.1
Median 633.3 806.4 543.4 800.4 324.9 330.6 484.5 788.1

and continuous action spaces, and both dense and sparse
reward structures. Detailed training curves can be found in
Appendix J.

5.3. Ablation Study

In this section, we discuss the effectiveness of the main
modifications: the sampling-based Gumbel search and the
mixed value target.

Ablations of Search: The comparative analysis between
our search method and Sample MCTS is illustrated in Fig.
3. Sample MCTS, a tree search technique tailored for con-
tinuous control developed by Sample MuZero (Hubert et al.,
2021), is depicted in green. Our search method, highlighted
in red, exhibits superior performance. Whereas Sample
MCTS necessitates n = 50 simulations, our approach sig-
nificantly reduces the computational burden to merely 32
simulations.

Further, we display performance curves for 16 and 8 simu-
lations. As demonstrated in Fig. 3, an increased number of
simulations enhances performance in complex tasks such as
‘Quadruped Walk’, and notably, our method with merely 8
simulations surpasses Sample MCTS. This shows that the
sampling-based Gumbel search achieves a superior balance
between exploration and exploitation, backed by guaranteed
policy improvement. Additional results for other tasks are

Proprio Control Vision Control

S-Gumbel Search (n=32) Sample MCTS (n=50)

S-Gumbel Search (n=16) S-Gumbel Search (n=8)

Acrobot SwingupQuadruped Walk

Environment Steps

Sc
or

e

Environment Steps

Figure 3. Ablation study of our search method, namely the
sampling-based Gumbel search (S-Gumbel search). We compare
it with our search method with different numbers of simulations
(n=16, 8) and Sample MCTS (Hubert et al., 2021). Our method
outperforms Sample MCTS, and increasing the number of simula-
tions improves our method’s performance on hard tasks.

provided in Appendix J.2.
Ablations of Value Targets. It can be seen in Fig. 4 that
our method (colored red) alleviates the off-policy issue com-
pared with the multi-step TD target (colored purple), thus
achieving better performance. Furthermore, we also com-
pare with the value target zt derived from the optimal-Q
Bellman equation, shown as follows:

zt = ut + γq(st+1, at+1), at+1 ∼ pt(a|st+1) (17)

8



EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

Proprio Control Vision Control

Mixed Value Target (Ours) Multi-step TD Target

Double Q-Value Target

Acrobot Swingup

Sc
or

e

Environment Steps Environment Steps

Quadruped Walk

Figure 4. Ablation study of our value target, known as the mixed
value target. We compare it with different value targets, including
the multi-step TD target and the double Q-value target. The mixed
value target consistently achieves high performance in both Proprio
Control and Vision Control tasks.

This technique also addresses the off-policy issue as the
value target is based on the optimal Q-value estimation.
Meanwhile, we employ the double Q-head trick. This esti-
mation method is denoted as double Q-value target in Fig.
4. Although the double Q-value target (colored green) also
avoids the off-policy issue, the experiments illustrate that
our method (colored red) exhibits consistent and robust per-
formance across tasks. This is because our method matches
the true value more rapidly by utilizing multi-step predicted
rewards during the tree search. Additional curves related to
value ablation experiments can be found in Appendix J.2.

Furthermore, practical comparisons between the TD-MPC2
and EZ-V2 algorithms in terms of computational load are
provided in Appendix J.3.

6. Conclusion
This paper presents EfficienctZero V2 (EZ-V2), a gen-
eral framework for sample efficient RL. EZ-V2, which
is built upon EfficientZero, extends to master continuous
control. Furthermore, EZ-V2 achieves both superior per-
formance and sample efficiency in tasks with visual and
low-dimensional inputs. More specifically, EZ-V2 outper-
forms Dreamer V3 by a large margin across various types of
domains, including Atari 100k, Proprio Control, and Vision
Control benchmarks. Moreover, we evaluate the perfor-
mance of EZ-V2 without conditions of limited data. EZ-V2
outperforms or is comparable to baselines with more inter-
action data, though the performance gap between EZ-V2
and other algorithms narrows as the amount of interaction
data increases. Due to the high sample efficiency, we will
broaden our evaluation of EZ-V2 across a wider variety of
benchmarks, especially in real-world tasks like robotic ma-
nipulation. The superior sample efficiency of EZ-V2 holds
great promise for enhancing online learning in real-world
robotic scenarios.

Acknowledgements
This work is supported by the Ministry of Science and Tech-
nology of the People’s Republic of China, the 2030 Innova-
tion Megaprojects “Program on New Generation Artificial
Intelligence” (Grant No. 2021AAA0150000). This work is
also supported by the National Key R&D Program of China
(2022ZD0161700).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M.,

McGrew, B., Petron, A., Paino, A., Plappert, M., Powell,
G., Ribas, R., et al. Solving rubik’s cube with a robot
hand. arXiv preprint arXiv:1910.07113, 2019.

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz,
R., McGrew, B., Pachocki, J., Petron, A., Plappert, M.,
Powell, G., Ray, A., et al. Learning dexterous in-hand
manipulation. The International Journal of Robotics
Research, 39(1):3–20, 2020.

Antonoglou, I., Schrittwieser, J., Ozair, S., Hubert, T. K.,
and Silver, D. Planning in stochastic environments with a
learned model. In International Conference on Learning
Representations, 2021.

Bellman, R. A markovian decision process. Journal of
mathematics and mechanics, pp. 679–684, 1957.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Chen, T., Xu, J., and Agrawal, P. A system for general
in-hand object re-orientation. In Conference on Robot
Learning, pp. 297–307. PMLR, 2022.

Chen, T., Tippur, M., Wu, S., Kumar, V., Adelson, E.,
and Agrawal, P. Visual dexterity: In-hand reorien-
tation of novel and complex object shapes. Science
Robotics, 8(84):eadc9244, 2023. doi: 10.1126/scirobotics.
adc9244. URL https://www.science.org/
doi/abs/10.1126/scirobotics.adc9244.

Chen, X. and He, K. Exploring simple siamese represen-
tation learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
15750–15758, 2021.

9

https://www.science.org/doi/abs/10.1126/scirobotics.adc9244
https://www.science.org/doi/abs/10.1126/scirobotics.adc9244


EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

Coulom, R. Efficient selectivity and backup operators in
monte-carlo tree search. In International conference on
computers and games, pp. 72–83. Springer, 2006.

Danihelka, I., Guez, A., Schrittwieser, J., and Silver, D.
Policy improvement by planning with gumbel. In Inter-
national Conference on Learning Representations, 2021.

De Asis, K., Hernandez-Garcia, J., Holland, G., and Sut-
ton, R. Multi-step reinforcement learning: A unifying
algorithm. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

Feinberg, V., Wan, A., Stoica, I., Jordan, M. I., Gonzalez,
J. E., and Levine, S. Model-based value expansion for
efficient model-free reinforcement learning. In Proceed-
ings of the 35th International Conference on Machine
Learning (ICML 2018), 2018.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream to
control: Learning behaviors by latent imagination. arXiv
preprint arXiv:1912.01603, 2019.

Hafner, D., Lillicrap, T. P., Norouzi, M., and Ba, J.
Mastering atari with discrete world models. In In-
ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=0oabwyZbOu.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Mastering
diverse domains through world models. arXiv preprint
arXiv:2301.04104, 2023.

Hansen, N., Wang, X., and Su, H. Temporal difference
learning for model predictive control. arXiv preprint
arXiv:2203.04955, 2022.

Hansen, N., Su, H., and Wang, X. Td-mpc2: Scalable,
robust world models for continuous control, 2023.

Hubert, T., Schrittwieser, J., Antonoglou, I., Barekatain,
M., Schmitt, S., and Silver, D. Learning and planning in
complex action spaces. In International Conference on
Machine Learning, pp. 4476–4486. PMLR, 2021.

Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsou-
nis, V., Koltun, V., and Hutter, M. Learning agile and
dynamic motor skills for legged robots. Science Robotics,
4(26):eaau5872, 2019.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-
kowski, P., Levine, S., et al. Model-based reinforce-
ment learning for atari. arXiv preprint arXiv:1903.00374,
2019.

Karnin, Z., Koren, T., and Somekh, O. Almost optimal
exploration in multi-armed bandits. In International con-
ference on machine learning, pp. 1238–1246. PMLR,
2013.

Kool, W., Van Hoof, H., and Welling, M. Stochastic beams
and where to find them: The gumbel-top-k trick for
sampling sequences without replacement. In Interna-
tional Conference on Machine Learning, pp. 3499–3508.
PMLR, 2019.

Laskin, M., Srinivas, A., and Abbeel, P. Curl: Contrastive
unsupervised representations for reinforcement learning.
In International Conference on Machine Learning, pp.
5639–5650. PMLR, 2020.

Petrenko, A., Allshire, A., State, G., Handa, A., and
Makoviychuk, V. Dexpbt: Scaling up dexterous ma-
nipulation for hand-arm systems with population based
training. arXiv preprint arXiv:2305.12127, 2023.

Rubinstein, R. Y. Optimization of computer simulation mod-
els with rare events. European Journal of Operational
Research, 99(1):89–112, 1997.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604–609, 2020.

Schrittwieser, J., Hubert, T., Mandhane, A., Barekatain,
M., Antonoglou, I., and Silver, D. Online and offline
reinforcement learning by planning with a learned model.
Advances in Neural Information Processing Systems, 34:
27580–27591, 2021.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D., Courville,
A., and Bachman, P. Data-efficient reinforcement learn-
ing with self-predictive representations. arXiv preprint
arXiv:2007.05929, 2020.

Schwarzer, M., Ceron, J. S. O., Courville, A., Bellemare,
M. G., Agarwal, R., and Castro, P. S. Bigger, better,
faster: Human-level atari with human-level efficiency.
In International Conference on Machine Learning, pp.
30365–30380. PMLR, 2023.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

10

https://openreview.net/forum?id=0oabwyZbOu
https://openreview.net/forum?id=0oabwyZbOu


EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. Mastering chess and shogi by self-play
with a general reinforcement learning algorithm. arXiv
preprint arXiv:1712.01815, 2017.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Sci-
ence, 362(6419):1140–1144, 2018.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Wu, P., Escontrela, A., Hafner, D., Goldberg, K., and
Abbeel, P. Daydreamer: World models for physical robot
learning, 2022.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing,
C., Zhang, H., Lan, Y., Wang, L., and Liu, T. On layer
normalization in the transformer architecture. In Inter-
national Conference on Machine Learning, pp. 10524–
10533. PMLR, 2020.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. Mastering
visual continuous control: Improved data-augmented re-
inforcement learning. arXiv preprint arXiv:2107.09645,
2021.

Ye, W., Liu, S., Kurutach, T., Abbeel, P., and Gao, Y. Mas-
tering atari games with limited data. Advances in Neural
Information Processing Systems, 34:25476–25488, 2021.

Zhao, D., Tu, S., and Xu, L. Efficient learning for alphazero
via path consistency. In International Conference on
Machine Learning, pp. 26971–26981. PMLR, 2022.

Zheng, H., Yang, Z., Liu, W., Liang, J., and Li, Y. Im-
proving deep neural networks using softplus units. In
2015 International joint conference on neural networks
(IJCNN), pp. 1–4. IEEE, 2015.

11



EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

A. Summary of Differences
EfficientZero V2 builds upon EffcientZero algorithm (Ye et al., 2021). This section demonstrates the major applied changes
to achieve mastering performance across domains.

• Search: Different from the MCTS in EfficientZero, we employ Gumbel search which differs in action selections.
Gumbel search guarantees policy improvement even if with limited simulation budgets, which significantly reduces the
computation of EZ-V2.

• Search-based Value Estimation: Compared to the adaptive TD method used in EfficientZero’s value estimation, we
employ the empirical mean of the search root node as the target value. The search process utilizes the current model and
policy to calculate improved policy and value estimation, which can improve the utilization of early-stage transitions.

• Gaussian Policy: Inspired by Sampled MuZero (Hubert et al., 2021), we employ an Gaussian distribution, which
is parameterized by the learnable policy function, to represent the policy in continuous action spaces. We generate
search action candidates by simply sampling from the Gaussian policy, which naturally satisfies the sampling without
replacement in Gumbel search. We then prove the policy improvement of Gumbel search still holds in the continuous
setting.

• Action Embedding: We employ an action embedding layer to encode the real actions as latent vectors. By representing
actions in a hidden space, actions that are similar to each other are placed closer in the embedding space. This
proximity allows the RL agent to generalize its learning from one action to similar actions, improving its efficiency and
performance.

• Priority Precalculation: Conventionally, the priorities of a newly collected trajectory are set to be the maximal priority
of total collected transitions. We propose to warm up the new priorities by calculating the bellman error using the
current model. This increases the probability of newly collected transitions being replayed, thereby improving sample
efficiency.

• Architecture: For the 2-dimensional image inputs, we follow the most implementation of the architecture of Effi-
cientZero. For the continuous control task with 1-dimensional input, we use a variation of the previous architecture in
which all convolutions are replaced by fully connected layers. The details could be found in Appendix G.

• Hyperparameters: We tuned the hyperparameters of EfficientZero V2 to achieve satisfying performance across
various domains. The generality is verified by training from scratch without further adjustments, including Atari 100k,
Proprio Control, Vision Control. More details refer to Appendix I.

B. Calculation of Target Policy
In discrete control, the calculation of the target policy is the same as that of the original Gumbel search, which can be found
in Gumbel Muzero (Danihelka et al., 2021). In a continuous setting, we modify the calculation of target policy as follows.

π′ = softmax(σ(completedQ)) (18)

where completedQ is a comprehensive value estimation of visited and unvisited candidates. For visited nodes, the completedQ
is calculated via the empirical estimation as q(a) = r(s, a) + γv(s′), v(s′) is the empirical mean of bootstrapped value
sum and visit counts. For non-visits, completedQ is estimated through the weighted average Q-value of visited nodes as∑

a π(a)q(a).

We mention the transformation σ is a monotonically increasing transformation in the main text. For a concrete instantiation
of σ, we use

σ(q(s, a)) =

(
cvisit +max

b
N(b)

)
cscale q(s, a) (19)

where maxb N(b) is the visit count of the most visited action. cvisit and cscale are 50 and 0.1 respectively.

12



EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

C. Advantage of Simple Policy Loss
Different from minimizing the cross-entropy between the policy with the target policy, the simple loss using a∗S directly
improves the possibility of the recommended action in tree search. That means we can make the policy network output a
good action in the early stage. With the iteration repeating, the policy network can find the optimal point. More specifically,
we provide an intuitive example to illustrate that the policy can reach the optimal point more efficiently, as shown in Fig. 5.
The whole space represents the action space. The simple loss enforces the policy to output the current best point colored red.
The original cross-entropy loss considers all actions and thus makes the policy’s output near the point colored brown. We
can see that when the action space is large, the red point can guide the policy to reach the optimal point colored purple more
quickly.

Update point by simple loss

Update point by cross-entropy loss

Optimal point

Figure 5. Intuitive example showing the difference between simple policy loss using a∗
S and cross-entropy loss.

D. Details of Search-based Value Estimation (SVE)
D.1. Calculation of SVE

First, the search process expands a tree through N simulations gradually. At each simulation, the agent dives to a leaf and
expands a new child. The diving path is easily associated with an H(n)-step rollout, which forms an imagined H(n)-step
value estimation for the root node. This estimation process will be repeated N times, to get an average estimation, as defined
in Definition D.1.

Definition D.1 (Search-Based Value Estimation). Using imagined states and rewards ŝt+1, r̂t = G(ŝt, ât) obtained from
our learnable dynamic function, the value estimation of a given state s0 can be derived from the empirical mean of N
bootstrapped estimations, which is formulated as

V̂S(s0) =

∑N
n=0 V̂n(s0)

N
(20)

where N denotes the number of simulations, V̂n(s0) is the bootstrapped estimation of the n-th node expansion, which is
formulated as

V̂n(s0) =

H(n)∑
t=0

γtr̂t + γH(n)V̂ (ŝH(n)) (21)

where H(n) denotes the search depth of the n-th iteration.

E. Proof for SVE Error Bound
Corollary E.1 (Search-Based Value Estimation Error). Define st, at, rt to be the states, actions, and rewards resulting
from current policy π using true dynamics G∗ and reward function R∗, starting from s0 ∼ ν and similarly define ŝt, ât, r̂t
using learned function G. Let reward function R to be Lr − Lipschitz and value function V as LV − Lipschitz. Assume
ϵs, ϵr, ϵv as upper bounds of state transition, reward, and value estimations respectively. We define the error bounds of each

13



EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

estimation as

max
n∈[N ],t∈[H(n)]

E
[
∥ŝt − st∥2

]
≤ ϵ2s (22)

max
n∈[N ],t∈[H(n)]

E
[
∥R(st)−R∗(st)∥2

]
≤ ϵ2r (23)

max
n∈[N ],t∈[H(n)]

E
[
∥V(st)− V∗(st)∥2

]
≤ ϵ2v (24)

within a tree-search process. Then we have errors

MSEν(V̂S) ≤
4

N2

N∑
n=0

H(n)∑
t=0

γ2t(L2
rϵ

2
s + ϵ2r) + γ2H(n)(L2

V ϵ
2
s + ϵ2v)

 (25)

where N is the simulation number of the search process. H(n) denotes the depth of the n-th search iteration.

Proof. To provide detailed proof for the upper bound of the MSE of the search-based value estimation V̂S, we follow a
structured approach inspired by Model-based Value Estimation (MVE) (Feinberg et al., 2018), with adjustments for the
specifics of MCTS and considerations of errors of reward and value estimations.

Given Definition 4.2, we aim to bound the MSE of this estimator, defined as:

MSEν(V̂S) = E
[(

V̂S(s0)− Vπ(s0)
)2]

(26)

Where Vπ(s0) =
∑H−1

t=0 γtrt + γHVπ(sH). We can first decompose the MSE as

MSEν(V̂S) = E

[(
1

N

N∑
n=0

(
H(n)∑
t=0

γt(r̂t − rt) + γH(n)
(
V̂ (ŝH(n))− Vπ(sH(n))

)))2]
(27)

According to L− Lipschitz continuity of R and Cauchy inequality, we can derive

E
[
(r̂t − rt)

2
]
= E

[
(R(ŝt)−R∗(st))

2
]

= E
[
(R(ŝt)−R(st) +R(st)−R∗(st))

2
]

≤ 2E
[
(R(ŝt)−R(st))

2
]
+ 2E

[
(R(st)−R∗(st))

2
]
(Cauchy inequality)

≤ 2L2
rE
[
∥ŝt − st∥2

]
+ 2E

[
∥R(st)−R∗(st)∥2

]
≤ 2L2

rϵ
2
s + 2ϵ2r

Similarly, we derive the error bound of value estimation as

E
[(

V̂ (ŝt)− Vπ(st)
)2]

= E
[
(V(ŝt)− V∗(st))

2
]
≤ 2L2

vϵ
2
s + 2ϵ2v

Assume the model inference errors are additive per step, hence

MSEν(V̂S) ≤
2

N2

N∑
n=0

(
H(n)∑
t=0

γ2t(r̂t − rt)
2 + γ2H(n)

(
V̂ (ŝH(n))− Vπ(sH(n))

)2)

≤ 4

N2

N∑
n=0

H(n)∑
t=0

γ2t(L2
rϵ

2
s + ϵ2r) + γ2H(n)(L2

V ϵ
2
s + ϵ2v)

 (28)

Considering the convergence with increasing search depth H(n), we separate it into two parts:

14



EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

1. The reward error term
∑H(n)

t=0 γ2t(L2
rϵ

2
s + ϵ2r): Given Lr ∈ C, γ ∈ (0, 1), and ϵs, ϵr decaying with training, the

series is obviously convergent.

2. The terminal state value error term γ2H(n)(L2
V ϵ

2
s + ϵ2v) is similarly converged.

On the other hand, this upper bound will also converge to 0 if the model is optimal ϵs, ϵr, ϵv → 0.

Compared to SVE, the estimation error of multi-step TD methods in (De Asis et al., 2018) depends on sampling, making it
difficult to determine their theoretical upper bound of estimation errors. In other words, the estimation error of multi-step
TD methods increases gradually during learning due to the off-policy issue.

F. Details of Mixed Value Target
The mixed value target is calculated for each transition sampled from the buffer. It contains two types of value targets: the
search-based value target and the multi-step TD target.

Specifically, we use two criteria to determine if we should use a search-based value target. The first criterion is whether
the sampled transition comes from recent rollouts. If the transition is not from recent rollouts, meaning the transition is
considered stale, we opt for the search-based value as the target. Otherwise, the multi-step TD (Temporal Difference) target
is employed. The second criterion considers whether the current training step is in the early stage. During this phase, all
transitions in the buffer are fresh. Additionally, the error in the dynamic model is still significant, resulting in inaccuracies in
search-based value estimation. Therefore, we opt for the multi-step TD target as the target value.

G. Details of Achitecture
For the 2-dimensional image inputs, we follow the most implementation of the architecture of EfficientZero. For the
continuous control task with 1-dimensional input, we use a variation of the previous architecture in which all convolutions
are replaced by fully connected layers. In the following, we describe the detailed architecture of EZ-V2 under 1-dimensional
input.

The representation function H first processes the observation by a running mean block. The running mean block is similar
to a Batch Normalization layer without learnable parameters. Then, the normalized input is processed by a linear layer,
followed by a Layer Normalisation and a Tanh activation. Hereafter, we use a Pre-LN Transformer style pre-activation
residual tower (Xiong et al., 2020) coupled with Layer Normalisation and Rectified Linear Unit (ReLU) activations to obtain
the latent state. We used 3 blocks and the output dim is 128. Each linear layer has a hidden size of 256.

The dynamic function G takes the state and the action embedding as inputs. the action embedding is obtained from the
action embedding layer which consists of a linear layer, a Layer Normalization, and a ReLU activation. The size of the
action embedding is 64. The combination of the state and the action embedding are also processed by Pre-LN Transformer
style pre-activation residual tower (Xiong et al., 2020) coupled with Layer Normalisation and ReLU activations.

For the reward R, value V and policy P function share the similar network structures. Taking the state as input, a linear
layer followed by a Layer Normalization obtains the hidden variables. Then, we use the MLP network combined with Batch
Normalization, which is similar to that of EfficientZero, to obtain the reward, value, and policy prediction. The hidden size
of each layer is 256, and the activation function is ReLU.

The reward and value predictions used the categorical representation introduced in EfficientZero. We used 51 bins for both
the value and the reward predictions with the value being able to represent values between {−299.0, 299.0}. The reward
can represent values between {−2.0, 2.0}. The maximum reward is 2 because the action repeat in DMControl is 2. For
policy function, the network outputs the mean and standard deviation of the Gaussian distribution. Then we use the 5 times
Tanh function to restrict the range of the mean, and Softplus (Zheng et al., 2015) function to make the standard deviation
over 0. In addition, the policy distribution is modeled by a squashed Gaussian distribution. A squashed Gaussian distribution
belongs to a modification of a standard Gaussian, where the outputs are transformed into a bounded interval.

Furthermore, we add a running mean block for observation in the representation function H in continuous control whose
observation is 1 dimension. A key benefit of the module is that it normalizes the observation to mitigate exploding gradients.

15



EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

H. Training pipeline
The training pipeline comprises data workers, batch workers, and a learner. The data workers, also known as self-play
workers, collect trajectories based on the model updated at specific intervals. The actions executed in these trajectories are
determined using the sampling-based Gumbel search, as depicted in Figure 2 (B).

On the other hand, batch workers provide batch transitions sampled from the replay buffer to the learner. Similar to
EfficientZero, the target policy and value in batch transitions are reanalyzed with the latest target model. This reanalysis
involves revisiting past trajectories and re-executing the data using the target model, resulting in fresher search-based values
and target policies obtained through model inference and Gumbel search. The target model undergoes periodic updates at
specified intervals during the training process.

Finally, the learner trains the reward, dynamics, value, and policy functions using the reanalyzed batch. Figure 2 (A) and
Equation (5) illustrate the specific losses involved in the training process. To enhance the learning process, we have designed
a parallel training framework where data workers, batch workers, and a learner all operate concurrently.

I. Hyperparameters of Algorithms
I.1. Hyperparameters of Our Method

We employ similar hyperparameters across all domains, as outlined in Table 3. It’s worth noting that we use different
optimizers in tasks with different inputs. Specifically, due to architectural differences, we opt for the Adam optimizer in the
’Proprio Control 50-100k’ task, whereas we utilize the SGD optimizer in ’Vision Control 100-200k’ and ’Atari 100k’.

In the case of most baselines, we either adhere to the suggested hyperparameters provided by the authors of those baselines
for each domain or fine-tune them to suit our setup when such suggestions are not available. Notably, SAC, DrQ-v2, and
DreamerV3 employ a larger batch size of 512, while our method and EfficientZero achieve stable learning with a batch size
of 256.

I.2. Hyperparameters of Baselines

I.2.1. DREAMERV3

We use the official reimplementation of DreamerV3, which can be found at https://github.com/danijar/dreamerv3. In
line with the original authors’ recommendations, the results we used are based on their suggested hyperparameters and
the S model size for Atari 100K, Proprio Control 50-100k, and Vision Control 100-200k. For a comprehensive list of
hyperparameters, please refer to their published paper (Hafner et al., 2023).

I.2.2. TD-MPC2

We benchmark against the official implementation of TD-MPC2 available at https://github.com/nicklashansen/tdmpc2.
We reproduce results according to the official implementation, which is shown in Fig. 6. We use the suggested hyperpa-
rameters and select the default 5M trainable parameters. Refer to their paper (Hansen et al., 2023) for a complete list of
hyperparameters.

I.2.3. SAC

We follow the SAC implementation from https://github.com/ denisyarats/pytorch sac, and we use the hyperparameters
suggested by the authors (when available). Refer to their repo for a complete list of hyperparameters.

I.2.4. DRQ-V2

We follow the DrQ-v2 implementation from https://github.com/facebookresearch/drqv2, and we use the hyperparameters
suggested by the authors (when available). Refer to their repo for a complete list of hyperparameters.

I.2.5. EFFICIENTZERO

We conduct benchmarks using the official reimplementation of EfficientZero, which can be found at
https://github.com/YeWR/EfficientZero. In line with the original authors’ recommendations, we used their suggested

16

https://github.com/danijar/dreamerv3
https://github.com/nicklashansen/tdmpc2
https://github.com/ denisyarats/pytorch_sac
https://github.com/facebookresearch/drqv2
https://github.com/YeWR/EfficientZero


EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

Name Symbol Value

General

Replay capacity (FIFO) — 106

Batch size B 256
Discount γ 0.997

Update-to-data (UTD) — 1
Unroll steps lunroll 5

TD steps k 5
Number of simulations in search Nsim 32 (16 in ‘Atari 100k’)

Number of sampled actions K 16 (8 in ‘Atari 100k’)
Self-play network updating interval — 100

Target network updating interval — 400
Starting steps when using SVE T1 4 · 104

Threshold of buffer index when using SVE T2 2 · 104
Priority exponent α 1
Priority correction β 1

Reward loss coefficient λ1 1.0
Policy loss coefficient λ2 1.0
Value loss coefficient λ3 0.25

Self-supervised consistency loss coefficient λ4 2.0
Policy entropy loss coefficient — 5 · 10−3

Proprio Control 50-100k

Optimizer — Adam
Optimizer: learning rate — 3 · 10−4

Optimizer: weight decay — 2 · 10−5

Vision Control 100-200k & Atari 100k

Optimizer — SGD
Optimizer: learning rate — 0.2
Optimizer: weight decay — 1 · 10−4

Optimizer: momentum — 0.9

Table 3. hyper-parameters of EfficientZero V2.

hyperparameters for Atari 100K. For a comprehensive list of hyperparameters, please refer to their published paper (Ye
et al., 2021).

I.2.6. BBF

We use the official results of BBF, which can be found at https://github.com/google-research/google-
research/tree/master/bigger better faster.

J. Details of Experiments
J.1. Comparison

We present the training curves across various benchmarks, including Atari 100k, Proprio Control 50-100k, and Vision
Control 100-200k. Atari 100k, featuring 26 games, is a widely used benchmark for assessing the sample efficiency of
different algorithms. In the case of Proprio Control 50-100k and Vision Control 100-200k, we have considered 20 continuous
control tasks for each. You can find the training curves for EZ-V2 and the baselines in Figures 6, 7, and 8.

17

https://github.com/google-research/google-research/tree/master/bigger_better_faster
https://github.com/google-research/google-research/tree/master/bigger_better_faster


EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

J.2. Ablation

Additionally, we include an ablation study focusing on the sampling-based Gumbel search and the mixed value target.
Table 4, 5 and 6 demonstrate that our search method and mixed value target achieve superior performance on tasks with
proprioceptive and image inputs. The action space is 1-dimensional in tasks such as Acrobot Swingup, Cartpole Swingup
Sparse, and Pendulum Swingup. The dimension is greater than 2 in other DM-Control tasks. For Atari 100k, we selected 3
of the relatively most challenging tasks for our ablation study.

We have observed that our mixed value target outperforms other value estimation methods in most tasks, such as multi-step
value target and generalized advantage estimation (GAE). This indicates that the method mitigating the off-policy issue
consistently performs better. Compared to Sample MCTS, the S-Gumbel Search method significantly enhances performance
in tasks with a high-dimensional action space. The results demonstrate that the S-Gumbel Search method can achieve
superior performance with the limited simulations.

Table 4. Proprio Control 50-100k

Method Acrobot swingup
Cartpole

swingup sparse Pendulum swingup Reacher hard Walker walk Walker run Quadruped walk

Original EZ-v2 297.7 795.4 825.4 795.4 944.0 657.2 925.8
W/ Multi-step TD Target 256.7 473.6 836 590.7 839.3 521.6 649.7
W/ GAE 275.1 766.7 336 601.6 757.3 512.7 719.7
W/ Sample MCTS 248.1 789.3 357.4 754.7 691.7 381.1 254.7

Table 5. Vision Control 100-200k

Method Acrobot swingup
Cartpole

swingup sparse Pendulum swingup Reacher hard Walker walk Walker run Quadruped walk

Original EZ-v2 231.8 763.6 726.7 961.5 888.8 475.3 433.3
W/ Multi-step TD Target 186.3 631.7 411.4 878 880.5 496.7 410.0
W/ GAE 122.0 796.1 718.0 934.9 765.1 491.5 299.3
W/ Sample MCTS 73.9 786.1 372.9 938.8 619.9 264.2 141.4

Table 6. Atari 100k
Game

Method Asterix UpNDown Qbert

Original EZ-v2 61810.0 15224.3 16058.3
W/ Multi-step TD Target 26023.1 13725.7 9463.3
W/ GAE 22816.7 16255.3 7807.3

J.3. Computation Load

We have included practical comparisons between the TD-MPC2 and EZ-V2 algorithms in terms of computational load,
using the ’Walker Run’ task as an example. The following results include the parameter count, FLOPs (per decision step)
and training time for each algorithm. The methods were benchmarked on a server equipped with 8 RTX 3090 graphics cards.

EZ-V2 requires 1000 times fewer FLOPs per decision step compared to TD-MPC2, while also using almost 4 times
fewer parameters. The decision step, crucial for collecting interaction data, occurs during the evaluation. This remarkable
efficiency arises from two primary factors:

• The planning process in TD-MPC2, utilizing the MPPI method, involves predicting 9216 latent states. In contrast, our
method extends only 32 latent states, significantly reducing the computational load.

• TD-MPC2 relies on an ensemble of Q-functions (5 heads), and its latent state dimension is 4 times larger than our
method’s, leading to higher computational demands.

The FLOPs per decision step are vital for deployments, especially in robotics control. Since robots typically have limited
edge computing resources, using less computation is essential for real-time tasks. TD-MPC2 needs more computational

18



EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

Table 7. Model Parameters and Training Performance
Parameters Flops per decision step Time per 100k training (h)

EZ-V2 1.3× 106 4.7× 107 2.7
TD-MPC2 4.9× 106 3.6× 1010 3.3

resources and high-performance computing. In contrast, our method runs efficiently with less demand of computing
resources, making it ideal for real-time robotic planning.

Regarding training time, both methods require a similar amount of time per 100k training steps. This similarity in time
consumption is due to that EZ-V2 and TD-MPC2 share similar unrolled training frameworks with the same batch size.
EZ-V2 wins in speed due to its distributed implementation, without rollout and evaluation overheads in the training process.

19



EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

Sc
or

e
Sc

or
e

Sc
or

e
Sc

or
e

Sc
or

e

Environment Steps

Figure 6. DMC scores for proprioceptive inputs with a budget of 200K frames. it corresponds to 100K steps due to the action repeat.
(Because different algorithms have varying logging frequencies, the starting points are not the same.)

20



EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

Sc
or

e
Sc

or
e

Sc
or

e
Sc

or
e

Sc
or

e

Environment Steps

Figure 7. DMC scores for image inputs with a budget of 400K frames. It corresponds to 200K steps due to the action repeat. (Because
different algorithms have varying logging frequencies, the starting points are not the same.)

21



EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

Sc
or
e

Sc
or
e

Environment Steps

Sc
or
e

Sc
or
e

Sc
or
e

Sc
or
e

Figure 8. Atari training curves with a budget of 400K frames, amounting to 100K interaction data.

22


