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Abstract
Efficiently and effectively estimating counterfac-
tuals over time is crucial for optimizing treatment
strategies. We present the Adversarial Counter-
factual Temporal Inference Network (ACTIN),
a novel framework with dual modules to en-
hance counterfactual estimation. The balanc-
ing module employs a distribution-based ad-
versarial method to learn balanced representa-
tions, extending beyond the limitations of cur-
rent classification-based methods to mitigate con-
founding bias across various treatment types. The
integrating module adopts a novel Temporal In-
tegration Predicting (TIP) strategy, which has a
wider receptive field of treatments and balanced
representations from the beginning to the cur-
rent time for a more profound level of analysis.
TIP goes beyond the established Direct Predict-
ing (DP) strategy, which only relies on current
treatments and representations, by empowering
the integrating module to effectively capture long-
range dependencies and temporal treatment inter-
actions. ACTIN exceeds the confines of specific
base models, and when implemented with simple
base models, consistently delivers state-of-the-art
performance and efficiency across both synthetic
and real-world datasets.

1. Introduction
Assessing the temporal impact of diverse treatments is criti-
cal in fields like personalized healthcare, which necessitates
the efficient and effective estimation of counterfactuals over
time, a crucial element in customizing treatment strategies
(Hill and Su, 2013). While Randomized Controlled Trials
are the gold standard for causal inference (Hariton and Lo-
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cascio, 2018), the inherent high costs and ethical constraints
have increased the emphasis on estimating counterfactuals
from observational data.

In causal inference with observational data in static settings,
addressing selection bias and emphasizing the unique roles
of treatments is crucial, with recent studies (Shalit et al.,
2017; Yao et al., 2018; Schwab et al., 2020; Nie et al., 2021;
Johansson et al., 2022) significantly advancing these aspects,
thus enhancing the accuracy of treatment effect estimation.
In longitudinal settings, similar challenges are encountered,
often presenting increased complexity.

Observational longitudinal data presents complex confound-
ing bias due to time-varying confounders, which impact
subsequent treatment allocations and outcomes (Platt et al.,
2009). Current studies (Bica et al., 2020b; Melnychuk et
al., 2022) address this issue by learning balanced repre-
sentations from historical data, centering on the principle
that these representations should not accurately classify cur-
rent treatment assignments, which effectively removes the
association between patient history and treatment assign-
ments. While proven effective, these methods are primarily
designed for scenarios with categorical treatments. Real-
world applications, however, present diverse treatments like
continuous or mixed types, posing a challenge to designing
a wide-ranging method compatible with various treatment
types for mitigating confounding bias.

In longitudinal studies, another challenge is managing long-
range dependencies, like enduring effects in long-term med-
ical treatments (Latner et al., 2000; Jacobson et al., 2013).
Causal Transformer (CT) (Melnychuk et al., 2022) leverages
the advanced Transformer architecture, surpassing simpler
Long Short-Term Memory (LSTM) networks in capturing
these dependencies (Lim et al., 2018; Bica et al., 2020b; Li
et al., 2021). While CT adeptly handles general long-range
dependencies, it may not thoroughly tackle the intricate tem-
poral synergy between historical and current treatments, a
critical aspect in medical settings. For instance, Roemhild et
al. (2022) highlight the importance of grasping the temporal
interactions between antibiotics for antibiotic optimization
and resistance minimization. CT employs the Direct Pre-
dicting (DP) strategy (Bica et al., 2020b), incorporating
current treatments and balanced representations for counter-
factual estimation, yet it may not fully harness the potential
of complex temporal treatment interactions.
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Figure 1. ACTIN features a dual-module architecture, namely a balancing module and an integrating module. The balancing module
aims to align the joint and marginal distributions of representations and treatments to learn balanced representations. It incorporates a
generator G that learns balanced representations from historical data, attempting to fool the discriminator D, which distinguishes between
real and generated samples. The integrating module’s TIP strategy, diverging from established DP strategy that only relies on current
treatments and balanced representations, merges these elements with their antecedents at each time point for a more profound level of
analysis. Subsequently, counterfactual estimation is performed on the outputs of the integrating module using feedforward networks
GX and GY . ACTIN is trained on observational historical data spanning moments (1, · · · , t) and adopts an autoregressive approach for
predicting counterfactuals at future moments (t+ 1, · · · , t+ τ).

To address these challenges, we propose the Adversarial
Counterfactual Temporal Inference Network (ACTIN), as
illustrated in Figure 1, a novel end-to-end framework devel-
oped for counterfactual estimation over time. The balancing
module of ACTIN adopts an adversarial generative way of
learning balanced representations. It features a discrimina-
tor that differentiates between real samples drawn from the
joint distribution of representations and treatments, and fake
samples generated from their marginal distributions. A gen-
erator within this module aims to learn representations for
deceiving the discriminator. Theoretically, once equilibrium
is achieved, the representation at each time point becomes
independent of the corresponding treatment, thereby effec-
tively reducing confounding bias. Be aware this learning
mechanism is applicable to various types of treatments and
enables ACTIN to be widely applied. The integrating mod-
ule of ACTIN leverages the Temporal Integration Predicting
(TIP) strategy, integrating balanced representations and treat-
ments from current time and earlier, to refine counterfactual
estimation. This approach employs in-depth processing
of historical data embedded in balanced representations at
each time point and its antecedents, thereby enhancing ef-
fectiveness in learning long-range dependencies. Moreover,
it offers a more effective utilization of historical treatment
information than DP methods, leading to enhanced capabili-
ties in handling temporal treatment interactions.

ACTIN enables comparatively simpler base models, such
as Temporal Convolutional Networks (TCN) and LSTM, to
perform effectively. Note that while we instantiate ACTIN
using TCN or LSTM in this paper, it is important to em-
phasize that it is not confined to any specific base model.

Overall, our main contributions are threefold1:

• ACTIN adopts a novel adversarial generative approach
for learning balanced representations, which effectively
reduces confounding bias and is applicable across vari-
ous types of treatments.

• ACTIN, with its TIP strategy, boosts processing of
long-range dependencies and temporal treatment inter-
actions, enabling even simple base models to perform
effectively and efficiently.

• ACTIN achieves state-of-the-art performance and effi-
ciency on both synthetic and real-world datasets. No-
tably, on datasets constructed from real medical data,
its running time is approximately only 10% of that of
CT, highlighting its efficiency advantages.

2. Related Work
Initial methodologies for estimating time-varying outcomes
encompassed the G-computation formula, Structural Nested
Models, and Marginal Structural Models (MSM) (Robins,
1986; 1994; Robins et al., 2000; Robins and Hernán, 2009).
To address the shortcomings of conventional linear regres-
sion methods in managing intricate time dependencies (Mor-
timer et al., 2005), the academic community has gravi-
tated towards the adoption of Bayesian non-parametric ap-
proaches (Xu et al., 2016; Soleimani et al., 2017; Roy et al.,
2017). Nevertheless, these approaches are constrained in
practical applications owing to their significant presupposi-
tions about the structure of models.

1Code is available online: https://github.com/
waxin/ACTIN
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Currently, state-of-the-art methodologies predominantly
rely on the development of deep neural networks. This in-
cludes RMSN (Lim et al., 2018), CRN (Bica et al., 2020b),
G-Net (Li et al., 2021), and CT (Melnychuk et al., 2022).
RMSN integrates two propensity networks and employs a
training method based on Inverse Probability of Treatment
Weighting (IPTW) scores for the predictive network. G-Net
augments the traditional G-computation method through a
deep learning framework. Both CT and CRN aim to gen-
erate a series of balanced representations designed to be
predictive of outcomes while being non-predictive of the
corresponding treatment assignments. The distinction lies
in the two approaches: CRN uses a gradient reversal bal-
ancing strategy, while CT achieves its objective through
minimizing reversed KL-divergence. However, the two ap-
proaches presuppose categorical treatments, limiting their
applicability in broader contexts.

Moreover, RMSN, CRN, and G-Net are all built on simple
LSTM networks. This presents certain limitations in captur-
ing long-range complex dependencies among time-varying
confounders in longitudinal data (Hochreiter et al., 2001),
which may impact their performance in real-world medical
data processing. As an improvement, CT employs more
powerful Transformer architecture (Vaswani et al., 2017)
for counterfactual estimation. However, the high computa-
tional complexity of Transformers may lead to inefficiency
in processing large-scale real data. To balance effective-
ness and efficiency, we propose a dual-module architecture,
which enables comparatively simpler base models to more
effectively capture long-range complex dependencies and
temporal treatment interactions, providing a more effective
method for analyzing real-world data.

Several studies, though varying in setup, explore causal
inference from longitudinal data (Bica et al., 2020a; Hatt
and Feuerriegel, 2024; Frauen et al., 2023; Seedat et al.,
2022; Meng et al., 2023; Hess et al., 2024). For instance,
Time Series Deconfounder (Bica et al., 2020a) leverages
a novel recurrent neural network architecture to infer la-
tent variables for adjusting multi-cause hidden confounders,
enhancing causal inference from time-varying exposures.
DeepACE (Frauen et al., 2023) focuses on estimating time-
varying average causal effects using a deep learning model
incorporating iterative G-computation. Treatment Effect
Neural Controlled Differential Equation (TE-CDE) (Seedat
et al., 2022) estimates counterfactuals in continuous time,
while Bayesian Neural Controlled Differential Equation
(BNCDE) (Hess et al., 2024) offers uncertainty estimates
using Bayesian methods. COSTAR (Meng et al., 2023)
distinguishes itself by addressing counterfactual estimation
over time under distributional shifts and improves model
performance by incorporating self-supervised learning.

The discussion above primarily focuses on methods used

for estimating counterfactuals over time. A more in-depth
review of pertinent literature is available in Appendix A.

3. Problem Formulation
Consider an i.i.d. observational dataset, denoted as D,
which comprehensively encapsulates the detailed informa-
tion of N patients and is mathematically characterized as

D =
{
{x(i)

t ,a
(i)
t ,y

(i)
t }T

(i)

t=1 ∪ {v(i)}
}N
i=1

. For each indi-
vidual patient, indexed by i, observations encompass time-
varying covariates, X(i)

t ∈ X , various types of treatments
received like continuous or categorical types, A(i)

t ∈ A, and
resultant outcomes, Y(i)

t ∈ Y , over T (i) discrete timesteps.
Additionally, static covariates of patients, such as gender
and age, are consistently recorded as V(i) ∈ V . For en-
hanced notational clarity, the patient-specific superscript (i)
will be omitted, unless contextually requisite.

Building upon the foundation of the potential outcomes
framework (Rubin, 1978) and its extension to accommo-
date time-varying treatments (Robins and Hernan, 2008),
we seek to estimate counterfactual outcomes over time
as the previous studies (Lim et al., 2018; Bica et al.,
2020b; Li et al., 2021). Let historical information of a
patient be denoted as H̄t = (X̄t, Āt−1, Ȳt,V), where
X̄t = (X1, · · · ,Xt), Ȳt = (Y1, · · · ,Yt), and Āt−1 =
(A1, · · · ,At−1). We focus on estimating the potential
outcome Yt+τ [āt:t+τ−1] following the administration of
a treatment sequence āt:t+τ−1 = (at, · · · ,at+τ−1). The
primary objective is to estimate:

E[Yt+τ [āt:t+τ−1]|H̄t]. (1)

To ensure the identifiability of treatment effects based on
observational data, we make assumptions in reference to pre-
vious work (Lim et al., 2018; Bica et al., 2020b; Melnychuk
et al., 2022), including consistency, sequential ignorability,
and sequential overlap (see Appendix B for details).

4. ACTIN and Theoretical Analysis
The proposed framework, ACTIN, is depicted in Figure 1.
It is composed of two core modules. The balancing module
synthesizes a balanced representation Φt by integrating his-
torical time-dependent covariates X̄t, static covariates V,
antecedent outcomes Ȳt, and antecedent treatments Āt−1.
The integrating module employs these balanced representa-
tions Φ̄t = {Φ1, · · · ,Φt} alongside prior treatments Āt to
project forthcoming outcome Ŷt+1 and covariate X̂t+1. Ad-
ditionally, the architecture adopts an autoregressive schema,
iteratively inputting the projected outcomes Ŷt+1:t+τ−1

and covariates X̂t+1:t+τ−1 from the treatment juncture for
multi-step-ahead prediction.
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4.1. Balanced Representation

The historical data of a patient, represented as H̄t =
(X̄t, Ȳt, Āt−1,V), includes time-dependent covariates X̄t

which are pivotal in determining the treatment allocation At.
As elucidated by (Robins, 1999; Bica et al., 2020b), sever-
ing the link between the historical data, which encompasses
time-dependent covariates X̄t, and the current treatment At

enables the estimation of unbiased counterfactual treatment
outcomes. Therefore, we introduce an innovative approach
to formulating the representation of historical data H̄t and
ensuring the independence of this representation from the
treatment, which results in the severed link between the
historical data H̄t and the corresponding treatment At.

Let Φ serve as a function mapping the historical data H̄t

onto a representation space R, and let F represent any
base model capable of processing temporal data. Figure 1
depicts our approach to fitting the representation function
Φ through a neural network. This involves an initial step-
by-step transformation of H̄t using a linear layer M , and
the combination of a base model FΦ with an activation
function to generate the time-dependent representation. The
parameters of this procedure, denoted as θΦ, allow us to
formulate the representation function Φ as:

Φ(H̄t|θΦ) = Activation(FΦ(M(H̄t))). (2)

Let Φt = Φ(H̄t|θΦ) denote the learned representation at
time t. For the purpose of achieving an unbiased treatment
effect assessment, we aim to learn a treatment-independent
representation Φt, i.e., P (Φt|At = A0) = P (Φt|At =
A1),∀A0,A1 ∈ A. To realize this goal, we adopt the
concept of adversarial training as put forth by (Ganin et
al., 2016). Figure 1 illustrates the working mechanism
of this approach, where the base model of the balancing
module is employed to learn the function Φ, serving as a
generator G, i.e., G = Φ. This generator forms the basis for
two distinct sets of samples: one comprising real samples
which align with the joint distribution P (Φt,At), extracted
from observational data; the other comprising fake samples
generated from their marginal distributions P (Φt)P (At).

We learn the function Φ by utilizing a discriminatorD which
is trained specifically to differentiate between real and fake
samples within these two distinct sample sets. Concur-
rently, we also refine the generator G = Φ to generate rep-
resentations that can effectively mislead the discriminator
D. The training process ends with reaching an equilibrium
point where the generator-derived representation Φt satisfies
the condition P (Φt,At) = P (Φt)P (At). Next, we will
demonstrate the validity of this hypothesis from a theoreti-
cal perspective. Note that the novelty of our approach arises
from its ability to handle various types of treatments employ-
ing this distribution-based balancing methodology, marking
a notable progression from the previous studies (Bica et al.,

2020b; Melnychuk et al., 2022) that were primarily limited
to categorical treatments.

4.2. Theoretical Analysis

In this section, we provide theoretical guarantees for learn-
ing balanced representations with the adversarial training
procedure described in Section 4.1.

Let S = (Φt;At) denote the generated sample, with ζ ∈
{0, 1} classifying its category. ζ = 1 indicates that s is a real
sample derived from observational data, as s ∼ P (Φt,At).
Conversely, ζ = 0 suggests that s is a fabricated fake sample,
conforming to s ∼ P (Φt)P (At). We define D(s|θD) as
the probability that the discriminator D predicts the sample
s as ζ = 1. Aligning with the adversarial training approach
shown in Figure 1, our objective function is established as:

max
Φ

min
D
LD(θD, θΦ, t), (3)

where LD(θD, θΦ, t) is defined as E[L(D(s), ζ)], with
L(·, ·) denoting a loss function. The objective described
in Eq. 3 is a minimax game. It is demonstrated that when
equilibrium is achieved in this game, the representation func-
tion Φ will synchronize the distributions of the real and fake
samples, i.e., e P (Φt,At) = P (Φt)P (At). We begin our
exposition using Lemma 4.1 to expound on the achievable
condition of the optimal discriminator D∗ with a fixed Φ.

Lemma 4.1. For a fixed Φ, when employing the squared
loss function L, the optimal discriminator D∗ should satisfy
the following condition:

D∗(s) = Eζ∼P (ζ|s)[ζ]. (4)

Proof. See Appendix C.

When the optimal discriminator is realized, the process of
optimizing the objective in Eq. 3 becomes synonymous with
the maximization of the following objective O:

O ≡ E[L(D∗(s), ζ)]. (5)

To prove the resultant condition of the representation func-
tion Φ in the context of maximizingO, we employ Theorem
4.2.

Theorem 4.2. The objectiveO achieves its maximum value
if and only if the learned representation function Φ ensures
that all s satisfy the condition P (ζ|s) = P (ζ). This signi-
fies that Φ has established a balance in the distribution of
samples, namely:

P (Φt,At) = P (Φt)P (At). (6)

Proof. See Appendix C.

4



A Dual-module Framework for Counterfactual Estimation over Time

Theorem 4.2 posits that when the minimax game described
in Eq. 3 reaches equilibrium, the condition P (Φt|At =
A0) = P (Φt|At = A1),∀A0,A1 ∈ A is satisfied, i.e.,
the learned representations are balanced. Subsequently, we
will elaborate on the application of these representations in
the estimation of counterfactuals.

4.3. Counterfactual Estimation

As shown in Figure 1, after obtaining the balanced represen-
tation Φt at each time point, the integrating module takes
Φ̄t = {Φ1, · · · ,Φt} and Āt = {A1, · · · ,At} as inputs. It
revisits the historical treatments Āt and balanced represen-
tations Φ̄t to effectively tackle long-range dependencies and
temporal treatment interactions. This TIP strategy forms
one of the innovations of our work and differs from the DP
strategy (Bica et al., 2020b) that only uses At and Φt for
predictions.

The integrating module comprises two submodules: one for
predicting outcomes and another for predicting covariates.
Both submodules take Φ̄t and Āt as inputs and have their
own parameters.

The outcome prediction submodule, denoted as JY , com-
prises a base model FY and a feedforward neural network
GY , i.e., JY = GY ◦ FY . We refer to the parameters of JY
as θY . We train JY = GY ◦ FY using the Mean Squared
Error (MSE) as the loss function. The loss function can be
expressed as:

LY (θY , θΦ, t) = ‖Yt+1 − JY (Φ̄t ; Āt|θY )‖2. (7)

Similarly, the covariate prediction submodule JX consists
of a base model FX and two feedforward networks denoted
as GX and IX , and its parameters are denoted as θX . Con-
sidering the slow rate of change for some covariates, e.g.,
cholesterol levels, we accommodate this gradual trend using
a smoothing mechanism:

JX(Φ̄t ; Āt|θX) = ηGX(FX(Φ̄t ; Āt)) + (1− η)Xt,
(8)

where η = Sigmoid(IX(FX(Φ̄t ; Āt))) modulates the time-
varying feature of covariates, thereby achieving a balance
between past observed values and predicted ones. It is
worth noting that this strategy was inspired by the gating
mechanism in Gated Recurrent Unit (GRU) (Chung et al.,
2014). Similarly, we define the loss function for Jx as
follows:

LX(θX , θΦ, t) = ‖Xt+1 − JX(Φ̄t ; Āt|θX)‖2. (9)

Next, a detailed introduction to the training process of
ACTIN will be provided, followed by an explanation of
its specific inference steps.

Algorithm 1 Pseudocode of Training ACTIN

Input: D =
{
{x(i)

t ,a
(i)
t ,y

(i)
t }T

(i)

t=1 ∪ {v(i)}
}N
i=1

Parameters: θ := {θΦ, θX , θY }, learning rates l and lD,
max epochs pmax, iteration number j = 0, weight coeffi-
cients λD, λX and exponential smoothing factor β
Output: Optimized Parameters θ

1: Initialize EMA parameters θ0
EMA

2: for p = 1, · · · , pmax do
3: Compute λDp = λD

(
2

1+exp(−10·(p/pmax))
− 1
)

4: for batch B in epoch do
5: Construct real and fake samples using B and Φ

6: Compute LBD = 1
|B|
∑
i∈B
∑T (i)

t=1 L
(i)
D (θD, θΦ, t)

7: θD ← θD − lD ∂L
B
D

∂θD

8: Compute LBY = 1
|B|
∑
i∈B
∑T (i)

t=1 L
(i)
Y (θY , θΦ, t)

9: Compute LBX = 1
|B|
∑
i∈B
∑T (i)

t=1 L
(i)
X (θX , θΦ, t)

10: Compute LBD = 1
|B|
∑
i∈B
∑T (i)

t=1 L
(i)
D (θD, θΦ, t)

11: θΦ ← θΦ − l(∂L
B
Y

∂θΦ
+ λX

∂LB
X

∂θΦ
− λDp

∂LB
D

∂θΦ
)

12: θY ← θY − l ∂L
B
Y

∂θY

13: θX ← θX − lλX ∂LB
X

∂θX
14: j ← j + 1
15: Update EMA: θjEMA = βθj−1

EMA + (1− β)θ
16: end for
17: end for

4.4. Training Algorithm and Inference

We provide a detailed pseudo-code in Algorithm 1 to show
the training process of ACTIN. It takes observational data
D as input and outputs optimized parameters for subsequent
inference tasks. During training, we employ an Exponential
Moving Average (EMA) strategy (Tarvainen and Valpola,
2017), a technique that has been proven to yield more reli-
able results (Athiwaratkun et al., 2019). Specifically, Algo-
rithm 1 initializes the EMA parameters θ0

EMA (see Line 1 of
Algorithm 1) and iteratively updates them according to the
following update formula (see Line 15 of Algorithm 1):

θjEMA = βθj−1
EMA + (1− β)θj , (10)

where j denotes the iteration number in training and β de-
notes an exponential smoothing factor.

Within Algorithm 1, the discriminator parameters θD are
refined in Lines 5 to 7, with the intention of reducing the
following objective function:

LD =
1

N

∑
i∈D

T (i)∑
t=1

L(i)
D (θD, θΦ, t). (11)

Note that fake samples are generated in Line 5 by employing
a random shuffle of the treatments At during each time
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Table 1. One-step-ahead prediction results (τ = 1, lower values are better, with the best highlighted in bold) for the TG, RW, and SS
datasets, with the latter two constructed based on MIMIC-III. Shown: RMSE as mean ± standard deviation over five runs.

Tumor MIMIC-III
γ = 0 γ = 1 γ = 2 γ = 3 γ = 4 RW SS

RMSN 0.91±0.04 1.12±0.10 1.14±0.07 1.35±0.11 1.39±0.18 5.26±0.13 0.23±0.01
CRN 0.78±0.05 0.82±0.05 0.89±0.07 1.13±0.17 1.33±0.17 4.85±0.06 0.29±0.01
G-Net 0.83±0.05 0.87±0.08 1.00±0.06 1.30±0.23 1.37±0.25 5.05±0.04 0.36±0.01
CT 0.78±0.06 0.80±0.08 0.87±0.08 1.02±0.12 1.37±0.24 4.60±0.09 0.20±0.00

ACTIN (LSTM-based) 0.77±0.06 0.83±0.04 0.90±0.05 1.07±0.13 1.42±0.23 4.67±0.08 0.17±0.00
ACTIN 0.75±0.06 0.78±0.04 0.85±0.07 1.01±0.13 1.26±0.21 4.56±0.10 0.15±0.00
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(c) 6-step-ahead prediction

Figure 2. Performance comparison of the ACTIN model with alternative models for 2-step, 4-step, and 6-step predictions is conducted
under the single sliding treatment setting on TG datasets. The comparison is made across varying levels of the time-varying confounding
factor γ, with the results presented as the average RMSE over five runs.

point. The parameters of the generator and the integrating
module, i.e., θΦ, θX , and θY , are updated in Line 8 to 13 by
minimizing the objective as follows:

L =
1

N

∑
i∈D

T (i)∑
t=1

(L(i)
Y (θY , θΦ, t) + λXL(i)

X (θX , θΦ, t)

− λDp
L(i)
D (θD, θΦ, t)). (12)

Optimizing this objective is to enhance predictive accuracy
while promoting the representation function Φ, which serves
as the generator, to mislead the discriminator, by maximiz-
ing LD. Here, λX denotes a preset weight coefficient and
λDp

denotes a weight coefficient that gradually increases
with training epochs to balance the training speed of the
generator and the discriminator.

We implement ACTIN using the Pytorch Lightning frame-
work and choose the Adam algorithm (Kingma and Ba,
2014) for gradient optimization. Once trained, the resultant
model is ready to perform inference tasks.

During one-step-ahead inference, the model primarily relies
on observational data. In the multi-step-ahead inference
process, as shown in Figure 1, ACTIN utilizes the autore-
gressive recursive strategy for predictions in a more distant
future, a well-established approach in multi-step time series
forecasting (Chevillon, 2007; Taieb and Hyndman, 2014)
that has also been successfully applied in G-Net.

5. Experiments
In this section, we validate the effectiveness of the proposed
ACTIN through a series of experiments. Following the con-
ventional workflow of counterfactual inference benchmarks
(Melnychuk et al., 2022), we conduct comparative analy-
ses of ACTIN against existing models on both simulated
and real datasets. Subsequently, we examine in detail the
running time and complexity of the baseline methods and
ACTIN on different datasets. Ultimately, we experimentally
explore the roles of different components in ACTIN.

Baselines. In this study, models from the state-of-the-art
literature on time-varying counterfactual outcome estima-
tion are selected as baselines for comparison. These include:
RMSN (Lim et al., 2018), CRN (Bica et al., 2020b), G-Net
(Li et al., 2021), and CT (Melnychuk et al., 2022). To en-
sure the fairness in comparison, we employ hyperparameter
tuning for these baselines (see Appendix F for details).

Datasets. The fully-synthetic tumor growth dataset, con-
structed using a pharmacokinetic-pharmacodynamic model
(Geng et al., 2017), simulates the combined effects of
chemotherapy and radiotherapy on lung cancer patients.
This dataset has also been used for evaluation in previous
studies such as (Lim et al., 2018; Bica et al., 2020b; Mel-
nychuk et al., 2022). A parameter γ in the advanced bio-
mathematical model controls time-dependent confounding
in the dataset. An increase in γ signifies that historical
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Table 2. Multi-step-ahead prediction results on the SS dataset. Shown: RMSE as mean ± standard deviation over five runs.

τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8 τ = 9 τ = 10 τ = 11

RMSN 0.47±0.01 0.59±0.01 0.70±0.03 0.79±0.06 0.88±0.08 0.95±0.08 1.01±0.07 1.04±0.05 1.07±0.04 1.10±0.03
CRN 0.46±0.01 0.57±0.01 0.62±0.01 0.66±0.01 0.69±0.01 0.70±0.02 0.73±0.02 0.75±0.03 0.77±0.03 0.80±0.03
G-Net 0.67±0.01 0.84±0.01 0.96±0.02 1.05±0.02 1.13±0.03 1.20±0.04 1.26±0.05 1.31±0.06 1.37±0.07 1.41±0.09
CT 0.37±0.00 0.45±0.01 0.49±0.01 0.51±0.01 0.53±0.01 0.55±0.01 0.56±0.02 0.58±0.02 0.59±0.02 0.60±0.02

ACTIN (LSTM-based) 0.35±0.00 0.41±0.00 0.45±0.01 0.48±0.01 0.50±0.01 0.51±0.01 0.52±0.01 0.54±0.02 0.55±0.02 0.56±0.02
ACTIN 0.33±0.00 0.39±0.00 0.43±0.00 0.46±0.00 0.48±0.00 0.49±0.00 0.50±0.00 0.51±0.01 0.52±0.01 0.54±0.01
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(e) Computational Load

Figure 3. The comparison of running costs and model complexity between ACTIN and other models is presented for the TG dataset
(γ = 0), as well as for the SS and RW datasets constructed based on MIMIC-III.

data play a more critical role in the allocation of treatments,
leading to more pronounced confounding bias.

The Medical Information Mart for Intensive Care III
(MIMIC-III) (Johnson et al., 2016) is a comprehensive
database of electronic health records for patients in inten-
sive care units, often used to evaluate the effectiveness of
models in real and complex medical scenarios. Following
the studies in (Hatt and Feuerriegel, 2021; Kuzmanovic et
al., 2021; Melnychuk et al., 2022), we extract 25 patients
covariates and 3 static features from MIMIC-III, treat di-
astolic blood pressure as the predictive target, and choose
two treatment interventions: the use of vasopressors and
mechanical ventilation.

It is important to note that MIMIC-III, as a real data source,
does not include information of counterfactual outcomes.
To further explore the performance of ACTIN in the anal-
ysis of high-dimensional, long-range patient trajectories,
we construct a semi-synthetic dataset based on the method
described in (Melnychuk et al., 2022) on top of MIMIC-III.
This dataset, grounded in the research approach (Schulam
and Saria, 2017), generates patient trajectories considering
treatment effects, as well as endogenous and exogenous
dependencies. This allows us to control the degree of con-
founding and access counterfactuals for evaluation.

Additionally, to explore ACTIN’s adaptability to different
treatments, we introduce a synthetic dataset for continu-
ous interventions, the Continuous Interventions Synthetic
Dataset (CISD). This dataset models continuous interven-
tions through an autoregressive process that integrates his-
torical covariate data to guide treatment decisions. Treat-
ments are sampled from a Beta distribution after undergoing

non-linear transformations and noise adjustments, reflecting
the stochastic nature of treatment assignments. CISD is
designed to assess the impact of sequential treatment strate-
gies, highlighting the continuous nature of interventions and
their complex temporal dependencies.

For ease of discussion, henceforth we denote the fully-
synthetic tumor growth dataset as TG, and both the semi-
synthetic and the real-world datasets, constructed from
MIMIC-III, as SS and RW respectively. For details on
the generation of all aforementioned datasets, please refer
to Appendix E.

5.1. Performance Comparison

In this study, we primarily use TCN and LSTM networks
as the base models for the ACTIN’s balancing and in-
tegration modules, denoted as ACTIN (TCN-based) and
ACTIN (LSTM-based), respectively. For a detailed discus-
sion on TCN, please refer to Appendix D. In the descriptions
that follow, unless otherwise specified, we refer to ACTIN
(TCN-based) simply as ACTIN. Moreover, to demonstrate
ACTIN’s compatibility, we also applied the TIP strategy to
the CT model, with detailed results available in Section 5.3.

One-step-ahead prediction. As shown in Table 1, ACTIN
exhibits best performance on TG datasets across various lev-
els of time-dependent confounding variable γ. On the RW
and SS datasets constructed based on MIMIC-III, ACTIN
also demonstrates higher prediction accuracy, with the low-
est Root Mean Square Error (RMSE) and relatively small
standard deviation. This experimental evidence indicates
the effectiveness of ACTIN. Particularly, its outstanding
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Table 3. Multi-step-ahead prediction results on the RW dataset. Shown: RMSE as mean ± standard deviation over five runs.

τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

RMSN 10.02±0.53 11.18±0.71 11.93±1.07 12.56±1.47 13.12±1.82
CRN 9.13±0.16 9.77±0.16 10.10±0.17 10.36±0.20 10.58±0.22
G-Net 11.89±0.19 12.92±0.25 13.59±0.28 14.09±0.30 14.52±0.38
CT 8.99±0.21 9.59±0.22 9.91±0.25 10.14±0.29 10.34±0.32

ACTIN (LSTM-based) 9.05±0.16 9.64±0.16 9.96±0.17 10.21±0.19 10.42±0.21
ACTIN 8.98±0.18 9.56±0.18 9.87±0.19 10.11±0.21 10.30±0.23

performance on the semi-synthetic dataset further reveals
ACTIN’s applicability in scenarios closely mirroring real-
world complexities.

Multi-step-ahead prediction. In the context of multi-step-
ahead prediction on TG datasets, we adopt two settings
following (Melnychuk et al., 2022): (1) single sliding treat-
ment to simulate trajectories with a single treatment where
the treatments are iteratively moved over a window, and (2)
random trajectories to simulate trajectories with random
treatment assignments. Given that the former setting is also
employed in (Bica et al., 2020b), we present in Figure 2
a comparison of ACTIN with the baselines for multi-step-
ahead prediction results under the relevant settings. In all
testing scenarios, ACTIN consistently achieves the best
prediction accuracy. With the gradual increase of the time-
varying confounding factor γ, the RMSE of all models rises,
yet ACTIN’s performance remains comparatively stable,
which confirms its effectiveness.

In the RW and SS datasets constructed based on MIMIC-III
(as shown in Table 2 and Table 3), ACTIN also demonstrates
superior multi-step-ahead prediction accuracy, showing its
impressive ability to handle complex long-term dependen-
cies. Additionally, we employ LSTM as an alternative base
model for ACTIN, executing experiments on the SS dataset.
The experimental results shown in Table 2 indicate that
LSTM-based ACTIN slightly outperforms CT. Compared
to other LSTM-based models, such as CRN, LSTM-based
ACTIN achieved a significant performance improvement.
These results demonstrate the compatibility of ACTIN and
its capability of in enhancing the performance of simpler
base models. For a more comprehensive exposition of the
experimental results, please refer to Appendix G.

Overall, the experimental results sufficiently prove the po-
tential of ACTIN in time-series analysis for estimating coun-
terfactual outcomes. ACTIN maintains reliable and precise
forecasts even in complex scenarios characterized by sub-
stantial confounding bias and long-term dependencies.

5.2. Model Efficiency Evaluation

In practical applications, not only the accuracy of the model
matters, but its operational efficiency is also crucial. There-

Table 4. Ablation study results with average RMSE for the ACTIN
model and relative performance changes for model variants across
TG (τ = 6), SS (τ = 11), and CISD (τ = 6) Datasets, where “+”
indicates a decrease and “-” an increase in performance.

TG
γ = 0 γ = 2 γ = 4 SS CISD

ACTIN 0.757 0.851 1.168 0.536 3.378

w/o balancing −0.1% +1.6% +4.3% +1.9% +9.4%
w/o integrating +6.8% +4.0% +12.6% +41.2% +17.1%
with DP +5.4% +6.6% +6.2% +5.8% +18.9%

fore, we evaluated the running cost and complexity of
ACTIN and the baselines on various datasets, with the spe-
cific results presented in Figure 3. Figure 3(a) displays the
running time, which is the sum of both training and infer-
ence times. This combined measure is a common practice
for evaluating model efficiency, as demonstrated in recent
studies like CoST (Woo et al., 2022)

The computational load shown in Figure 3(e) is measured by
the million floating-point operations (MFLOPs) of a model
processing a single sample, as measured using fvcore2.

ACTIN demonstrates superior efficiency across all datasets,
particularly in contexts that closely mirror real-world sce-
narios, operating at roughly 10% the running time of CT
(based on RW and SS datasets from MIMIC-III). This ef-
ficiency, alongside its enhanced performance, significantly
bolsters ACTIN’s suitability for real-world application sce-
narios. This exceptional efficiency is partially due to the
rapidity of ACTIN in both training and inference stages. In
contrast, CRN requires a longer training time due to the sep-
arate training of encoders and decoders, whereas G-Net’s
inference time is prolonged due to Monte Carlo sampling.

Regarding model complexity, ACTIN’s requirements for the
number of parameters and computational load are generally
lower, especially notable in the more structurally complex
MIMIC-III derived datasets.

Overall, ACTIN shows excellent efficiency and good scala-

2Fvcore is a lightweight core library that provides common
functionality and useful utilities for deep learning. For more infor-
mation, please visit https://github.com/facebookresearch/fvcore
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τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

CT 1.35±0.24 1.01±0.28 1.13±0.35 1.23±0.40 1.29±0.43 1.33±0.45
ACTIN (CT-based) 1.38±0.22 0.99±0.14 1.06±0.18 1.15±0.20 1.22±0.22 1.28±0.24

Table 5. τ -step-ahead prediction results on the TG dataset (γ = 4 with single sliding treatment setting) for the CT and ACTIN (CT-based)
models across different τ values. Results are presented as mean ± standard deviation over five runs.

bility, indicating its substantial potential in handling com-
plex real-world application scenarios.

5.3. Ablation Study

In our ablation study, we evaluate the importance of dif-
ferent components of ACTIN by comparing the full model
against variants with certain components removed. Specif-
ically, “w/o balancing” refers to omitting the adversarial
aspect within the balancing module, i.e., setting λD = 0;
“w/o integrating” denotes excluding the entire integrating
module; “with DP” signifies the integrating module using
only balanced representations for input and employing the
DP strategy for counterfactual estimation at the output stage.
The experiment is conducted on TG datasets, the SS dataset,
and the dataset focusing on continuous interventions (CISA),
which was generated through an autoregressive process (see
Appendix E.3 for details).

The results of the ablation study are shown in Table 4. In
TG datasets, the effectiveness of balanced representations
learned through adversarial training becomes more pro-
nounced with an increase in time-varying confounding bias.
Additionally, experimental outcomes underscore that the
integrating module improves model performance across all
datasets, with particularly pronounced enhancements when
contending with the complexities of the MIMIC-III data,
thereby affirming its capability to address long-range depen-
dencies. Notably, substituting the TIP strategy with the DP
approach often results in a similar performance detriment to
the removal of the entire integrating module, highlighting
the critical importance of accounting for temporal treatment
interactions in counterfactual estimation over time.

In the experiments with the CISD dataset, ACTIN also effec-
tively mitigates the confounding bias in scenarios of the con-
tinuous treatment, thereby enhancing model performance.
Furthermore, in Figure 4, we present the t-SNE embeddings
of the balanced representations constructed by ACTIN for
validation patients in the CISD dataset. By coloring based
on the value of treatments, we observe that the treatments
corresponding to different representations are essentially
balanced.

To further explore the effectiveness of ACTIN in relation to
other models, we implemented the TIP strategy using LSTM
on CT, referred to as ACTIN (CT-based). We compared the
performance of the original CT and ACTIN (CT-based)

(a) !=5 (b) !=15 (c) !=20

Figure 4. t-SNE embeddings of the balancing representations
learned by ACTIN at different time.

on the TG dataset (γ = 4 with a single sliding treatment
setting). Specifically, we maintained the other model hy-
perparameters of CT unchanged and added an integrating
module composed of an LSTM to conduct experiments. The
experimental results in Table 5 demonstrate that combining
ACTIN with CT can indeed lead to performance improve-
ments. However, the magnitude of improvement is smaller
compared to that observed with simpler base models such
as TCN. This can be attributed to the fact that the proposed
dual-module framework primarily serves two purposes: (1)
enhancing the ability of simple temporal models to han-
dle long-term dependencies, and (2) improving the model’s
capacity to capture temporal treatment interactions. CT,
through its elaborate design, already effectively enhances
the handling of long-term dependencies. Consequently,
while the improvement brought about by our method in
the first point is comparatively limited, its contribution to
capturing temporal treatment interactions remains notable.

6. Conclusion
In this paper, we introduce a dual-module framework, the
Adversarial Counterfactual Temporal Inference Network
(ACTIN), designed to enhance counterfactual estimation
over time. The balancing module of ACTIN effectively mit-
igates confounding bias across different treatment scenarios,
while the integrating module enables the construction of
efficient and effective models based on simple base mod-
els. ACTIN has been rigorously validated through extensive
experimental analysis, thereby underscoring ACTIN’s con-
siderable potential for real-world applications. Notably, a
key limitation of all counterfactual estimation methods, in-
cluding ours, is that they can not be directly validated with
real-world data since counterfactuals are unobservable.
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A. Extended Related Work
Causal inference in static settings

Mitigating selection bias. A substantial body of literature focuses on estimating counterfactual outcomes in static settings
to assess individual treatment effects, as explored in studies like (Johansson et al., 2016; Shalit et al., 2017; Yoon et al.,
2018; Curth and van der Schaar, 2021; Kong et al., 2023). In observational data within these static environments, treatments
are typically allocated based on covariates related to each unit, leading to imbalances in covariate distributions between
subgroups receiving different treatments, a phenomenon known as selection bias. Mitigating this imbalance, which can
compromise inference reliability, is a critical issue. Numerous studies have dedicated efforts to this challenge, with the
closest approach to our concept being the learning of representations to balance distributions between treatment and control
groups (Johansson et al., 2016; Shalit et al., 2017; Yoon et al., 2018). For instance, Shalit et al. (2017) learn balanced
representations by minimizing the Integral Probability Metric (IPM) measure of distance between treated and control
distributions. However, methods developed for static settings do not directly extend to time-varying treatments. Our strategy
for learning balanced representations draws inspiration from (Belghazi et al., 2018), fundamentally aiming to render the
mutual information between balanced representations and corresponding intervention distributions as zero.

Emphasizing the unique roles of treatments. In static settings, a critical problem for the successful application of neural
networks in causal inference is the necessity to design a network structure that distinctly incorporates treatment variables from
other covariates (Shalit et al., 2017; Schwab et al., 2020; Nie et al., 2020). Under binary interventions, Shalit et al. (2017)
proposed a general framework known as Counterfactual Regression (CFR). CFR initially learns a shared representation, on
top of which two separate “heads” are utilized to predict outcomes post-intervention and control, effectively addressing the
potential loss of treatment information in high-dimensional latent representations. This concept has been widely adopted in
subsequent research (Louizos et al., 2017; Shi et al., 2019; Hassanpour and Greiner, 2019). Furthermore, Schwab et al.
(2020) extended this idea to continuous interventions with Dose Response Network (DRNet). DRNet segments continuous
treatment variables into discrete sections, assigning a distinct head for each segment and integrating the treatment into every
layer of the hidden network. However, this structure fails to maintain the continuity of the average dose-response curve
(ADRF). To address this, Nie et al. (2020) introduce the Varying Coefficient Network (VCNet). VCNet permits the weights
of the prediction head to be continuous functions of the treatment, not only enhancing the impact of the treatment but also
preserving the continuity of the ADRF.

In continuous settings, similar issues arise, such as the potential neglect of historical treatments over time, yet this problem
has received little attention. CT (Melnychuk et al., 2022) introduces a subnetwork for treatments, partially addressing the
issue. However, as we have identified, CT’s DP strategy utilizes historical treatments in a more implicit manner, whereas our
TIP strategy engages historical treatments more explicitly, thus enhancing the model’s ability to manage temporal treatment
interactions more effectively.

B. Assumptions
To ensure the identifiability of treatment effects based on observational data, we make the following assumptions in reference
to previous work (Lim et al., 2018; Bica et al., 2020b; Li et al., 2021; Melnychuk et al., 2022).

Assumption B.1 (Consistency). At time t+ 1, the observed outcome Yt+1 equals the potential outcome Yt+1[at] given
the treatment at at t, i.e., Yt+1 = Yt+1[at].

Assumption B.2 (Sequential Overlap). The probability of receiving a treatment at time t is always nonzero, i.e., 0 <
P (At = at|H̄t = h̄t) < 1, ∀at ∈ A if P (H̄t = h̄t) > 0, where h̄t is a realization of H̄t.

Assumption B.3 (Sequential Ignorability). The treatment applied at any time t is independent of the potential outcome,
given the observed history, i.e., At ⊥ Yt+1[at] | H̄t,∀at ∈ A. This suggests that there are no unobserved confounders that
affect both treatment and outcome.

C. Proofs
Lemma C.1. For a fixed Φ, when employing the squared loss function L, the optimal discriminator D∗ should satisfy the
following condition:

D∗(s) = Eζ∼P (ζ|s)[ζ]. (13)
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Figure 5. Illustration of a Temporal Convolutional Network (TCN) architecture with layers exhibiting progressively increased dilation
factors d, thereby broadening the model’s receptive field and enhancing its capacity to grasp extensive temporal dependencies.

Proof. When Φ is fixed and L represents a squared loss function, the objective function can be rewritten as:

E(s,ζ)∼p(s,ζ)[L(D(s), ζ)] = E(s,ζ)∼p(s,ζ)[(D(s)− ζ)2] (14)

= Es∼p(s)Eζ∼p(ζ|s)[(D(s)− ζ)2|s] (15)

= Es∼p(s)
[
Eζ∼p(ζ|s)[ζ2|s]− 2D(s)Eζ∼p(ζ|s)[ζ|s] +D(s)2

]
. (16)

For a fixed s, Eζ∼p(ζ|s)[ζ2|s] can be considered as a constant. Therefore, we only need to minimize:

−2D(s)Eζ∼p(ζ|s)[ζ|s] +D(s)2. (17)

It is clear that the optimal discriminator, denoted by D∗, is characterized by the condition D∗(s) = Eζ∼p(ζ|s)[ζ], which thus
completes the proof.

Theorem C.2. The objective O achieves its maximum value if and only if the learned representation function Φ ensures
that all s satisfy the condition P (ζ|s) = P (ζ). This signifies that Φ has established a balance in the distribution of samples,
namely:

P (Φt,At) = P (Φt)P (At). (18)

Proof. With the optimal discriminator D∗, Eq. 3 aims to maximize the objective O of the objective O:

O ≡ E[L(D∗(s), ζ)] (19)

= Es∼p(s)Eζ∼p(ζ|s)[(Eζ∼p(ζ|s)[ζ]− ζ)2] (20)
= Es∼p(s)V[ζ|s]. (21)

According to the Law of Total Variance Theorem, we have:

V(ζ) = Es∼p(s)[V(ζ|s)] + Vs∼p(s)(E[ζ|s]). (22)

Due to the non-negativity of the variance:

Es∼p(s)V[ζ|s] ≤ V[ζ]. (23)

The equality holds if and only if Vs∼p(s)(E[ζ|s]) = 0, i.e., there exists a constant µc such that E[ζ|s] = µc.

Using the law of total expectation, ∀ζ, we have E[ζ|s] = E[ζ].

Given that ζ ∈ {0, 1}, it follows that p(ζ|s) = p(ζ), i.e. ζ ⊥ s, implying that P (Φt,At) = P (Φt)P (At), thereby
completing the proof.
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D. Temporal Convolutional Network
Temporal Convolutional Networks (TCN) (Oord et al., 2016) represent a class of neural network architectures tailored for
the effective processing of time-series data. Figure 5 illustrates the TCN’s fundamental structure with one-dimensional
convolutional layers. These layers are architected to enable the prediction at any given time step to be contingent exclusively
on the input information up to that point, precluding any inadvertent inclusion of future data. TCN incorporates Dilated
Convolutions to wide the receptive field with a dilation factor. Formally, given a one-dimensional sequence input z ∈ Rn
and a filter function f : {0, . . . , k − 1} → R, the dilation convolution operation F at a sequence point t is delineated as:

F (t) = (z ∗d f)(t) =

k−1∑
i=0

f(i) · zt−d·i, (24)

where d is the dilation factor, k is the size of the filter, and the term t− d · i captures the historical reach of the convolution.

Following the methodology of (Bai et al., 2018), our TCN architecture incorporates residual connections, an approach
empirically validated to benefit deep networks. As delineated by (He et al., 2016), a residual block includes a bypass that
adds its output to the block’s input z:

o = Activation(B(z) + F (z)). (25)

In this context, B serves as the identity map when the input z is dimensionally consistent with the output F (z). Conversely,
should their dimensions vary, B assumes the role of a 1× 1 convolution, aligning the dimensions for compatibility.

E. Datasets Description and Additional Results
E.1. Fully-synthetic tumor growth dataset

In the study by (Geng et al., 2017), the volume of tumor growth for a period of t+ 1 days following a cancer diagnosis is
modeled by the Tumor Growth (TG) simulator, with the outcome being one-dimensional. The simulator incorporates two
binary treatment strategies: radiotherapy (Ar

t ) and chemotherapy (Ac
t ). The treatments are applied in the model as follows:

radiotherapy has an instantaneous effect d(t) on the subsequent outcome when administered to a patient. Chemotherapy, on
the other hand, influences multiple future outcomes with a diminishing effect C(t) described by the equation:

Yt+1 =

(
1 + ρ log

(
K

Yt

)
− βCCt − (αrdt + βrd

2
t ) + εt

)
Yt, (26)

where the simulation parameters ρ,K, βC , αr, βr are specified, and the noise εt is modeled as an independent sample from
a normal distribution N(0, 0.012). The individual patient response is characterized by the parameters βC , αr, βr, which are
drawn from a mixture of three truncated normal distribution components. Consult the code implementation 3 for the precise
parameter values. The mixture component indices serve as static covariates. A biased treatment assignment introduces
time-varying confounding for both treatments, expressed as:

Ar
t ,A

c
t ∼ Bernoulli

(
σ

(
γ

Dmax

(
D̄15(Ȳt−1)−Dmax/2

)))
, (27)

with σ(·) representing a sigmoid activation function, Dmax the maximum tumor diameter, D̄15(Ȳt−1) the average tumor
diameter over the past 15 days, and γ the confounding parameter. By adjusting γ, the level of confounding can be controlled.
With γ = 0, treatment assignments are fully randomized, whereas higher values of γ increase the extent of time-varying
confounding.

In our implementation, RMSNs are configured with two direct binary treatments. For all other methods, we operationalize
treatment as a one-hot encoded variable, selecting a unique category from the set {(Ar

t = 0,Ac
t = 0), (Ar

t = 1,Ac
t =

0), (Ar
t = 0,Ac

t = 1), (Ar
t = 1,Ac

t = 1)}.

At each time step for every patient within the test cohort, a series of counterfactual paths are generated, contingent on τ . For
predictions that are one step ahead, the full quartet of possible one-step-ahead counterfactual outcomes Yt+1 is simulated.
These mirror the tumor volume for every treatment combination possible. When predicting multiple steps ahead, the total
count of possible outcomes for Yt+2, . . . , Yt+τmax proliferates exponentially in line with the projection horizon τmax. Hence,
we employ two distinct approaches as per (Melnychuk et al., 2022):

3Please refer to our supplementary materials.
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1. Single sliding treatment. This approach simulates trajectories with a sole treatment that is sequentially shifted across a
timeframe extending from t to t+ τmax − 1, to affirm the precision in treatment timing. This process yields 2(τmax − 1)
distinct trajectories.

2. Random trajectories. In this instance, a set number of trajectories, specifically 2(τmax − 1), are generated with
randomized treatment allocations.

This former approach is a replication of the one used in (Bica et al., 2020b). The inclusion of the latter approach aims to
encompass a broader spectrum of trajectories involving multiple treatments.

Across varying levels of confounding γ, we generate 10,000 patient trajectories for the training phase, 1,000 for validation
purposes, and another 1,000 for the testing phase. The trajectory duration is capped at a maximum of 60 time steps,
acknowledging that certain patients may exhibit shorter trajectories due to recovery or demise.

Consistent with previous works (Bica et al., 2020b; Melnychuk et al., 2022), we report the normalized RMSE, which is
normalized with respect to the maximum tumor volume Vmax = 1150 cubic centimeters.

E.2. MIMIC-III datasets

Medical Information Mart for Intensive Care III (MIMIC-III) database (Johnson et al., 2016) provides an extensive collection
of de-identified electronic health records from intensive care unit patients. MIMIC-III integrates a wide range of data types,
including vital signs, medications, laboratory measurements, observations and notes taken by care providers, fluid balance,
procedure codes, diagnostic codes, imaging reports, hospital length of stay, survival data, and more. This information is
collected from various hospital information systems which have been standardized to facilitate secondary use in research. It
serves as a critical resource for validating the performance of analytical models in intricate and authentic clinical settings.
In the implementation described below, MIMIC-extract (Wang et al., 2020) was employed, which applies a standardized
preprocessing pipeline to the MIMIC-III dataset.

Real-world data. Following the studies in (Hatt and Feuerriegel, 2021; Kuzmanovic et al., 2021; Melnychuk et al., 2022),
we extract 25 patients covariates and 3 static features from MIMIC-III, treat diastolic blood pressure as the predictive target,
and choose two treatment interventions: the use of vasopressors and mechanical ventilation.

Our analysis incorporates 25 vital sign indicators and 3 static attributes, which are also represented as one-hot-encoded
variables for categorical features. These elements, encompassing both dynamic covariates and invariant characteristics,
are acknowledged as potential confounding factors. Our study leverages a pair of binary treatments: the administration
of vasopressors and the application of mechanical ventilation. Subsequently, we ascertain the actual outcome concerning
(diastolic) blood pressure, which may be subjected to either augmentation or diminution due to the aforementioned
treatments, posing a critical consideration for clinicians regarding the expected progression of patient trajectories under such
interventions.

The experimental dataset comprised a selected group of 5,000 individuals, each having been admitted to the intensive care
unit (ICU) for a minimum duration of 30 hours, with a cap at 60 hours for ICU stay. This cohort was then distributed
into training, validation, and testing datasets in a 70%/15%/15% proportion. The study’s methodology was adapted to the
length of the forecast horizon τ . Specifically, (i) for predictions just one step ahead, the entirety of test set trajectories was
utilized. (ii) For predictions that spanned τ steps, where τ ≥ 2, the process was as follows: we defined τmax ≥ τ as the
furthest horizon of projection. From here, sub-trajectories extending no less than τmax + 1 were isolated, adopting a rolling
origin technique, and excising vital sign readings from the initial time steps up to τ (i) − τmax + 1, effectively precluding any
foresight in the prediction process.

Semi-synthetic data. In alignment with our real world dataset, we extracted 25 distinct vital signs to serve as time-varying
covariates, along with three static covariates: gender, ethnicity, and age. Our semi-synthetic data simulation adheres to the
framework established by (Melnychuk et al., 2022), initially generating outcome trajectories that exhibit both inherent and
external dependencies, subsequently integrating treatment interventions in a sequential manner. We posit that the interplay
among treatments, outcomes, and dynamic covariates is minimal, with outcomes predominantly shaped by a select few of
these elements.

Step 1: We select a sample of 1,000 patients from those with a minimum of 20 hours in intensive care, limiting the duration
to a maximum of 100 hours, thus setting T (i) within the 20 to 100-hour range.
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Step 2: For each patient i, simulate dy untreated outcomes Zj,(i)t , j = 1, . . . , dy , incorporating: (1) a B-spline(t) and random
function gj,(i)(t) for endogenous effects; (2) an external dependency f jZ(X

(i)
t ) on a subset of current covariates; and (3)

independent noise εt. This yields:

Z
j,(i)
t = αjSB-spline(t) + αjgg

j,(i)(t) + αjff
j
Z(X

(i)
t ) + εt, (28)

In this stage, noise is introduced as εt ∼ N(0, 0.0052), and weights αjS , αjg, and αjf are assigned. The B-spline(t) is
constructed from three cubic splines representing different ICU stay trends. Patient-specific randomness gj,(i)(t) arises from
a Gaussian process with a Matérn kernel, while the external effect f jZ(·) is modeled using a random Fourier features (RFF)
approach, avoiding the complex Cholesky decomposition. This setup captures multi-scale endogenous patterns and selective
exogenous influences on time-variant covariates.

Step 3: We simulate synthetic da binary treatments Al
t, l = 1, . . . , da, with confounding influenced by both prior treated

outcomes ĀTl
(Ȳt−1) and current covariates, determined as follows:

pAl
t

= σ(γlAĀTl
(Ȳt−1) + γlXf

l
Y (Xt) + bl), (29)

Al
t ∼ Bernoulli(pAl

t
), (30)

where σ(·) denotes the sigmoid function, γlA and γlX represent parameters contributing to confounding, bl acts as a constant
bias term, and f lY (·) is obtained through an RFF-based approximation of a Gaussian process, analogous to f jZ(·).

Step 4: Treatments are administered to the initial outcomes, setting Y1 equal to Z1. We model each treatment l to impart a
sustained influence on a particular outcome j, manifesting its maximum additive impact βlj immediately post-application.
The treatment’s influence is confined to a specific time frame t−wl, . . . , t and its magnitude diminishes over time following
an inverse-square law, also being modulated by the treatment’s probability pAl

t
. Subsequently, the composite impact

of various treatments is computed by collating their minimum effects over the treatment duration. The mathematical
representation of this process is:

Ej(t) =

t∑
i=t−wl

(
minl=1,...,da 1[Al

i=1]pAl
i
βlj

(wl − i)2
), (31)

where βlj signifies the peak impact of treatment l. It’s either a consistent value across all outcomes j or null, ensuring the
treatment exerts no influence on the outcome.

Step 5: The simulated treatment effect Ej(t) is merged with the untreated outcome, resulting in:

Yj
t = Zjt + Ej(t). (32)

Step 6: Utilizing the established simulator framework, we fabricate our semi-synthetic dataset. Detailed specifications of the
simulation parameters are documented in the code implementation. Post the generation of three synthetic binary treatments
and two synthetic outcomes, the dataset comprising 1,000 patients is partitioned into training, validation, and testing sets,
adhering to a 60%/20%/20% distribution ratio. For one-step-ahead predictions, we compute all 23 counterfactual outcomes.
When projecting over multiple steps, delineated by τmax, we generate τmax diverse trajectories for each patient at each
temporal juncture.

E.3. Continuous intervention synthetic dataset

We construct a synthetic dataset of continuous interventions using an autoregressive process, where the treatment variable
At ∈ [0, 1]. The time series is generated iteratively, following the steps outlined below.

The generation of the treatment variable At at time t involves a sequence of operations on historical covariate data. The
mean of historical covariates, denoted as Xm, is the average across the time dimension:

Xm =
1

w

w∑
i=1

Xt−i, (33)
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where w is the number of previous time steps that influence the current value. This mean covariate vector Xm undergoes a
series of non-linear transformations and noise addition to form a decision variable:

dt = sin(2πX1
m) + cos(2πX2

m) ·X5
m + max(X3

m,X
4
m) +N(0, σ2

a), (34)

where σa represents the noise scale parameter for A, and the superscript denotes the index of an element within the vector
Xm. The decision variable dt is then mapped to a probability pt using the sigmoid function: pt = 1

1+exp(−dt) . Finally, the
treatment variable At is sampled from a Beta distribution, with shape parameters influenced by pt and a scaling parameter
γ, formalized as:

γ1 = 1 + γ · pt, γ2 = 1 + γ · (1− pt), (35)
At ∼ Beta(γ1, γ2). (36)

In this process, At is designed to capture the influence of historical covariate information through non-linear, noise-perturbed
dynamics and to represent the inherent stochasticity of treatment effects via probabilistic modelling with the Beta distribution.

Given a treatment variable At, we first apply a series of non-linear transformations to obtain a transformed treatment
array, denoted as T (At). This array is then processed through a predefined masking procedure, resulting in a masked
transformation matrix Amatrix.

The covariates at time t, Xt, are subsequently generated by integrating Xm with Amatrix, followed by the addition of
Gaussian noise:

Xt = Xm ×Amatrix +N(0, σ2
x), (37)

where σx represents the noise scale parameter for X.

The outcome at time t, Yt, is subsequently generated by integrating Xm with At, followed by the addition of Gaussian
noise:

Yt = cos(2πAt) ·X1
m + A2

t ·X4
m + sin(2πAt) ·X6

m + exp(At) ·X3
m +N(0, σ2

y), (38)

where σy represents the noise scale parameter for Y.

For one-step-ahead predictions, we randomly select five interventions At from a uniform distribution U(0, 1) to compute
counterfactual outcomes. In scenarios where the prediction extends over multiple steps, as defined by τmax, we generate a set
of τmax diverse trajectories for each patient at every time step.

F. Hyperparameter Tuning
Following the methodology used in CT (Melnychuk et al., 2022), we conduct hyperparameter optimization for all baseline
models and ACTIN using random searches. The ranges for the random searches for RMSN, CRN, G-Net, and CT are
provided in Tables 6, 7, 8, and 9, respectively. The random search space for ACTIN is outlined in Table 10. In ACTIN,
we conduct hyperparameter optimization for two distinct base models, TCN and LSTM, as delineated in Table 10. For
TCN, our search encompassed channel sizes, dilation factors, and kernel sizes, whereas for LSTM, we explore various
configurations of LSTM hidden units and LSTM layers. It is pertinent to note that, within our experiments, all sub-models
within ACTIN utilizes the same base model, although this homogeneity is not a prerequisite.

To ensure a fair comparison, we maintain similar hyperparameter ranges across models. These ranges vary slightly due to
differences in the models’ input characteristics and convergence behaviors. For instance, compared to CT, ACTIN requires
approximately 60% more epochs on the MIMIC-III dataset. This increment is attributed to ACTIN’s strategy for learning
balanced representations, necessitating larger minibatch sizes, which in turn reduces the number of gradient updates per
epoch, thereby requiring a greater number of epochs to achieve convergence.
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Table 6. The ranges for hyperparameter tuning of RMSN are specified for various datasets. The symbols NPt, NPh, NE , and ND denote
the Propensity treatment network, Propensity history network, Encoder, and Decoder sub-models, respectively. Unless otherwise stated, it
is assumed that all sub-models adhere to the same hyperparameter range.

Hyperparameter Range (TG) Range (SS) Range (RW)

LSTM layers 1 1, 2 1, 2
Learning rate 0.01, 0.001, 0.0001 0.01, 0.001, 0.0001 0.01, 0.001, 0.0001

Minibatch size (NPt, NPh, NE) 64, 128, 256 64, 128, 256 64, 128, 256
Minibatch size (ND) 256, 512, 1024 256, 512, 1024 256, 512, 1024

LSTM hidden units (NPt) 2, 4, 8, 12, 16 1, 3, 6 1, 2, 4
LSTM hidden units (NPh, NE) 2, 4, 8, 12, 16 37, 74, 148 36, 72, 144
LSTM hidden units (ND) 4, 8, 16, 32, 64 49, 98, 196 47, 94, 188

LSTM dropout rate 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5

Max gradient norm (NPt, NPh, NE) 0.5, 1.0, 2.0 0.5, 1.0, 2.0 0.5, 1.0, 2.0
Max gradient norm (ND) 0.5, 1.0, 2.0, 4.0 0.5, 1.0, 2.0, 4.0 0.5, 1.0, 2.0, 4.0

Random search iterations (NPt, NPh, NE) 50 50 50
Random search iterations (ND) 20 20 20

Number of epochs 100 400 200

Table 7. The ranges for hyperparameter tuning of CRN are specified for various datasets. The symbols NE , and ND denote the Encoder
and Decoder sub-models, respectively. Unless otherwise stated, it is assumed that all sub-models adhere to the same hyperparameter
range.

Hyperparameter Range (TG) Range (SS) Range (RW)

LSTM layers 1 1, 2 1, 2
Learning rate 0.01, 0.001, 0.0001 0.01, 0.001, 0.0001 0.01, 0.001, 0.0001

Minibatch size (NE) 64, 128, 256 64, 128, 256 64, 128, 256
Minibatch size (ND) 256, 512, 1024 256, 512, 1024 256, 512, 1024

LSTM hidden units (NE) 3, 6, 12, 18, 24 37, 74, 148 36, 72, 144
LSTM hidden units (ND) der der der

BR size der (NE) 3, 6, 12, 18, 24 37, 74, 148 36, 72, 144
BR size ddr (ND) 3, 6, 12, 18, 24 49, 98, 196 47, 94, 188

FC hidden units (NE) 0.5der , 1der , 2der , 3der , 4der 0.5der , 1der , 2der 0.5der , 1der , 2der
FC hidden units (ND) 0.5ddr , 1ddr , 2ddr , 3ddr , 4ddr 0.5der , 1der , 2der 0.5der , 1der , 2der
LSTM dropout rate 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5

Random search iterations (NE) 50 50 50
Random search iterations (ND) 30 30 30

Number of epochs 100 400 200

Table 8. The ranges for hyperparameter tuning of G-Net are specified for various datasets.

Hyperparameter Range (TG) Range (SS) Range (RW)

LSTM layers 1 1, 2 1, 2
Learning rate 0.01, 0.001, 0.0001 0.01, 0.001, 0.0001 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256 64, 128, 256 64, 128, 256
LSTM hidden units 3, 6, 12, 18, 24 37, 74, 148 36, 72, 144
LSTM output size do 3, 6, 12, 18, 24 37, 74, 148 36, 72, 144
FC hidden units 0.5do, 1do, 2do, 3do, 4do 0.5do, 1do, 2do 0.5do, 1do, 2do
LSTM dropout rate 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5
Random search iterations 50 50 50
Number of epochs 50 400 200
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Table 9. The ranges for hyperparameter tuning of CT are specified for various datasets.

Hyperparameter Range (TG) Range (SS) Range (RW)

Transformer blocks 1 1, 2 1, 2
Learning rate 0.01, 0.001, 0.0001 0.01, 0.001, 0.0001 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256 32, 64 32, 64
Attention heads 2 2, 3 2, 3
Transformer units 4, 8, 12, 16 24, 48, 64 24, 48, 64
BR size dr 2, 4, 8, 12, 16 22, 44, 88 22, 44, 88
FC hidden units 0.5dr , 1dr , 2dr , 3dr , 4dr 0.5dr , 1dr , 2dr 0.5dr , 1dr , 2dr
Sequential dropout rate 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5
Max positional encoding 15 20 30
Random search iterations 50 50 50
Number of epochs 150 400 300

Table 10. The ranges for hyperparameter tuning of ACTIN are specified for various datasets.

Hyperparameter Range (TG) Range (SS) Range (RW)

Linear transformation size 4, 8, 16 16, 32, 64 16, 32, 64
Learning rate l 0.01, 0.002, 0.001 0.01, 0.002, 0.001 0.01, 0.002, 0.001
Learning rate lD 0.001, 0.0002, 0.0001 0.001, 0.0002, 0.0001 0.001, 0.0002, 0.0001
Minibatch size 64, 128, 256 64, 128, 256 64, 128, 256
BR size dr 8, 12, 16 16, 32, 64 16, 32, 64
λX - 0.1, 0.05, 0.01 0.1, 0.05, 0.01
λX 0.01 0.01 0.01

TCN-based Kernel sizes 2, 3 2, 3 2, 3
Dilation factors 2, 3 2, 3 2, 3
Channel size dc 4, 8, 12, 16 20, 22, 24 28, 32, 36

LSTM-based LSTM layers 1 1, 2 1, 2
LSTM hidden units 4, 8, 12, 16 16, 32, 64 16, 32, 64

FC hidden units 16, 32, 64 16, 32, 64 16, 32, 64
Dropout rate 0.1, 0.2, 0.3 0.1, 0.2, 0.3 0.1, 0.2, 0.3
Random search iterations 50 50 50
Number of epochs 150 500 500
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τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

CRN 2.08±0.45 2.35±0.28 2.75±0.32 3.13±0.27 3.53±0.35 3.89±0.37
CT 2.27±0.37 2.52±0.30 2.92±0.22 3.29±0.21 3.85±0.20 4.25±0.29

ACTIN (LSTM-based) 1.77±0.39 1.99±0.22 2.51±0.21 3.12±0.19 3.70±0.25 4.13±0.29
ACTIN (LSTM-based) w/o integrating 1.52±0.34 1.65±0.22 2.10±0.24 2.59±0.21 3.10±0.25 3.58±0.28
ACTIN 1.00±0.16 1.29±0.51 1.78±0.56 2.35±0.59 2.90±0.63 3.38±0.71

Table 11. τ -step-ahead prediction results on the CISD dataset across different τ values. Results are presented as mean ± standard
deviation over five runs.
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Figure 6. The comparison of running costs and model complexities for ACTIN across various base models on a fully synthetic tumor
dataset (Tumor, γ = 0), the semi-synthetic (SS) dataset derived from MIMIC-III, and the real-world dataset (RW).

G. Additional Results
In the following, we furnish additional results across various datasets. This includes one-step-ahead and multi-step-ahead
prediction outcomes for the fully-synthetic tumor dataset under the single sliding treatment setting (Table 12), multi-step-
ahead prediction outcomes for the fully-synthetic tumor dataset under the random trajectories setting (Table 13), as well
as one-step-ahead and multi-step-ahead prediction outcomes for the MIMIC-III Real-World (RW) and Semi-Synthetic
(SS) datasets (Table 14 and Table 15). It is imperative to note that within the fully-synthetic tumor dataset, the one-step-
ahead prediction outcomes under the single sliding treatment setting and the random trajectories setting were consistent.
Consequently, only the results from the former setting are reported.

Experimental results indicate that ACTIN, when employing TCN as the base model, achieved state-of-the-art performance
in nearly all evaluations. Moreover, ACTIN instantiated with LSTM as the base model displayed results comparable to,
and occasionally surpassing, those of CT, notably on the MIMIC-III Semi-Synthetic (SS) dataset. Figure 6 contrasts the
running costs of ACTIN with these two distinct base models across various datasets, revealing a slight edge for LSTM-based
ACTIN over its TCN-based counterpart. These findings highlight the superiority of ACTIN in enhancing the efficiency and
effectiveness of ostensibly simple base models.

Additionally, Table 11 compares the experimental results of CRN, CT, and ACTIN on the CISD dataset, all of which
employ the balancing strategy proposed in this paper. The experimental results clearly show that our dual-module design
significantly impacts performance. This is likely because the impact of continuous interventions can be easily overlooked by
models, while our design effectively emphasizes this aspect.
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Table 12. Under the single sliding treatment setting, we present the one-step-ahead and multi-step-ahead prediction results for the
fully-synthetic tumor dataset. Shown: RMSE as mean ± standard deviation over five runs.

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

γ = 0 RMSN 0.91±0.04 0.81±0.07 0.83±0.08 0.86±0.09 0.88±0.10 0.91±0.09
CRN 0.78±0.05 0.69±0.05 0.72±0.05 0.75±0.05 0.78±0.07 0.82±0.09
G-Net 0.83±0.05 0.95±0.13 1.12±0.20 1.21±0.24 1.26±0.26 1.29±0.27
CT 0.78±0.06 0.69±0.06 0.71±0.05 0.73±0.05 0.76±0.05 0.79±0.05
ACTIN (LSTM-based) 0.77±0.06 0.69±0.06 0.71±0.06 0.73±0.06 0.75±0.06 0.78±0.06
ACTIN 0.75±0.06 0.66±0.05 0.68±0.05 0.70±0.05 0.73±0.05 0.76±0.05

γ = 1 RMSN 1.12±0.10 1.03±0.09 1.05±0.07 1.06±0.07 1.06±0.06 1.07±0.06
CRN 0.82±0.05 0.73±0.06 0.76±0.05 0.78±0.05 0.81±0.04 0.84±0.04
G-Net 0.87±0.08 0.98±0.09 1.15±0.13 1.22±0.16 1.26±0.20 1.28±0.23
CT 0.80±0.08 0.71±0.06 0.75±0.05 0.79±0.05 0.83±0.07 0.86±0.08
ACTIN (LSTM-based) 0.83±0.04 0.73±0.07 0.75±0.05 0.78±0.04 0.80±0.04 0.82±0.04
ACTIN 0.78±0.04 0.67±0.04 0.70±0.04 0.73±0.03 0.76±0.04 0.78±0.03

γ = 2 RMSN 1.14±0.07 1.09±0.23 1.12±0.17 1.14±0.12 1.17±0.11 1.21±0.13
CRN 0.89±0.07 0.75±0.05 0.84±0.07 0.93±0.10 1.02±0.12 1.09±0.13
G-Net 1.00±0.06 1.03±0.08 1.18±0.11 1.26±0.15 1.30±0.18 1.33±0.20
CT 0.87±0.08 0.73±0.06 0.78±0.07 0.84±0.07 0.88±0.08 0.92±0.10
ACTIN (LSTM-based) 0.90±0.05 0.79±0.08 0.85±0.08 0.90±0.09 0.95±0.11 0.99±0.13
ACTIN 0.85±0.07 0.68±0.04 0.73±0.04 0.77±0.06 0.81±0.08 0.85±0.09

γ = 3 RMSN 1.35±0.11 1.22±0.07 1.26±0.12 1.29±0.14 1.33±0.17 1.37±0.19
CRN 1.13±0.17 1.07±0.37 1.27±0.55 1.42±0.64 1.53±0.68 1.61±0.69
G-Net 1.30±0.23 1.12±0.09 1.25±0.09 1.28±0.10 1.30±0.11 1.31±0.12
CT 1.02±0.12 0.80±0.09 0.87±0.11 0.94±0.13 1.00±0.15 1.04±0.16
ACTIN (LSTM-based) 1.07±0.13 0.86±0.11 0.96±0.15 1.03±0.18 1.08±0.21 1.13±0.23
ACTIN 1.01±0.13 0.73±0.05 0.80±0.07 0.85±0.10 0.90±0.11 0.94±0.12

γ = 4 RMSN 1.39±0.18 0.97±0.18 1.10±0.26 1.22±0.35 1.31±0.41 1.38±0.46
CRN 1.33±0.17 1.06±0.14 1.28±0.25 1.45±0.34 1.56±0.41 1.65±0.46
G-Net 1.37±0.25 1.16±0.14 1.44±0.18 1.61±0.25 1.73±0.33 1.82±0.42
CT 1.35±0.24 1.01±0.28 1.13±0.35 1.23±0.40 1.29±0.43 1.33±0.45
ACTIN (LSTM-based) 1.42±0.23 1.07±0.18 1.18±0.22 1.27±0.25 1.33±0.26 1.37±0.26
ACTIN 1.26±0.21 0.81±0.12 0.93±0.18 1.02±0.22 1.10±0.25 1.17±0.26
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Table 13. Under the random trajectories setting, we present the multi-step-ahead prediction results for the fully-synthetic tumor dataset.
Shown: RMSE as mean ± standard deviation over five runs.

τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

γ = 0 RMSN 0.90±0.08 0.89±0.08 0.85±0.07 0.78±0.06 0.70±0.05
CRN 0.78±0.04 0.79±0.05 0.75±0.06 0.69±0.06 0.62±0.06
G-Net 0.96±0.12 1.02±0.14 0.97±0.14 0.89±0.13 0.79±0.12
CT 0.77±0.06 0.77±0.05 0.73±0.05 0.67±0.05 0.60±0.04
ACTIN (LSTM-based) 0.77±0.03 0.77±0.04 0.73±0.05 0.67±0.05 0.60±0.05
ACTIN 0.75±0.08 0.76±0.08 0.72±0.09 0.67±0.09 0.60±0.08

γ = 1 RMSN 1.03±0.05 1.02±0.06 0.97±0.06 0.90±0.06 0.82±0.06
CRN 0.81±0.06 0.82±0.06 0.78±0.06 0.72±0.06 0.65±0.05
G-Net 0.98±0.09 1.06±0.13 1.01±0.14 0.92±0.15 0.82±0.15
CT 0.78±0.05 0.80±0.05 0.77±0.05 0.71±0.05 0.65±0.05
ACTIN (LSTM-based) 0.82±0.10 0.81±0.09 0.77±0.08 0.71±0.08 0.63±0.07
ACTIN 0.76±0.05 0.77±0.06 0.74±0.06 0.69±0.05 0.62±0.05

γ = 2 RMSN 1.09±0.11 1.06±0.07 1.00±0.08 0.91±0.09 0.82±0.10
CRN 0.81±0.04 0.86±0.08 0.85±0.10 0.81±0.11 0.76±0.11
G-Net 1.01±0.06 1.06±0.07 1.00±0.09 0.91±0.11 0.82±0.13
CT 0.83±0.08 0.84±0.11 0.81±0.12 0.75±0.12 0.68±0.12
ACTIN (LSTM-based) 0.83±0.09 0.84±0.12 0.80±0.13 0.75±0.15 0.68±0.15
ACTIN 0.78±0.10 0.80±0.14 0.77±0.16 0.71±0.16 0.65±0.16

γ = 3 RMSN 1.19±0.11 1.17±0.16 1.11±0.18 1.04±0.18 0.95±0.17
CRN 0.96±0.19 1.07±0.30 1.07±0.35 1.02±0.34 0.95±0.31
G-Net 1.12±0.13 1.17±0.17 1.08±0.20 0.98±0.20 0.87±0.19
CT 0.89±0.14 0.93±0.18 0.90±0.20 0.84±0.20 0.77±0.18
ACTIN (LSTM-based) 0.93±0.17 0.97±0.21 0.93±0.22 0.87±0.21 0.79±0.19
ACTIN 0.83±0.14 0.87±0.18 0.84±0.19 0.79±0.19 0.72±0.17

γ = 4 RMSN 1.08±0.20 1.16±0.25 1.14±0.26 1.07±0.25 0.97±0.23
CRN 1.12±0.15 1.26±0.23 1.29±0.26 1.24±0.26 1.15±0.25
G-Net 1.20±0.17 1.34±0.20 1.32±0.22 1.26±0.23 1.18±0.24
CT 1.13±0.27 1.17±0.30 1.14±0.30 1.06±0.29 0.96±0.26
ACTIN (LSTM-based) 1.13±0.20 1.16±0.20 1.11±0.19 1.02±0.18 0.92±0.16
ACTIN 0.97±0.16 1.05±0.20 1.03±0.20 0.97±0.20 0.88±0.19

Table 14. One-step-ahead and multi-step-ahead prediction results on the RW dataset. Shown: RMSE as mean ± standard deviation over
five runs.

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

RMSN 5.26±0.13 10.02±0.53 11.18±0.71 11.93±1.07 12.56±1.47 13.12±1.82
CRN 4.85±0.06 9.13±0.16 9.77±0.16 10.10±0.17 10.36±0.20 10.58±0.22
G-Net 5.05±0.04 11.89±0.19 12.92±0.25 13.59±0.28 14.09±0.30 14.52±0.38
CT 4.60±0.09 8.99±0.21 9.59±0.22 9.91±0.25 10.14±0.29 10.34±0.32

ACTIN (LSTM-based) 4.67±0.08 9.06±0.15 9.66±0.15 9.97±0.17 10.22±0.19 10.42±0.21
ACTIN 4.56±0.10 8.98±0.18 9.56±0.18 9.87±0.19 10.11±0.21 10.30±0.23

Table 15. One-step-ahead and multi-step-ahead prediction results on the SS dataset. Shown: RMSE as mean ± standard deviation over
five runs.

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8 τ = 9 τ = 10 τ = 11

RMSN 0.23±0.01 0.47±0.01 0.59±0.01 0.70±0.03 0.79±0.06 0.88±0.08 0.95±0.08 1.01±0.07 1.04±0.05 1.07±0.04 1.10±0.03
CRN 0.29±0.01 0.46±0.01 0.57±0.01 0.62±0.01 0.66±0.01 0.69±0.01 0.70±0.02 0.73±0.02 0.75±0.03 0.77±0.03 0.80±0.03
G-Net 0.36±0.01 0.67±0.01 0.84±0.01 0.96±0.02 1.05±0.02 1.13±0.03 1.20±0.04 1.26±0.05 1.31±0.06 1.37±0.07 1.41±0.09
CT 0.20±0.00 0.37±0.00 0.45±0.01 0.49±0.01 0.51±0.01 0.53±0.01 0.55±0.01 0.56±0.02 0.58±0.02 0.59±0.02 0.60±0.02

ACTIN(LSTM-based) 0.17±0.00 0.35±0.00 0.41±0.00 0.45±0.01 0.48±0.01 0.50±0.01 0.51±0.01 0.52±0.01 0.54±0.02 0.55±0.02 0.56±0.02
ACTIN 0.15±0.00 0.33±0.00 0.39±0.00 0.43±0.00 0.46±0.00 0.48±0.00 0.49±0.00 0.50±0.00 0.51±0.01 0.52±0.01 0.54±0.01
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