
TROVE: Inducing Verifiable and Efficient Toolboxes
for Solving Programmatic Tasks

Zora Zhiruo Wang 1 Graham Neubig 1 Daniel Fried 1

Abstract
Language models (LMs) can solve tasks such as
answering questions about tables or images by
writing programs. However, using primitive func-
tions often leads to verbose and error-prone pro-
grams, and higher-level functions require expert
design. To enable better solutions without hu-
man labor, we ask code LMs to curate reusable
high-level functions, and use them to write solu-
tions. We present TROVE, a training-free method
of inducing a verifiable and efficient toolbox of
functions, by generating via using, growing, and
periodically trimming the toolbox. On 11 datasets
from math, table question answering, and image
reasoning tasks, TROVE consistently yields sim-
pler solutions with higher accuracy than baselines
using CODELLAMA and previous methods us-
ing GPT, while using 79-98% smaller toolboxes.
TROVE further enables 31% faster and 13% more
accurate human verification than baselines. With
the same pipeline, it creates diverse functions for
varied tasks and datasets, providing insights into
their individual characteristics. Code and data are
available at https://github.com/zorazrw/trove.

1. Introduction
Generating code from natural language commands has long
been a method of choice for solving tasks such as question
answering (Zettlemoyer & Collins, 2007; Liang et al., 2011)
or agent navigation (Artzi & Zettlemoyer, 2013). Recently,
language models (LMs) have been used to write programs in
general-purpose languages such as Python, further expand-
ing code generation’s applicability (Yin & Neubig, 2017; Li
et al., 2022b; Cheng et al., 2023). These programs generally

1Language Technologies Institute, Carnegie Mellon University.
Correspondence to: Zora Zhiruo Wang <zhiruow@cs.cmu.edu>,
Graham Neubig <gneubig@cs.cmu.edu>, Daniel Fried
<dfried@cs.cmu.edu>.

Proceedings of the 41
st International Conference on Machine

Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

reusable
functionssmall

toolbox

Test

questions
program
solutions

TroVE
(ours)

x K
✔ training-free

✔ simple & accurate

✔ reusable tools

✔ easily verifiable

LM

Test primitive

❌ tedious, complex
❌ prone to errorLM

program
solutionsquestions

Train Test existing
methods

❌ need extra training

❌ complex pipeline

❌ irreusable tools
LM

function

large
toolbox

questions

program
solutions

LM

questions

program
solutions

Figure 1. Our TROVE induces reusable functions to produce better
program solutions than the PRIMITIVE setting, without training,
supervision, or iterations required by EXISTING METHODs.

rely on multiple function calls to Python built-in functions
or libraries such as pandas, as in the example in Figure 2.
However, in many cases relying on these primitive func-
tions can lead to programs that are tedious, complex, and
error-prone (Cai et al., 2023; Majumder et al., 2023). These
programs can also be difficult to verify, as the users may
need to check every operation as well as their combina-
tions and interactions across the entire program (e.g., the
primitive solution in Figure 2).

When human developers are faced with an analogous situ-
ation, they create application-specific functions, i.e. tools,
composing primitive functions that are often used together.
For instance, in Figure 2 (right), the calc rate of change
tool is easier to understand and less error-prone to use, hence
enabling a more concise and accurate solution.

A few recent works have attempted to use LMs to automati-
cally induce tools in a similar way (EXISTING METHODs in
Figure 1). However, existing methods tend to either induce
large and ponderous toolboxes and/or have added complex-
ity and data requirements. For instance, Qian et al. (2023)
propose CREATOR to disentangle planning (tool making)

1

https://github.com/zorazrw/trove

TROVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks

df = pd.DataFrame({
 “Year”: [2013, 2014, 2015, 2016, 2017],
 “Vacation days”: [23, 18, 11, 15, 8]
})

Calculate the rate of change in values
calc_rate_of_change(df: pd.DataFrame,
 value_column: str, time_column: str,
 time1: any, time2: any) –> float

import pandas as pdThe table shows how many days of vacation
Austin had taken each year. What was the
rate of change between 2015 and 2016?

question primitive functions advanced functions

get the row for each time stamp
row_2015 = df[df[“Year”] == 2015
row_2016 = df[df[“Year”] == 2016
get the value for each time
value_2015 = row_2015[“Vacation days”].values[0]
value_2016 = row_2015[“Vacation days”].values[0]
calculate the rate of change
rate = (value_2016 - value_2015) / 2

primitive solution

calc_rate_of_change(df, “Vacation
days”, “Year”, 2015, 2016)

advanced solutiontabular environment

Figure 2. Function design affect solutions. Using primitive functions results in complex, error-prone solutions (middle), while using
abstract functions leads to more concise and accurate solutions (right).

from execution, but at the cost of producing hundreds or
more tools that are challenging for models to reuse or hu-
mans to verify. Further, compared to the standard setting
(PRIMITIVE in Figure 1) that only needs test data to produce
their solutions, Wang et al. (2023a) propose life-long learn-
ing via an automatic curriculum, equipped with iterative
self-verification. Cai et al. (2023); Yuan et al. (2023) require
additional training and validation datasets to create tools
ahead to be used by solutions, plus auxiliary modules such
as self-verification or toolset deduplication.

In this paper, we propose TROVE, a training-free method
of inducing a verifiable and efficient function toolbox (§3),
and using these functions to write solutions. TROVE fea-
tures three major components: using and growing a toolbox
maintained over time, execution agreement-based selection,
and periodic toolbox trimming. Notably, our method re-
quires zero additional training or supervision, and selects
programs only by their inter-execution agreement. Given a
stream of questions, TROVE produces their solutions, along
with inducing a handy toolbox to solve the questions.

We experiment on 11 datasets from three real-world tasks
(§4): (1) mathematical problems with the MATH dataset,
(2) table question answering on TabMWP, WTQ, and HiTab,
and (3) compositional visual reasoning with GQA. Com-
pared to baselines using CODELLAMA as well as previous
state-of-the-art methods using GPT, our TROVE consis-
tently produces solutions with higher accuracy and reduced
complexity, while maintaining a significantly smaller, effi-
cient function library (§5). We further show that via human
study (§6), verifying solutions generated by TROVE is 31%
faster and 13% more accurate, than solutions generated by
baseline methods.

2. Problem Statement & Baseline Methods
We formally define the task of problem solving via programs
(§2.1) and introduce corresponding baseline methods (§2.2).

2.1. Problem Solving via Programs

We focus on problems that are describable in natural lan-
guage (NL) and solvable using programs. Concretely, given
an example x, i.e., an NL query q grounded on an en-
vironment e, we ask a language model LM to write a
programmatic solution s by composing multiple functions
F = {f1,⋯, fn}. This process is denoted as PLM(q, e, f).
f and hence s can be executed on e to obtain the final an-
swer. We use Python as the programming language for our
experiments, since it is general-purpose thus allowing flexi-
ble functions to be created for most tasks. Each solution s is
a Python program, and each function f is a Python function.

It is crucial to note that the difficulty of solution generation
is greatly affected by the usability of the functions in the set
F . Relatively speaking, we can categorize functions into
two types: (i) primitive functions, which only support basic
operations such as Python standard libraries, and (ii) com-
posed functions, which perform more complex operations
by composing multiple basic operations.

Primitive Functions Primitive functions are atomic, low-
level operations on the task environment, such as subtraction
- and division / in the primitive solution in Figure 2 (mid-

dle). They are often easy to obtain without expert knowledge
about the application domain. Yet often, to solve a question
as in Figure 2 (left), it requires complex compositions of nu-
merous functions and hence becomes extremely error-prone.
In this example, due only to a tiny mistake , which calls
the wrong row 2015 instead of row 2016, the output goes
wrong despite all the other steps being correct.

Composed Functions Composed functions, such as the
calc rate of change in Figure 2 (right), combine various
primitive functions. Conceptually, they are easier to use, as
they align better with the actions asked in the question. In
this example, it is easier to associate “What is the rate of
change ...” with a function named calc rate of change,
compared to certain compositions of data slicing df[⋅],
check equality ==, get value cell.values[index], sub-

2

TROVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks

traction -, and division /. Practically, composed functions
are less error-prone, by only showing an API interface and
abstracting intricate details inside.

Composed functions are often crafted by human experts, by
recognizing and generalizing shared functionality. However,
this process is costly and hardly scalable to new domains.
Therefore, it is crucial to create such functions automatically,
to enhance problem solving while saving human labor.

2.2. Baseline Methods

We introduce two baselines that generate programs using
primitive and composed functions. All methods, including
our main method later in §3, operate solely by prompting
an LM, and do not update the parameters of the LM itself.

Using Primitive Functions Our first baseline, PRIMI-
TIVE, asks models to generate programs using primitive
functions, which is the de facto approach for program-aided
problem solving without tool induction (Cheng et al., 2023;
Gao et al., 2023b).

As exemplified in Figure 3, our prompt inputs consist of
four components: (1) an NL instruction specifying the task,
(2) the function signature and textual docstring of primitive
functions,1 (3) c (example, solution) pairs to demonstrate
the usage of primitive functions, and lastly (4) the query
and environment (q, e) of the current testing example. We
collect the code snippets from model responses as s and
execute on e to obtain the final result and evaluate it. Please
find more detailed examples in §A.

import the pandas library
import pandas as pd

ToolboxInstruction

You task is to … …

Question What is the median of vacation days?

Environment

Solution

df = pd.DataFrame({"Year": [2014, 2015],
 "Vacation days": [18, 11]})
avg_days = df["Vacation days"].mean()

Year Vacation days

2014 18

2015 11

Question What is the rate of change from
Monday to Tuesday?

1 2

3

in-context pairs

4

test
exam

ple

Environment Day Price ($)

Monday 200

Friday 300

Year	Vacation days
2014	18
2015	11

Day	Price ($)
Monday	200
Tuesday	300

exam
ple

input
solution
output

Figure 3. Example input prompt on the tabular environment. We
textualize tables by markdown format in the prompt, and ask LMs
to parse tables into pandas DataFrame in program solutions.

1We do not show the built-in functions since LMs have already
been trained on them extensively. We only have 1-2 primitives in
addition (§4.3, §4.4), so they can easily fit into the prompt.

Abstracting Functions Example Wise Our second base-
line INSTANCE asks models to create tools for each example,
and use them in the solution for that example. Qian et al.
(2023) found this two-step process helpful for model rea-
soning by disentangling tool abstraction (planning) from
example-wise decision (execution).

In preliminary studies, we compared generating functions
and solutions in two sequential responses or prompting the
model to generate both in one response. They performed
comparably, so we adopted the latter approach since it is
simpler. Concretely, given a set of primitive functions P ,
for each example (q, e), the model needs to generate the
functions F by composing operations in P , as well as the
solution s that uses F . Grounding on Figure 4, F is the
induced function snippet, and s is the generated solution.

We include the same four prompt components used in PRIM-
ITIVE, but alter the instruction and example outputs accord-
ing to the F&s generation format. We query each example
independently to allow example-wise function induction.
However, it is not possible to share these functions across
examples, even if they have similar functions.

&
calc_rate_of_change(df, “Vacation days”, “Year”,
2015, 2016)

Solution generation

def calc_rate_of_change(
 df, value_column, time_column, time1, time2):
 ‘‘‘Calculate the rate of change in values’’’
 row1 = df[df[time_column] == time1
 row2 = df[df[time_column] == time2
 value1 = row1[value_column].values[0]
 value2 = row2[value_column].values[0]
 return (value2 - value1) / (time2 - time1)

Function induction

question environment

LM

&
calc_rate_of_change(df, “Vacation days”, “Year”,
2015, 2016)

generated solution

def calc_rate_of_change(
 df, value_column, time_column, time1, time2):
 ‘‘‘Calculate the rate of change in values’’’
 row1 = df[df[time_column] == time1
 row2 = df[df[time_column] == time2
 value1 = row1[value_column].values[0]
 value2 = row2[value_column].values[0]
 return (value2 - value1) / (time2 - time1)

induced function

question environment

LM

input
output

Figure 4. An illustration of a model inducing a composed function
and using it to generate the solution at the same time.

3. Inducing Reusable Functions On-the-fly
Now, we present our main method TROVE that: uses and
grows a toolbox iteratively over time (§3.1), selects optimal
outputs based on execution agreement (§3.2), and periodi-
cally trims low-utility functions from the toolbox (§3.3).

3.1. Using and Growing the Toolbox

To learn functions that can be reused across examples, we
maintain a shared function library F over time. To keep
our method running in linear time, we process all exam-
ples online in a streaming fashion. We start with F = ∅
and gradually add or remove functions from it. Figure 5

3

TROVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks

illustrates the processing of example x
t at time t.

First, we define 3 modes with which LMs can interact with
the current toolbox F

t, represented as the docstrings and
signature of all tool functions in it. 1 IMPORT : In this
mode, the LM is instructed to import defined functions from
the toolbox and apply them to solve x

t. 2 CREATE : In
this mode, the LM is instructed to create a new function
f
t
new and add it to the toolbox. 3 SKIP : In this mode,

the LM is instructed to only use primitive functions just as
in the PRIMITIVE setting.

For each example, for each of the three modes we sam-
ple from the LM to generate K responses, for a total
of 3K responses per example.2 Each response contains
a solution s and function f as shown in Figure 4, ex-
cept for the SKIP mode that only contains s. We de-
note these candidate responses as (f ti

m, s
ti
m), where m ∈

{IMPORT, CREATE, SKIP} and i ∈ {1,⋯,K}.

question environment

IMPORT CREATE SKIP

&

x K
&

x K
&

x K
solution function(s)

discard
insuccess

generate

execution

&

&

&

&

&

&

group w/ highest
output agreement

group by
outputs

7
13

4 rank by #ops
the best
candidate

in 3 modes

function
library

add to

us
e

trim

Figure 5. TROVE illustration. Top: generate solutions while using
and growing the toolbox. Bottom: select the best response by
execution agreement. Left: periodically trim low-utility functions.

3.2. Agreement-Based Selection

From the 3K sampled (f, s) pairs, we select one to use via
self-consistency (Shi et al., 2022; Li et al., 2022a; Wang
et al., 2023b) and solution complexity. We first execute all
solutions and remove those that cannot execute successfully.
Next, we select an answer based on the consistency of the
execution outputs, keeping the solutions that produce the
most frequently occurring answer. Next, if there are multiple
solutions with the same frequency, we rank solutions by the
number of operations they require, and pick the one with

2In preliminary studies, we tried to let models choose one mode
and only generate in that mode, but results degraded significantly.

the least operations (preferring simple solutions). Finally, if
multiple candidates remain, we break the tie by arbitrarily
choosing the one that appears first in the model prediction
list. We add the function in this best response to the toolbox,
and adopt its solution as the solution for the current example.

3.3. Periodic Toolbox Trimming

Not all the functions induced by models are highly reusable.
Hence, we also propose to periodically trim the toolbox to
effectively remove low-utility functions.

Periodically during testing, we remove functions that have
been used less than λ times. By observing that function-
usage frequency has a logarithmic relation with data size,
we set λ = C × log10(n), where C =

1
2

, n is the number of

examples processed so far.3

4. Testbeds: Program-Solvable Tasks
We now introduce the three programmatic tasks for experi-
ments: math problems, table question answering, and visual
reasoning. We first state the default primitive functions
(§4.1), then describe the specialized functions for each task.

4.1. The Default Primitive Functions

For all experiments, we instruct models to generate solutions
as Python programs, so that default primitive functions are
built-in Python functions.4 We use these default primitives
for MATH (§4.2), and add other data-related functions for
TableQA (§4.3) and VisualQA (§4.4).

Task Dataset Size Primitive Functions

MATH

algebra 881

built-in functions

count & prob. 291
geometry 237
inter. algebra 503
number theory 497
prealgebra 636
precalculus 156

TABLEQA

TabMWP 5,376 + pandas

WTQ 4,344 + pandas

HiTab 1,574 + pandas
+ parse table

VISUALQA GQA 12,578

+ PIL.Image
+ locate objects
+ visual qa
+ crop region

Table 1. Statistics and primitives for three tasks.

3To ensure all examples can be solved by functions available
in the library, we update the solutions for examples previously
using trimmed functions (< 5% of the dataset), by re-generating
solutions under IMPORT & SKIP modes.

4https://docs.python.org/3/library/functions.html

4

https://docs.python.org/3/library/functions.html

TROVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks

Method Metric MATH TABLEQA VISUAL
alg count geo inte num prealg precal TabMWP WTQ HiTab GQA

PRIMITIVE
acc ↑ 0.15 0.14 0.06 0.05 0.16 0.21 0.10 0.43 0.20 0.09 0.37
ops ↓ 15.4 10.9 15.1 17.0 12.3 12.1 20.8 17.4 24.3 16.5 24.8
lib ↓ — — —

INSTANCE
acc ↑ 0.22 0.23 0.07 0.06 0.23 0.26 0.17 0.36 0.17 0.12 0.16
ops ↓ 18.4 10.2 26.8 28.2 14.3 10.6 26.9 8.3 8.4 14.1 18.8
lib ↓ 39 7 36 82 5 16 36 3,175 537 31 395

TROVE
acc ↑ 0.25 0.26 0.08 0.11 0.25 0.29 0.17 0.47 0.21 0.18 0.44
ops ↓ 18.8 10.0 25.4 23.9 11.2 11.7 19.6 10.9 9.2 9.3 20.3
lib ↓ 10 1 7 8 8 4 7 10 11 5 7

Table 2. CODELLAMA-7B-INSTRUCT results on MATH, TABLEQA, and VISUAL tasks.

4.2. Math Problems

To test model abilities in solving math problems, we use the
MATH (Hendrycks et al., 2021) dataset that covers ques-
tions from seven subjects: algebra, counting and probability,
geometry, intermediate algebra, number theory, prealgebra,
and precalculus. Table 1 lists the number of test examples,
since our methods only need test data. We only use the
default primitives, i.e., built-in Python functions.

4.3. Table Question Answering

We adopt three table question answering datasets: TabMWP
(Lu et al., 2023), WTQ (Pasupat & Liang, 2015), and Hitab
(Cheng et al., 2022). They cover a diverse range of question
types and table structures. We represent tables as pandas
DataFrame objects since this is a standard table library to
use with Python; we accordingly add the pandas library
into the set of primitive functions for the table QA task.

TabMWP The TabMWP dataset (Lu et al., 2023) includes
math word problems on relational tables. Questions in
TabMWP are relatively simple, such as performing numeri-
cal calculations (e.g., “What is the mean of the numbers?”)
and argument selection (“Who has the most OBJECT?”).
We directly input the serialized tables in markdown format
in model prompts, because they are relatively small.

WTQ The WikiTableQuestions (WTQ) dataset (Pasupat
& Liang, 2015) contains questions about semi-structured
Wikipedia tables, which feature un-normalized cell values,
thus requires string processing (e.g., parse the number from
“$ 100.00”) and external knowledge retrieval (e.g., find the
country name of “Franco Pellizotti (ITA)”) operations.

Because WTQ tables can be too long to input limits, we put
DataFrame previews in the prompt, and instruct models to
use pandas.read table to load tables from CSV files.

HiTab The Hitab dataset (Cheng et al., 2022) contains
questions about hierarchical matrix tables. HiTab tables
have more complex structures and require special operations
such as multi-hop selection along a bi-dimensional header
hierarchy. We similarly load HiTab tables from the source
JSON files using the parse table function used by Cao
et al. (2023), and add it as the primitive functions.

4.4. Visual Reasoning

We use the GQA dataset (Hudson & Manning, 2019) that
contains real-world images and compositional questions
about them. However, the skills required to solve GQA
questions are more advanced than the previous two tasks.
Although image processing libraries such as PIL or cv2 are
available, our preliminary experiments show that using these
libraries alone is extremely hard for models to generate vi-
able solutions (only achieving 1% accuracy), not to mention
further inducing advanced functions.

Therefore, we adopt three main primitive actions from Vis-
Prog (Gupta & Kembhavi, 2022) of two types: (1) neural
modules: visual qa, locate objects; and (2) processing
modules: crop region; along with the image loading mod-
ule PIL.Image. To reduce the extent of expert engineering,
we did not adopt the other six actions used in VisProg, since
they may be tailored to GQA queries or crafted shortcuts
to assist models (e.g., check exists). Removing these
actions slightly degrades model performance.

5. Experiments
We introduce the experiment setup (§5.1) and evaluation
metrics (§5.2), then report and analyze the results (§5.3).

5.1. Experimental Setup

We compare our method TROVE (§3) to the two base-
lines PRIMITIVE and INSTANCE (§2.2). We mainly use

5

TROVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks

CODELLAMA2-7B-INSTRUCT for experiments,5 but also
use GPT-4 to fairly compare with existing SOTA methods.
We include c = 2 examples in prompts, sampled K = 5
responses in each mode, and trim the toolbox every 200
steps. By default, we set the decoding temperature to 0.6
and use top-p 0.95. We limit the model to generate at most
512 tokens to prevent excessive hallucination and save com-
putational cost. To accommodate for randomness in the
sampling result, we run each experiment five times and re-
port the best-performing run. For all methods, we evaluate
the results on test examples.

5.2. Evaluation Metrics

We propose three metrics to comprehensively evaluate gen-
erated solutions and induced functions.

Answer Correctness (acc ↑) The most practically impor-
tant aspect of solutions is correctness. We measure if the
execution outcome of the solution program exactly matches
the ground-truth answer(s).

Solution Complexity (# ops ↓) We also measure the pro-
gram complexity by counting the number of function calls
involved. Solutions with fewer functions are easier and
quicker to understand and verify.

Library Size (# lib ↓) It is important to control the library
size and encourage function sharing across examples. Com-
pared to multiple tools performing similar operations, fewer
tools with distinct functionaly enable easier tool selection
during solution generation. Since the number of primitive
functions is always the same on a given dataset, we only
report the number of additionally induced functions.

5.3. Model Performance

Table 2 shows the results on all datasets. TROVE produces
the most accurate solutions with generally lower complexity,
while maintaining a small, efficient function library.

Math Problems Compared to PRIMITIVE, TROVE sub-
stantially improves answer correctness by 30–120% across
7 datasets. Comparing to INSTANCE, TROVE yields 8.7–
83.3% higher correctness using 60.0–90.2% fewer tools.

Table Question Answering Notably, INSTANCE yields
lower correctness than PRIMITIVE on most datasets, while
generating hundreds even thousands of functions. We con-
jecture the reason to be increased task difficulty and dataset
size (than MATH), driving up the number of functions
and confusing the model with too many low-utility options.

5We are the first to show that open-source LMs can make tools.

While TROVE, by reusing and trimming functions, allevi-
ates this distraction and gives the best results.

Visual Question Answering TROVE still scores the best,
but INSTANCE performs substantially worse than other meth-
ods. with a correctness drop of 0.21 compared to PRIMI-
TIVE. Similarly to TABLEQA, a larger number of functions
(i.e., 395) are created, which greatly challenges the solu-
tion generation process. Based on our result analysis, we
conjecture that it is difficult to create many valid reusable
functions for GQA, hence most induced functions are in-
valid and impair solution generation.

Please find more detailed ablation studies on example order-
ing and toolbox trimming in §8.

5.4. Comparing with Other Tool-Making Methods

In addition, we compare TROVE with three existing meth-
ods that perform tool making, namely LATM (Cai et al.,
2023), CREATOR (Qian et al., 2023), and CRAFT (Yuan
et al., 2023). Notably, all three methods include extra mod-
ules or supervision not required by our method, and were
only demonstrated effective on closed-source GPT models.
Specifically, LATM requires an extra training set to induce
tools in advance, and a validation set to verify the tools.
CREATOR runs multiple iterations of decision, execution,
and rectification. CRAFT requires extra training data and
tool retrieval modules, and necessitates GPT models.

To make a fair comparison, we also use GPT-4 with our
TROVE approach, and test on three datasets — algebra
from MATH, TabMWP from TABLEQA, and GQA from
VISUALQA task — that overlap with these works. Due to
resource limitations, we do not experiment on all 11 datasets.
We believe the result differences in these 2 datasets are
representative to demonstrate the superiority of our method.

In Table 3, TROVE outperforms these existing state-of-
the-art methods on all datasets and most evaluation as-
pects, while having a much simpler pipeline. TROVE not
only works with closed-source GPTs, but also open-source
CODELLAMA (Table 2), with which CRAFT reported near-
random performance using their method.

Training Advantage of Seen Primitive Functions While
GPT-4 outperforms CODELLAMA on most tasks, it is im-
pressive to see that they perform comparably on the GQA
task, as shown in Table 4. We conjecture that this difference
between GQA and other tasks comes from the advantage
of models using corresponding primitive functions. For ex-
ample, pandas, as a primitive in TABLEQA, may appear
frequently in the training data, so models may be more
proficient in or inclined to write solutions with this library.

In contrast, models may have never seen any data using

6

TROVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks

Method MATHalgebra TabMWP GQA
acc ↑ # lib ↓ acc ↑ # lib ↓ acc ↑ # lib ↓

w/ additional supervision
LATM 0.30 - 0.09 - 0.29 -
CRAFT 0.68 282 0.88 181 0.45 525

w/ additional rectification & iteration
Creator 0.65 875 0.81 4,595 0.34 -

TROVE: w/o supervision, rectification, or iteration
GPT-3.5 0.68 17 0.89 25 0.44 10
GPT-4 0.72 16 0.92 38 0.44 8

Table 3. Comparing with existing methods using GPT-4. We adopt
the baseline results as reported in Yuan et al. (2023). We do not
report the complexity metric since none of these methods report it
(our results in Table 2).

GQA primitives since no large-scale data are annotated
with these hand-crafted functions. The difficulty of models
learning these primitives in context is similar to that of
learning the induced functions. While GQA reduces GPT-
4’s advantage in using primitives, it is intriguing to observe
that 7B CODELLAMA2 performs on par with GPT-4 by
making and (re-)using tools.

Model Method Evaluation Metrics
acc ↑ # ops ↓ # lib ↓

CODELLAMA
PRIMITIVE 0.37 24.6 -
TROVE 0.44 20.3 7

GPT-4 PRIMITIVE 0.40 27.4 -
TROVE 0.44 20.2 8

Table 4. 7B CODELLAMA2 and GPT-4 perform comparably on
the GQA task without training advantage.

6. Efficient Verification by Humans
Model-produced solutions may not be reliable, so we investi-
gate if TROVE facilitates more efficient solution verification
by humans. To test this hypothesis, we randomly selected
100 examples and asked 6 human evaluators to verify the cor-
rectness of solutions generated by PRIMITIVE, INSTANCE,
and TROVE on the WTQ dataset.6

We evaluate human performance from two aspects. (1)
Detection accuracy: if they can accurately predict whether
or not the solution is correct; the higher the better, and
(2) Time used: how many seconds they need to verify an
average example; the lower the better.

Table 5 shows the results. For accuracy, using tools in solu-
tions (INSTANCE and TROVE) improves detection accuracy
by 13.0–14.3%, compared to using PRIMITIVE functions
only. For the time used, our method reduces the average

6We chose WTQ from the TABLEQA task, because TABLEQA
functions are more complex than those in other tasks, and WTQ is
the fairest representative of the task with mid-level difficulty.

Method Accuracy ↑ Time (s) ↓
avg std avg std

PRIMITIVE 0.77 0.109 25.5 6.671
INSTANCE 0.88 0.024 30.7 12.750
TROVE 0.87 0.057 17.5 4.855

Table 5. Human accuracy and time in verifying model-produced
solutions with three methods experimented.

time by 31.4% compared to PRIMITIVE, and 43.0% com-
pared to INSTANCE. However, using irreusable tools (i.e.,
the INSTANCE setting) actually increases the time by 20.4%.
Overall, TROVE substantially speeds up the verification
process, while achieving similar detection accuracy. See §C
for the test results of individual participants.

7. Inducing Specialized Functions
TROVE demonstrates its generality on multiple tasks and
datasets. In this section, we further show that TROVE can
produce specialized functions that (1) differ in forms across
tasks, and (2) differ in functions across datasets. We use the
CODELLAMA2-7B results as an example.

Different Function Forms Across Tasks We compare
the three tasks and list a few exemplar functions in Table 6.

For MATH, the model often imports external li-
braries (sympy) to enable using advanced functions,
or creates functions targeting certain problems
(calculate remainder). TABLEQA tasks induce
more complex functions comprising many primitive
functions (e.g., get match after condition). VI-
SUALQA functions involve fewer primitives, for
example, get image region is a chain of two primitives:
locate objects and crop region.

Varied Functionalities Across Datasets For MATH and
TABLEQA that have multiple datasets, we further analyze
the variance in functions between the datasets.

Among MATH datasets, as shown in Figure 6, core func-
tions such as math and sympy overlap. Meanwhile, some
functions are particularly useful for certain questions, such
as the self-defined calculuate remainder for number the-
ory questions, and sympy.Polygen for geometry questions.

Figure 7 shows some functions in three TABLEQA datasets.
Due to the greater variance in question types and table struc-
tures, most functions differ except for the basic pandas.

Overall, TROVE can effectively propose both functions that
are (1) generic to the task, and (2) specific to each domain.
These induced functions not only help solve the problems,
but also characterize their functional distribution.

7

TROVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks

Task Example Functions

MATH def calculate_remainder(numbers, modulus):
 product = 1
 for number in numbers: product *= number
 return produce % modulus

from sympy import solve

def find_range(df: pd.DataFrame, column: str) -> int:
 """Find the range of values in the column."""
 # get the min and max values
 min_value = df[value_column].min()
 max_value = df[value_column].max()
 # calculate the range
 range_value = max_value - min_value
 return range_value

def get_match_after_condition(
 df, condition_column: str, condition: any,
 value_column: str) -> any:
 """"Get the match that comes after the match that
 satisfies a condition in the specified column."""
 row = df[df[condition_column] == condition]
 index = row.index[0] + 1
 if index < len(df):
 return df.iloc[index][value_column]
 else:
 return None

from PIL import Image
from toolbox import crop_region, locate_objects

def get_object_region(
 image: Image.Image, object_name: str
) -> Image.Image:
 """Locate the crop the image of the object."""
 boxes = locate_objects(image, object_name)
 object_image = crop_region(image, boxes)
 return object_image

TABLEQA

def calculate_remainder(numbers, modulus):
 product = 1
 for number in numbers: product *= number
 return produce % modulus

from sympy import solve

def find_range(df: pd.DataFrame, column: str) -> int:
 """Find the range of values in the column."""
 # get the min and max values
 min_value = df[value_column].min()
 max_value = df[value_column].max()
 # calculate the range
 range_value = max_value - min_value
 return range_value

def get_match_after_condition(
 df, condition_column: str, condition: any,
 value_column: str) -> any:
 """"Get the match that comes after the match that
 satisfies a condition in the specified column."""
 row = df[df[condition_column] == condition]
 index = row.index[0] + 1
 if index < len(df):
 return df.iloc[index][value_column]
 else:
 return None

from PIL import Image
from toolbox import crop_region, locate_objects

def get_object_region(
 image: Image.Image, object_name: str
) -> Image.Image:
 """Locate the crop the image of the object."""
 boxes = locate_objects(image, object_name)
 object_image = crop_region(image, boxes)
 return object_image

VISUALQA

def calculate_remainder(numbers, modulus):
 product = 1
 for number in numbers: product *= number
 return produce % modulus

from sympy import solve

def find_range(df: pd.DataFrame, column: str) -> int:
 """Find the range of values in the column."""
 # get the min and max values
 min_value = df[value_column].min()
 max_value = df[value_column].max()
 # calculate the range
 range_value = max_value - min_value
 return range_value

def get_match_after_condition(
 df, condition_column: str, condition: any,
 value_column: str) -> any:
 """"Get the match that comes after the match that
 satisfies a condition in the specified column."""
 row = df[df[condition_column] == condition]
 index = row.index[0] + 1
 if index < len(df):
 return df.iloc[index][value_column]
 else:
 return None

from PIL import Image
from toolbox import crop_region, locate_objects

def get_object_region(
 image: Image.Image, object_name: str
) -> Image.Image:
 """Locate the crop the image of the object."""
 boxes = locate_objects(image, object_name)
 object_image = crop_region(image, boxes)
 return object_image

Table 6. Example functions induced by TROVE on three tasks.

number

precalculus

prealgebra

geometry

intermediate
algebra

algebra

math

itertools

sympy.solve

math.gcd

sympy.Eq
sympy.abc.x

math.floor

sympy

numpy

counting calculate_remainder

count_digits

sympy.gcd

operator
statistics

math.cos

cmath

math.radianssympy.Polygon
math.pi

sympy.
integrate

sympy.lambdifymath.ceil

sympy.symbols

sympy.Matrix
sympy.solvers.solve

Figure 6. Illustration of MATH libraries for seven subjects.

8. Ablation Studies
We conduct ablation studies to test the robustness to ordering
(§8.1) and the importance of toolbox trimming (§8.2).

8.1. Robustness to Ordering

Our method inputs examples in a streaming fashion and
orders examples as they appear in the original dataset. How-
ever, it is important to study if variations in example order-
ing would affect final results. We select one dataset from
each task (MATHalgebra, HiTab, GQA) as representatives
for this examination.

We shuffle the examples five times with different random
seeds and run TROVE on each of the five orderings. We

TabMWP

pandas

calculate_rate_of_change

find_range
find_median

find_mode

find_difference
sum_values

calc_total_cost
… …

WTQ
count_by_condition

get_value_by_condition
get_next_match… …

HiTab

parse_table

get_data_cell

get_most_common

… …

Figure 7. Illustration of three TABLEQA function libraries.

report the range of metric values and their standard deviation
in Table 7. As a reference, we denote results (from §3) using
the original dataset order as original.

Method / Value Evaluation Metrics
acc ↑ # ops ↓ # lib ↓

MATHalgebra

original 0.25 18.8 10

value range 0.23–0.24 17.3–19.0 5–9
std.dev. 0.000 0.879 1.924

HiTab

original 0.18 9.3 5

value range 0.17–0.18 9.0–9.9 8–10
std.dev. 0.003 0.358 0.837

GQA

original 0.43 20.6 6

value range 0.43–0.44 20.4–20.6 6–8
std.dev. 0.005 0.150 0.957

Table 7. CODELLAMA results with alternative orders.

For all three datasets, no significant variance exists between
the original and randomized ordering — the original results
well within the randomized value range, and standard devia-
tions are small — showing that TROVE is robust to example
ordering. While the datasets may not be ordered in a way
that optimizes function induction, the original ordering may
just be another instance of somewhat randomized ordering.

8.2. Without Toolbox Trimming

Periodic function trimming is crucial to ensure the efficiency
of TROVE. To demonstrate this point, we compare to a
TROVE version without toolbox trimming. In Figure 8,
when including the trimming mechanism, the size of func-
tion libraries significantly decreases by 74% - 90%. The
accuracy and complexity in Table 8 also slightly degraded.
While the trimming threshold and time interval are easily
adjustable, one can flexibly keep more functions to explore
more diverse functions, or fewer due to certain constraints.

8

TROVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks

Figure 8. Library size without toolbox trimming.

Method MATHalgebra HiTab GQA
acc↑ # ops↓ acc↑ # ops↓ acc↑ # ops↓

without trim 0.25 19.6 0.15 10.5 0.39 21.1
with trim 0.25 18.8 0.18 9.3 0.44 20.3

Table 8. TROVE results with and without toolbox trimming.

9. Related Work
Generating Program Solutions Many works focus on
generating Python programs to solve problems, such as
math (Ni et al., 2023; Li et al., 2022b; Gao et al., 2023b;
Chen et al., 2022) and table QA (Cao et al., 2023; Cheng
et al., 2023). Yet most programs are built with basic oper-
ations or libraries (e.g., sum, pandas), and may be tedious
and erroneous. Gupta & Kembhavi (2022); Subramanian
et al. (2023); Surı́s et al. (2023) generate image-executable
programs by hand-crafting task-specific functions, Gao et al.
(2023a); Yang et al. (2023) extend this to audio and video
modalities, but still require expert designs from humans. In
contrast, our work enjoys the benefit of advanced functions
with reduced human labor by inducing functions using LMs.

Domain-Specific Library Abstraction Shin et al. (2019)
mine common code idioms and utilize them for program
synthesis. Ellis et al. (2023) propose to induce functions
bottom-up from a large corpus via a wake-sleep Bayesian
process. Wong et al. (2021) improve the search efficiency,
and Bowers et al. (2023) proposed a top-down method
STITCH to save memory. Most recently, LILO (Grand et al.,
2023) integrates LLMs into STITCH and abstract libraries
with auto-documentation. While these methods all work on
domain-specific logical forms, running them with general-
purpose languages may vastly enlarge the search space, thus
have limited applicability on many real-world tasks. Instead,
our method generates general-purpose Python programs and
can readily extend to new tasks.

Making Program Tools Using LLMs With the advances
of LLMs, many works explore using LLMs to build tools.
Cai et al. (2023) examine homogenous BigBench tasks,

where in each task all examples use a single tool. Qian
et al. (2023) work on math and table QA tasks but create
numerous tools that are not re-used across tasks – this serves
as our INSTANCE baseline. Yuan et al. (2023) increase
tool sharing via additional training but still yield redundant
tools. Xin et al. (2023) enables a growing lemma library
for math theorem proving, but requires external supervision
from the theorem prover and expert heuristics. Wang et al.
(2023a) can build and learn skills in the embodied Minecraft
world, yet requires self-verification and iterative refinement.
In comparison, our method leverages execution agreement
without any training or supervision.

programming language DreamCoder PATOIS STITCH LILO TROVE

domain-specific ✓ ✓ ✓ ✓
general purpose ✓

tool making modules LATM Creator CRAFT Voyager TROVE

training / curriculum ✓ ✓ ✓
self-verification ✓ ✓ ✓ ✓
iterative refine ✓ ✓ ✓
self-consistency ✓

Table 9. Modules required by existing methods and our TROVE.

10. Conclusion
We proposed TROVE, a method for inducing a toolbox of
reusable functions to use in solving programmatic tasks.
TROVE produces simpler and more accurate solutions than
existing methods, using sufficiently smaller function li-
braries. Moreover, it facilitates human program verification
to be 31% faster and 13% more accurate. Finally, TROVE
can induce diverse functions across tasks and datasets, shed-
ding insights on data-specific characteristics.

Acknowledgements
We thank Shuyan Zhou and Zhoujun Cheng for the insight-
ful discussions about this work, Saujas Vaduguru for pro-
viding feedback about the draft, and all human participants
of the verification study. Zora Zhiruo Wang is supported by
the Carnegie Mellon University Presidential Fellowship.

9

TROVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks

Impact Statement
Our work proposes a self-adaptive system to solve program-
matic tasks, which can produce or adopt programs without
full human supervision. We encourage users to manually
verify model-generated solutions to avoid potential safety
issues, as the verification process exemplified in Section 6.

References
Artzi, Y. and Zettlemoyer, L. Weakly Supervised Learn-

ing of Semantic Parsers for Mapping Instructions to
Actions. Transactions of the Association for Compu-
tational Linguistics, 2013. URL https://doi.org/10.1162/
tacl a 00209.

Bowers, M., Olausson, T. X., Wong, L., Grand, G., Tenen-
baum, J. B., Ellis, K., and Solar-Lezama, A. Top-down
synthesis for library learning. Proc. ACM Program.
Lang., 7(POPL), jan 2023. doi: 10.1145/3571234. URL
https://doi.org/10.1145/3571234.

Cai, T., Wang, X., Ma, T., Chen, X., and Zhou, D.
Large language models as tool makers. arXiv preprint
arXiv:2305.17126, 2023. URL https://arxiv.org/pdf/2305.
17126.

Cao, Y., Chen, S., Liu, R., Wang, Z., and Fried, D. Api-
assisted code generation for question answering on varied
table structures. arXiv preprint arXiv:2310.14687, 2023.
URL https://arxiv.org/pdf/2310.14687.

Chen, W., Ma, X., Wang, X., and Cohen, W. W. Program
of thoughts prompting: Disentangling computation from
reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Cheng, Z., Dong, H., Wang, Z., Jia, R., Guo, J., Gao, Y.,
Han, S., Lou, J.-G., and Zhang, D. HiTab: A hierarchical
table dataset for question answering and natural language
generation. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume
1: Long Papers), May 2022.

Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.,
Xiong, C., Radev, D., Ostendorf, M., Zettlemoyer, L.,
Smith, N. A., and Yu, T. Binding language models
in symbolic languages. In The Eleventh International
Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=lH1PV42cbF.

Ellis, K., Wong, L., Nye, M., Sable-Meyer, M., Cary, L.,
Anaya Pozo, L., Hewitt, L., Solar-Lezama, A., and Tenen-
baum, J. B. Dreamcoder: growing generalizable, inter-
pretable knowledge with wake–sleep bayesian program
learning. Philosophical Transactions of the Royal Society
A, 381(2251):20220050, 2023.

Gao, D., Ji, L., Zhou, L., Lin, K. Q., Chen, J., Fan, Z., and
Shou, M. Z. Assistgpt: A general multi-modal assistant
that can plan, execute, inspect, and learn. arXiv preprint
arXiv:2306.08640, 2023a.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang,
Y., Callan, J., and Neubig, G. Pal: Program-aided lan-
guage models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023b.

Grand, G., Wong, L., Bowers, M., Olausson, T. X., Liu,
M., Tenenbaum, J. B., and Andreas, J. Lilo: Learning
interpretable libraries by compressing and documenting
code. arXiv preprint arXiv:2310.19791, 2023.

Gupta, T. and Kembhavi, A. Visual programming: Compo-
sitional visual reasoning without training. arXiv preprint
arXiv:2211.11559, 2022. URL https://arxiv.org/pdf/2211.
11559.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021. URL https:
//arxiv.org/pdf/2103.03874.

Hudson, D. A. and Manning, C. D. Gqa: A new dataset for
real-world visual reasoning and compositional question
answering. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 6700–
6709, 2019.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., et al. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097, 2022a.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., et al. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097, 2022b.

Liang, P., Tripp, O., and Naik, M. Learning minimal abstrac-
tions. In Proceedings of the 38th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, pp. 31–42, 2011.

Lu, P., Qiu, L., Chang, K.-W., Wu, Y. N., Zhu, S.-C., Ra-
jpurohit, T., Clark, P., and Kalyan, A. Dynamic prompt
learning via policy gradient for semi-structured math-
ematical reasoning. arXiv preprint arXiv:2209.14610,
2023. URL https://arxiv.org/pdf/2209.14610.

Majumder, B. P., Mishra, B. D., Jansen, P., Tafjord, O.,
Tandon, N., Zhang, L., Callison-Burch, C., and Clark,
P. Clin: A continually learning language agent for
rapid task adaptation and generalization. arXiv preprint
arXiv:2310.10134, 2023.

10

https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1145/3571234
https://arxiv.org/pdf/2305.17126
https://arxiv.org/pdf/2305.17126
https://arxiv.org/pdf/2310.14687
https://openreview.net/forum?id=lH1PV42cbF
https://arxiv.org/pdf/2211.11559
https://arxiv.org/pdf/2211.11559
https://arxiv.org/pdf/2103.03874
https://arxiv.org/pdf/2103.03874
https://arxiv.org/pdf/2209.14610

TROVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks

Ni, A., Iyer, S., Radev, D., Stoyanov, V., Yih, W.-t., Wang,
S., and Lin, X. V. Lever: Learning to verify language-
to-code generation with execution. In International Con-
ference on Machine Learning, pp. 26106–26128. PMLR,
2023.

Pasupat, P. and Liang, P. Compositional semantic parsing
on semi-structured tables. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers).
Association for Computational Linguistics, July 2015.
URL https://aclanthology.org/P15-1142.

Qian, C., Han, C., Fung, Y. R., Qin, Y., Liu, Z., and Ji, H.
Creator: Disentangling abstract and concrete reasonings
of large language models through tool creation. arXiv
preprint arXiv:2305.14318, 2023. URL https://arxiv.org/
pdf/2305.14318.

Shi, F., Fried, D., Ghazvininejad, M., Zettlemoyer, L., and
Wang, S. I. Natural language to code translation with
execution. In Proceedings of EMNLP. Association for
Computational Linguistics, December 2022. URL https:
//aclanthology.org/2022.emnlp-main.231.

Shin, R., Allamanis, M., Brockschmidt, M., and Polozov,
O. Program synthesis and semantic parsing with learned
code idioms, 2019.

Subramanian, S., Narasimhan, M., Khangaonkar, K., Yang,
K., Nagrani, A., Schmid, C., Zeng, A., Darrell, T., and
Klein, D. Modular visual question answering via code
generation. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 2:
Short Papers), July 2023.

Surı́s, D., Menon, S., and Vondrick, C. Vipergpt: Visual
inference via python execution for reasoning. arXiv
preprint arXiv:2303.08128, 2023.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi,
E. H., Narang, S., Chowdhery, A., and Zhou, D. Self-
consistency improves chain of thought reasoning in lan-
guage models. In The Eleventh International Confer-
ence on Learning Representations, 2023b. URL https:
//openreview.net/forum?id=1PL1NIMMrw.

Wong, C., Ellis, K. M., Tenenbaum, J., and Andreas, J.
Leveraging language to learn program abstractions and
search heuristics. In Meila, M. and Zhang, T. (eds.),
Proceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine

Learning Research, pp. 11193–11204. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/v139/wong21a.
html.

Xin, H., Wang, H., Zheng, C., Li, L., Liu, Z., Cao, Q.,
Huang, Y., Xiong, J., Shi, H., Xie, E., et al. Lego-prover:
Neural theorem proving with growing libraries. arXiv
preprint arXiv:2310.00656, 2023.

Yang, Z., Li, L., Wang, J., Lin, K., Azarnasab, E., Ahmed,
F., Liu, Z., Liu, C., Zeng, M., and Wang, L. Mm-react:
Prompting chatgpt for multimodal reasoning and action.
arXiv preprint arXiv:2303.11381, 2023.

Yin, P. and Neubig, G. A syntactic neural model
for general-purpose code generation. arXiv preprint
arXiv:1704.01696, 2017.

Yuan, L., Chen, Y., Wang, X., Fung, Y. R., Peng, H.,
and Ji, H. Craft: Customizing llms by creating and
retrieving from specialized toolsets. arXiv preprint
arXiv:2309.17428, 2023.

Zettlemoyer, L. and Collins, M. Online learning of relaxed
ccg grammars for parsing to logical form. In Proceedings
of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natu-
ral Language Learning (EMNLP-CoNLL), pp. 678–687,
2007.

11

https://aclanthology.org/P15-1142
https://arxiv.org/pdf/2305.14318
https://arxiv.org/pdf/2305.14318
https://aclanthology.org/2022.emnlp-main.231
https://aclanthology.org/2022.emnlp-main.231
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://proceedings.mlr.press/v139/wong21a.html
https://proceedings.mlr.press/v139/wong21a.html

TROVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks

A. Prompt Example
We introduced baseline methods (PRIMITIVE and INSTANCE) in §2.2 and our main method in §3. To more concretely
illustrate the prompts beyond textual description, we provide figure examples.

Figure 9 is an example prompt used in the PRIMITIVE setting, where on the bottom is the current test example and Solution
is expected to be filled by the model.

from PIL import Image
from PIL import Image

Load object bounding boxes in the image
locate_objects(image: Image, object_name: str) -> list

Answering basic visual question with neural models
visual_qa(image: Image, question: str) -> str

Crop the specified box region from the image
crop_region(image: Image, boxes: list) -> Image

Toolbox

Instruction
Your task is to use tools, i.e., Python functions, to reason over the image.
Write a program solution to the question by decomposing it into multiple steps. Then specify the
tools used in each step by importing from the toolbox. Make sure that all tools used in the solution
are defined in the toolbox. Do not use any undefined functions.
All images are presented as PIL.Image objects, you can use functions in PIL, cv2 if they help.

Question Who is carrying the umbrella?
Image “data/gqa/testdev_images/n10052.jpg”
Solution

image_file = "data/gqa/testdev_images/n100552.jpg"
image = Image.open(image_file).convert('RGB')
carry_boxes = locate_objects(image, "carry umbrella")
carry_region = crop_region(image, carry_boxes)
answer = visual_qa(image=carry_region, question="Who is carrying the umbrella?")
print(answer)

Tools

from toolbox import Image, locate_objects, crop_region, visual_qa

Question Are there either any small refrigerators or microwaves in the picture?
Image “data/gqa/testdev_images/n579256.jpg”
Solution

Figure 9. Example prompt in the primitive setting.

We use the same format in the INSTANCE setting, but changed the Instruction to be:

Your task is to write the solution with high-level tools, i.e., Python functions, to reason over the image.

Think about the potential program solution for this example, you can create high-level functions, that could be used to solve this
example. For example, if the solution involves multiple actions that are always used together, it is more efficient to create and use
the tool.

Similarly, in the ONLINE setting, respectively for the CREATE, IMPORT, and SKIP modes, the Instructions reads:

Your task is to write Python program solutions to reason over images. You should also create Python functions that can be used by
your solution, if you believe the function can be reused to solve other questions.

Your task is to write Python program solutions to reason over images. The toolbox section lists all the available functions that can
be used in your solution.

Your task is to write Python program solutions to reason over images.

12

TROVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks

B. Evaluation Metric Details
Answer Correctness We measure if the solution execution result matches the annotated answers. For answers that are
expected in a textual format (e.g., “brown”), we use the Exact Match (EM) metric; for numerical answers, we convert it to
float type and round to two decimals, then measure if the values match (with a difference less than 1e−6).

Program Complexity We quantify the complexity of programs in their number of operations. Concretely, we separate
solutions into multiple expressions, and parse each expression into abstract syntax trees (AST). We take the depth of each
AST as the number of operations conducted in the corresponding expression. We sum this value of all expressions and
denote it as the complexity (i.e., number of operations) of the entire program.

C. Human Study: Individual Results
In the verification human study, performance between people may vary due to their programming expertise. Therefore, in
this section, we present more detailed results of individual participants, and justify the significance of our findings.

Figure 10. Individual verification accuracy and time used.

As shown in Figure 10 (left), verification accuracy is higher for tool-involved methods (TROVE and INSTANCE) compared
to using primitive functions only (PRIMITIVE). Most people perform verification more accurately on programs produced by
TROVE except one person (the red line), which also has lower detection accuracy in general.

Their times used for verification are shown on the right, with the same line color identifying each human. Most people
find TROVE the fastest, PRIMITIVE taking 8.2 more seconds on average, and INSTANCE requires another 10.8 seconds.
However, one person responded differently and personally found INSTANCE more efficient than PRIMITIVE, which is the
major contribution of the relatively large variance of INSTANCE reported in §6.

D. Ablation Studies
We conduct several ablation studies regarding tool ordering (§D.1), tool selection (§D.2), tool rectification (§D.3), and tool
frequency estimation (§D.4).

D.1. Problem-Specific Tool Listing Order

To keep our method simple and efficient, we always rank tools by their usage frequency for every example. To investigate if
example-specific tool listing order would further improve the performance, we perform an ablation study by introducing an
extra tool-ranking module.

Specifically, to list tools by their relevance to the example, we experimented with two methods: (i) rank tools by their lexical
overlap (unigram F1 score) with the question, and (ii) rank tools using the experimented LM with the prompt “Please rank
the tool functions based on their relevance to the question: ${question} ${tools}” alone with one in-context example.

As shown in Table 10, compared to our original example-agnostic frequency-based ranking, changing the ranking of tools
does not substantially improve task correctness. This result demonstrates the general effectiveness of frequency-based

13

TROVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks

Method MATH TABLEQA VISUAL
alg count geo inte num prealg precal TabMWP WTQ HiTab GQA

freq (ours) 0.25 0.26 0.08 0.11 0.25 0.29 0.17 0.47 0.21 0.18 0.44
lexical 0.26 0.24 0.07 0.10 0.25 0.27 0.14 0.31 0.17 0.15 0.42
lm-based 0.24 0.25 0.08 0.10 0.25 0.28 0.18 0.43 0.18 0.17 0.43

Table 10. Comparing general frequency-based and example-specific tool listing methods.

ranking. In short, problem-specific tool listing does not improve performance, yet adds extra computation cost. We thus did
not include this as a main module in TROVE.

D.2. Selection by Self-Consistency

While self-consistency (Wang et al., 2023b) has been widely adopted and proven effective, we further conduct an ablation
study to prove its effectiveness particularly in our experimental setup. Specifically, we compare the original agreement-based
selection (§3.2) with two other alternatives: (i) no sampling, only generating one response and always selecting it, and (ii)
random selection over the sampled generations.

Method MATH TABLEQA VISUAL
alg count geo inte num prealg precal TabMWP WTQ HiTab GQA

self-consistency (ours) 0.25 0.26 0.08 0.11 0.25 0.29 0.17 0.47 0.21 0.18 0.44
no sampling 0.25 0.23 0.05 0.10 0.22 0.28 0.16 0.39 0.17 0.16 0.39
random selection 0.12 0.10 0.02 0.01 0.06 0.08 0.03 0.18 0.00 0.00 0.41

Table 11. Comparing the original self-consistency-based response selection to two alternatives, namely no sampling and random selection.

As shown by Table 11, removing sampling decreases the results slightly on all datasets; further, randomly selecting solutions
without using the self-consistency heuristic, causes substantial degradation of results on all datasets. Results of both ablated
settings effectively demonstrate the effectiveness of self-consistency in our experiments.

D.3. Influence of tool rectification

While some of the baseline methods (Qian et al., 2023) include a tool rectification module to improve the generation quality,
we also study the influence of this module on TROVE. Rectification in our setting, more concretely, could be concretized
into two modules: (i) right after creating the tool, rectify the implementation before adding it to the toolbox; or (ii) when
encountering a new example, import an existing tool and rectify its implementation based on the current example.

To realize this, we add another generation step for tool and solution rectification: given the instruction “Your task is to
update the program solution with the provided math tools, i.e., Python functions. For each example, based on the initial
solution, select the suitable tool(s), you need to rewrite the solution using the selected tools. Do not use any undefined
functions or unspecified tools.” We input the current toolbox preview, the current example, tools, and solutions generated in
the last (creation/import) steps, then ask models to output an updated version of the tools and solutions. We always adopt
the tools and solutions after rectification.

Method MATH TABLEQA VISUAL
alg count geo inte num prealg precal TabMWP WTQ HiTab GQA

no rectification (ours) 0.25 0.26 0.08 0.11 0.25 0.29 0.17 0.47 0.21 0.18 0.44
rec. after creation 0.17 0.15 0.03 0.11 0.24 0.24 0.10 0.26 0.00 0.04 0.44
rec. after import 0.23 0.25 0.05 0.09 0.24 0.23 0.16 0.22 0.00 0.11 0.41

Table 12. Results after applying tool rectification after tool creation or importing.

We experiment with both settings and show their results in Table 12. For (i), rectification after creation barely helps task
performance but adds extra compute. For (ii), rectification after import hurts performance while costing extra compute. We
manually analyzed the outputs and conjecture the reason to be that LMs tend to over-optimize the tool implementation to the
context of the current example, thus making the tools less generic in functionality and non-reusable for future generations.

14

TROVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks

D.4. Tool Freuquency Estimation

We estimate the tool usage to follow a logarithmic relation with data size in §3.3. To further validate the appropriateness of
this choice, as well as its effectiveness in downstream performance, we compare it with another trimming threshold — a
fixed-value threshold λ = 2 selected by manually observing tool-using frequency. The result in Table 13 shows that using
fixed-value thresholds underperforms log-based thresholds by a large margin on all datasets.

Method MATH TABLEQA VISUAL
alg count geo inte num prealg precal TabMWP WTQ HiTab GQA

logarithmic (ours) 0.25 0.26 0.08 0.11 0.25 0.29 0.17 0.47 0.21 0.18 0.44
fixed value 0.21 0.10 0.04 0.08 0.22 0.27 0.15 0.23 0.00 0.11 0.43

Table 13. Results after applying tool rectification after tool creation or importing.

15

