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Abstract

Diffusion-based generative models have been suc-
cessfully employed to create proteins with novel
structures and functions. However, the construc-
tion of such models typically depends on large,
pre-trained structure prediction networks, like
RFdiffusion. In contrast, alternative models that
are trained from scratch, such as FrameDiff, still
fall short in performance. In this context, we
introduce Proteus, an innovative deep diffusion
network that incorporates graph-based triangle
methods and a multi-track interaction network,
eliminating the dependency on structure predic-
tion pre-training with superior efficiency. We have
validated our model’s performance on de novo
protein backbone generation through comprehen-
sive in silico evaluations and experimental charac-
terizations, which demonstrate a remarkable suc-
cess rate. These promising results underscore Pro-
teus’s ability to generate highly designable protein
backbones efficiently. This capability, achieved
without reliance on pre-training techniques, has
the potential to significantly advance the field of
protein design. Codes are available at https://
github.com/Wangchentong/Proteus.

1. Introduction
The biological function of a protein is often directly deter-
mined by its tertiary structure, which underscores the impor-
tance of designing novel protein backbones. De novo protein
design methods are dedicated to creating proteins with the
desired structure and function. Recent advancements in
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protein structure prediction methods, such as AlphaFold2
(Jumper et al., 2021) and RosettaFold (Baek et al., 2021),
have enabled the ’hallucination’ approach (Anishchenko
et al., 2021; Wang et al., 2022) to directly generate protein
sequences using backpropagation on the structure prediction
networks. Further leveraging the generative capabilities of
the diffusion model (Ho et al., 2020), RFdiffusion (Watson
et al., 2023) has demonstrated superior performance across
a wide range of protein design challenges. These applica-
tions include designing protein binders, scaffolding motifs,
and creating symmetric oligomers. Despite RFdiffusion’s
impressive performance, its dependency on pretraining with
RosettaFold2 (Baek et al., 2023) poses a challenge for dis-
secting and refining the model’s architecture to improve
performance for structure generation tasks.

To tackle the challenge of generating designable protein
backbones without reliance on pretraining, researchers have
developed a range of diffusion strategies and model architec-
tures. One such approach is FoldingDiff (Wu et al., 2022),
which employs diffusion in the protein backbone torsion
space with a bidirectional transformer. This network iter-
atively denoises a sequence of torsion angles to generate
protein-like backbones. However, the majority of gener-
ated structures are predicted to be non-designable. In con-
trast, two concurrent studies have shown more promise by
directly applying diffusion on residue coordinates (Lin &
AlQuraishi, 2023) or tangent space of coordinate and ro-
tation (Yim et al., 2023). Additionally, previous research
(Anand & Achim, 2022; Lee et al., 2023; Trippe et al., 2022)
has explored multiple network architectures, including U-
Net (Ronneberger et al., 2015), Equivariant Graph Neural
Networks (EGNNs) (Satorras et al., 2022), Invariant Point
Attention(IPA) (Jumper et al., 2021), which have achieved
success in diverse fields such as Computer Vision or dy-
namic system modeling.

Although these initiatives have moderately improved the
designability of protein structure diffusion models without
dependency on pretraining, there is still a notable perfor-
mance gap compared to RFdiffusion, which results in con-
siderable limitations for these models, making them less
effective or difficult to apply in practical protein design

1

https://github.com/Wangchentong/Proteus
https://github.com/Wangchentong/Proteus


Proteus: Exploring Protein Structure Generation for Enhanced Designability and Efficiency

Figure 1: Benchmarking Proteus against other backbone diffusion models on designability, efficiency, and diversity. All
metrics are averaged from 200 backbones of each length 100, 200, 300, 400, 600, and 800. For each backbone length, 8
sequences are designed by ProteinMPNN, except for Chroma, which uses ChromaDesign to achieve the best performance
reported in its original paper. (A) Radar plot illustrating model evaluation across three dimensions. (B) Self-consistency
RMSD between the generated backbone and the best prediction of ESMfold. (C) Sampling time of backbone generation,
evaluated on A40. Genie fails to generate backbones larger than 600 residues due to running out of memory.

tasks. RFdiffusion, with its cutting-edge capabilities, sets
a higher standard in the field and highlights the need for
further advancements in model development.

To bridge the performance gap between models that do
and do not require pretraining, we have developed Proteus.
Proteus achieves backbone designability on par with RFdif-
fusion by integrating a graph-based triangle technique and a
multi-track interaction network, significantly bolstered by
data augmentation. Moreover, our model sets a new effi-
ciency standard, owing to two principal advancements: a
reduction in the required sampling steps due to the enhanced
representational capacity of the model, and the employment
of local graph modeling to decrease computational com-
plexity. These innovations allow Proteus to achieve protein
generation speeds comparable to those of Chroma (Ingra-
ham et al., 2022).

In summary, our model achieves several optimization objec-
tives critical to protein design. It functions independently of
pretraining, delivers high designability of protein structures,
and maintains rapid generation speeds. The introduction
of Proteus represents a noteworthy progression in protein
design methodology, offering a solution that balances effi-
ciency with the complexity of protein structure generation.

2. Preliminaries
Protein backbone representation Following the approach
of AlphaFold2 (Jumper et al., 2021), the backbone of each
residue is parameterized as a series of rigid transformations,
also known as frames. These frames, denoted by T =

(
R, t
)

are defined within the special Euclidean group SE(3) and
represent orientation-preserving transformations of the ide-
alized backbone atom coordinates [Nn, Cαn , Cn]. Specif-
ically, R ∈ SO(3) is a rotation matrix derived from the

backbone atoms N, CA, and C through the Gram-Schmidt
process, and t ∈ R3 represents the coordinates of atom Cα.

Diffusion modeling on protein backbone Multiple method-
ologies are available for protein backbone diffusion, includ-
ing diffusion on inter-residue geometry or backbone torsion
angles. In this paper, we detail our employed approach:
SE(3) diffusion. This method treats each residue indepen-
dently and computes the associated probability estimation
on SO(3) for the score matching calculation, as originally
proposed by Yim et al..

Briefly, the protein backbone’s forward diffusion process is
driven by Brownian motion on SO(3) and R3 individually
as shown in Equation (1)

dT(t) =

[
0,−1

2
X(t)

]
dt+

[
dB

(t)
SO(3), dB

(t)
R3

]
(1)

By defining probability estimation on R3 forward diffusion,
pt|0(x

(t)|x(0)) = N (x(t); e−t/2x(0), (1−e−t)Id3), the cor-
responding conditional score can be computed explicitly

∇ log pt|0(x
(t)|x(0)) = (1− e−t)−1

(
e−t/2x(0) − x(t)

)
.

For the proper estimation of probability on
SO(3), Brownian motion on SO(3) is defined
as pt|0(r

(t)|r(0)) = f
(
ω
(
r(0)

T

r(t)
)
, t
)

, where
ω(r) is the rotation angle in radians for any r ∈
SO(3).The final probability estimation can be described as

f(ω, t) =
∑
ℓ∈N

(2ℓ+ 1)e−ℓ(ℓ+1)t/2 sin((ℓ+ 1/2)ω)

sin(ω/2)
(2)
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Figure 2: Model illustration (A) The Protein backbone diffusion model is trained to recover noised structures and generate
new structures by reversing the forward process. (B) The overall architecture of Proteus. (C) The detailed model architecture
of graph triangle block.

With the probability estimation, the corresponding condi-
tional score can be computed as

∇ log pt0

(
r(t)|r(0)

)
=

r(t)

ω(t)
log
(
r(0,t)

) ∂ωf(ω(t), t)

f(ω(t), t)
,

With a well-trained denoising score matching(DSM) net-
work on tangent space of R3 and SO(3), a protein backbone
can be sampled from noise with n steps by Euler–Maruyama
discretization (Bortoli et al., 2022).

In summary, the objective of the network is to predict a
denoised protein backbone at timestep 0, given noisy back-
bones from any timesteps. Within this framework, proba-
bility estimation can be calculated, enabling the application
of the stochastic differential equation (SDE) to sample a
denoised protein backbone. We recommend that readers
check Yim et al.’s work for a profound understanding of
SE(3) diffusion.

Deep learning network architectures for protein struc-
ture modeling The model architectures of AlphaFold2
(Jumper et al., 2021) and Rosettafold (Baek et al., 2021)
have significantly advanced the development of protein
backbone generation models. To elucidate the inspiration for
our work, we provide a detailed account of these networks.
AlphaFold2 utilizes the Evoformer module to process mul-
tiple sequence alignment (MSA) and structure template in-

formation into sequence and edge representations. Then,
the Structure module iteratively refines these latent repre-
sentations into the final protein structure, beginning from
an initial ’black hole’ configuration. The iterative nature of
the Structure module, where a structure is input and refined
through cycles, makes it a suitable backbone generation
network for protein backbone diffusion (Anand & Achim,
2022; Yim et al., 2023; Lin & AlQuraishi, 2023). Simi-
larly, the SE(3)-transformer (Fuchs et al., 2020) adopted by
RosettaFold shares the iterative refinement capability. In
addition to the iterative update mechanism, AlphaFold2’s
heightened prediction precision is largely attributed to its
triangle attention layer. This transformer-like architecture
updates the edge representation of residue pairs by inte-
grating the information of the third edge. However, due to
its O(N3) computational complexity, most current protein
backbone diffusion models adopt a standard message pass-
ing layer or Unet (Ronneberger et al., 2015) for updating the
edge representations. An exception is RFdiffusion (Watson
et al., 2023), which employs axial attention (Ho et al., 2019)
on residue pairs, thereby enhancing its representational ca-
pacity for the protein backbone denoising task.

3. Methods
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Algorithm 1 Proteus Model Inference

0: function SAMPLE(
Nres, Nstep = 100, Nlayer = 4, tmin = 0.005,
noise scale = 0.1

)
0: t = 1.0, δt = (1− tmin)/Nstep

0: for i ∈ [1, . . . , Nres] do
0: x⃗

(t)
i ∼ N (0, Id3),r

(t)
i ∼ N (0, Id)

0: T
(t)
i = (x⃗(t)

i , r
(t)
i ), T prev

i = (⃗0, I)
0: end for
0: # denoising iterations:
0: for n ∈ [Nstep, . . . , 1] do
0: s(t), z(t) = InputEmbedder(t)
0: s(t), z(t) += ConditionEmbedder(T prev)
0: T̂ (0) = T (t)

0: for l ∈ [1, . . . , Nlayer] do
0: s(t) = IPATransformer(s(t), z(t), T̂ (0))
0: T̂ (0) = BackboneUpdate(s(t))
0: z(t) = TriangleGraph(s(t), z(t), T̂ (0))
0: end for
0: T prev = T̂ (0)

0: t = t− δt
0: T (t) = SDE(SE3)(T̂ (0), T (t), t, δt, noise level)
0: end for
0: end function=0

3.1. Model Architecture

Overview In this section, we present the architecture of Pro-
teus. Proteus iteratively updates the structural frames of pro-
teins through a sequence of L layers of folding blocks. As
shown in Figure 2B, each layer of the folding block receives
input from three distinct tracks: node representation, edge
representation, and structural frames. A folding block is
composed of three components: an IPA-Transformer block,
a backbone update layer, and a graph triangle block. Each
component is tailored to model and refine one of input tracks
while being aware of the representations from other tracks.

The IPA-Transformer block integrates an Invariant Point At-
tention (IPA) mechanism with a traditional transformer. The
IPA conducts standard attention operations, incorporating a
bias derived from the spatial distance between inter-residue
atoms and edge representation. The Backbone Update, in-
spired by AlphaFold2’s methodology, utilizes a linear layer
to predict translation and rotation updates for the frames of
each residue, informed by the updated sequence representa-
tion.

The graph triangle block is tasked to update the edge repre-
sentation. It employs a graph-based attention mechanism
that operates on edge representation, modulated by a se-
quence representation-gated structural bias. The entire net-
work consists of L layers of folding blocks, and no weights

are shared among them. The sequence representation is
initialized using the diffusion timestep and the edge repre-
sentation is initialized using a relative sequential distance
map introduced in AlphaFold2. When self-conditioning
data is available, additional features, including the Ca dis-
tance map and relative rotational features from preceding
predictions, are incorporated, with more elaborate expla-
nations provided in Table 5. Our primary emphasis is on
elucidating the graph triangle block, which is the source of
significant enhancements in designability and efficiency.

Graph triangle block The graph triangle block in our
model is engineered to update the edge representation in
the backbone diffusion process. Drawing inspiration from
AlphaFold2’s network, we have innovatively adapted the
concept of triangle attention and the multiplication method,
which are central to AlphaFold2’s Evoformer module. Trian-
gle attention is crucial for generating valid protein structures
by enforcing the triangle inequality for the pair distance
distribution when updating edge representations. This mod-
ule significantly contributes to AlphaFold2’s exceptional
accuracy but presents computational challenges due to its
O(N3) computational complexity and substantial memory
demands. Processing a 384-residue protein, a single layer
of Evoformer can require upwards of 20GB memory dur-
ing training, making it necessary to employ techniques of
gradient checkpoint, especially considering the network
comprises 48 Evoformer blocks. In terms of diffusion mod-
eling, generating a 384 residue protein with 50 steps using
AlphaFold2 can take a minimum of 10 minutes on a V100
GPU. Another challenge encountered with the application
of the naive triangle attention technique to protein backbone
diffusion models is the lack of awareness of the current
structure. The Evoformer is tailored to convert Multiple
Sequence Alignment (MSA) data into individual and edge
representations, yet it lacks provision for structural informa-
tion as an input to inform these update processes.

To address the aforementioned two major limitations when
applying the triangle technique to protein backbone diffu-
sion, we have devised the graph triangle block. This block
computes triangle attention for edge representation with
an optimized O(NK2) complexity. Utilizing the noisy in-
put structure, we identify the k nearest neighbor residues
for each residue and subsequently gather the N ∗K edges
from the comprehensive N2 edge representation. Attention
logits are then calculated among each residue’s K edges.
To incorporate 3D spatial information, we calculate the
inter-atom distances of the third edge and derive their Ra-
dial Basis Function (RBF) features as structural bias, rather
than directly utilizing the representation of the third edge.
Furthermore, the structure bias is gated by a feedforward
network that leverages the sequence representations from
both the starting and ending residues, thus ensuring seamless
integration of inputs across all three tracks. Before trian-
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Table 1: Performance comparison of models on the unconditional monomer generation task. Designability is assessed by
the self-consistency TM-score between generated and refolded backbones. Efficiency is quantified by number of seconds
required to generate a sample, while diversity is measured by the ratio of designable clusters to the total number of generated
backbones. Results are averaged across backbone lengths of 100, 200, 300, 400, and 600, as detailed in Figure 1. The
top-performing metrics are highlighted in bold, with the second-best results underlined.

Method Nparams Designability (↑) Sampling time (s) (↓) Diversity (↑) Timesteps (↓)
Proteus 19.8M 0.921 18.20 0.235 100
RFDiffusion 59.8M 0.705 120.24 0.328 50
GENIE(SwissProt) 4.1M 0.349 188.07 0.163 1000
FrameDiff 17.4M 0.405 40.47 0.136 500
Chroma 18.5M 0.174 18.31 0.038 500

gle attention is performed for N ∗K edge representations,
we first apply a triangle multiplicative update, as used in
Evoformer, to update the entire N ∗N edge representations.

Employing this technique confers three distinct benefits
over the axial attention layer used in RFdiffusion and the
simpler message-passing layer utilized in FrameDiff and
Genie. Firstly, the integration of triangle attention for edge
representation updates markedly augments the model’s pro-
ficiency in modeling the protein backbone diffusion process.
This advancement enables the model to achieve superior
results with significantly fewer steps, yielding a threefold
speedup and significantly outperforms the baseline model.
Secondly, this approach significantly curtails memory re-
quirements, allowing for training on much larger proteins
without the necessity to crop the input. We can handle pro-
teins up to 1024 residues in length during training on A40
GPU, compared to the 384 residues-limit for AlphaFold2
and RFdiffusion. This capability enhances the model’s ef-
ficacy in generating larger protein structures. Lastly, by
incorporating inputs from all three tracks to update edge
representation and protein structure, the protein structure is
refined in a holistic manner. The architecture is more com-
pact and best suited for structure-to-structure tasks, such
as protein structure generation and predicting the protein’s
apo-to-holo conformational transition (Hou et al., 2023).

Employing this technique confers three distinct benefits over
the axial attention layer used in RFdiffusion and the sim-
pler message-passing layer utilized in FrameDiff and Genie.
Firstly, integrating triangle attention for edge representa-
tion updates significantly enhances the model’s proficiency
in modeling the protein backbone diffusion process. This
advancement enables the model to achieve superior results
with significantly fewer steps, yielding a threefold speedup
and markedly outperforming the baseline model. Secondly,
this approach substantially reduces memory requirements,
allowing for training on much larger proteins without the
necessity of cropping the input. We can handle proteins
up to 1024 residues in length during training on A40 GPU,
compared to the 384-residue limit for AlphaFold2 and RFd-
iffusion. This capability markedly augments the model’s

efficacy in generating larger protein structures. Lastly, by
incorporating inputs from all three tracks to update the edge
representation and protein structure, the protein structure
is refined in a holistic manner. The architecture is more
compact and is ideally suited for structure-to-structure tasks
such as protein structure generation. It also holds the poten-
tial to generalize to the protein’s apo-to-holo conformational
transitions (Hou et al., 2023).

3.2. Training

Dataset We curated a dataset from the Protein Data Bank
(PDB) (Berman et al., 2000) with a cutoff date of August
1, 2023. Instead of the conventional practice of training
diffusion models solely on monomeric structures, we also
included oligomeric structures and extracted their individual
chains as training data. To avoid redundancy, we mapped
protein sequences to UniProt IDs and selected the highest
resolution structure for chains that shared the same UniProt
ID and exhibited at least 80 percent sequence overlap. Sub-
sequently, we filtered out the remaining protein chains with
length cutoffs between 60 and 512. Additionally, we lim-
ited the inclusion of proteins that contained a maximum of
50 percent loop regions as assigned by the DSSP program
(Kabsch & Sander, 1983). This curation process yielded
a training set of 50,773 single-chain proteins. Our results
indicate that augmenting the dataset with additional single-
chain data derived from oligomeric structures significantly
enhances model performance, compared with training solely
on monomers. Supporting evidence of this enhancement is
presented in Table 4.

Training losses We have adopted the training loss used in
FrameDiff, which can be divided into two main components:
denoising translation and rotation score-matching losses,
and the auxiliary losses involving the pair-wise distance
matrix and coordinate loss on backbone atoms, as depicted
in Equation 3. The positions of oxygen atoms are calculated
based on the coordinates of other backbone atoms.

L = Ltrans + 0.5Lrot︸ ︷︷ ︸
dsm loss

+0.25Lt<0.25
coord + 0.25Lt<0.25

dm︸ ︷︷ ︸
auxiliary loss

(3)
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Here, Ltrans computes the L2 loss between predicted
translations and native translations, while Lrot calcu-
lates the L2 loss on rotation scores weighted by λr

t =

1/E[
∣∣∣∇ log pt|0

(
R

(t)
n |R(0)

)∣∣∣SO(3)], following the ap-
proach in (Song et al., 2020). Lcoord represents the co-
ordinate loss between predicted backbones and native back-
bones. Lastly, Ldm computes the pair-wise distance loss
between predicted atom positions and native positions. We
apply auxiliary losses when t < 0.25. Empirically, we have
observed that including auxiliary losses at a small timestep
can aid convergence and enhance the model’s performance,
which aligns with the findings of FrameDiff.

3.3. Sampling

The sampling procedure is detailed in Algorithm 1. We
initiate the process by sampling the initial frames for rotation
and translation separately. For the initial translation, we
employ a Gaussian distribution on R3. As for the rotation
component, we first sample the coefficients of orthonormal
basis vectors of the Lie algebra so(3) and translate them into
the rotation matrix. Once initialized, Proteus takes the input
noisy structure and generates a prediction structure at the
timestep 0. Then, we iteratively apply the Euler–Maruyama
discretization (Bortoli et al., 2022) as the SDE solver for
Nsteps to generate the denoised structure.

4. Experiments
We rigorously evaluated Proteus performance through both
in-silico validation and in vitro experimental approaches. In
Section 4.1, we show Proteus’ performance in the task of
unconditional monomer generation. For a comprehensive
assessment, we benchmark Proteus against a suite of lead-
ing protein backbone diffusion models, including Chroma
(Ingraham et al., 2022), RFdiffusion (Watson et al., 2023),
FrameDiff (Yim et al., 2023), and Genie (Lin & AlQuraishi,
2023). Furthermore, we extended our evaluation to the
generation of protein complexes, where we compare Pro-
teus’s efficacy in generating oligomers of dimer, trimer, and
tetramer against Chroma.

Section 4.2 is dedicated to the in vitro experimental vali-
dation of Proteus. We synthesized the DNA oligos for 16
designed proteins generated by Proteus, expressed and char-
acterized their biochemical properties, particularly folding
and stability. The objective of these experiments is to sub-
stantiate the model’s practical utility and its effectiveness in
real-world biological applications.

4.1. in-silico protein generation and evaluation

Monomer backbone generation and evaluation To com-
prehensively evaluate the performance of a protein backbone
diffusion model, it is essential to consider three primary fac-

tors: designability, efficiency, and diversity. These aspects
are critical to the overall assessment and are detailed in
Table 1

Designability aims to measure the quality of the generated
backbones, by designing sequences for the generated back-
bones and refolding them to compute the errors between
the generated and folded structures. Designability is the
foremost factor, indicating the likelihood of identifying a
protein sequence to fold into the designated structure. This
is the cornerstone metric for gauging the performance of
a diffusion model, as it directly correlates to the model’s
capacity to generate viable proteins that could conceivably
exist in nature.

In our implementation, we use ProteinMPNN (Dauparas
et al., 2022) at sampling temperature 0.1 to generate 8
sequences for the designed backbone. Specifically, for
Chroma derived backbones, we employ its dedicated in-
verse folding model, ChromaDesign (Ingraham et al., 2022)
at temperature 0.1 and diffusion augmentation 0.5. This
substitution is made following the observation that Chro-
maDesign yields a higher success rate for Chroma’s back-
bones, as documented in its paper. First, the inverse folding
model generates multiple sequences corresponding to the
sampled backbone, which are subsequently fed into ESM-
Fold (Lin et al., 2023) to fold the structure. The designabil-
ity of the backbone is represented by the highest TM-score
(scTM, evaluating the similarity between two structures,
where higher values are better) in all the predicted struc-
tures. Additionally, we also compute the self-consistency
Cα-RMSD, where the threshold of < 2Å is the criterion
for successful design. Any generated protein exceeding this
Cα-RMSD threshold is deemed non-functional and likely
to be unsuccessful in experimental validation.

Efficiency is the next critical factor. It is a key determinant
in the success of design models, especially when compu-
tational resources are limited. A more efficient model can
generate more samples in a limited time which increases
the likelihood of generating potent candidates. Given the
limitations on computation resources, efficiency becomes a
pivotal criterion, on par with designability.

Efficiency is estimated as the time taken to generate a protein
backbone on a standard NVIDIA Ampere Tesla A40 GPU
with 48 GB of GPU memory. Additionally, we propose a
Time-for-Success Design (TSD) metric, which computes
the time consumed to generate a designable backbone. This
metric underscores the crucial balance between the time
required to generate successful designs and the efficiency of
the model, making it highly relevant for real-world applica-
tions where both speed and effectiveness are critical.

Diversity is the third essential consideration, gauging the
structural variance among the generated protein backbones.
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Figure 3: Complexes generation benchmark. scRMSD
is derived from 200 backbone samples for each type of
oligomer, with the length of each chain fixed at 200 amino
acid residues.
Diversity is evaluated by calculating the ratio of diverse
designable structure clusters to the total number of gen-
erated backbones. Specifically, we cluster the generated
backbones using MaxCluster (Herbert & Sternberg, 2008)
with a TM-score cutoff of 0.6. Notably, we only consider
backbones that are designable, defined as those with a Cα-
RMSD of less than 2 Å. This criterion is important be-
cause sub-optimal models often produce unrealistic struc-
tures that cannot be folded by any sequence and are highly
non-physical. Including such backbones in the assessment
would skew the metric towards models generating random,
sub-optimal structures rather than models that genuinely
capture the realistic distribution.

Table 2: Comparison of the Time-for-Success Design (TSD)
Metric. This metric evaluates the time required to generate a
designable backbone (scRMSD < 2Å) on an A40. Asterisks
(∗) indicate models that failed to predict any designable
backbones within 200 samples. The best results are bolded.

TSD (s)
Protein length 100 200 300 400 600 800
Proteus 7.02 9.11 13.47 23.09 50.62 196.11
RFDiffusion 24.84 43.97 97.14 262.64 1494.28 30500.00
GENIE (SwissProt) 72.66 127.55 482.97 21169.0 * *
FrameDiff 23.12 45.12 62.11 216.88 1851.11 *
Chroma 24.88 56.66 352.00 4020.00 * *

Complexes backbone generation and evaluation In Fig-
ure 3, we assess the capability of Proteus in generating pro-
tein complexes by drawing comparisons with Chroma under
a set of monomer design evaluation metrics. We compute
scRMSD across different oligomer configurations, including
dimers (two chains), trimers (three chains), and tetramers
(four chains), with each chain consisting of 200 amino acids.
Notably, despite the model initially being trained on single
protein chains, we observe its adaptive generation capacity
to oligomers. This is achieved by adding a large positional

index as a chain breaker (Watson et al., 2023), a technique
elaborated in Appendix A.1. Additionally,Figure 6 offers
visual representations of the oligomeric structures produced
by this method.

Results Proteus was benchmarked against the leading-edge
protein backbone diffusion models, including RFDiffusion,
Genie, FrameDiff, and Chroma. We generated 200 back-
bones across a spectrum of protein lengths, specifically [100,
200, 300, 400, 600], and computed the mean score for ev-
ery category, as delineated in Table 1. Figure 1B shows
the scRMSD distribution for each length category. Pro-
teus matches the performance of RFdiffusion for shorter
sequence lengths(100−300 residues) and significantly ex-
cels in generating sequences longer than 300 amino acids.
We attribute the enhanced capability to the novel architec-
ture of Proteus, which employs graph-level triangle tech-
niques. Furthermore, the enhanced performance of Pro-
teus in oligomeric structure generation, surpassing that of
Chroma, provides evidence of its robust out-of-distribution
generative capabilities.

Table 3: Proteus sample parameter benchmark

noise level ζ 0.1 0.5 1.0 0.1 0.1 0.1
Ntimestep 100 100 100 50 200 500

< 2Å scRMSD (↓) 92.0% 87.8% 37.3% 89.8% 91.0% 92.2%
DIVERSITY (↑) 0.23 0.27 0.16 0.26 0.22 0.22

Remarkably, while upholding high designability, Proteus
also matches Chroma in computational efficiency. Table 3
illustrates that Proteus, through enhanced network repre-
sentation capabilities, requires merely 100 sampling steps
without compromising its designability. This is in contrast
to the 1,000 steps necessary for Genie, and 500 steps for
FrameDiff and Chroma. Figure 1 showcases the computa-
tion time associated with varying protein lengths. Proteus
exhibits faster performance compared to Chroma in gener-
ating proteins with lengths shorter than 400 amino acids.
However, Chroma shows greater time efficiency on proteins
exceeding 400 amino acids. Proteus, with superior des-
ignability and efficient graph-level processing, distinctively
surpasses other models in the realm of success efficiency, as
evidenced by the benchmark results in Table 2.

Table 4: Ablation Study
2*Dataset Monomer ✓ ✓ ✓ ✓ ✓

Oligomer ✓ ✓ ✓ ✓
2*Self-Condition Cα distance matrix ✓ ✓

Structure featurizer ✓ ✓ ✓
Graph triangle attention ✓ ✓

Structure bias ✓
-3*Model Triangle multiplication ✓ ✓
1*Results Success rate 36.9% 59.2% 63.2% 87.5% 92.1%

Ablation In our comprehensive ablation analysis, as de-
lineated in Table 4, the enhancements are attributed to
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three main aspects: dataset augmentation, self-condition
enhancement, and model architecture. Previous protein
backbone diffusion methods offered a range of training
datasets: FoldingDiff utilized 30,395 protein chains from the
CATH database (Sillitoe et al., 2014) with a cropping length
of 128. Genie adopted the AlphaFold-Swissprot database
(Varadi et al., 2021), containing 195,214 protein chains with
a pLDDT cutoff of 80 and a length cutoff of 256. FrameD-
iff (Yim et al., 2023) compiled a dataset from PDB entries
of only monomers, capped at 512 amino acids, resulting
in a collection of 20,312 chains. In contrast to the above
approaches, we expanded the dataset by adding oligomeric
structures, which were subsequently split into single chains,
resulting in a dataset of 50,773 chains that significantly bol-
stered designability. The ablation study further reveals the
benefits of incorporating pairwise rotational info as a self-
conditioning feature, analogous to the template featurization
introduced by AlphaFold2, enabling the model to capture
the structure self-consistency from previous denoising steps
more accurately.

While these incremental modifications substantially elevated
the model’s performance, it was the introduction of the
local triangle graph technique that allowed Proteus to match
the performance of RFDiffusion. This innovative network,
which applies an attention mechanism at the graph level with
the integration of structure bias, not only preserves a fast
sampling speed on par with Chroma but also significantly
improves designability. This indicates that structure-level
information can enrich edge representation, a novel insight
not yet explored by AlphaFold2.

4.2. Experimental validation

DNA oligonucleotides encoding 16 designs generated by
Proteus were synthesized, and the proteins were recombi-
nantly expressed in Escherichia coli. This set comprises 12
proteins of 300 amino acids and 4 proteins of 500 amino
acids. All proteins were well expressed in E. coli. Size exclu-
sion chromatography (SEC) analysis revealed monodisperse
peaks for 9 of the 300 amino acid designs and 3 of the 500
amino acid designs, which corresponded to the expected
molecular weight. Furthermore, circular dichroism (CD)
spectroscopy confirmed the well-folded structure of these
designs, and the secondary structure features are consistent
with the design models. Notably, these proteins exhibited re-
markable thermostability, remaining well-folded at tempera-
tures up to 95°C. Experimental results are comprehensively
detailed in Figure 4.

5. Related work
Structure diffusion models on proteins Motivated by the
significant achievements of diffusion models (Ho et al.,
2020; Song et al., 2020; Bortoli et al., 2022) protein dif-

fusion models have been developed to generate proteins
in either sequence or structural space, with certain meth-
ods adeptly bridging both spaces (Anand & Achim, 2022).
Anand & Achim pioneered a model that co-diffuses back-
bone, sequence, and sidechain information utilizing the
Structure Module of AlphaFold2. Subsequently, numerous
methods have been introduced, focusing on the diffusion of
inter-residue geometry (Lee et al., 2023) and backbone dihe-
dral angle (Wu et al., 2022). The leading edge protein diffu-
sion models predominantly engage with diffusion in either
SE3 or R3 space in an end-to-end fashion (Yim et al., 2023;
Lin & AlQuraishi, 2023). These methods have been further
expanded to function motif scaffolding (Trippe et al., 2022;
Yim et al., 2024). Chroma achieved a higher efficiency by
utilizing an efficient graph neural network. RFdiffusion
(Watson et al., 2023) has attained state-of-the-art designabil-
ity through finetuning the Rosettafold2 structure prediction
network (Baek et al., 2023). In contrast to RFdiffusion’s

Figure 4: Experimental characterization of the generated
proteins indicates they are well-folded monomers and ther-
mostable. (A) Size exclusion chromatography profiles of
the recombinantly expressed proteins on a Supderdex 75
Increase column. (B) Examples of designed proteins that
are expressed as monomers. Designs (grey) overlaid with
AF2 predictions (colors) are shown on the left, alongside
circular dichroism (CD) spectra at 25°C, 95°C and 25°C (*)
after cooling down from 95°C on the right.
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approach, our work achieves a comparable designability and
much higher efficiency without the necessity of pretraining,
making a significant departure from existing methodologies.

Other diffusion models on proteins Many other studies
have pivoted to the diffusion of protein sequences, or the
synergistic integration of sequence data into structure dif-
fusion models. EvoDiff (Alamdari et al., 2023), for ex-
ample, utilizes evolutionary-scale protein sequence data to
generate protein sequences. Although EvoDiff can gener-
ate quite diverse protein sequences, the structure predic-
tion metrics indicate limited designability for the gener-
ated backbones. Chu et al. innovatively incorporates pro-
tein sequence features into the protein backbone diffusion
process. The model utilizes a timestep-dependent Protein-
MPNN model to design sequences on the noisy structures.
However, this appears to diminish the model’s performance.
This runs counter to the intuitive notion that the integra-
tion of sequence data should enhance structural quality. We
notice another possible formulation of structure-sequence
co-generation by language model inspired by SaProt (Su
et al., 2023). For the specific task of antibody diffusion, con-
siderable efforts (Luo et al., 2022; Kong et al., 2023; Peng
et al., 2023) have been made to simultaneously generate
the sequence and structure of complementarity-determining
regions (CDR), highlighting the community interest in an-
tibody design and the potential of sequence-structure co-
diffusion.

Protein-ligand complexes prediction In previous works,
the prediction of protein-ligand complexes is treated as a
regression problem, focusing on the rigid body docking
of ligands to holo proteins (Stärk et al., 2022; Lu et al.,
2022). Capitalizing on the generative power of diffusion
models, Diffdock significantly improved the docking accu-
racy (Corso et al., 2022). Protein-ligand co-folding models
(Qiao et al., 2023; Lu et al., 2024) offer more precise predic-
tions when the holo-state protein structures are not known -
a formidable and crucial challenge in drug discovery. Fur-
thermore, RFdiffusion All Atom (Krishna et al., 2023) are
trained to design novel small molecule binders, expand-
ing the frontier of computational approaches in molecular
design.

6. Discussion
In this paper, we introduce a new model architecture for
protein backbone diffusion, and demonstrate its enhanced
designability and efficiency without the necessity of pretrain-
ing. Our model advances the field by integrating the triangle
attention technique into residue edge representation update
and building multi-track interaction networks to enhance
its representation capability. Our model shows improved
performance in generating longer monomers (with 400 or
more amino acids) compared to RFdiffusion. The successful

generation of oligomeric structures further reveals Proteus’
generalizability.

Looking forward, we envision several research trajectories
where Proteus could exert a transformative influence. Pro-
teins in their natural state often manifest as multi-chain
entities, orchestrating their functions in a coordinated fash-
ion. Given Proteus’s exemplary performance in crafting
larger proteins and multi-chain architectures with both high
fidelity and efficiency, it is ideally suited for direct applica-
tion in the generation of protein oligomeric structures and
complex protein machinery. This capability will broaden
the current scope of designable protein space, enabling the
creation of innovative protein nanomachines.

A further domain of interest is the area of protein-ligand
co-folding. Contemporary breakthroughs, exemplified by
tools like Rosettafold All Atom (Krishna et al., 2023) and
AlphaFold3 (Abramson et al., 2024), have eclipsed the pre-
viously established benchmarks set by Diffdock in the realm
of modeling protein-small molecule interactions. The inte-
gration of Proteus-inspired methodologies into the diffusion
dynamics of ligand-protein interplay holds the promise of re-
fining protein-ligand co-folding techniques, paving the way
for the development of methods with enhanced accuracy.
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A. Additional method details
Here, we describe the implementation details of Proteus as a further explanation of Section 3. To briefly revisit the
fundamentals, the ℓ-th layer’s node representations are denoted as sℓ = [s1ℓ , . . . , s

N
ℓ ] ∈ RN×Ds , edge representations are

captured by zℓ = [z1,1ℓ , . . . , zN,N
ℓ ] ∈ RN×N×Dz . The spatial configuration of each residue in the ℓ-th layer is encapsulated

by Tℓ ∈ SE(3)N .

A.1. Proteus model details

Table 5: Input feature of Proteus

Input Feature (shape) Description

aa (N res, 21) The amino acid type of input residues, include all 20
standard types with 1 unknown type

timestep (N res, 32) The timestep embedding from 0 to 1 by sinusoidal posi-
tional encoding.

rigid frame (N res, 7) Input noisy structure, 3 dim of translation and 4 dim of
rotation represented by a quaternion.

rel pos (N res, N res, 65) Relative position index embedding in [-32,32.]

torsion angle prev(N res, 14) Self-condition input structure’s residue torsion angle of
prev prediction represented by sin and cos formulation, 4
chi angles will be masked out in the network.

distogram prev(N res, N res, 39) Self-condition input structure’s pair distance histogram of
pseudo Cβ, bin min=3.25Å, bin max=50.75Å.

unit vector prev(N res, N res, 3) Self-condition input structure’s unit vector of each
residue’s Cα coordinate in another residue’s local frame.

Feature initialization Node feature is initialized from timestep and amino acid type (currently, all residues amino acid type
is set to alanine for unconditional generation). The edge feature is initialized from the two corresponding node features with
additional relative sequence position encoding. The Multi-Layer Perceptrons (MLP) used to embed initial features consists
of 3 Linear layers with biases, 2 ReLU activation layers between Linear layers, and a LayerNorm (Ba et al., 2016) at the end.
The timestep embedding embedding ϕ(·) follows Ho et al. by using sinusoidal embeddings (Vaswani et al., 2023). The
relative sequence position encoding relpos(·) follows algorithm 4 in supplementary of Alphafold2 (Jumper et al., 2021).

si0 = Concat([ϕ(t), onehot(aa,21)])

zi,j0 = Concat([sn0 , s
j
0, relpos(i− j)])

si0 = MLP(si0)

zi,j0 = MLP(zi,j0 )

For the positional encoding, the relative position tokens of residue i and residue j within the same protein chain are always
between -32, -31,...,31, 32. For oligomer generation, we add an extra position index 200 on the residues of the next chain, so
the relative position tokens of residue i and residue j of different chains always have a position index -32 or 32, indicating a
chain break.

Self-condition featurization Encoding of predicted structure from the previous step has been proved to improve prediction
self-consistency and backbone designability (Watson et al., 2023). In 50% time of training and all inference time, the
ConditionEmbedder mentioned in Algorithm 1 is used to encode the prediction of the previous step as node embedding ts
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and edge embedding tz , and the self condition feature is encoded to s0 and z0 after feature initialization.

ts = MLP(Concat([torsion angle prev, onehot(aa,21)]))
tz = MLP(Concat([distogram prev, unit vector prev]))
tz += DropoutRowwise(TriangleMultiplicationOutgoing(tz))
tz += DropoutRowwise(TriangleMultiplicationIncoming(tz))
tz += PairTransitions(tz)
z0 += PointwiseAttention(tz, z0)
s0 += ColumnwiseAttention(ts, s0)

We have developed a self-conditioning featurization module, taking inspiration from AlphaFold2’s TemplatePairStack
(Algorithm 16). The self-conditioned feature is divided into node features ts, which include predicted backbone dihedral
angles and amino acid types, and edge features tz , which comprise Cβ pair distance and SE(3)-invariant pairwise directional
vectors.

The node feature is encoded by an MLP and incorporated into s0 via ColumnwiseAttention. This architecture is similar to
AlphaFold2’s MSAColumnAttention (Algorithm 8) but without gating. The edge feature is similarly encoded by an MLP
and then processed through two triangle multiplication layers(AlphaFold2 Algorithm 11) with a dropout rate of 0.25 and a
PairTransition layer (AlphaFold2 Algorithm 15). It is ultimately integrated into z0 through PointwiseAttention(Alphafold2
algorithm 17). Notably, we have reduced the number of blocks to one block and omitted the triangle attention layer present
in AlphaFold2’s TemplatePairStack to enhance efficiency.

IPA-Transformer block The IPA-Transformer block is used to update node information, and we will describe its details
here. An IPA-Transformer block incorporates an Invariant Point Attention (IPA) as presented in AlphaFold2 (Jumper et al.,
2021) without any alterations, along with a standard Transformer layer (Vaswani et al., 2023). IPA was first introduced by
Anand & Achim as the central model architecture of the protein structure diffusion model. The Transformer is appended to
IPA to enhance the representation ability proposed by Framediff (Yim et al., 2023).

The node update equations are as follows:

sℓ = LayerNorm
(
IPA(sℓ, zℓ, Tℓ) + sℓ

)
sin = concat(sℓ,Linear(s0))
sℓ = Linear(Transformer(sin)) + sℓ

sℓ+1 = MLP(sℓ)

Backbone update Our frame updates follow the BackboneUpdate algorithm in AF2(Algorithm 23). We write the algorithm
here with our notation,

bi, ci, di, x⃗
update
i = Linear(sℓ+1)

(ai, bi, ci, di) = (1, bi, ci, di) /
√

1 + b2i + c2i + d2i

Rupdate
i =

(
a2
i+b2i−c2i−d2

i 2bici−2aidi 2bidi+2aici
2bici+2aidi a2

i−b2i+c2i−d2
i 2cidi−2aibi

2bidi−2aici 2cidi+2aibi a2
i−b2i−c2i+d2

i

)
Tupdate

i = (Rupdate
i , x⃗update

i )

Tℓ+1 = Tℓ ·Tupdate
i

As shown in the equation, an unnormalized quaternion consists of bi, ci, di ∈ R3 and a translation vector x⃗update
i is predicted

from sℓ+1. We iterative update each residue’s frame by applying the translation x⃗update
i and rotation matrix Rupdate

i to Tℓ.

Graph triangle block The graph triangle block is designed for the update of edge information. we further explain the
implementation details of the graph triangle block mentioned in Section 3.1 and Figure 2. We develop the StructureBiased-
GraphTriangleAttention layer(Algorithm 2,Algorithm 3) as the core network for local attention calculation with two triangle
multiplication layers(AlphaFold2 Algorithm 11) for global update of edge feature.
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zij = TriangleMultiplicationOutgoing(zij)
zij = TriangleMultiplicationIncoming(zij)
zik = StructureBiasedGraphTriangleAttentionStartingNode(zij , si, x⃗ca

i ) (2)
zij ← ScatterUpdate(zik)
z⃗ik = StructureBiasedGraphTriangleAttentionEndingNode(zij , si, x⃗ca

i ) (3)
zij ← ScatterUpdate(zik)

Algorithm 2 Structure biased graph triangle attention around starting node

0: def StructureBiasedGraphTriangleAttentionStartingNode ({zij}, {si}, {x⃗ca
i }}, cs = 256, cz = 128, c = 128, Nhead =

4, Kneighbour = 32, c sgate = 16, cRBF = 64):
0: # Compute residue’s ca distance
0: Dij =

∥∥x⃗ca
i − x⃗ca

j

∥∥2
0: # Define the neighborhood residues based on Cα distance
0: Neighboursi = topK(Dij ,Kneighbour)
0: # Collate edges for the K closest residues to residue i
0: zik =Collate(zij , Neighboursi)
0: # Input projections
0: zik ← LayerNorm(zik)
0: qhik, k

h
ik, v

h
ik =LinearNoBias(zik) ∀h ∈ {1, . . . , Nhead}, qhik, khik, vhik ∈ Rc, k ∈ Neighboursi

0: # Compute structure bias from inter ca distance
0: bhij = RBF (Dij , cRBF)

0: bhij =LinearNoBias(bij) bhij ∈ Rc

0: # Compute gating of bias from starting and ending node
0: g

′h
ij = σ(Linear(si ⊗ sj) ghij ∈ Rc

0: bhij = g
′h
ij ◦ bhij

0: # Compute gating of attention
0: ghik = sigmoid(Linear(zik))
0: # Attention
0: ahikq = softmaxq

(
1√
c
qhik

⊤khiq + bhkq

)
k, q ∈ Neighboursi

0: ohik = ghik ⊙
∑

q a
h
ikqv

h
iq

0: # Output projection
0: zik = Linear(Concat(ohik)) zik ∈ Rcz

0: return {zik}
0: =0

In the graph triangle block, the neighbor k residues of each residue are selected based on the inter Cα distance of current
Tℓ, which means the attention graph is dynamically constructed in the network. By leveraging the characteristics of the
diffusion model and dynamic refinement of the graph, triangle graph attention can avoid inaccurate graph construction in the
early step, where the input structure is very noisy. At the same time, the efficiency of graph triangle attention calculation is
maintained. When calculating the attention between kik and qiq , the structure bias is computed from 64 bins of radial basis
function (RBF) equally spaced from 0Å to 32Å for distances between Ca for k and q residue.

Score prediction and reverse sampling schedule We describe how the density score of rotation and translation of frames is
calculated and how the SDE structure denoiser is applied to the sampling from noise mentioned in Figure 2 and Algorithm 1.

At each timestep between 0 and 1, after L layers we take the final frame Tℓ as the predicted clean structure of t = 0

Tℓ = T̂ (0) = (x̂(0), r̂(0))

With the prediction x̂(0), r̂(0) and the input frames T (t) = (x(t), r(t)) of current timestep, R3 and SO(3) score of residue n
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is computed by

sxθ (t, T
(t))n = ∇ log pt|0(x

(t)
n |x̂(0)

n ) = (1− e−t)−1
(
e−t/2x̂(0)

n − x(t)
n

)
srθ(t, T

(t))n = ∇ log pt0

(
r(t)n |r̂(0)n

)
=

r
(t)
n

ω(t)
log
(
r(0,t)n

) ∂ωf(ω(t), t)

f(ω(t), t)

To define the formulation of the reverse process, we first set up the forward scheduling of by

dX(t) = fx(t)X
(t)dt+ gx(t)dB

(t)
R3

This equation describes the forward process of translation, where fx(t) = − 1
2β(s) is drift coefficient and gx(t) =

√
β(t) is

diffusion coefficient. We choose linear schedule with introduced by Song et al. and Ho et al. βmin = 0.1, βmax = 20 as the
SDE scheduler of translation.

β(s) = βmin + t(βmax − βmin)

By defining this linear schedule. with Gx(s) =
∫ s

0
gx(t)

2dt = t · βmin + 1
2 t

2(βmax − βmin), the distribution of translation
at timestep t can be written as

pt|0(X
(t)|X(0)) = N (X(t); e−Gx(t)X(0), 1− e−Gx(t)Id3).

The forward diffusion process of rotation can be written similarly but without the drift coefficient term since it is in SO(3)
space

dR(t) = gr(t)dB
(t)
SO(3)

By introduce a time scaling factor σ2
r(s) =

∫ s

0
gr(t)

2 dt and gr(t) =
√

d
dtσ

2(t), the probability distribution of rotation can
be described as

pt|0(R
(t)|R(0)) = IGSO3(R

(t);R(0), σ2
r(t)

2)

where
IGSO3(r

(t); r(0), t) = f(ω(r(0)T r(t)), t)

f(ω, t) =
∑
ℓ∈N

(2ℓ+ 1)e−ℓ(ℓ+1)t/2 sin((ℓ+ 1/2)ω)

sin(ω/2)

ω(r) is the rotation angle in radians for any r ∈ SO(3). By defining σr(t) = log (t · exp {σmax}+ (1− t) exp {σmin}), we
are able to control the rotation diffusion schedule through gr(t) with σmin and σmin. We take the same setting σ2

min = 0.01
and σ2

max = 2.25 as described in FrameDiff.

With the forward process defined above, the SDE sampling procedure of translation and rotation can be described as

x(t) = [gx(t)
2sxθ (t, T

(t))− fx(t)x
(t)]dt+ gx(t)B

(t)
R3

r(t) = gr(t)
2srθ(t, T

(t))dt+ gr(t)B
(t)
SO(3)

Noise scaling To improve the backbone designability while keeping the diversity, we sample various noise levels in Table 3,
noise level is applied to the Brownian motion of R3 and SO(3) as

x(t) = [gx(t)
2sxθ (t, T

(t))− fx(t)x
(t)]dt+ ξ(gx(t)B

(t)
R3 )

r(t) = gr(t)
2srθ(t, T

(t))dt+ ξ(gr(t)B
(t)
SO(3))

where noise level is noted as ξ ∈ [0, 1] in the Table 3 and equation above.
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Algorithm 3 Structure biased graph triangle attention around ending node

0: def StructureBiasedGraphTriangleAttentionEndingNode ({zij}, {si}, {x⃗ca
i }}, cs = 256, cz = 128, c = 128, Nhead = 4,

Kneighbour = 32, c sgate = 16, cRBF = 64):
0: # Compute residue’s ca distance
0: Dij =

∥∥x⃗ca
i − x⃗ca

j

∥∥2
0: # Define the neighborhood residues based on Cα distance
0: Neighboursi = topK(Dij ,Kneighbour)
0: # Collate edges for the K closest residues to residue i
0: zik =Collate(zij , Neighboursi)
0: # Input projections
0: zik ← LayerNorm(zik)
0: qhik, k

h
ik, v

h
ik =LinearNoBias(zik) ∀h ∈ {1, . . . , Nhead}, qhik, khik, vhik ∈ Rc, k ∈ Neighboursi

0: # Compute structure bias from inter ca distance
0: bhij = RBF (Dij , cRBF)

0: bhij =LinearNoBias(bij) bhij ∈ Rc

0: # Compute gating of bias from starting and ending node
0: g

′h
ij = σ(Linear(si ⊗ sj) ghij ∈ Rc

0: bhij = g
′h
ij ◦ bhij

0: # Compute gating of attention
0: ghik = sigmoid(Linear(zik))
0: # Attention
0: ahikq = softmaxq

(
1√
c
qhik

⊤khqk + bhqi

)
k, q ∈ Neighboursi

0: ohik = ghik ⊙
∑

q a
h
ikqv

h
qk

0: # Output projection
0: zik = Linear(Concat(ohik)) zik ∈ Rcz

0: return {zik}
0: =0

Table 6: Model Training Parameters

Model Parameters

Dimension of sequence track Cs 256
Dimension of edge track Cz 128
K nearest neighbour 32
Heads of graph triangle attention 4
Hidden dimension of triangle attention head 128
Dimension of structure bias feature 64
Dimension of sequence track gate 16

Training Setting

Max protein length Nres 512
Max batch size 16
Max squared residues 3× 104

Training steps 2× 106

Training time ≈ 20 days
Device 2× A40
Optimizer Adam(β1=0.9, β2=0.999) (Kingma & Ba, 2017)
Learning rate 0.0001
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B. In vitro experiment protocol
Protein purification and expression Synthetic genes encoding designed protein were purchased from Universe Gene
Technology. These sequences were cloned into the pET28a vector, included N-terminal or C-terminal histidine tags and
an HRV 3C protease cleavage site. These plasmids were transformed into BL21 (DE3) E. coli competent cells. All
transformants were cultured into 50 ml of LB medium with 50 mg/ml kanamycin. Protein expression was induced with 1
mM isopropyl 1-thio--d-galactopyranoside at 37 °C overnight or at 20 °C overnight after initial growth for 6 to 8 h at 37 °C.
The cells were harvested by centrifugation and lysed by sonication after resuspension of the cells in lysis buffer (25 mM Tris
pH 7.0, 150 mM NaCl). The cell lysate was cleared by centrifugation (12,000 × rpm). The supernatant was purified by 1 ml
Ni2+ immobilized metal affinity chromatography with Ni-NTA Superflow resin (Qiagen). Resins with bound cell lysate
were washed five times with 5 mL of washing buffer (comprising lysis buffer and 30 mM imidazole) and eluted with 6 mL
of elution buffer (comprising lysis buffer and 300 mM imidazole). Both eluates were analyzed using 15% SDS-PAGE gel to
assess purity. The histidine tags were cleaved using histidine-tagged HRV 3C protease during dialysis against lysis buffer
overnight. A second IMAC purification was performed for HRV 3C cleaved samples to capture uncleaved protein and HRV
3C protease. Designs were finally purified using Superdex 200 Increase 10/300GL (GE Healthcare) with lysis buffer.

Circular dichroism experiments Circular dichroism spectra were recorded on a Chirascan V100 circular dichroism
spectrometer (Applied Photophysics) using protein concentrations ranging from 0.6 to 0.9 mg/ml. Thermal melt analyses
were conducted over a temperature range of 25°C to 95°C, measuring CD at 222 nm. Wavelength scans (190 to 260 nm)
were recorded at both 25°C and 95°C. All reported measurements were obtained within the linear range of the instrument.

For crystallization, the plasmids were transformed into BL21 (DE3) E. coli competent cells. The transformants were cultured
in 10 ml of LB medium with 50 mg/ml kanamycin at 37 °C overnight. The cultures were transferred to 1L of LB medium
with 50 mg/ml kanamycin and incubated at 37 °C. Protein expression was induced with 1 mM IPTG at 37 °C overnight.
Protein purification steps were carried out as described above.

Crystallization, data collection, and structure determination The crystals were grown using the hanging drop method
at room temperature (18 °C). The drops consisted of 1 L of 40 mg/ml protein and 1 L of precipitant solution (100 mM
Tris pH 8.5, 200 mM NaCl and 30For diffraction, the crystals were transferred into a solution containing 20% glycerol
as a cryoprotectant. Subsequently, the crystals were loaded onto the X-ray diffractometer (Rigaku, XtaLAB Synergy
Customer). The diffraction data was collected at 100 K and processed with the reduction program CrysAlisPro. The
structures were solved by molecular replacement using Phaser in PHENIX8. The structures were manually refined with
Coot9 and PHENIX10.

Figure 5: The alignment of experimentally solved crystal structure and diffusion model of 300aa 3, crystal backbone(grey)
is overlaid with diffusion backbone(colors) with a global Cα-RMSD 0.91 Å. The setting of data collection and structure
determination is provided in Table 7
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Table 7: Data collection and refinement statistics.

Parameter Value
Name 300aa 3
Wavelength 1.541
Resolution range 29.13 - 1.8 (1.864 - 1.8)
Space group P 1 21 1
Unit cell 46.4585 76.1478 83.3196 90 91.9037 90
Total reflections 247022 (15772)
Unique reflections 53811 (4931)
Multiplicity 4.6 (2.9)
Completeness (%) 97.87 (91.26)
Mean I/sigma(I) 24.16 (3.29)
Wilson B-factor 16.89
R-merge 0.06467 (0.49)
R-meas 0.07301 (0.5975)
R-pim 0.03309 (0.338)
CC1/2 0.975 (0.488)
CC* 0.994 (0.81)
Reflections used in refinement 52709 (4928)
Reflections used for R-free 1368 (129)
R-work 0.1827 (0.2144)
R-free 0.2163 (0.2486)
CC(work) 0.961 (0.892)
CC(free) 0.936 (0.880)
Number of non-hydrogen atoms 5174

macromolecules: 4418
ligands: 0
solvent: 756

Protein residues 600
RMS(bonds) 0.007
RMS(angles) 0.90
Ramachandran favored (%) 99.33
Ramachandran allowed (%) 0.50
Ramachandran outliers (%) 0.17
Rotamer outliers (%) 0.64
Clashscore 7.73
Average B-factor 23.04

macromolecules: 21.76
solvent: 30.55
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Figure 6: Visualization of oligomer samples across dimer, trimer, and tetramer. each chain is fixed at 200 residues with
different colors, as shown in the figure.
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