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Abstract
Distributed execution of deep learning training
involves a dynamic interplay between hardware
accelerator architecture and device placement
strategy. This is the first work to explore the
co-optimization of determining the optimal
architecture and device placement strategy
through novel algorithms, improving the balance
of computational resources, memory usage,
and data distribution. Our architecture search
leverages tensor and vector units, determining
their quantity and dimensionality, and on-chip
and off-chip memory configurations. It also
determines the microbatch size and decides
whether to recompute or stash activations,
balancing the memory footprint of training and
storage size. For each explored architecture
configuration, we use an Integer Linear
Program (ILP) to find the optimal schedule
for executing operators on the accelerator.
The ILP results then integrate with a dynamic
programming solution to identify the most
effective device placement strategy, combining
data, pipeline, and tensor model parallelism
across multiple accelerators. Our approach
achieves higher throughput on large language
models compared to the state-of-the-art TPUv4
and the Spotlight accelerator search framework.
The entire source code of PHAZE is available at
https://github.com/msr-fiddle/phaze.

1. Introduction
Deep learning training, due to its unique data flow, memory,
and compute requirements of modern models, is often
executed on specialized hardware known as domain-specific
accelerators (Jouppi et al., 2023; Mahajan et al., 2016; Park
et al., 2017). Moreover, due to the large memory footprint,
training also needs to be executed in a distributed manner.
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Distributed deep learning divides a workload along various
dimensions such as data parallel, pipeline parallel, and
tensor model parallel, which mitigates the large memory
requirements of training while boosting the throughput.
When designing a hardware accelerator for a single or set
of models, an important question arises: "what architecture
and model distribution strategy can achieve the optimal
performance for end-to-end deep learning training?"

However, these two crucial aspects – the model distribution
strategy and the specific hardware – have generally been
examined in isolation. Some studies focus on identifying
the most suitable architecture for deep learning execution,
typically only for inference tasks (Kao et al., 2020; Zhang
et al., 2022a; Sakhuja et al., 2023). Others propose strategies
for distributing models across accelerators, assuming
a fixed domain-specific architecture (Jia et al., 2018;
Tarnawski et al., 2020). The hardware architecture search
explores the on- and off-chip resource utilization, whereas
device placement strategy search offers a balance between
memory footprint, networking overhead, and overall
training throughput. Thus, only performing architecture
search (Adnan et al., 2024) with a fixed device placement
strategy can lead to under-utilization of the accelerator.
Whereas, performing a device placement strategy on a fixed
architecture (Tarnawski et al., 2021) might only search
through a sub-optimal space of memory footprint and
networking overhead. As such, identifying an optimal
solution that co-optimizes accelerator architecture and
distributed execution strategy for deep learning, remains a
significant, yet unresolved, research challenge.

To tackle this challenge, we introduce PHAZE, a novel
framework for co-optimizing hardware architecture, device
placement strategy, and per-chip operator scheduling. This
combined exploration of architecture configurations and
its schedule is complex, particularly when execution
is distributed across multiple devices, resulting in a
computationally vast multi-dimensional search space. Thus,
to determine an accelerator architecture, PHAZE utilizes a
hardware template derived from previous works, including
both tensor and vector cores (Jouppi et al., 2017; Ghodrati
et al., 2024). The hardware template defines the scope
of the architecture search, with tensor cores handling
matrix multiplication operators and vector cores executing
point-wise and activation functions. For the device
placement search, PHAZE determines model splits using
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a combination of pipeline parallel (Narayanan et al., 2019),
intra-layer parallel or tensor model parallel (Shoeybi et al.,
2020), and data parallel (Krizhevsky et al., 2017) techniques.

Based on the hardware template, PHAZE iterates through
various architecture configurations. For each configuration,
a novel Integer Linear Program (ILP) finds the optimal
schedule for executing operators on a single accelerator,
leveraging multiple cores when beneficial. Although ILPs
generally produce optimal solutions, their inefficiency
often limits their applicability. To avoid computational
bottlenecks, our novel formulation circumvents the use of
time-indexed variables, and its size depends only on the
number of operators executed on an accelerator.

The output of the ILP is then fed to a novel dynamic
programming algorithm to determine the device placement,
combining data, pipeline, and tensor model parallelism
across multiple accelerators. Additionally, PHAZE explores
the trade-off between the memory required for training
these models and the storage per accelerator by determining
the microbatch that resides on each device and whether
activations are recomputed or stashed (Chen et al., 2016).

The exploration of all possible architectural configurations,
even with a predefined hardware template, can be vast and
computationally intensive. This process involves estimating
latencies per operator, executing ILP to find the optimal
latency and schedule of operators on an accelerator, and
employing dynamic programming to determine the device
placement strategy. To address this, we introduce a heuristic
that establishes an early stopping criterion based on the
accelerator area and the performance metrics realized by the
already explored configurations.

Overall, PHAZE is the first work to explore a large search
space in executing distributed training, encompassing
accelerator architecture, per-device scheduling, memory
footprint and storage, and device placement. Our results
show that the PHAZE-generated architecture and device
placement strategy for a set of large language models (Bert,
OPT, Llama2, and GPT variants), on average, offer a 2.9×
higher throughput compared to a TPUv4 architecture with
expert device placement. Even when TPUv4 is augmented
with the proposed device placement algorithm, the PHAZE
generated configuration offers 1.8× higher throughput.

2. Background and Related Work
2.1. Distributed Training of Large Models

The emergence of large models has necessitated various
modes of parallelism that maintain the training fidelity while
improving training throughput. Pipeline parallel training
distributes layers across devices to reduce per-device storage
requirements, processing mini-batches as micro-batches

in a pipeline (Narayanan et al., 2021a; Huang et al.,
2019). As model sizes increase, there is a growing trend
towards splitting a single layer across multiple accelerators,
referred to as intra-layer tensor model parallelism. For
instance, Megatron-LM (Shoeybi et al., 2020) distributes a
transformer layer by partitioning the self-attention and MLP
layers over multiple devices. Data parallelism replicates the
entire model multiple times, working alongside pipeline and
tensor model parallelism. Additionally, certain runtime
techniques, such as activation recomputation, minimize
memory usage by recomputing activations during the
backward pass instead of storing them, reducing memory
needs but requiring the execution of the forward pass twice.

Prior device placement techniques. Various works aim
to determine the model partitioning strategy, utilizing
diverse approaches such as RL-based (Mirhoseini et al.,
2017), MCMC-based (Jia et al., 2018), and dynamic
programming-based (Tarnawski et al., 2020; 2021)
techniques to perform device placement. FlexFlow (Jia
et al., 2018) enables data, tensor, and inter-layer parallelism;
PipeDream (Narayanan et al., 2019) facilitates data and
pipeline parallelism; while Piper (Tarnawski et al., 2021)
and Alpa (Zheng et al., 2022) explore data, tensor, and
pipeline parallelism. In PHAZE, we not only propose novel
algorithms that explore data, tensor, and pipeline parallelism
for training through a dynamic programming algorithm,
but also explore intra-operator parallelism on a single
accelerator via an ILP formulation. Moreover, previous
studies assume a specific accelerator while determining
the distribution strategy, and none optimize the accelerator
architecture in conjunction with device placement.

2.2. Hardware Acceleration of Deep Learning

Hardware accelerators are often used to execute deep
learning due to their ability to handle predictable
computation and memory access patterns (Chen et al.,
2019; Lu et al., 2020; Zhou et al., 2018). As such,
accelerator vendors across the industry have largely
converged on two types of cores to execute the operators
relevant to these models: tensor and vector cores (Jouppi
et al., 2023; Fowers et al., 2018). Tensor cores handle
high-throughput matrix operations, such as convolutions,
General Matrix Multiplications (GEMMs), and batched
matrix multiplications. Vector cores perform point-wise
and activation functions such as GELU, ReLU, and Tanh.
Each of these cores has access to memory buffers that feed
and store activations, intermediate values, and parameters.

Prior works on deep learning accelerator architecture
search. Previous research in this field has developed
architecture search frameworks to address the challenges
of designing accelerators for continually evolving deep
learning models. WHAM (Adnan et al., 2024) only
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Figure 1: (a) The template for an accelerator architecture consisting of hierarchical compute units, on-chip buffers, and
off-chip HBM. A core can be of the type tensor, vector, or fused. (b) An example training operator graph that is used to
optimize the accelerator and the distribution strategy. (c) The combined search space explored by PHAZE.

performs architecture search for training deep learning
models using a critical-path-based approach. It focuses
solely on architecture search assuming a memory-based
device placement strategy, hence, it does not optimize the
model distribution. Additionally, WHAM’s ILP scheduling
uses time-indexed variables, causing the ILP constraints
to grow with the required training time, and results in
significantly longer solving times. Whereas, PHAZE ’s ILP
circumvents the use of time-indexed variables by encoding
operation finishing time as a continuous variable, making
the ILP more efficient.

Additionally, many prior works in this area exclusively
address inference (Sharma et al., 2016; Zhang et al., 2022a;
Kumar et al., 2021; Kao et al., 2020; Sakhuja et al., 2023;
Xiao et al., 2021). Fast (Zhang et al., 2022a) utilizes
Vizier (Golovin et al., 2017), a black-box optimizer, to
generate hardware parameters and apply a linear program
to solve their graph optimization problem. Prime (Kumar
et al., 2021) employs a machine learning-based technique
to reduce hardware simulations. Both of these works focus
on solutions like ILP formulation and accelerator design
optimization primarily for forward operator execution,
scheduling, and mapping, neglecting optimization for
backward pass operators. However, in training, both forward
and backward pass operators reside on the same device,
necessitating optimization for both. Other works (Kao et al.,
2020; Sakhuja et al., 2023; Xiao et al., 2021; Yazdanbakhsh
et al., 2021) focus solely on optimizing tensor cores for
GEMM/CONV operators, overlooking the importance of
non-linear operators like dropout and softmax in training.
Overall, PHAZE is the first work to co-optimize hardware
architecture and device placement strategy.

3. Integrated Hardware Architecture and
Device Placement Search

Deep learning acceleration raises a pivotal question: “What
hardware accelerator architecture best suits a particular deep
learning model or a set of models, and how should these
models be distributed across multiple devices?” Figure 1(a)
shows the accelerator template that outlines the scope of
the architecture search. This architectural template, along

Table 1: Architecture and training search parameters
explored in PHAZE for per device execution.

Parameter Description Notation Potential Values

Number of Tensor Cores numtc 1 to 4096 powers of 2
Number of Vector Cores numvc 1 to 4096 powers of 2
Number of PEs in x dimension PEx 2 to 256 powers of 2
Number of PEs in y dimension PEy 2 to 256 powers of 2
Vector Lane Width PEvc = PEx

Number of Fused Cores numfc min(numtc, numvc)
Global Buffer Size glb 1 to 128 MB powers of 2
Global Bandwidth glbbw 4 to 4096 words/cycle
L2 Buffer for Tensor Cores L2tc 1KB to 1MB powers of 2
L2 Buffer for Vector Cores L2vc 1KB to 4KB powers of 2
HBM size hbm 32, 64, 80 (GB)

Microbatch Size mbs 1 to 8 powers of 2
Activation Recomputation - True/False

Per-Accelerator Training Search Parameters

Architecture Search Parameters

with the operator graph of the models (Figure 1(b)), is fed
into PHAZE to determine the core configuration (quantity
and dimensions), on-chip buffer and off-chip memory sizes
and their bandwidths, the scheduling of each operator, and
the distribution strategy of the entire training process. The
search space explored by PHAZE is shown in Figure 1(c).

3.1. Search Parameters

Accelerator architecture search and runtime training
parameters. The parameters and bounds defining the
architecture search are illustrated in Table 1. PHAZE’s
architecture search is defined by a template that aligns
with industry-standard accelerators (Jouppi et al., 2023;
Fowers et al., 2018) and bounds that align with prior
research (Zhang et al., 2022a; Kumar et al., 2021). This
template includes tensor cores for matrix multiplication
and vector cores for activation functions, with their
corresponding on-chip memory buffers for inputs and
outputs. Similar to cloud-deployed accelerators and
GPUs, the template features a closely coupled High
Bandwidth Memory (HBM) for storing model parameters
and activations (Nvidia, a; Siegel). Each architecture
configuration comprises two sets of parameters: the
compute engine and memory configuration. The
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Figure 2: The PHAZE workflow – the graph extractor extracts layer and corresponding operator graphs, which are annotated
with memory footprint and latency estimates. The solver iteratively explores each valid architecture configuration.

compute engine parameters, represented as a 5-tuple
{numtc, numvc, PEx, PEy, PEvc}, denote the number
of tensor cores, number of vector cores, x- and
y-dimensionality of the MAC units in each tensor core,
and the width of the vector lane in each vector core. The
on-chip memory configuration, {glb, glbbw, L2tc, L2vc},
denote the global buffer size, the global buffer bandwidth,
tensor core’s L2 buffer size, and vector core’s L2 buffer size.
Additionally, {hbm} represents the off-chip memory size.
To explore the trade-off between the memory footprint of
training and the HBM size, PHAZE explores runtime training
configurations, including microbatch size and training with
activation recomputation or stashing.

3.2. PHAZE Workflow

Search problem definition. The global problem is to
find the best hardware architecture configuration for an
accelerator, where multiple accelerators execute distributed
training. The per accelerator search is bounded by an
area constraint based on the configuration of the TPUv4
accelerator (Jouppi et al., 2023) with eight 128 × 128 tensor
cores, two 128 wide vector cores, a global buffer of 128MB.
The HBM is capped at 80GB. The goal is to determine
the optimal allocation of the area and HBM, focusing on
the number of tensor cores, the number of vector cores,
the width and depth of each tensor core, and the width
of each vector core lane, to accommodate the training of
a single or set of deep learning models. A model often
has a combination of similar tensor dimensions throughout,
determined by static hyperparameters such as attention
heads, sequence length, hidden size, batch size, etc. As
a result, both activation and GEMM operators share similar
dimensions. Hence, the vector and tensor core PE widths
are restricted to be identical, i.e., PEx is equal to PEvc.

Outermost algorithmic problem. Out of all possible
combinations in Table 1, we only consider the set of feasible
architectures, i.e., those that meet the area constraint, and
denote them as A. In this work, to cater to training, we
use throughput as the optimization objective. The global
objective, given oracle access to a function Throughput(),
is to maximize Throughput(W,A) over A ∈ A. Here, W
is an input workload (DNN model). More generally, we
can consider multiple models of interest, and take e.g. a
weighted average of the throughputs of A on them.

PHAZE Flow. Figure 2 illustrates the PHAZE workflow that
solves the aforementioned optimization problem.

Graph extraction. PHAZE extracts the operator graph
from model training scripts. Among the data, pipeline,
and tensor model modes of parallelism, the Tensor Model
Parallel (TMP) width and the microbatch size impact the
graph structure of the model. In TMP the tensor sizes are
scaled according to the number of accelerators, and certain
operators like AllReduce are added to combine interim
results across accelerators. In this study, to evaluate PHAZE
we obtain graph slices based on the Megatron-LM (Shoeybi
et al., 2020) strategy. However, we stress that PHAZE is a
general framework that can work with any TMP technique
(e.g. MoE or sequence parallelism) as long as it is given the
corresponding per-slice operator graphs as input. Based on
a mapping of operators to layers, the operator graph gives
rise to a (much coarser) layer graph, as well as to an operator
graph of each layer (or layer slice). In this context, a layer
refers to any continuous subgraph of the operator graph that
is always placed on a single accelerator.

Architecture generator. The architecture generator
provides the compute and memory tuple of each
configuration explored within the bounds of the architectural
parameters provided in Table 1 and the area constraint.
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This architecture generator is devised as a heuristic based
on accelerator configurations and their area. In this
heuristic, we sort architectures in A by area, starting
with an initial accelerator that has the largest area. The
algorithm explores all architectures for Throughput() in
the order of decreasing area. The exploration converges if
the Throughput() trend diminishes with decreasing area of
configurations. The best architecture out of those explored is
then selected. The details about the architectural exploration
are provided in Appendix C.1.

Runtime estimator. The operator graphs (for ∀ supported
Tensor Model Parallel widths) are annotated with runtime
estimates for each architecture being explored. We use
existing libraries to determine the latency of the operator
and the area of the architecture (Olyaiy et al., 2023; Wu
et al., 2019). For each operator, intermediate values are
held in the Global and L2 buffers and the output data is
transferred back to the HBM. At the start of each operator’s
execution, the required input activations and weights are
transferred into the global buffer from the HBM. These data
transfer times are incorporated in the per-operator latency.

Solver. Each layer (or layer slice) in forward and backward
passes with its operator graph and runtime estimates
is passed into the ILP solver to determine the optimal
latency. This data, combined with the memory footprint
of each layer (or layer slice), is consumed by the dynamic
programming-based device placement to determine the
optimal throughput. The solver provides throughput
feedback to the Architecture Generator to decide the next
configuration to be explored, or to converge and identify
the best accelerator configuration and corresponding device
placement strategy. The algorithmic flow of PHAZE is
shown in Figure 5 in Appendix C.3. In the remainder of
the paper (Sections 4 and 5), we focus on this solver, which
computes Throughput(W,A) for a given workload W .

4. Integer Linear Program for Optimal
Scheduling on a Single Accelerator

PHAZE’s Integer Linear Program (ILP) determines the
schedule that executes on a single accelerator. Accelerator
execution involves a series of operators running on tensor or
vector cores. Depending on the operator’s compute intensity,
it may execute on a single core or all cores, a scenario called
intra-operator parallelism. For instance, a large GEMM is
likely to benefit from utilizing all the available tensor cores.
In contrast, many independent but smaller operators might
benefit from parallel execution (branching). This balance
is formulated as an ILP problem. The ILP explores the
search space of the schedule under the following condition:
at any given moment, if intra-operator parallelism is utilized
for an operator, then no other operators are in execution.
This assumption is made because the on-chip global buffer

has a fixed bandwidth that can only feed the cores in a
pipelined fashion. Therefore, if an operator is executing in
intra-op parallel mode, the entire global buffer bandwidth is
consumed by that operator.

The ILP is executed for every explored architecture
configuration, and for every layer (layer slice) across all
possible TMP widths and microbatch sizes of a model. Thus,
at this stage, we are not concerned with HBM usage, as
the objective of the ILP is to schedule a layer or layer
slice’s operator graph on a single accelerator in order
to minimize latency. Instead, the dynamic program that
determines the placement of layers (or layer slices) over
multiple accelerators accounts for HBM size as explained
in Section 5 and Appendix B.1.

Input. The input is a Directed Acyclic Graph (DAG)
(V,E) of a layer (or a layer slice for tensor model parallel
splits) where nodes V correspond to operators, each
with architecture-dependent latency estimates. PHAZE
incorporates an existing optimization technique called
operator fusion that enables intermediate activations
between certain operators to be directly forwarded from
tensor to vector core, or vice versa, without passing through
the HBM (Chen et al., 2018). Such an operator is executed
on a fused core equipped with both a MAC unit and a vector
lane. As such, each operator in the graph is categorized as
either tensor, vector, or fused. For each operator i ∈ V ,
we are given ℓi, its latency if not intra-operator parallelized,
and ℓ̂i, its latency when intra-operator parallelized (i.e. run
on all tensor, vector, or fused cores).

Tensor cores are numbered from 1 to numtc, and vector
cores from 1 to numvc. The first min(numtc, numvc)
tensor cores are paired with the first min(numtc, numvc)
vector cores. A fused operator, in the absence of
intra-operator parallelism, runs on one such pair, i.e.,
on tensor core c and on vector core c, for some c ∈
{1, ...,min(numtc, numvc)}.

The edges E signify data transfer to and from the HBM,
which is accounted for in the operator estimates.

Variables. The ILP variables are enumerated below:

• ti ∈ R+ for i ∈ V : start time of operator i,
• pi ∈ R+ for i ∈ V : latency of operator i (defined by

constraint (2)),
• T ∈ R+: the makespan (overall latency) of the schedule

(defined by constraint (1)),
• yi ∈ {0, 1} for i ∈ V : one if operator i is intra-operator

parallelized, zero otherwise,
• xij ∈ {0, 1} for i, j ∈ V , i ̸= j: if this is one, i finishes

before j begins,
• ztcic ∈ {0, 1} for i ∈ V and c = 1, ..., numtc: 1 if

operator i is assigned to tensor core c,
• zvcic ∈ {0, 1} for i ∈ V and c = 1, ..., numvc: 1 if
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min T

s.t. T ≥ ti + pi (∀i) (1)

pi = yi · ℓ̂i + (1− yi) · ℓi (∀i) (2)
xij + xji ≤ 1 (∀i, j : i ̸= j) (3)

xik ≥ xij + xjk − 1 (∀i, j, k : i ̸= j, j ̸= k, i ̸= k) (4)
xij = 1 (∀i ≺ j) (5)
xji = 0 (∀i ≺ j) (6)

ti + pi ≤ tj (∀i ≺ j) (7)
ti + pi −H · (1− xij) ≤ tj (∀i, j incomparable) (8)

xij + xji ≥ yi (∀i, j incomparable) (9)

yi +
∑

c≤numtc

ztcic = 1 (∀i : TC-operator or fused operator) (10)

yi +
∑

c≤numvc

zvcic = 1 (∀i : VC-operator or fused operator) (11)

zvcic = 0 (∀i : TC-operator)(∀c ≤ numvc) (12)

ztcic = 0 (∀i : VC-operator)(∀c ≤ numtc) (13)

ztci,c = zvci,c (∀i : fused operator)(∀c ≤ min(numtc, numvc)) (14)

xij + xji ≥ ztcic + ztcjc − 1 (∀i, j incomparable)(∀c ≤ numtc) (15)
xij + xji ≥ zvcic + zvcjc − 1 (∀i, j incomparable)(∀c ≤ numvc) (16)

Figure 3: ILP constraints. The optimization objective is to minimize the total latency/makespan T of the layer (layer slice).

operator i is assigned to vector core c.

Constraints. We define the strict partial order ≺ as the
transitive closure of the DAG (V,E), i.e., we have i ≺ j if
there is a path from i to j and i ̸= j. If i ≺ j, operator i must
finish before j can begin, and only incomparable operators
(those where neither i ≺ j nor j ≺ i) can potentially execute
simultaneously.

The novel idea of our ILP is that the variables xij define
another strict partial order, which lies between ≺ and
the partial order given by the execution time intervals of
operators in the found schedule. Specifically:

• if i ≺ j, then xij = 1 (constraint (5)),
• if xij = 1, then i finishes before j starts (constraints

(7)–(8)).
If xij+xji = 1, then i and j cannot execute in parallel. The
x variables enforce the condition that when intra-operator
parallelized operators are executing, other operators cannot
execute. This is done in (9): if yi = 1 (i.e., i is intra-operator
parallelized), then we must have xij = 1 or xji = 1, which
implies via (8) that i and j cannot execute in parallel.

In constraint (8), H is a large number. Intuitively, this
constraint should be read as: (ti + pi) · xij ≤ tj (which
would be a quadratic constraint). Note that when xij = 1,
(8) becomes ti + pi ≤ tj , and when xij = 0, it becomes
vacuous since the left-hand side is negative.

We provide more explanations in Appendix A.

5. Device Placement to Maximize Throughput
For a given accelerator architecture A, number of
accelerators K, and a workload W , this stage of the solver
aims to form a high-throughput pipelined schedule for the
workload. For this problem, the workload is a Directed
Acyclic Graph (DAG) W = G = (V,E) with a layer
granularity (i.e., V is the set of layers of the DNN) given
for each supported TMP width t and microbatch size b. We
assume the minibatch size is provided by the user: B is
the number of microbatches in a minibatch. The algorithm
is executed with activation recomputation both disabled
(stashing) or enabled. When enabled, it is used throughout
the entire workload, with a stage granularity (that is, we
store only the input activations of a stage, not of each layer,
and compute the forward-plus-backward pass of the entire
stage, materializing all the intermediate activations for a
single microbatch during this time). In this algorithmic
problem the goal is to determine:

• the TMP width t and microbatch size b,
• the data parallel width d (number of parallel pipelines),

with d ≤ min(K,B),
• a number s of stages, and a sequence of subgraphs/stages
S1, ..., Ss, each with a number of associated accelerators
K1, ...,Ks, such that:

• S1, ..., Ss form a disjoint partition of the set of
layers: V = S1 ∪ ... ∪ Ss,

• there are no edges from Si to Sj with i > j,
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• we have enough accelerators: d ·
∑s

i=1 Ki ≤ K,
• for each stage i = 1, ..., s, a low-latency schedule

to execute the layers in the subgraph Si using Ki

accelerators (that fits in accelerator memory).

Device placement algorithm. In the sequel we assume
without loss of generality that the microbatch size b is fixed;
if multiple sizes are considered, we loop over them and
select the best at the end. The dynamic program builds
the pipeline stage by stage, starting from the last stage
and ending with the first. To do so, it works on downsets:
downward-closed sets of layers (i.e., a downset has no edge
leaving it). We build on the algorithm from Piper (Tarnawski
et al., 2021), with crucial extensions to handle flushing
pipeline schedules, model the memory usage faithfully,
and take advantage of branching in the layer graph. We
compare our device placement algorithm with both Piper
in Appendix B.3 and with Alpa (Zheng et al., 2022) in
Appendix B.4.

The dynamic programming table that we will compute
is dpt[D][k][s] := minimum max-load of any accelerator,
when optimally partitioning downset D over s stages using
k accelerators, with TMP width t. Note that at this level we
are considering only a single (data-parallel) pipeline. We
will compute this for all downsets D (except the entire set
V ) and numbers k, s and t. The dynamic programming
recursion is as follows:

dpt[D][k][s] = min
downset D′⊆D

min
a

max
(
dpt[D′][k − a][s− 1], loadt(D \D′, a, s)

)
where:
• we are placing a new stage, with layer set D \ D′ and

using a accelerators,
• loadt(S, a, s) is defined as the load (optimal, minimized

latency) of a stage with layer set S, using a accelerators,
that is the s-th stage from the end of the pipeline, using
TMP width t. An algorithm for computing loadt(S, a, s)
is provided in Appendix B.1,

• the remaining subproblem is to place the layer set D′ over
s− 1 stages using k − a accelerators.

We compute the final result by optimizing over t, d, s, and
the first stage. Namely, the final time per batch, F , is:

min
t

min
d

min
s

min
D′

min
a

[(B/d+s−1)·max(dpt[D′][K/d−a][s−1],

loadt(V \D′, a, s)) + 4 · d− 1

d
· weight(V \D′)

bandwidth
]

Explanation about the final time per batch:

• We form d parallel pipelines. Thus we have K/d
accelerators to use per pipeline.

• We use a accelerators (per pipeline) for the first stage,
which has layer set V \D′, where D′ is the downset. In
an s-stage pipeline, it is the s-th stage from the end, and
we loop over all s values.

• The maximum load of any accelerator is given by the
max expression.

• The other terms are responsible for pipeline flushes
and gradient synchronization communication costs; see
Appendix B for details.

6. Evaluation
We evaluate PHAZE, the architecture search and solver, on a
diverse set of large language models deployed in distributed
training environments. We obtain OPT (Zhang et al.,
2022b), Bertlarge (Devlin et al., 2019), GPT2 (Radford
et al., 2019), and Llama2-7B (Touvron et al., 2023)
from the Hugging Face library (Wolf et al., 2019) and
TMP graphs and hyper-parameters from public source
code of Megatron-LM (Nvidia, b; Shoeybi et al., 2020).
All the operator graphs are extracted using the Torch.fx
library (Reed et al., 2021) with microbatch sizes of 1, 2, 4,
and 8. Table 2 shows the details of the evaluated workloads.

Operator level estimates. We use well-established
toolchain Sunstone (Parashar et al., 2019; Olyaiy et al.,
2023) for tensor core latency, Tandem for vector core
latency (Ghodrati et al., 2024), and Accelergy to determine
the area of the accelerator for 22nm technology node (Wu
et al., 2019). Additional details are available in
Appendix C.2.

PHAZE execution. PHAZE is optimized over 1024
accelerators and a global batch size of 4096. PHAZE is
executed on a V100 GPU and a Dual AMD Epyc 7713
CPU at 2.0 GHz with 128 cores, running Ubuntu 20.04.
The GPU runs CUDA 12.1 and is only used to extract the
operator graphs. The overall PHAZE process is executed
using Python 3.8. The ILP formulations are solved using
Gurobi 10.0.1 (Gurobi Optimization, 2019). The dynamic
programming algorithm is implemented in C++, compiled
with g++ version 11.3.0 and -O3 optimization flag.

Baselines. We compare PHAZE’s architecture and device
placement search with: (1) the TPUv4 architecture (Jouppi
et al., 2023), which is the most commonly deployed
accelerator for training, and (2) Spotlight, a state-of-the-art
architecture search framework that uses Bayesian
optimization (Sakhuja et al., 2023). For meaningful
comparisons, Spotlight has the same area constraint as
TPUv4 architecture and uses the same toolchains, Accelergy
and Sunstone for area and runtime estimations, respectively.

We assess the efficacy of PHAZE’s architecture search
by comparing its performance against a fixed accelerator
TPUv4 and Spotlight-generated designs, both executing

7



Integrated Hardware Architecture and Device Placement Search

with an expert placement strategy based on prior
works (Zhang et al., 2022b; Narayanan et al., 2021b);
more details in Appendix D Table 4. To highlight
the importance of co-optimizing both the architecture
and the device placement, we compare PHAZE against
TPUv4 and Spotlight-generated designs when they leverage
PHAZE’s solver, the ILP layer scheduler, and the
dynamic programming device placement. For PHAZE and
the baselines, we use a flushing schedule similar to
PipeDream-Flush (Narayanan et al., 2021a).

6.1. Experimental Results

Table 2 shows the workloads evaluated by PHAZE. We
use PHAZE to generate a per-workload architecture and a
common one across all the workloads. The PHAZE-common
architecture achieves high throughput across all models,
with a compute configuration of {2, 512, 256, 256, 256},
on-chip memory configuration of {32, 4096, 1, 4KB}, and
an HBM of 64GB. We also present the geometric mean of all
the throughput speedup results for each strategy compared
to the TPUv4 baseline. This comparison assesses the overall
performance efficiency of PHAZE-searched systems across
multiple models. Below, we explain the main observations
and takeaways from the PHAZE-Common and PHAZE-per
model architectures:

Area Utilization. The PHAZE architectures are within 91%
of the area constraint, suggesting that for throughput, models
gain from utilizing the majority of the area. We observe that
PHAZE however does not require an area as large as TPUv4,
albeit providing higher throughput. Figure 9 in Appendix C
provides further details.

Compute Configuration. We observed that PHAZE tends
to favor larger tensor cores, typically with dimensions of
256, to accommodate GEMM operators in models. Phaze’s
common configuration has the same effective tensor core
FLOPS as the TPUv4 configuration. However, larger tensor
cores offer increased reuse in large models like GPT-3
compared to smaller cores, which require more coordination
and local buffer memory optimizations for similar reuse.
This underscores the advantage of larger tensor cores over a
greater number of smaller ones.

PHAZE also tends to choose architectures with a higher
number of vector cores within the given area constraint.
This facilitates the parallelization of operations like Layer
Normalization, enhancing overall throughput. As a tradeoff,
these selected architectures typically feature a smaller
Global Buffer memory size (ranging from 4 to 32 MB)
compared to the 128 MB of TPUv4.

Global Buffer Bandwidth. Spotlight-searched
configurations are limited to a single core for the
tensor unit, hence the selected architectures lean towards

a larger width. Despite this, these configurations have a
significantly smaller global buffer bandwidth compared
to PHAZE architectures. This suggests that larger core
sizes may not always be advantageous without sufficient
global buffer bandwidth, resulting in lower throughput for
Spotlight configurations despite wider cores.

Memory configuration. We observe that PHAZE selected
architectures do not select a glb size greater than 32MB,
indicating that the memory hierarchy with an L2 buffer can
keep the cores utilized.

PHAZE selects the optimal HBM, choosing the smallest
HBM necessary to achieve high throughput. Among the
8 workloads, only Megatron 2.5B requires an 80GB
HBM, to perform stashing rather than recomputation. For
the remainder of the models, the throughput for 64GB
and 80GB HBM configurations is either identical or
provides only a marginal increase in throughput. Hence
the PHAZE-Common does not have the largest HBM. This
indicates that larger memory does not always translate to
higher throughput. Additionally, optimizations such as
activation recomputation can mitigate the memory footprint
of training these models.

Throughput improvement. The PHAZE-Per Model
and PHAZE-Common architectures and device placement
strategies, on average, deliver a 3.6× and 2.9× higher
throughput compared to TPUv4 with expert device
placement strategy, respectively. We observe that both
TPUv4 and Spotlight searched architectures achieve higher
throughput when utilizing PHAZE’s device placement solver.
This indicates that PHAZE’s algorithm further enhances the
throughput of each model. However, this approach does not
actually fully leverage the co-optimization feedback loop
because the architecture is already fixed. In contrast, during
PHAZE’s architecture search, the ILP-Dynamic Program
solver guides the Architecture Generator by providing
throughput feedback for exploring the next configuration.
The PHAZE-Common architecture and device placement
strategy deliver 1.8× and 2× higher average throughput
against the two baselines, respectively. This demonstrates
that the co-optimization strategy of PHAZE’s architecture
search and device placement algorithm enables a more
optimized configuration that offers higher throughput for
distributed training systems.

Convergence time. The PHAZE framework executes
the following modules for each architecture: operator
estimates, ILP per layer or layer slice, and the dynamic
programming algorithm to optimize the model partitioning
scheme. The ILP, despite optimizing an operator scheduling,
circumvents the use of time-indexed variables; it uses
O(|V |2) variables, where |V | is the number of nodes in the
operator graph of a single layer or layer slice. The largest
model, Megatron GPT3, has ∼100 nodes in each layer and
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Table 2: Workloads evaluated using PHAZE. The details of the model, the architecture configuration generated per
workload, and the corresponding distribution strategy. The hyper-parameters are number of layers (#L), attention heads
(#AH), and Hidden size (H). The distribution strategy is pipeline parallel depth (p), data parallel width (d), and TMP
width (t), represented as {p, d, t}. The compute configuration is {numtc, numvc, pex, pey, pevc}, and the on-chip memory
configuration is {glb, glbbw, L2tc, L2vc}. Unless otherwise specified, all memory configurations are in MB.

Hyper Spotlight PHAZE

Model Model Sequence parameters TMP Accelerator Memory Accelerator Memory Device mbs Recomputation HBM
Parameters Length (#L, #AH, H) Widths Configuration Configuration Configuration Configuration Placement vs. Stashing size

OPT 350M 2048 24, 16, - - {1, 1, 1024, 16, 1024} {128, 251, 26, 26} {4, 256, 256, 256, 256} {4, 4096, 1, 4KB} {1,1024,1} 2 Stashing 64 GB
BertLarge 350M 512 24, 16, 1024 - {1, 1, 64, 256, 64} {128, 251, 20, 20} {2, 512, 256, 256, 256} {32, 4096, 1, 4KB} {1, 1024, 1} 4 Stashing 32 GB

GPT2 1.5B 1024 48, 25, 1600 - {1 ,1, 64, 256, 64} {128, 252, 12, 12} {1, 1024, 256, 256, 256} {8, 4096, 1, 4KB} {1,1024,1} 1 Stashing 64 GB
Llama2-7B 7B 4096 32, 32, 4096 - {1 ,1, 8192, 2, 8192} {128, 135, 12, 12} {4, 1024, 256, 64, 256} {8, 4096, 1, 4KB} {6,164,1} 1 Recomputation 64 GB

Tensor Model Parallel Models
Bert with TMP 350M 512 24, 16, 1024 1,2,4,8 {1, 1, 64, 256, 64} {128, 251, 20, 20} {1, 1024, 256, 256, 256} {8, 4096, 1, 4KB} {1, 256, 4} 8 Stashing 32 GB
Megatron 2.5B 2.5B 1024 54, 20, 1920 1,2,4 {1, 1, 16, 1024, 16} {128, 251, 26, 26} {1, 1024, 256, 256, 256} {8, 4096, 1, 4KB} {2, 256, 2} 2 Stashing 80 GB
Megatron 8.3B 8.3B 1024 72, 32, 3072 1,2,4,8 {1, 1, 4096, 4, 4096} {128, 220, 22, 22} {1, 1024, 256, 256, 256} {8, 4096, 1, 4KB} {2, 128, 4} 2 Recomputation 64 GB
Megatron GPT3 175B 2048 96, 96, 12288 4,8 {1, 1, 4096, 4, 4096} {128, 147, 18, 18} {1, 1024, 256, 256, 256} {8, 4096, 1, 4KB} {16, 16, 4} 1 Recomputation 64 GB

Figure 4: Throughput comparison between the PHAZE Common and Per Model configuration with TPUv4 and Spotlight
generated architectures. DP here is Device Placement.

spends under 2% of the execution time performing all the
ILP optimizations. The dynamic programming optimization
dominates the solving time as it is repeated for all HBM
and recomputation/stashing configurations. Most of the
execution time is spent on estimating operator latencies
using the external library. As such, models with TMP
demand longer convergence times due to the higher number
of explorations required. Appendix D details the breakdown
of the convergence time for each model.

7. Limitations
Network topology and bandwidth. We assume a
homogeneous network and do not consider hierarchical
or multi-level network topologies in PHAZE including
collective operations across tensor model parallel and data
parallel execution.

Overlapping compute and communication. PHAZE
leverages tiling within an operator by using toolchains such
as Sunstone, where an operator is split across the cores
to ensure compute and communication can be overlapped.
The ILP further formulates this intra-operator split as
an optimization problem to determine the per-accelerator
schedule. However, for cross-operator execution, unless
operators have been fused, PHAZE assumes that if a
communication operator follows the GEMM operator, they
are not overlapped.

Hardware Architecture Search. PHAZE offers a structured
framework for exploring hardware architectures and existing
methods to distribute models across accelerators. It can
integrate new Tensor Model Parallelism strategies across
accelerators, such as sequence-parallel or Mixture of Expert,
but does not devise novel TMP strategies. PHAZE also
adopts globally set degrees of parallelism across all layers.

8. Conclusions
PHAZE offers algorithmic solutions to perform the
co-optimization between accelerator architecture search and
model partitioning for distributed training. PHAZE makes
the multi-dimensional optimization space of architecture
search and device placement tractable by reducing the
number of accelerator architectures explored through
area-based heuristics and employing a novel Integer Linear
Program (ILP), the complexity of which is dependent only
on the number of operators in a single layer. Uniquely, our
ILP scheduling optimization also explores the partitioning of
operators across cores, known as intra-operator parallelism.
Based on the optimal backward and forward pass latencies,
PHAZE then leverages a novel dynamic programming
approach to determine the device placement and model
partitioning scheme.
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Impact Statement
The research presented in this paper will advance the
design exploration of AI supercomputers by providing
enhanced tools capable of navigating the trade-off between
performance and efficiency. This improvement is expected
to reduce both time-to-market and development costs.
The outcome of this work will be the development of
frameworks and tools that integrate the exploration of
hardware design and distributing workloads and device
placement for deep learning thus significantly lowering
the barriers to developing next-generation deep learning
infrastructure. This is because such frameworks will reduce
the necessity of deploying large models and conducting
resource-intensive explorations involving compute, memory,
and energy considerations to determine the architectural
configuration and device placement strategy. To achieve
these goals, this paper has fostered closer interactions
between the architecture, machine learning, systems and
networking, and theoretical computer science communities.
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Appendix - Integrated Hardware Architecture and Device Placement Search

A. ILP Constraints and Reducing its Complexity
The ILP constraints are shown in Figure 3. Here we add certain explanations and remarks to further describe the constraints:

• Constraints (3) and (4) enforce that x is a strict partial order.
• Constraint (6) is implied by (5) and (3); we keep it for clarity.
• In constraint (8), we set H as the sum of all the node latencies, so that if xij = 0, the constraint is vacuous for any

"reasonable" settings of ti, pi and tj . At the same time, H should be kept from being too large to avoid numerical issues.
• Constraints (10)–(14) ensure that z is an assignment of non-intra-operator-parallelized operators to one core (or two

paired cores in case of fused operators).
• Constraints (15)–(16) relate the z-variables to the rest of the ILP. They ensure that if two operators are assigned to the

same core (ztcic = ztcjc = 1 or zvcic = zvcjc = 1), then one must execute before the other.
• For fused operators i, we could include the (implied) constraint zic = 0 for all cores c that are "unpaired" (such cores

exist if numTC ̸= numV C).

Reducing the complexity of the ILP. Due to our use of the x-variables that encode a strict partial order that is in-between
the input partial order ≺ and the partial order induced by the computed solution, we manage to circumvent the necessity of
using time-indexed variables. Therefore our ILP is very tractable. Below we describe an additional optimization that we
employ. The proposed ILP has two sets of constraints:

• ensuring the order and dependencies in the operator graph,
• ensuring the resource constraint imposed by the accelerator configuration (that not too many cores are used at the same

time).

The number of variables in the Integer Linear Program (ILP) depends on the number |V | of nodes in the layer or layer slice, as
well as the number of cores in the accelerator (both tensor and vector cores). Namely, it is O(|V |2+|V |(numTC+numV C)).
The z-variables ensure that the breadth of parallel execution is not excessive – that is, it does not employ more cores of
either type than available. However, it is often the case that this restriction is not necessary. This is particularly likely if the
number of tensor/vector cores is large.

We optimize the ILP as follows. We first remove the z-variables and all constraints involving them, and solve the ILP. We
then build the schedule based on the ILP solution (start executing every operator i at time ti), and check how many vector
cores and tensor cores are used at any time.

If the found optimal solution does not use more cores of either type than are available, then we have an optimal solution.
Otherwise, it is necessary to add back the z-variables and constraints corresponding to the type (vector or tensor) of cores
for which the resource constraint has been violated. We then re-solve the ILP.

Note that whenever this happens, it must be the case that there is significant branching in the model (more nodes are
executing in parallel than the number of tensor or vector cores). This in particular implies that the number of cores is smaller
than the size |V | of the operator graph of the layer (or layer slice). Therefore, when we proceed in this way, the number of
variables in the ILP is always at most O(|V |2). The ILP runtimes are also only a small fraction of the entire end-to-end
compute time.

B. Dynamic Programming Details
The dynamic programming algorithm makes the following assumptions to solve the model partitioning problem.

Pipeline flushes. The pipelining scheme we employ follows a flushing schedule similar to PipeDream-Flush / DeepSpeed
1F1B (Narayanan et al., 2021a). This approach differs from previous work utilizing dynamic programming, where
non-flushing schedules like PipeDream-2BW were considered (Tarnawski et al., 2021). In a non-flushing schedule, the time
taken per microbatch equals the maximum load (single-microbatch latency) of any stage. As such, previous research has
concentrated on minimizing this max-load.

However, a major difficulty regarding flushing schedules is that the flush time (pipeline bubbles) cannot be entirely
disregarded, especially if the minibatch size is small. We take into account the flush time using the following approximation:
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the time taken per batch is calculated by multiplying the max-load by a factor

B

d
+ s− 1 (17)

Note that B/d is the per-pipeline batch size (number of microbatches per pipeline). One can easily see that this approximation
is lossless if all stages have the same load.

Gradient synchronization communication costs. AllReduce communication, which synchronizes gradients between
data-parallel replicas, takes place during the flush period. Throughout this time, all stages, except for the first, remain idle
while the backward pass propagates. We assume this period is sufficient for the communication to successfully complete.
However, for the first stage, synchronization does cause a slowdown, which we account for by adding

4 · d− 1

d
· size of weights in first stage

bandwidth
(18)

to the execution time of a batch.

The bandwidth here is the same as the one used to estimate an AllReduce operator cost for tensor model parallelism.

B.1. Computing the Load for the Dynamic Programming Algorithm

It is important to note that, since the load subroutine will be invoked for all feasible settings of S, t, a, s, it must be highly
efficient. It computes the maximum load of any of the a accelerators. The second role of the load subroutine is to calculate
memory usage. If the memory limit (as defined by accelerator HBM size) is surpassed, load should return +∞.

Ideally, for every s, we would determine the schedule with the least latency such that no accelerator exceeds the memory limit.
However, in general we do not solve this more complex problem. Instead, we attempt to identify the overall lowest-latency
schedule, and calculate its memory usage.

Compute and communication load.

As in all of our test workloads the layer graph (i.e., the operator graph of the full DNN, where operators belonging to each
layer or layer slice have been contracted into a single node) is linear (contains a Hamiltonian path – this is consistent with
the layer structure of large language models), we only describe how to compute load for this case. We note that, as there
are no optimization decisions to be made, we in fact return an optimal layer latency. We focus on the forward pass for
simplicity; the computation for the backward pass (with or without forward pass recomputation) is analogous.

We fix a topological ordering of S (recall that S is a contiguous subgraph of layers). Let S = {L1, ..., Lℓ} (in that
topological order). Each layer comes with a single, optimized way/schedule to execute it, which we compute as
schedule(Li) in Section 4. We will use an "object-oriented" notation to access the quantities related to this schedule, such
as schedule(Li).latency_fw. We denote similarly the quantities related to Li that are not dependent on the schedule, such
as Li.weights_size.

We schedule the layers one by one. Each layer begins at the earliest time that all of its predecessors have been completed,
and all incoming activations have been transferred over the edges of the graph from other devices (that is, we consider here
the transfer costs on those edges that come from outside of the stage). Our current assumption is that our network has a flat
structure, where transmitting X bytes from any accelerator to any other accelerator takes time X/bandwidth. Then, the
finishing time of the layer is the starting time plus schedule(Li).latency_fw.

Calculating the memory footprint of training in pipelined execution.

If activation recomputation is employed, it is performed at a stage level, meaning that all intermediate activations within the
stage are materialized during the forward pass recomputation. This implies that peak memory usage is reached at the end of
that recomputation, specifically when the pipeline is in a steady state and the stage has stored data for the full number of
in-flight microbatches. At this point, the accelerator memory (HBM) contains the following:

• model weights,
• accumulated gradient updates (of the same size as the model weights),
• optimizer state,
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• all intermediate activations,1

• stashed data for in-flight microbatches; if activation recomputation is used, then these are the stage’s input activations,
otherwise, these are all intermediate activations.

The following property of the implemented pipelining scheme determines the memory usage: in the steady state of the
pipeline, for a stage that is the s-th stage from the pipeline’s end, it’s necessary to stash data for at most s − 1 in-flight
microbatches. These are the microbatches for which the forward pass has already been computed on this stage, but the
backward pass has not yet been processed. In the PipeDream-Flush scheme, computations can be scheduled lazily, thereby
satisfying the property. Here, the term "data" varies based on whether activation recomputation is being used: if it is not
being used, the "data" refers to all forward activations, and if it is being used, "data" refers to the input activations of the
stage. For GPipe schedules, s− 1 should be replaced with the total number of batches per pipeline, i.e., B/d.

Therefore the memory usage can be modeled as:∑
Li∈S

(2 · Li.weights_size+ Li.optimizer_size+ Li.activations_size) + (s− 1) · stashed_data

where if activation recomputation is used, we have

stashed_data =
∑

(u,v)∈δ−(S)

size(u, v)

where δ−(S) denotes the set of incoming edges of S, and otherwise

stashed_data =
∑
Li∈S

Li.activations_size .

Dependence on s. Note that the computation costs and communication costs do not depend on s (with the exception that
the case s = 1 is unique, as we do not require activation recomputation for the last stage). Moreover, the memory usage
only depends on s in an affine way. Namely, when s increases by one, the peak memory usage rises precisely by the amount
of stashed_data. This allows us to optimize the runtime of the load computation by reusing the results across all s values.
Indeed, rather than explicitly computing the quantity loadt(S, a, s) for all t, S, a, s, we can instead return a pair loadt(S, a)
that comprises:

• the usual output of load (maximum latency over the a accelerators),
• the maximum s for which the found schedule fits in the memory of every accelerator.

Range of a-values. Recall that in the dynamic program, a is the number of accelerators that handle a stage S (set of layers).
We note that it is usually not necessary to loop over all possible values of a from 1 to the maximal available number of
accelerators, as the set of reasonable values of a is much smaller. Recall that we are working under a fixed TMP width t. If
S contains a layer that admits TMP (i.e., we have a layer slice operator graph for it), then we need a ≥ t, and otherwise,
a ≥ 1 is enough. Beyond this, higher values of a are only useful if S contains enough (layer-level) branching to utilize more
accelerators. Therefore, in our evaluation workloads, which are Transformer-based LLMs, it is enough to consider a single
a-value.

B.2. Runtime Analysis of the Dynamic Program

We analyze the running time in terms of O-notation. For simplicity and to model a practical scenario, we make the following
assumptions:

• The number of considered TMP widths t is O(1) (i.e., bounded by a constant).

• The number of considered microbatch sizes (that we loop over) is O(1).

• The layer graph of the workload is linear (it contains a Hamiltonian path; e.g., it is a Transformer-based LLM).

1Note that we do not differentiate between forward and backward activations, as they are of the same size. Moreover, as the backward
pass progresses, the corresponding forward activations can be removed from memory, thus the memory usage will keep decreasing from
the peak.
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• The number of edges in this graph is O(|V |).

Then, using the above observations about restricting the dependence on s and a, we can analyze the runtime as follows
(recall that K is the number of accelerators):

• Precomputing load values: there are O(|V |2) possible stages (contiguous layer subgraphs S), and computing load for
one stage takes O(|V |+ |E|) = O(|V |) time.2 In total, we get O(|V |3).

• The main dynamic programming loop loops over values D, k, s and D′, resulting in a runtime of O(|V | · K ·
min(K, |V |) · |V |) (as we have s ≤ K and s ≤ |V |).

• Computing the final time per batch takes time O
(∑K

d=1
K
d · |V |

)
, where the K

d term arises as we must have s · d ≤ K,

and evaluating the max expression takes O(1) time (as we can precompute the weight(V \D′) terms in time O(|V |2)).
This gives O(|V |K logK) in total, which is dominated by the previous terms (as long as logK ≤ O(|V |)).

In total, the runtime is O(|V |3 + |V |2Kmin(K, |V |)) (per each explored architectural configuration).

We remark that we made little attempts to optimize the dynamic program runtime. This is because the overall convergence
time is anyway dominated by the operator estimations, not the solver. To optimize the dynamic program runtime, one clear
avenue would be to have a multi-threaded implementation, as the dynamic program is embarrassingly parallel (for example,
for a given downset D, one could pursue all sub-downsets D′ in parallel). This should obtain almost linear scaling across
CPU cores.

B.3. Comparison to Piper’s Algorithm

While our dynamic programming algorithm builds on Piper (Tarnawski et al., 2021), it is not simply an extension or
augmentation; rather, it takes a different direction. While both build solutions stage-by-stage, our algorithm differs from
Piper’s in several key aspects:

• Piper allows different tensor parallelism and data parallelism degrees at each stage, potentially leading to complex
pipelining schedules. In contrast, we opt for globally set degrees of tensor parallelism and data parallelism, thus
addressing realistic deployment scenarios.

• In the same vein, in Piper, even different layers in the same stage might use different TMP strategies (though of the
same TMP degree) and different activation recomputation statuses (enabled / disabled). This leads to the need to
heuristically solve an NP-hard knapsack subproblem as a subroutine in Piper’s equivalent of the load subroutine.

• PHAZE’s dynamic program facilitates practical pipelining schedules with flushes like 1F1B PipeDream-Flush or
DeepSpeed by considering per-pipeline batch size and pipeline depth (see (17)). This is made possible thanks to being
cognizant of the per-pipeline batch size and the pipeline depth.

• PHAZE’s dynamic program supports branching across accelerators within a stage (if possible for a given workload; it is
not possible for linear workloads such as Transformer-based LLMs).

• PHAZE offers precise modeling of AllReduce costs related to data-parallel gradient update synchronization (see (18));
Piper’s modeling is overly pessimistic.

• Piper’s runtime is Õ(|V |3B + |V |2KBd(B)), where B is the number of microbatches in a minibatch, and d(B) is its
number of divisors. This is inferior to PHAZE’s dynamic program. Piper is not concerned with an architecture search,
whereas we run our dynamic program for every considered architecture and thus require higher efficiency.

2In fact, this should be possible to improve to an amortized runtime of O(1) by computing load for all stages of the form {l},
{l, l + 1}, {l, ..., l + 2}, {l, ..., l + 3}, {l, ..., l + 4} and so on in one go.
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B.4. Comparison to Alpa’s Algorithm

Alpa (Zheng et al., 2022)’s approach is superficially similar in that it also uses an ILP inside a dynamic program. However,
Phaze’s ILP is unique in that it considers both branching and intra-op parallelism, and yet stays tractable despite this large
search space. In the cost model used by Alpa, the latency of a layer (or sequence of consecutive layers) is defined as
the sum of operator latencies plus communication costs, which precludes taking advantage of branching structure in the
operator graph, or of overlapping communication with computation. Alpa also does not model the communication cost
between stages in the DP, and does not support branching across accelerators in the DP. On the other hand, Alpa does
attempt to automatically find certain tensor model parallelism strategies, whereas PHAZE expects the TMP strategies on the
across-accelerators level to be provided as input in the form of operator graph slices.

C. PHAZE Integrated Search and Workflow
In this section, we describe the PHAZE workflow and solver, illustrated in Figure 2, in detail. Algorithm 1 presents the
algorithm of the PHAZE workflow, illustrating the process of generating architectures within the area constraint, extracting
graphs for each model, estimating runtime latency, executing the PHAZE ILP and dynamic program solver, and converging
on the architecture and the device placement algorithm through a feedback loop. We go into further detail for each step in
the following subsections.

Algorithm 1 PHAZE workflow algorithm
Input models # all models
Input num_accelerator # maximum number of accelerators
Input area_constraint # maximum area for each accelerator
Input architecture_template # search space for corestc, coresvc, width, depth, glb, glbbw, L2tc, L2vc

Input training_param # training parameters: global_batch_size,mbs, hbm_sizes

# Generate all feasible architecture configurations
all_valid_acc_configs = get_all_configs_within_constraint(architecture_template, area_constraint)
sorted_acc = sort_by_area(all_valid_acc_configs)

# Generate graph ∀ models, ∀ TMP widths, ∀ micro-batch sizes
operator_graphs = extract_graph(model, training_param.mbs_list, training_param.tmp_list)

# Run solver to search for the best accelerator config ∀ models.
converged = False
config = sorted_acc[0] # start with largest config
while not converged do

latency_estimates_ = get_next_estimate(config, training_param)
# Run ILP ∀ microbatch sizes.
layer_state = ilp(operator_graphs, latency_estimates, training_param, config)
# Run Dynamic Program ∀ microbatches, HBM sizes, and activation recomputation vs stashing.
throughput, dp_strategy = run_dp(layer_state, config, is_recompute, training_param, num_accelerator)
append_to_explored_acc_list(config, throughput, dp_strategy)
converged, config = check_converge(hysteresis = 6, config)

end while

# Find the best configuration across ∀ models.
best_acc, best_dp = find_highest_tput_acc(models, explored_acc_list)
return best_acc, best_dp

# Helper function to check if search has converged
function check_converge(hysteresis, curr_config)
curr_avg_t = avg_across_models(throughput in explored_acc_configs)
max_thpt_per_area[curr_config.area] = max(max_thpt_per_area[curr_config.area], curr_avg_t)
if all_configs_in_area_explored(curr_config.area) then
next_area = acc_sorted[curr_config.area_idx + 1]
larger_area_thgpt = [max_thpt_per_area[area] for area in acc_sorted]
if len(larger_area_thgpt)> hysteresis then
larger_area_thgpt = larger_area_thgpt[−hysteresis :]
converged = check_if_decreasing_order(larger_area_thgpt)
return converged, next(config_iter)

end if
end if
return False, next(config_iter)

end function
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C.1. Architecture Generator

The search bounds for each architectures explored through PHAZE are listed in Table 1. However, there is an area constraint.
The accelerator with the maximum possible area has the compute configuration of {8, 2, 128, 128, 128}, and a glb of 128MB
(TPUv4). We only consider architecture within the area constraint and sort the architectures by area.

Generating architecture designs and area estimations To sort the configurations based on area, PHAZE generates area
estimates for all possible combinations of {numtc, numvc, PEx, PEy, glb} in the search space. The L2 buffers, L2tc and
L2vc are scaled based on the width and depth of the cores. This scaling is performed to meet the memory requirements
of the tiling dataflow for generating a valid schedule and mapping for computations on the accelerator configuration. The
equation used for the scaling is: L2 = 2log2PEx+log2PEy−6 in KB. This yields a maximum buffer size of 1MB for Tensor
cores when both PEx and PEy are at the maximum value, 256. Because PEs in the vector core are arranged in a pipelined
manner, the L2 buffer required to fully utilize the vector core is based on the width of the vector lanes. Given that the vector
core’s lanes are as wide as PEx, the maximum L2 buffer size for a vector core is 4 KB. If the scaling equation yields a
value below 1 KB, the L2 buffer size is capped at a minimum of 1 KB. Additionally, glbBW has a maximum value of 4096
words per cycle and is scaled to ensure optimal utilization of all tensor cores.

Pruning the number of accelerator configurations explored. Our architectural pruner is based on the following insight:
utilizing the maximum area would allow us to either instantiate a larger number of cores or larger-sized cores. As training is
a throughput centric task with high memory footprint, it would intuitively benefit from more compute and memory. Thus,
we explore the architectures in a decreasing order of the area. A smaller area suggests a reduction in either the core size or
the number of cores. If a smaller dimension does not yield a better training metric than the previous area configurations, it
suggests that the tensor dimensions in the operators are large, and benefit from a higher number or larger dimensional cores.
Alternatively, it could indicate that the parallelism in the operator graph is high, necessitating a greater number of cores.

To prevent settling for a local minimum, we introduce a hysteresis level in the pruner. A hysteresis level determines the
number of smaller areas that need to show a reduction in the metric (in this case, throughput) before the search process
converges. The pseudo-code for this heuristic is provided in algorithm 1 as the function check_converge. The tradeoff of
the hysteresis level and the convergence time is shown in Appendix D. A higher hysteresis level means more configurations
are explored, however, with smaller areas.

C.2. Per-operator Estimates

The architecture search in PHAZE relies on the per-operator estimates to determine the optimal schedule per layer or layer
slice using the ILP. A flexible and hardware-validated operator mapper is critical for evaluating accelerator performance for
a given model. As mentioned, each operator executes on a predefined core type. Table 3 shows a small subset of common
operators in deep learning and their core mapping. A tensor core operator followed by a vector core operator is fused and
can only be executed on the fused core.

Tensor, vector, and fused core operators. Operator estimates for tensor, vector, and fused core operations (excluding
Allreduce) are generated using validated hardware tools like Sunstone, Tandem, and Accelergy (Olyaiy et al., 2023; Ghodrati
et al., 2024; Wu et al., 2019). Sunstone and Tandem provide latency for tensor and vector core, respectively, and Acceleragy
estimates area. For each operator and accelerator configuration, two estimates are produced:

• The execution time when operated on a single core of the specified type
• The execution time when operated on all cores of the type (termed "intra-operator latency")

As Figure 1(a) illustrates, each core is an array of MAC units and/or vector lanes. Intra-operator latency refers to the
execution of a single operator across multiple cores. Tensor core or matrix multiplication based operators, in particular,
often deal with multi-dimensional sizes.

Network and communication collective estimates. Collective operators are necessary in both tensor model parallel and
data parallel execution. In data parallel execution, the model is replicated across devices, and weight updates are gathered
across these pipelines. The overhead of the collective operators due to data-parallel execution is accounted for by the
dynamic programming algorithm as it optimizes for the distribution strategy.

Additionally, PHAZE enables tensor model parallel execution, which splits a single layer across multiple accelerators. The
accelerators participating in this form of parallelism need to combine results across the devices. Thus, collective operators
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Table 3: A sample of the operators, their mathematical equation, and core type mapping. One of the operands for Allreduce
is obtained from the neighbouring device participating in the collective.

Operator Mathematical Equation Mapping
Convolution out(Ni, Coutj

) = bias(Coutj
) +

∑Cin−1

k=0 weight(Coutj
, k) · input(Ni, k) Tensor Core

ReLU ReLU(x) = max(0, x) Vector Core

Linear y = xAT + b Tensor Core

Softmax Softmax(xi) =
exp(xi)∑
j exp(xj)

Vector Core

Batched MM out = βX1 + α(X2 × W ) Tensor Core

Allreduce out = Data1 + Data2 Vector Core

LayerNorm

Self 
Attention

Softmax

Dropout

Layer Graph

Operator Graph

Layer Slices Per Operator Latency and 
Energy:
1. Intra-operator execution 
across cores 
2. Single core execution

ILP Optimization
Output: Per Accelerator 

Operator Scheduling

Dynamic 
Programming 
Optimization

Output: Distribution Strategy 
<p,d,t> across multiple 

accelerators

Layer Slice

Number of Accelerators

Figure 5: The solver is executed for every architecture that is explored. It takes as input the layer graph and the corresponding
operator graph. The ILP optimization solves to determine the optimal schedule and latency for every layer/layer slice. This
information is used by the dynamic programming optimization to determine the training distribution strategy.

are introduced across layer slices in the tensor model parallel mode. To estimate latency for these operators, we assume that
the network is homogeneous with a certain bandwidth and the collective is modeled in the following manner:

tensor_size
num_devices

× (num_devices− 1)× 4

This cost model assumes that the Allreduce operator is performed in the throughput-optimal ring topology (Nvidia, c; Wang
et al., 2020). In this approach, data is sent over the network twice, once to perform reduce scatter and then to perform all
gather. The reduction operator for Allreduce is performed across the vector core/cores of each accelerator. This is in line
with a variety of prior work in the area of device placement (Tarnawski et al., 2020; 2021; Jia et al., 2018).

C.3. Phaze Solver with ILP and Dynamic Programming Optimization

As models grow larger, determining accelerator architecture solely based on inference, as done in prior work, proves
sub-optimal. This is due to the unique challenges presented by training, such as the fact that graphs are much larger than
those used for inference, the optimizer and backward pass operators have distinct computational and memory requirements
compared to forward pass operators, and training has a larger memory footprint. It’s important to note that the design of
such accelerators depends not only on the model and its execution graph, but also the distribution strategy.

Traditionally, the device placement strategy used to distribute training execution relies on a fixed architecture to determine
the execution time for each layer. This information is then used to establish the optimal number of stages in a pipeline, the
layers that constitute each stage in a pipeline, data parallel width, and tensor model parallel width for end-to-end training.
However, this approach creates a cyclical dependency between device placement and architecture search optimization. On
the other hand, the architecture search problem can be resolved if the distribution strategy is determined statically – either
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Table 4: Table details the complexity of the corresponding deep learning model, through number of operators per layer,
number of layers, activation size, parameter size, Tensor Vector floating point operations (for TMP width 1, i.e., without
tensor model parallelism), and Expert Device Placement Strategy expressed in the order of {pipeline parallel depth (p), data
parallel width (d), and TMP width (t)}.

Model # of Layers # of Operators Parameter Size Activation Size Tensor FLOPs Vector FLOPs Expert DP Strategy
OPT (Zhang et al., 2022b) 12 63 12 MB 4.7 GB 2.5 ×1012 3.6 ×109 {12, 85, 1}
BertLarge (Devlin et al., 2019) 24 34 23 MB 609 MB 21 ×109 310 ×106 {8, 128, 1}
GPT2 (Radford et al., 2019) 48 101 152 MB 5 GB 557 ×109 2.8 ×109 {32, 32, 1}

Tensor Model Parallel Models
Bert with TMP (Devlin et al., 2019) 24 89 23 MB 914 MB 137 ×109 301 ×106 {8, 128, 1}
Megatron 2.5B (Shoeybi et al., 2020) 54 131 88 MB 10 GB 2.6 ×1012 2.6 ×109 {8, 32, 4}
Megatron 8.3B (Shoeybi et al., 2020) 72 131 211 MB 12 GB 4.8 ×1012 4.8 ×109 {8, 16, 8}
MegatronGPT3 (Shoeybi et al., 2020) 96 131 900 MB 25 GB 23 ×1012 9.6 ×109 {32, 8, 4}

by manually identifying different modes and degrees of parallelism or using the memory footprint to balance execution.
Nevertheless, this method is sub-optimal. Thus, we devise an algorithmic solver that for every accelerator configuration
determines the operator schedule and the model distribution strategy.

PHAZE employs an algorithmic solver for the following problem: Given an accelerator configuration, what is the optimal
operator schedule on the accelerator and the device placement strategy to distribute the training. For the former, ILP solves
the optimization problem without the resource constraint, (z) variables. In case with the solution proposed, the resource is
violated, then the ILP is resolved with all the constraints.

D. Extended Evaluation and Ablation Studies
Model compute and memory properties. Table 4 shows the evaluated models, the number of layers, parameter and
activation size, and the compute complexity of the model. Due to large activation size of OPT and GPT2 model, they require
a larger High Bandwidth Memory (HBM) of 64GB to fit in the accelerator with activation stashing, or they require activation
recomputation to run with a HBM size of 32GB. Meanwhile, Bertlarge and Bert with tensor model parallelism can execute at
the optimal throughput with an HBM of just 32GB. Tensor model parallelism allows another dimension of split that reduces
the memory footprint. However, Megatron 8.3B and MegatronGPT3 still require activation recomputation to achieve the
highest possible throughput. For Megatron 2.5B, the maximum tensor model parallel width is 4, which is insufficient to
store activations between the forward and backward pass on a device with only 32GB of HBM. Running with activation
stashing becomes possible with an 80GB HBM, and achieves higher throughput than performing activation recomputation.
In the case of MegatronGPT3, the model and activation sizes are so large that even with activation recomputation, it still
requires a HBM of at least 64GB, and can only execute with activation recomputation, even with a 80GB HBM. The OPT
model exhibits a relatively high tensor and vector model complexity (given its size) due to the large sequence length.

Reducing the overhead of executing the estimates. In the latency estimation stage, PHAZE performs latency estimations
for each combination of model and microbatch size. The estimations for each microbatch size are independent of one
another, allowing them to be executed concurrently. We execute the estimator concurrently for all microbatch sizes on the
CPU. This parallelization reduces the time required to run the estimator by a factor of four.

To further reduce the overhead of the latency estimates, we leverage the repetitive structure of large language models and
only estimate latencies for all the operators within a single layer or a layer slice. All the non-repeat layers are estimated
independently. We also employ the same optimization for the ILP: it determines the optimal latency of a layer only once if it
is repeated across the model.

Total optimization time. Figure 6 presents the total optimization time for each model, and the breakdown of the solver and
estimation time. This Figure has been presented with hysteresis 6. The total convergence time, which includes estimation
and solving time, is dependent on the hysteresis level, as this directly dictates the number of architectural configurations
explored. Overall, the estimation time increases proportionally with tensor sizes, whether for activation or parameters and
the number of operators in the entire model graph. The ILP solving time grows with number of operators in a layer graph
and the number of tensor model widths. A common property of large language models is replicated layers, and we make the
ILP efficient as it reuses the optimal forward and backward latency from prior layer. The dynamic programming solving
time is proportional to both the number of layers and the number of tensor model parallel widths.
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Figure 6: The total execution time of each model and breakdown for ILP solving, Dynamic programming, and Estimation.

Figure 7: Comparison of solving time split between ILP solving time and the dynamic program optimization time. ILP
determines the optimal schedule per layer and layer slice, whereas the dynamic program determines the model partitioning.

The total convergence time is also dependent on the number of configurations of HBM and activation recomputation vs
Stashing, that the model can run. Since MegatronGPT3 can only run with activation recomputation and HBM sizes of 64
and 80 GB, this significantly reduced the required total convergence time of the model, compared to Megatron8.3B. The
exploration time for Megatron8.3B is higher than that for MegatronGPT3. This is because the former examines 1,2,4,8
tensor model parallel widths, unlike the latter which only explores 4 and 8. Additionally, MegatronGPT3 can only run with
activation recomputation and HBM sizes of 64 and 80 GB, this significantly reduced the required total convergence time of
the model, compared to other Megatron models.

Solving time breakdown. Figure 7 shows the execution time for the PHAZE solver, which is divided into the ILP solving
time and dynamic programming optimization. While the dynamic programming optimization time predominates the
solving times, it still takes significantly less percentage of the total convergence time than estimation. As mentioned earlier,
the estimations for each microbatch size were conducted concurrently, leading to a substantial reduction in the required
estimation time. In contrast, the solver navigates through each microbatch size sequentially. This sequential exploration
contributes to an overall increase percentage in the convergence time spent running the solver. Furthermore, the dynamic
programming optimization also explores various configurations for HBM and activation stashing vs. recomputation, leading

Figure 8: Convergence time for various hysteresis levels when running PHAZE with just a single microbatch size and HBM
configuration. Megatron models due to the added dimensionality of exploration (TMP) take longer to converge.
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Figure 9: The area, number of PEs per core, and throughput of each explored architecture by PHAZE for BertLarge with
microbatch size of 1. As the hysteresis level increases, the searched architecture’s area decreases and eventually converges
to an architecture with optimal throughput, {2,512,256,256}. The markers represent the architectures selected with each
hysteresis level •◦: H = 1,2 (selects the TPUv4 architecture), △: H = 3, 4, ⋆: H = 6,7,8.

to the dynamic programming optimizations occupying a larger portion of the overall execution time. For MegatronGPT3,
the overall solving time is reduced, as it supports fewer HBM configurations and tensor model parallel widths compared to
other models.

The ILP time is dependent on the number of tensor model widths supported as it needs to determine the optimal latency of
layer slice per TMP width. However, the ILP time does not increase with the width of tensor model parallel model (4 vs 8),
as the ILP only needs to establish a schedule for a single layer slice. However, as models grow and the number of nodes
increases, ILP’s complexity generally rises. The complexity of the models is outlined in Table 4. The OPT model, despite
its relatively small size, requires the longest solving time. This is dominated by the ILP due to violations of the z constraints,
and the ILP is recalculated for both the tensor and vector core resource constraints.

Convergence time analysis and hysteresis study. Figure 8 shows the convergence time with varying hysteresis levels
when running PHAZE with microbatch size 1 and an HBM of 80GB with Activation Recomputation. As observed, the
convergence time reduces by 11 × and 3 ×, respectively, when applying the heuristic described above with values of 5 and
6, in comparison to 8. The exploration of Megatron models is more time-consuming due to the added dimensionality of
tensor model parallelism, which necessitates latency estimations for all layer slices. As previously stated, estimations on
average account for up to 89% of the convergence time. This motivates the pruning of accelerator configurations.

As Figure 9 shows, for hysteresis level 1 and 2, TPUv4 architecture is selected (as that is always explored because it has
the largest area). With hysteresis level 3 and 4 we start to observe higher throughput architectures being selected, but that
improvement diminishes when hysteresis is set 6, and does not improve further for hysteresis level 7 and 8. It’s crucial
to underscore that, even with the introduction of the heuristic, the accelerator configuration and the distribution strategy
remain optimal at hysteresis values above 6. This is because, even when all feasible architectures are explored, the pruner
consistently selects a design within 3% of the largest areas amongst all feasible configurations. A hysteresis value of 6 or
above consistently searches beyond the optimal architecture for each model.

Model FLOPs Utilization Comparison. In Table 5 we present the Model FLOPS Utilization (MFU) of the TPUv4 (using
expert Device Placement and using PHAZE’s solver) architecture and the PHAZE common architecture. We follow the same
formula to compute the MFU as presented in PaLM (Chowdhery et al., 2024) Appendix B.

When comparing architectures with the same effective tensor core FLOPs, higher observed throughput translates to higher
MFU. As PHAZE’s common configuration has the same tensor core FLOPs as the TPUv4 configuration, its higher observed
throughput translates to higher MFU. The key difference lies in the number of vector cores and global buffer memory
size. PHAZE prioritizes architectures with more vector cores within similar areas, albeit at the expense of reduced memory
capacity. This choice enhances parallelization efficiency for operators like Layer Normalization.
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Table 5: Table details the Model FLOPs Utilization across TPUv4 architectures and the PHAZE Common architecture. As
Phaze’s common configuration has the same tensor core FLOPs as the TPUv4 configuration, its higher observed throughput
translates to higher MFU.

Model TPUv4 Expert DP (%) TPUv4 + Phaze Solver (%) Phaze Common (%)
OPT 5.4 12.3 17.1
BertLarge 15.9 47.4 88.1
GPT2 7.4 19.6 26.5
BERT with TMP 13.7 22.1 57.4
Megatron 2.5B 4.6 4.9 12.4
Megatron 8.3B 6.4 8.3 17.2
MegatronGPT3 17.4 17.5 31.0

However, it is important to note that PHAZE searches across a variety of hardware architectures with different tensor core
configurations, each with different peak matmul FLOPS. As MFU is the ratio of observed throughput to the theoretical
maximum throughput of systems operating at peak matmul FLOPS, comparing systems with differing peak tensor core
FLOPs means that a higher MFU does not always mean higher throughput, and vice versa.

PHAZE currently optimizes for maximum throughput rather than utilization or MFU. Nonetheless, PHAZE can be extended
to enable users to optimize for other metrics, including throughput, utilization, or energy.
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