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Abstract

Multiplier design—which aims to explore a large
combinatorial design space to simultaneously op-
timize multiple conflicting objectives—is a fun-
damental problem in the integrated circuits indus-
try. Although traditional approaches tackle the
multi-objective multiplier optimization problem
by manually designed heuristics, reinforcement
learning (RL) offers a promising approach to dis-
cover high-speed and area-efficient multipliers.
However, the existing RL-based methods struggle
to find Pareto-optimal circuit designs for all pos-
sible preferences, i.e., weights over objectives, in
a sample-efficient manner. To address this chal-
lenge, we propose a novel hierarchical adaptive
(HAVE) multi-task reinforcement learning frame-
work. The hierarchical framework consists of a
meta-agent to generate diverse multiplier prefer-
ences, and an adaptive multi-task agent to collab-
oratively optimize multipliers conditioned on the
dynamic preferences given by the meta-agent. To
the best of our knowledge, HAVE is the first to
well approximate Pareto-optimal circuit designs
for the entire preference space with high sam-
ple efficiency. Experiments on multipliers across
a wide range of input widths demonstrate that
HAVE significantly Pareto-dominates state-of-the-
art approaches, achieving up to 28% larger hyper-
volume. Moreover, experiments demonstrate that
multipliers designed by HAVE can well general-
ize to large-scale computation-intensive circuits.
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1. Introduction
Arithmetic logic circuits are the most elementary building
blocks in many real-world circuits, such as the central pro-
cessing units and graphics processing units (Holdsworth,
1987; Das et al., 2019). The multiplication operation is one
of the most fundamental and frequently used arithmetic oper-
ations in many computation-intensive applications, such as
deep neural networks (DNNs), digital signal processors, and
microprocessors (Hashemian, 2002; Elguibaly, 2000; Zuo
et al., 2023). In particular, the multiplication operation ac-
counts for more than 90% of all operations in many popular
DNNs, including ResNet (He et al., 2016), ViT (Dosovitskiy
et al., 2021), and BERT (Devlin et al., 2019). Therefore,
designing high-speed and area-efficient multipliers is criti-
cal for boosting the performance of computation-intensive
applications, especially for DNN accelerators.

However, multiplier design is a challenging combinatorial
optimization problem with multiple conflicting objectives,
which can be extremely hard to solve due to its NP-hard
nature (Hillar & Lim, 2013; Song et al., 2022). To optimize
multipliers, many traditional approaches rely on manually
designed heuristics to minimize the analytical evaluation
metrics such as circuit size (Roy et al., 2021). However, they
can exhibit poor performance subsequent to synthesis due to
the significant gap between their analytical evaluation met-
rics and physical synthesis metrics (Roy et al., 2021; Zuo
et al., 2023). To bridge this gap, recent approaches (Roy
et al., 2021; Song et al., 2022; Zuo et al., 2023) use rein-
forcement learning (RL) to optimize circuits with synthesis
in the loop, which offers a promising avenue for designing
high-speed and area-efficient circuits.

However, the existing RL-based methods (Roy et al., 2021;
Zuo et al., 2023) struggle to find Pareto-optimal circuit
designs for all possible preferences (i.e., weights over ob-
jectives) in a sample-efficient manner due to the following
reasons. First, they circumvent the multi-objective property,
and use scalarized objectives weighted by predetermined
preferences to train many individual agents for optimiz-
ing multipliers. This strictly limits the knowledge sharing
among different but related optimization problems. Second,
they struggle to sufficiently explore the large design space,
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as it grows exponentially with the input bit widths of multi-
pliers (Roy et al., 2021). Third, obtaining the reward signal
with synthesis in the loop is highly time-consuming, thereby
leading to significant demands on sample efficiency.

To address this challenge, we propose a novel hierarchical
adaptive (HAVE) multi-task reinforcement learning
(MTRL) framework for discovering high-speed and area-
efficient multiplier designs. To the best of our knowledge,
HAVE is the first to well approximate Pareto-optimal circuit
designs that covers the entire multiplier preference space
in a sample-efficient manner by proposing a hierarchical
framework. The framework is comprised of (1) a meta-
agent to generate multiple diverse preferences, (2) and an
adaptive multi-task agent to collaboratively optimize multi-
pliers conditioned on the dynamic preferences. The adaptive
multi-task agent exploits common properties across related
optimization problems, significantly improving sample ef-
ficiency. Moreover, an appealing feature of HAVE is a fac-
tored Q-function representation, which significantly boosts
sample efficiency by leveraging the underlying combinato-
rial structure of action spaces to decompose the Q-function
into multiple independent components.

We evaluate HAVE by designing multipliers across a
wide range of input widths. Experiments demonstrate
that HAVE discovers state-of-the-art designs that Pareto-
dominate the multipliers designed by human-based, mathe-
matical optimization-based, and learning-based baselines,
achieving up to 28% larger hypervolume. Moreover, we
deploy multipliers designed by HAVE and baselines into
large-scale computation-intensive circuits, and experiments
show that HAVE significantly outperforms the baselines in
terms of both area and delay. Our results demonstrate the
superior ability to discover high-speed and area-efficient
circuits with HAVE in real-world computing circuits.

We summarize our major contributions for both the RL com-
munity and hardware design community as follows. (1) To
the best of our knowledge, HAVE is the first to well approx-
imate Pareto-optimal circuit designs that covers the entire
multiplier preference space in a highly sample-efficient man-
ner, which is significant for the application of RL methods
to designing diverse multipliers. (2) We propose a novel
hierarchical framework to decompose the task of exploring
multiplier preference space and searching the design space
into two hierarchies, which effectively leverages the struc-
ture between the preference space and the design space for
significantly boosting sample efficiency. (3) We propose an
adaptive multi-task reinforcement learning (RL) agent to
collaboratively search the design space of multipliers condi-
tioned on the dynamic preferences given by the meta agent.
The novel adaptive multi-task formulation allows us to ex-
ploit common properties across related search problems,
which is significant for improving sample efficiency. (4) We

propose to leverage the underlying combinatorial structure
of action spaces via a factored Q-function representation,
which further improves sample efficiency. Moreover, we are
the first to theoretically show that the factored Q-learning
algorithm can approximate the optimal Q-function within an
error bound. (5) Experiments on multipliers across a wide
range of input widths demonstrate that HAVE significantly
Pareto-dominates state-of-the-art approaches, achieving up
to 28% larger hypervolume.

2. Related Work
In this section, we discuss related work on multi-objective
reinforcement learning (MORL), and defer additional re-
lated work to Appendix B due to limited space.

To approximate a set of Pareto-optimal solutions, the most
widely used approach is to repeatedly perform a single-
policy algorithm over various preferences (Yang et al., 2019;
Basaklar et al., 2023). Although the existing RL for circuit
optimization methods (Roy et al., 2021; Song et al., 2022;
Zuo et al., 2023) leverage this approach, they suffer from
poor sample efficiency and computational efficiency. Re-
cent MORL work (Yang et al., 2019; Basaklar et al., 2023)
proposes to use a multi-objective conditioned Q-learning
approach to simultaneously learn a set of policies over multi-
ple preferences. Although our method uses a multi-objective
conditioned Q-network as well, HAVE maintains the fol-
lowing major contributions over previous MORL methods.
First, HAVE learns a meta-agent to explore multiple diverse
preferences at each step, which is more sample-efficient
compared to existing random sampling strategy. Second,
HAVE formulates the optimization problem under multiple
dynamic preferences as an adaptive MTRL, which carries
the potential to exploit common properties among tasks
for significantly improving sample efficiency. Third, HAVE
leverages a factored Q-value representation, which leverages
the underlying structure of action spaces and thus signifi-
cantly improves sample efficiency.

Multiplier Circuit Design In general, the approaches for
multiplier circuit design fall into three categories as follows.
First, manual designs (Wallace, 1964; Dadda, 1983; Itoh
et al., 2005) are obtained by leveraging human expertise
architectures from regular architectures which require high
engineering effort. Second, traditional algorithmic methods
(Xiao et al., 2021; Liu et al., 2003; Roy et al., 2013) generate
circuit architectures based on particular strategies, such as
mathematical programming and heuristic search. However,
they rely on proxy metrics to optimize circuits, such as the
size and/or depth of a circuit, which results in a gap with
real end flow. Third, recent methods (Zuo et al., 2023; Roy
et al., 2021; Song et al., 2022) propose to use reinforcement
learning to optimize circuits based on the actual evaluation
metrics within the optimization loop, which offers promis-
ing approaches to bridge the gap of proxy metrics. However,
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the existing methods suffer from inefficient exploration and
thus tend to find sub-optimal designs due to the vast search
space and the intricate balance of multiple conflicting objec-
tives. Moreover, recent work (Song et al., 2023) proposes
to use generative models to generate adders. Recent efforts
also study leveraging machine learning to directly design
circuits (Google DeepMind, 2023; Li et al., 2023; 2024a).

3. Background
In this section, we introduce the multiplier architecture, the
concept of Pareto optimal, and the state-of-the-art RL for
multiplier design method, i.e., RL-MUL (Zuo et al., 2023).

Multiplier Architecture The multiplier consists of three
parts: a partial product generator (PPG), a compressor tree
(CT), and a carry propagation adder (CPA) (Xiao et al.,
2021). The PPG produces partial products (PPs) from the
multiplicand and multiplier. The CT aims to compress the
PPs to two rows in parallel. After the compression process,
the CPA sums up the two rows of PPs to get the final product.
As the CT usually dominates the delay and area of a multi-
plier (Xiao et al., 2021; Zuo et al., 2023), RL-MUL focuses
on optimizing the CT structure of a multiplier. Please refer
to Appendix C for details of the architecture.

Pareto Optimal In an n-objective optimization problem,
we say a solution x Pareto dominates another y if ∀i ∈
[1, n], fi(x) ≤ fi(y) ∧ ∃i ∈ [1, n], fi(x) < fi(y). Given
a solution set, the Pareto front consists of Pareto-optimal
solutions that are not dominated by any other solution. To
evaluate the quality of the Pareto front, we apply a hyper-
volume metric (see Appendix C for definition). Note that a
Pareto front with a larger hypervolume is deemed superior.

RL for Multiplier Design RL-MUL starts from a given
initial compressor tree solution, and iteratively refines the
compressor tree structure. In terms of the state space, RL-
MUL represents each state, i.e., a compressor tree solution,
as a three-dimensional image. In terms of the action space,
RL-MUL designs four types of action to refine a compressor
tree in a given column. Then, RL-MUL defines the action
space as a discrete space composed of 4 × NC discrete
actions, where NC denotes the number of columns. Each
action i ∈ [0, 1, . . . , (4×NC − 1)] is represented by exe-
cuting the j-th action type at the k-th column, where j = i
(mod 4) and k = ⌊ i

4⌋. In terms of the reward function,
RL-MUL first invokes a synthesis tool to obtain the area
and delay of the designed multiplier at each step. Then, RL-
MUL designs a reward rt as the difference between the area
(delay) of the multiplier at step t− 1 and that at step t. In
terms of training, RL-MUL leverages the deep Q-network
algorithm (Mnih et al., 2015) to train policies. We defer
details of the method to Appendix C.

4. A Hierarchical Adaptive Multi-Task
Reinforcement Learning Framework

In this section, we present our proposed hierarchical
adaptive (HAVE) multi-task reinforcement learning frame-
work. We first present an overview of HAVE as follows.

To efficiently approximate Pareto-optimal circuit designs for
the entire multiplier preference space, we propose a novel
two-stage hierarchical framework. The framework consists
of two agents working at different time-scales, where a meta-
agent sufficiently explores the multiplier preference space
to maximize the Pareto curves, and a lower-level agent opti-
mizes multipliers conditioned on the dynamic preferences
given by the meta-agent (see Figure 5 in Appendix E.1).

To sufficiently explore the multiplier preference space, we
first propose a delay constraints augmented preference space.
The augmented space enhances the traditional linear weight
preference space by taking into account the synthesis-related
delay constraints. Then, we formulate the preference gener-
ation problem as a markov decision process (MDP) to learn
policies for generating multiple diverse preferences with the
goal of maximizing Pareto curves (see Figure 1).

To optimize multipliers conditioned on the dynamic pref-
erences given by the meta-agent, HAVE formulates the
problem as an adaptive multi-task reinforcement learning
(MTRL) problem. Each task corresponds to a circuit opti-
mization problem conditioned on each preference generated
by the meta-agent, respectively. Then, HAVE can leverage
advanced MTRL algorithms to exploit common properties
across these tasks for improving sample efficiency.

To solve the adaptive MTRL problem, HAVE proposes
a factored multi-task conditioned deep Q-network. The
conditioned network takes states and preferences as in-
puts, thus enabling generalizing across dynamic preferences.
Moreover, the factored Q-function representation leverages
the underlying structure of action spaces to decompose Q-
functions, thus significantly improving sample efficiency.

4.1. Pareto-Driven Meta-Agent Learning
Delay Constraints Augmented Preference Space Many
existing MORL methods (Yang et al., 2019; Abels et al.,
2019b; Basaklar et al., 2023) maximize a joint objective
function weighted by a preference vector to balance con-
flicting objectives, where the preference space comprises
all possible weight vectors. However, we found that delay
constraints for synthesis significantly impact preferences
between objectives as well in the circuit optimization prob-
lem as shown in Figure 6 in Appendix G. In the context
of circuit design, employing synthesis with tighter delay
constraints signifies a stronger emphasis on optimizing for
reduced delay. Although existing RL-based circuit opti-
mization methods (Zuo et al., 2023; Roy et al., 2021) take
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into account the delay constraints, they statically assign
fixed delay constraints, which can lead to insufficient ex-
ploration and computational inefficiency. To address this
challenge, we propose a delay constraints augmented pref-
erence space, which comprises the compositional vectors
of weight vectors and delay constraints. However, incorpo-
rating the delay constraints into the preference space poses
significant challenges for efficient exploration due to two
reasons (see Appendix E.2). To sufficiently and efficiently
explore the augmented preference space, we formulate the
preference generation problem as an MDP, and learn Pareto-
driven policies that generate multiple diverse preferences at
each step to maximize Pareto-curves.

Meta Policy Learning We consider the meta MDP defined
by the tuple Mm = (Sm,Am, rm, fm). Specifically, we
specify the meta state space Sm, the meta action space Am,
the meta reward function rm : Sm ×Am × Sm → R, and
the meta transition function fm in the following. (1) The
meta state space Sm. We design the meta state to track
the evolving Pareto frontier to adaptively modify the gen-
erated user preferences for guiding the multi-task agent to
collaboratively explore those under-explored regions. To
encode the information of the evolving Pareto frontier, we
manually design feature vectors. We present details in Ap-
pendix E.3. (2) The meta action space Am. To generate a
set of N preferences, it is natural to define the action space
by (W × D)N , where W = [0, 1]2 denotes the space of
linear weight vectors and D denotes the delay constraints
for synthesis. However, the action space is large due to its
combinatorial structure, and the meta-agent may generate
numerous redundant preferences that exhibit similarity. To
reduce redundant preferences generation, we decompose
the entire preference space into N pairwise disjoint sub-
spaces {Ai

m = (Wi × Di)}Ni=1, where W =
⋃N

i=1 Wi

and D =
⋃N

i=1 Di. Then, we define the meta action space
by Am = A1

m × · · · × AN
m. That is, the meta-agent sam-

ples N preferences from the N decomposed preference
spaces, which can be diverse while complementary with
each other. (3) The meta Pareto-driven reward function
rm. To encourage the meta-agent to generate pareto-driven
preferences, we design the reward r(smt , amt , smt+1) by the
difference between the hypervolume of the Pareto front at
the next state smt+1 and that at the current state smt . Thus, the
meta-agent learns to generate diverse preferences that can
maximize the Pareto curves. (4) The transition function.
The transition function maps the current state and the action
to the next state, which depends on the lower-level agent.
To train the meta policy, we use a widely used reinforce
algorithm (Sutton et al., 1999; Sutton & Barto, 2018). We
provide implementation details in Appendix E.

4.2. Adaptive Multi-Task Agent Learning
(a) Adaptive Multi-Task RL Formulation To optimize
multiplier circuits with multiple conflicting objectives condi-
tioned on multiple preferences generated by the meta-agent,
the existing methods (Zuo et al., 2023; Roy et al., 2021) use
multiple scalarized objectives weighted by the preferences
to train many individual agents to independently optimize
circuits. However, they neglect the shared common proper-
ties among related optimization problems, leading to poor
sample efficiency. To address this challenge, we propose to
formulate the multiplier optimization problem conditioned
on dynamic preferences as an adaptive multi-task RL prob-
lem. Specifically, we consider the adaptive multi-task MDP
by the tuple M(wi, di) = (S,A, P, γ, {ri,wi, di}Ni=1) that
is conditioned on the dynamic preferences (wi, di)

N
i=1 given

by the meta-agent. As mentioned in Section 3, we follow
Zuo et al. (2023) to formulate the states as three-dimensional
images, the action space as a discrete integer space, the tran-
sition function as a state refinement function with manually-
designed legalization process. The major differences be-
tween the previous formulation and ours lie in the reward
functions. First, the vectorized reward function remains
invariant across preferences in the previous formulation.
However, our vectorized reward function varies significantly
across preferences due to the delay constraints. Second, the
preferences in the previous formulation are fixed, while the
preferences {(wi, di)}Ni=1 in our formulation dynamically
evolve. This significantly impacts the reward functions and
thus affects the optimization objectives. The two differences
pose significant challenges for learning in our formulation.

(b) Multi-Task Conditioned Deep Q-Network To approx-
imate the Pareto-optimal circuit designs that adapts to the
dynamic preferences using a single network, we propose a
multi-task conditioned deep Q-network.

Shared Conditioned Encoder To learn Q-values that can
generalize across diverse dynamic preferences, we model
the encoder as a conditioned network, which is inspired by
the universal value function approximators (Schaul et al.,
2015; Abels et al., 2019a). Specifically, the encoder takes a
state and a preference as an input, and outputs a joint con-
catenated embedding of the state and preference for Q-value
prediction. To encode the three-dimensional image state,
we employ the ResNet-18, which is popular in computer
vision (He et al., 2016). To encode the preference vector, we
can use any parametric neural network. For simplicity, we
propose a non-parametric normalize layer to get the repre-
sentation of preference vectors. Finally, we concatenate the
state embedding and the preference embedding to achieve
a joint embedding for Q-value prediction. Moreover, we
propose to use a shared encoder network across multiple
tasks, which can effectively improve sample efficiency by
capturing common representations with significantly fewer
trainable parameters compared to prior approaches (Roy
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(a) Pareto-Driven Meta-Agent Learning (b) Adaptive Multi-Task Agent Learning
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Figure 1. HAVE is a hierarchical framework comprising a Pareto-driven meta-agent and an adaptive multi-task agent. The meta-agent
learns to generate diverse while complementary preferences with the goal of maximizing Pareto curves. The adaptive multi-task agent
optimizes multipliers via a factored multi-task conditioned Q-learning algorithm and a restore-then-explore exploration strategy.

et al., 2021; Zuo et al., 2023; Song et al., 2022).

Multi-Task Decoder To learn Q-value functions across di-
verse tasks simultaneously, we propose a multi-task decoder,
which parameterizes the decoder via a multi-head neural
network. Each task head Qθi approximates the Q-value
function under the task environment conditioned on the
i-th preference. Moreover, each task head predicts multi-
objective Q-values, which is widely used in previous work
(Roy et al., 2021; Yang et al., 2019; Basaklar et al., 2023).

Asynchronous Multi-Task Q-Learning To exploit com-
mon knowledge across tasks, we further propose a shared
replay memory that stores all transitions collected from all
task environments. However, the transition (s, a, rj ,wj , dj)
collected from the j-th task environment cannot be di-
rectly used to train the i-th task agent due to the prefer-
ence difference. Thus, we propose a data relabeling mecha-
nism, which transforms the transition (s, a, rj ,wj , dj) into
(s, a, rj ,wi, dj) for training the i-th task agent. As a re-
sult, the multi-task agents can well collaboratively share
knowledge on the design space across these task agents.

Moreover, to efficiently train the multi-task Q-network, we
propose an asynchronous multi-task Q-learning algorithm.
The algorithm asynchronously execute the multi-task agent
in parallel on multiple instances of the environment condi-
tioned on generated preferences. Specifically, each thread
interacts with the multiplier design environment conditioned
on each preference, and computes the gradient of the Q-
learning loss at each step. We use a shared and gradually
evolving target network in computing the Q-learning loss,
following the approach proposed in the asynchronous Q-
learning method (Mnih et al., 2016). Thus, for each step
within the i-th environment, we update the Q-network to

minimize the Bellman residual with a batch of transitions
{(st, at, r, st+1)}Mt=1 sampled from the shared replay mem-
ory, i.e., l(θi) =

∑M
j=1

1
M [Qθi(sj , aj)− y(rj , sj+1)]

2
,

where y(rj , sj+1) = rj + γ argmaxa Qθ̄i(sj+1, a).

(c) Factored Q-Value Update (FQA) Existing methods
(Roy et al., 2021; Song et al., 2022; Zuo et al., 2023) directly
represent the action space as a flattened set of non-negative
integers ranging from zero to 4 ∗NC − 1 as mentioned in
Section 3. However, they neglect the inherent combinatorial
structure of the action space, wherein each action comprises
a combination of column and type actions. To leverage the
underlying compositional structure for improving sample ef-
ficiency, we leverage a factored action representation, which
decomposes the original action space into two independent
sub-action spaces, i.e., the column and type action spaces.
Then, we represent the Q-value function as a combination
of the factored Q-value functions defined on the factored
action space. That is, we define the Q-value function by
Q(s,a) = M(Q1(s, a

1), Q2(s, a
2)), where M is a com-

bination function and a = (a1, a2). To parameterize our
factored Q-value functions, we first propose to instantiate
the combination function via a simple and differentiable non-
parametric summation function. Then, we parameterize the
factored Q-value functions by Q(s,a) =

∑2
i=1 Qθi(s, a

i).
Finally, we propose a factored Q-value update (FQA)
scheme following the Bellman residual minimization, i.e.,

l([θ1, θ2]) =
∑N

i=1
1
N

[∑2
j=1 Qθj (si, a

j
i )− y(ri, si+1)

]2
,

where y(ri, si+1) = ri + γ argmaxa
∑2

j=1 Qθ̄j (si+1, a
j).

Advantages We discuss two potential advantages of FQA
as follows. First, the Q-value function decomposition mech-
anism is analogous to decomposing a vector in terms of
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some orthogonal basis vectors, which is beneficial for re-
moving redundant information. Second, the FQA scheme
allows the agent to update Q-values of multiple compo-
sitional actions using one sample (si, ai, ri, si+1), which
can significantly improve sample efficiency (Sharma et al.,
2017). Despite these potential advantages, existing conver-
gence results from Bellman optimality operator no longer
hold due to the factored Q-value function representation.
Thus, we provide a theoretical analysis of FQA as follows.

Convergence Analysis of Tabular FQA We assume the
state space, action space, and rewards are finite, which
is commonly used in theoretical analysis of RL (Sut-
ton & Barto, 2018). Thus, we can express the reward
function and Q-value function in a vectorized form, i.e.,
R,Q ∈ R|S||A|×1 with items R(s,a) = wT

i r(s,a|di) and
Q(s,a) = Q(s,a;wi, di). We assume that the reward func-
tion is bounded, i.e., |wT r(s,a|d)| ≤ R,∀s ∈ S,a ∈ A.
Note that the MORL problem degenerates to a single-
objective RL problem when given a generated preference
(wi, di). For simplicity, we omit the preference (wi, di)
in the following. The transition matrix P ∈ R|S||A|×|S| is
defined by P(s,a),(s′) = P (s′|s,a). Notice that subscript
(s,a) is an abbreviation for index |A| × [s] + [a] where
notation [s] denotes the index of s in the discrete space S
and so does [a]. The standard Q-learning (Watkins & Dayan,
1992) algorithm updates Q-value based on the Bellman op-
timality operator T : R|S||A|×1 → R|S||A|×1, i.e., T [Q] =
R + γPH[Q]. The operator H : R|S||A|×1 → R|S|×1 is
defined by H[Q](s) = maxa∈A Q(s,a).

As the aforementioned factored Q-value function represen-
tation, we define the Q-value function Q : S ×A → R by a
linear summation of the sub-Q functions Q̃l : S × An →
R, l = 1, . . . , L. That is, Q(s,a) :=

∑L
j=1 Q̃j(s, a

j). We
also express the sub-Q functions Q̃n in a vectorized form i.e.,
Q̃l ∈ R|S||Al|×1 with items Q̃l(s,al) := Q̃l(s, a

l). Note
that the domains of different sub-Q functions are different.
To facilitate convergence analysis, we expand the domain
of Q̃l from S × Al into S × A by defining an equivalent
expanded sub-Q function by Ql(s, (a

1, · · · al, · · · , aL)) :=
Q̃l(s, ã

l), where the sub-action al = ãl and for all s ∈
S, aj ∈ Aj , j ̸= l. We provide an example of the expanded
function in Appendix A.1.

Based on this definition, let Q := R|S||A|×1, then we
define a subspace of Q associated with Al as Ql :={
Q ∈ Q | Q[s,(a1,...,al,...,aL)] = Q̃l[s,ãl], a

l = ãl
}

for all

s ∈ S and aj ∈ Aj , j ̸= l. Note that Ql is the set
of all vectors whose components are equal if the sub-
scripts take the same value on the sub-action al. Fi-
nally, we define the factored Q-function space Q̂ as Q̂ :={
Q ∈ Q

∣∣∣∣ Q =
∑L

l=1 Ql where Ql ∈ Ql

}
.

Unfortunately, the factored Q-function space is often a sub-
space of the original Q-function space, implying that the
factored Q-value function representation can be restricted.
Please see an example in Appendix A.3. This may pose a sig-
nificant challenge for the convergence analysis of updating
the factored Q-function via traditional Bellman optimality
operator, as the optimal Q-value function Q⋆ may not be
contained in the factored Q-function space.

Therefore, we mimic our proposed factored Q-value update
scheme by proposing an approximated factored Bellman
optimality operator, which is a composite mapping of a
linear projection mapping and the Bellman optimality op-
erator. The operator first updates Q-values via Bellman
optimality operator T , and then projects the updated Q-
values into the restricted factored Q-function space, which
is inspired by approximate dynamic programming (Geram-
ifard et al., 2013; Guestrin et al., 2001). In our algorithm
implementation, we actually leverage neural network ap-
proximation and gradient update via backpropagation to
implicitly perform the composite mapping. To define the
projection mapping G, in Appendix A.2 we prove that the
factored Q-function space is a linear subspace. Then, we de-
fine a normalized linear projection mapping onto the closed
subspace by G := PQ̂/∥PQ̂∥∞, which is motivated by pre-
vious work (Szita & Lorincz, 2008). The projection matrix
PQ̂ is defined by solving an optimization problem PQ̂Q :=

argminQ̂∈Q̂

∥∥∥Q̂−Q
∥∥∥
2

for any given vector Q ∈ Q (Szita
& Lorincz, 2008). Therefore, our approximated factored
Bellman optimality operator takes the form of T̂ := GT .
We first show it is a contraction mapping under the norm
∥ · ∥∞ i.e.

∥∥∥T̂ [Q̂1]− T̂ [Q̂2]
∥∥∥
∞

≤ γ
∥∥∥Q̂1 − Q̂2

∥∥∥
∞

for any

Q̂1, Q̂2 ∈ Q̂ in Appendix A.4.

As the operator is a contraction operator on linear subspace
Q̂ under norm ∥ · ∥∞, we can find a unique fixed point Q̂∗

such that T̂ [Q̂∗] = Q̂∗. Then we show an error bound be-
tween the fixed point Q̂∗ and the optimal Q-value function.

Theorem 4.1. (Error Bound) Let Q∗ be the true optimal
Q-value function, then we have∥∥∥Q̂∗ −Q∗

∥∥∥
∞

≤
∥GQ∗ −Q∗∥∞

1− γ
≤ 2R

(1− γ)
2 (1)

where γ ∈ [0, 1) is the discounted factor, R is the upper
bound of rewards.

The Theorem suggests the following. First, the error bound
is directly proportional to the projection error of Q∗, which
can potentially be small. Second, the upper bound of the
error can be constrained to a constant value.

(d) Restore-Then-Explore To promote efficient explo-
ration for high sample efficiency, we propose a restore-
then-explore strategy, which is inspired by Ecoffet et al.
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(2021). This approach begins by restoring an elite state at
the beginning of each episode and subsequently explores
the environment using a novelty-seeking exploration bonus.
We defer details to Appendix F.4.

4.3. Discussion on HAVE
We first discuss additional advantages of HAVE. Then, we
discuss the potential applications of HAVE in addressing
other combinatorial optimization (CO) problems. (1) Ad-
vantages First, HAVE proposes a shared encoder archi-
tecture and a data sharing mechanism to share knowledge
across tasks, which is a simple yet effective approach to
exploit common properties among related tasks. Second,
HAVE proposes a restore-then-explore strategy to recycle
visited high-performance states, thereby promoting efficient
exploration. The idea has been shown successful in hard
exploration Atari games (Ecoffet et al., 2021). (2) General-
ity In the hardware design domain, while our experiments
focused on the multiplier design task, our approach is ap-
plicable to numerous other hardware design problems with
similar characteristics. These problems include the design of
prefix adders, leading zero detectors, and priority encoders.
In the machine learning domain, our proposed hierarchical
adaptive MTRL framework provides a novel concept for
general multi-objective reinforcement learning. Moreover,
the factored Q-value update is applicable to any decision-
making problem with a combinatorial action space, which
has broad applicability in addressing CO problems.

5. Experiments
Our experiments consist of four main parts. (1) We evalu-
ate HAVE by designing multipliers across a large range of
sizes. (2) We perform carefully designed ablation studies to
provide further insight into HAVE. (3) We evaluate whether
multipliers designed by HAVE can well generalize to large
macros widely used in DNN accelerators. (4) We perform
visualization experiments and explainability analysis.

Experimental Setup Throughout all experiments, we use
the OpenROAD flow (Ajayi & Blaauw, 2019) with NanGate
45nm open-cell library (Nangate Inc., 2008) to synthesize
circuits, and use OpenSTA (Parallax Software Inc.) to per-
form timing analysis, which follows previous work (Zuo
et al., 2023). These tools are state-of-the-art open-source
EDA tools, and are widely used in research of EDA (Kahng,
2021; Tan et al., 2021; Pilipović et al., 2021). We train our
method with SGD (Ruder, 2016) using the PyTorch (Paszke
et al., 2019). For fair comparison, we train all methods for
5000 steps in all experiments. Moreover, we set the number
of generated preferences each time N as four throughout
all experiments. We apply our method to eight multiplier
design problems, i.e., designing multipliers with 8-bit, 16-
bit, 32-bit, and 64-bit based on AND gate-based and Booth
encoding-based PPG, respectively.

Baselines Our baselines include five widely used human-
designed, traditional algorithmic, and state-of-the-art
(SOTA) learning-based approaches. (1) Wallace Tree (Wal-
lace, 1964) is a classical human-designed compression al-
gorithm. (2) GOMIL (Xiao et al., 2021) is an algorithmic
method based on integer programming. (3) RL-MUL (Zuo
et al., 2023) is a SOTA RL based method. In addition, we
implement two learning-based methods. (4) Random uses a
random agent to explore the multiplier design space. (5) RL-
Scalar is the linear scalarized RL-MUL algorithm used in
(Roy et al., 2021) instead of using the pareto-driven reward.

Evaluation Metrics We use two evaluation metrics to com-
pare our method with baselines. First, we visualize the
approximated Pareto front in terms of the area and delay for
multipliers designed by our method and baselines. Second,
we use the hypervolume of the approximated Pareto front.
We provide details in Appendix C.

Experiment 1. Main Evaluation To demonstrate the supe-
riority of HAVE, we compare HAVE with five competitive
baselines on eight multiplier design problems across a wide
range of input sizes. The results in Figure 2 demonstrate that
multipliers designed by HAVE consistently and significantly
Pareto-dominate designs found by all baselines on eight mul-
tiplier design problems. In particular, multipliers designed
by HAVE achieve a maximum delay reduction of 10% and
a maximum area reduction of 7.93% (see Appendix G.2).
Moreover, we report the hypervolume of their found Pareto
front in Tables 3 and 4 in Appendix G.2. The results demon-
strate that HAVE significantly outperforms the baselines in
terms of hypervolume, improving the hypervolume by up
to 89.05% compared to Wallace, and 28.08% compared to
the SOTA RL-MUL. Overall, the results demonstrate that
HAVE efficiently approximates the Pareto front, achieving
a significant reduction in both area and delay of multipliers.

Experiment 2. Ablation Study To understand the con-
tribution of main components in HAVE, we perform an
ablation study on multiplier design problems with 8-bit, 16-
bit and 32-bit input widths. The path from RL-MUL (Zuo
et al., 2023) to HAVE comprises four main components:
restore-then-explore strategy (R), factored Q-value update
(F), multi-task learning (M), and hierarchical meta-agent
(H). To provide insight into the effects behind these compo-
nents, we build three methods, i.e., the intermediate steps
on the incremental path from RL-MUL to HAVE. (1) R is
RL-MUL with the restore-then-explore strategy for efficient
exploration. (2) FR is R with the factored Q-function learn-
ing. (3) MFR is FR with a static multi-task learning method.
(4) HAVE=HMFR is MFR with the hierarchical meta-agent.
The results in Table 1 demonstrate that each component in
HAVE plays an important role in improving the hypervol-
ume of found Pareto front, especially on multiplier design
problems with large input widths. First, R outperforms
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Figure 2. The results demonstrate that multipliers designed by HAVE consistently and significantly Pareto-dominate designs found by all
five baselines on eight multiplier design problems.
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Figure 3. The results demonstrate that PE arrays designed by HAVE consistently and significantly Pareto-dominate designs found by all
five baselines on eight multiplier design problems.

RL-MUL on multiplier design problems with 32-bit input
widths, demonstrating the importance of promoting efficient
exploration on large multipliers. Second, FR significantly
outperforms R, demonstrating the superiority of the factored
Q-value update method. Third, MFR further improves FR,
suggesting that exploiting common properties among mul-
tiplier optimization problems with diverse preferences is
important. Finally, HAVE outperforms MFR, demonstrat-
ing that the hierarchical framework is important for efficient
exploration of both preference and design space.

Experiment 3. Generalization to Large Circuits To eval-
uate whether multiplier units designed by HAVE can well
generalize to large-scale real-world computing circuits with
many multiplier units, we deploy multipliers designed by
HAVE and baselines into Processing Element (PE) arrays
(Park & Chung, 2020; Son et al., 2023), which follows pre-

16-bit Booth 32-bit Booth

Method Hypervolume↑ Improvement(%)↑ Hypervolume↑ Improvement(%)↑

Wallace 220.08 NA 1646.54 NA
RL-MUL 376.05 70.87 2272.40 38.01

R 373.50 69.71 2329.80 41.50
FR 397.32 80.53 2395.31 45.48

MFR 410.34 86.45 2409.01 46.31
HAVE (Ours) 416.07 89.05 2414.17 46.62

Table 1. The results demonstrate that each component in HAVE
plays an important role in improving area and delay of multipliers.

vious work (Zuo et al., 2023). The PE array contains a large
number of multipliers, and is widely used in parallel com-
puting tasks and large-scale data processing, such as Deep
Neural Network (DNN) accelerators. The results in Figure
3 demonstrate that the PE array with multipliers designed
by HAVE consistently and significantly Pareto-dominate PE
arrays with multipliers found by baselines. In particular, PE
arrays designed by HAVE achieve a maximum delay reduc-
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8-bit Booth 16-bit Booth
Metrics Wallace HAVE Wallace HAVE

3:2 Num 29 26 121 119
2:2 Num 13 17 64 15

Total Num 42 43 185 134
Stage Num 3 4 5 4

Minimum Delay 0.9652 0.9117 1.4980 1.3593
Minimum Area 527 521 1867 1723

Table 2. We provide statistics for two typical compressor tree cases,
including the number of 3:2 and 2:2 compressors, the minimum
area, and the minimum delay.

tion of 10.26% and a maximum area reduction of 6.66%
(see Table 8 and Table 9 in Appendix G.4). Moreover, we
report the hypervolume of their found Pareto frontiers in
Tables 10 and 11 in Appendix G.4. The results demon-
strate that HAVE significantly outperforms the baselines
in terms of hypervolume, improving the hypervolume by
up to 84.79% compared to Wallace, and 28.84% compared
to the SOTA RL-MUL. Overall, the results demonstrate
that HAVE can well generalize to large-scale computation-
intensive circuits, thus significantly reducing the area and
delay of real-world computing circuits.

Experiment 4. Visualization and Explainability Analysis
To provide further insight into the design mechanism learned
by HAVE, we visualize the compressor tree architectures
designed by HAVE and Wallace. Due to limited space, we
provide visualization results on multiplier design problems
in Appendix G.5. Moreover, we provide statistic results for
explainability analysis in Table 2. These results suggest the
following. (1) As shown in Table 2, the compressor trees
designed by HAVE reduces the number of compressors and
stages on multipliers with 16 bits input width, which im-
proves the area and delay of multipliers. This is in line
with the experience of experts, and thus the results suggest
that HAVE effectively learns the expert-knowledge. (2) As
shown in Table 2, the results reveal that certain compres-
sor trees generated by HAVE exhibit a paradoxical trend:
despite comprising a greater number of stages and compres-
sors, they manifest reduced delay and area. This discrepancy
highlights the distinction between analytical evaluation met-
rics and physical synthesis metrics, thereby emphasizing
the importance of employing reinforcement learning for
optimizing multipliers with synthesis in the loop.

6. Conclusion
In this paper, we address the challenge of efficiently ex-
ploring and finding the optimal design of multipliers. We
propose a novel hierarchical pareto-driven adaptive (HAVE)
multi-task reinforcement learning framework. Specially,
HAVE is composed of a meta-agent and an adaptive multi-
task agent that can efficiently approximate a set of Pareto-
optimal designs for the entire multiplier preference space
in a single training. As compared to the existing SOTA

RL-MUL method, HAVE significantly improves the hyper-
volume by up to 28.08%. In the future, we will try to extend
our framework to more electronic design tasks.
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A. Theoretical Analysis
A.1. An Example for Q-Value Function Associated with Sub-Action Space

For a simple example with L = 2 and S =
{
s(1)

}
,A1 =

{
a(1,1), a(1,2)

}
, A2 =

{
a(2,1), a(2,2)

}
, for any function

Q1(s,a) : S ×A → R associated with A1, it’s vectored form

Q1 =


Q1

(
s(1),

(
a(1,1), a(2,1)

))
Q1

(
s(1),

(
a(1,1), a(2,2)

))
Q1

(
s(1),

(
a(1,2), a(2,1)

))
Q1

(
s(1),

(
a(1,2), a(2,2)

))


Now since the value of Q1(s,a) has nothing to do with sub-action a2 ∈ A2, therefore this vector always has the form like
[a, a, b, b]T . Similarly, the vector of any function associated with A2 has the form of [c, d, c, d]T .

A.2. Useful Lemmas

Lemma A.1. Set Ql associated with sub-action space Al is defined by

Ql :=
{
Q ∈ Q | Q[s,(a1,...,al,...,aL)] = Q̃l[s,al]

}
(2)

where sub-action al traverses the set Al and ∀aj ∈ Aj , j ̸= l,∀s ∈ S. Then Ql is a linear subspace of Q := R|S||A|×1.

Proof. From definition of Ql we have ∀Q ∈ Ql, then Q[s,(a1,...,al,...,aL)] = Q[s,(a1′ ,...,al,...,aL′)] ,∀ai, ai′ ∈ Ai, i ̸=
l and al ∈ Al, s ∈ S.

For a sub-action space Al, obviously 0 := (0, 0, . . . , 0)T has zeros in every position and thus 0 ∈ Ql.

Then for any Q1,Q2 ∈ Ql we have ∀ai, ai′ ∈ Ai, i ̸= l and ∀al ∈ Al, s ∈ S

(Q1 +Q2)[s,(a1,...,al,...,aL)] = Q1[s,(a1,...,al,...,aL)] +Q2[s,(a1,...,al,...,aL)]

= Q1[s,(a1′ ,...,al,...,aL′)] +Q2[s,(a1′ ,...,al,...,aL′)]

= (Q1 +Q2)[s,(a1′ ,...,al,...,aL′)]

Therefore Q1 +Q2 ∈ Ql. Finally, ∀Q ∈ Ql and λ ∈ R we have ∀ai, ai′ ∈ Ai, i ̸= l and ∀al ∈ Al, s ∈ S

(λQ)[s,(a1,...,al,...,aL)] = λQ[s,(a1,...,al,...,aL)]

= λQ[s,(a1′ ,...,al,...,aL′)]

= (λQ)[s,(a1′ ,...,al,...,aL′)]

Therefore λQ ∈ Ql.

Since Q is a linear space, so set Ql is a linear subspace of Q

Lemma A.2. The restricted Q-function space Q̂ defined by

Q̂ :=

{
Q ∈ Q

∣∣∣∣ Q =

L∑
l=1

Ql where Ql ∈ Ql

}
(3)

is a linear subspace of Q := R|S||A|×1.

Proof. 0 = 0+ 0+ · · ·+ 0 and 0 ∈ Ql for l = 1, 2, . . . , L, then 0 ∈ Q̂.
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Then, for any Q(1),Q(2) ∈ Q̂, there exists Q
(1)
l ∈ Ql, Q

(2)
l ∈ Ql, l = 1, 2, . . . , L such that Q(1) =

L∑
l=1

Q
(1)
l and

Q(2) =

L∑
l=1

Q
(2)
l .

Therefore, we have Q(1) +Q(2) =

L∑
l=1

[
Q

(1)
l +Q

(2)
l

]
. Since Ql is a linear subspace, therefore Q

(1)
l +Q

(2)
l ∈ Ql, l =

1, 2, . . . , L. According to definition, Q(1) +Q(2) ∈ Q̂.

Finally, for any Q ∈ Q̂, λ ∈ R, there exists Ql ∈ Ql, l = 1, 2, . . . , L such that λQ = λ

L∑
l=1

Ql =

L∑
l=1

λQl. Since Ql is a

linear subspace, therefore λQl ∈ Ql, l = 1, 2, . . . , L. Then according to definition, we have λQ ∈ Q̂.

Since Q is a linear space, so set Q̂ is a linear subspace of Q

A.3. An example for Q̂ is a proper subspace of Q

There exists cases that Q̂ is a proper subspace of Q, i.e. dimQ̂ < dimQ. Let L = 2 and S =
{
s(1)

}
,A1 ={

a(1,1), a(1,2)
}
, A2 =

{
a(2,1), a(2,2)

}
, for any function Q(s,a) : S ×A → R, it’s vectored form

Q =


Q
(
s(1),

(
a(1,1), a(2,1)

))
Q
(
s(1),

(
a(1,1), a(2,2)

))
Q
(
s(1),

(
a(1,2), a(2,1)

))
Q
(
s(1),

(
a(1,2), a(2,2)

))


As discussed in Appendix A.1, vectors in Q1 has the form like [a, a, b, b]T , so we can easily find a set of basis
h1 = [1, 1, 0, 0]T , h2 = [0, 0, 1, 1]T ; vectors in Q2 has the form like [c, d, c, d]T , then a set of basis can be
h3 = [1, 0, 1, 0]T , h4 = [0, 1, 0, 1]T . Now we construct a new matrix H := (h1, h2, h3, h4). According to defi-
nition, Q̂ is the column space of H. Now that

dimQ̂ = rankH = rank


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

 = 3

However, the dimension of space Q = R4×1 is 4. Thus Q̂ is a proper subspace of Q. For example vector [1, 0, 0, 0]T /∈ Q̂.
Consequently, subsapce Q̂ carries less information than the original space Q.

A.4. Theorem that approximated factored Bellman optimality operator T̂ is a contraction mapping

Theorem A.3. (Contraction Mapping) Approximated factored Bellman optimality operator T̂ is a contraction mapping
under the norm ∥ · ∥∞, i.e. ∀Q̂1, Q̂2 ∈ Q̂,∥∥∥T̂ [Q̂1]− T̂ [Q̂2]

∥∥∥
∞

≤ γ
∥∥∥Q̂1 − Q̂2

∥∥∥
∞

(4)

where γ ∈ [0, 1) is the discounted factor.

Proof. It has been proved that Bellman optimality operator T is a contracted operator in the sense of the infinity norm
∥ · ∥∞(Agarwal et al., 2019):

∥T [Q1]− T [Q2]∥∞ ≤ γ ∥Q1 −Q2∥∞
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For any Q̂1, Q̂2 ∈ Q̂

∥∥∥T̂ (Q̂1)− T̂ (Q̂2)
∥∥∥
∞

=
∥∥∥GT (Q̂1)−GT (Q̂2)

∥∥∥
∞

=
∥∥∥G[T (Q̂1)− T (Q̂2)]

∥∥∥
∞

≤ ∥G∥∞
∥∥∥T (Q̂1)− T (Q̂2)

∥∥∥
∞

=
∥∥∥T (Q̂1)− T (Q̂2)

∥∥∥
∞

≤ γ
∥∥∥Q̂1 − Q̂2

∥∥∥
∞

A.5. Proof for Theorem 4.1

Assume that scalared reward function is bounded: |wT r(s, a|d)| ≤ R, then we have the following inequality

∥∥∥Q̂∗ −Q∗
∥∥∥
∞

≤
∥GQ∗ −Q∗∥∞

1− γ
≤ 2R

(1− γ)
2 (5)

where T̂ [Q̂∗] = Q̂∗, Q∗ = T [Q∗] are fixed points of either Bellman optimality operators, and γ ∈ [0, 1) is the discounted
factor of MDP.

Proof.

∥∥∥Q̂∗ −Q∗
∥∥∥
∞

=
∥∥∥T̂ (Q̂∗)− T (Q∗)

∥∥∥
∞

=
∥∥∥T̂ (Q̂∗)− T̂ (Q∗) + T̂ (Q∗)− T (Q∗)

∥∥∥
∞

≤
∥∥∥T̂ (Q̂∗)− T̂ (Q∗)

∥∥∥
∞

+
∥∥∥T̂ (Q∗)− T (Q∗)

∥∥∥
∞

=
∥∥∥GT (Q̂∗)−GT (Q∗)

∥∥∥
∞

+ ∥GT (Q∗)− T (Q∗)∥∞

=
∥∥∥G [

T (Q̂∗)− T (Q∗)
]∥∥∥

∞
+ ∥GQ∗ −Q∗∥∞

≤ ∥G∥∞
∥∥∥T (Q̂∗)− T (Q∗)

∥∥∥
∞

+ ∥GQ∗ −Q∗∥∞

=
∥∥∥T (Q̂∗)− T (Q∗)

∥∥∥
∞

+ ∥GQ∗ −Q∗∥∞

≤ γ
∥∥∥Q̂∗ −Q∗

∥∥∥
∞

+ ∥GQ∗ −Q∗∥∞

After rearranging, we obtain that

∥∥∥Q̂∗ −Q∗
∥∥∥
∞

≤
∥GQ∗ −Q∗∥∞

1− γ
≤

∥G− I∥∞ ∥Q∗∥∞
1− γ

≤ 2

1− γ
∥Q∗∥∞
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Denote π∗ as the optimal policy, (sm,am) := arg max
(s,a)∈S×A

|Q∗
(s,a)|. Then according to definition of action value function

Q∗:
∥Q∗∥∞ = |Q∗(sm,am|w, d)|

=

∣∣∣∣∣Eπ∗,f

[ ∞∑
t=0

γtwT r(st,at|d)
∣∣∣∣s0 = sm,a0 = am

]∣∣∣∣∣
≤ Eπ∗,f

[∣∣∣∣∣
∞∑
t=0

γtwT r(st,at|d)

∣∣∣∣∣
∣∣∣∣s0 = sm,a0 = am

]

≤ Eπ∗,f

[ ∞∑
t=0

∣∣γtwT r(st,at|d)
∣∣ ∣∣∣∣s0 = sm,a0 = am

]

≤ Eπ∗,f

[ ∞∑
t=0

∣∣γtR
∣∣ ∣∣∣∣s0 = sm,a0 = am

]

=
R

1− γ

where st+1 ∼ f(·|st,at) and at ∼ π∗(·|st). Consequently, we have the maximum approximation error is constrained by:∥∥∥Q̂∗ −Q∗
∥∥∥
∞

≤ 2R

(1− γ)
2

B. Additional Related Work
Multi-Objective Reinforcement Learning Reinforcement learning can be generally divided into model-free (Haarnoja
et al., 2018a; Wang et al., 2023d; Yang et al., 2022; Liu et al., 2024; Wang et al., 2023b; Liu et al., 2021), model-based
(Janner et al., 2019; Liu et al., 2023d; Wang et al., 2022), and offline RL (Hu et al., 2021; Chen et al., 2024a; Jia et al.,
2024; Liu et al., 2023c) approaches. In this paper, our HAVE falls into the model-free category. Roughly speaking, MORL
methods fall into two categories: single-policy and multi-policy approaches. Single-policy approaches (Mannor & Shimkin,
2001; Tesauro et al., 2007) transform a multi-objective problem into a single-objective problem by scalarizing the rewards
based on a given preference between objectives. However, the multiplier optimization problem is a preference-agnostic
problem, and they struggle to find Pareto-optimal circuit designs when preferences are unknown.

Multiplier Circuit Design In general, the approaches for multiplier circuit design fall into three categories as follows. First,
manual designs (Wallace, 1964; Dadda, 1983; Itoh et al., 2005) are obtained by leveraging human expertise architectures
from regular architectures which require high engineering effort. Second, traditional algorithmic methods (Xiao et al.,
2021; Liu et al., 2003; Roy et al., 2013) generate circuit architectures based on particular strategies, such as mathematical
programming and heuristic search. However, they rely on proxy metrics to optimize circuits, such as the size and/or depth
of a circuit, which results in a gap with real end flow. Third, recent methods (Zuo et al., 2023; Roy et al., 2021; Song
et al., 2022) propose to use reinforcement learning to optimize circuits based on the actual evaluation metrics within the
optimization loop, which offers promising approaches to bridge the gap of proxy metrics. However, the existing methods
suffer from inefficient exploration and thus tend to find sub-optimal designs due to the large combinatorial search space and
the intricate balance of multiple conflicting objectives. Moreover, recent work (Song et al., 2023) proposes to use generative
models to generate circuit designs.

Machine Learning for Chip Design As chip complexity has grown exponentially with the development of semiconductor
technology, using machine learning (ML) to assist the automated chip design workflow has been an active topic of significant
interest in recent years (Mirhoseini et al., 2021; Huang et al., 2021; Sánchez et al., 2023; Neto et al., 2021; Lai et al., 2022;
2023). The chip design workflow consists of many stages (Huang et al., 2021; Ren & Hu, 2023), such as high-level synthesis
(Yao et al., 2024; Liu et al., 2022), logic synthesis (Li et al., 2023; Zhu et al., 2023; Li et al., 2024a; Liu et al., 2023a;b),
placement (Lai et al., 2022; 2023; Geng et al., 2024; Chen et al., 2023), design space exploration (Chen et al., 2024b), etc.

Machine Learning for Combinatorial Optimization Optimizing multiplier circuit designs is also essentially a combinato-
rial optimization problem. The use of machine learning to tackle combinatorial optimization problems has been an active
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Figure 4. Multiplier Architecture Details

topic of significant interest in recent years (Bengio et al., 2021; Gasse et al., 2019; Geng et al., 2023; Wang et al., 2023c;
2024b; Ling et al., 2024; Li et al., 2024b; Wang et al., 2021; 2024a; 2023a; Wang & Yu, 2023).

C. More Details of Background
As illustrated in Figure 4, the architecture of the multiplier begins with the Partial Product Generator (PPG), which generates
partial products based on the multiplicand and multiplier. The PPG is comprised of two primary types: one based on AND
gates, as demonstrated by the partial products generated in Figure 4, and the other on Booth encoding. For an Mb ×Nb-bit
multiplier, the AND gate-based PPG uses Mb × Nb AND gates to produce an Nb row (Mb + Nb) column bit matrix.
Similarly, the Booth encoding-based PPG with a radix of r reduces the number of partial products by making a group of r
bits of the multiplier and produces ⌈(Nb + 1)/r⌉ rows of (Mb + 1) bits. Subsequently, the Compressor Tree (CT) utilizes
compressors in multiple stages to parallelly compress the partial products down to only two rows. Therefore, only the
compressor tree structures that leave either one or two partial products in each column by the final stage are considered
legal structures. The CPA is also a key arithmetic circuit used to sum up the two rows and yield the final result. In the
optimization of CPA, we often map it to a prefix computation problem using intermediate generate (G) signals and propagate
(P) signals. In this way, we can parallelly generate the final results, breaking the dependency of serial carry propagation.

RL-MUL uses T ∈ RK×(Mb+Nb)×ST as the state presentation, where K is the total kinds of compressors, ST is the
compress stage number and Nb,Mb are the input width. For an element tkij in T , it indicates the i-th kind of compressors is
used at column j stage i. Given a matrix M ∈ RK×(Nb+Mb) where the element mij denotes the number of i-th compressor
used in column j, RL-MUL gets the T by assign the overall number of compressors into different stages following the
designed scheme. When selecting the action, RL-MUL only considers the legal action that makes the operation at existing
compressors and leads the final production products to 1 or 2. Moreover, the action at column j will influence the column
(j+1) as the carry bit. RL-MUL uses a legalization strategy to refine the state from the column (j+1) to the most significant
bit to ensure the PPs of every line to 1 or 2 after actions.

For an n-objective optimization problem, a solution x Pareto dominates another solution y if x is not worse than y in all
objectives and has at least one strictly better value, i.e., ∀i ∈ [1, n], fi(x) ≤ fi(y) ∧ ∃i ∈ [1, n], fi(x) < fi(y). A Pareto
optimal solution is one that is not dominated by any solution, and the set composed of all Pareto optimal solutions is referred
to as the Pareto optimal solution set. The projection of the Pareto optimal solution set in the objective space is called the
Pareto front. The hypervolume of the Pareto front is the volume of the region within the boundaries defined by reference
points. When reference points are fixed, a Pareto solution set with a larger hypervolume is considered superior.

Definition C.1 (Hypervolume metric). Let P be a Pareto front approximation in an m-dimensional objective space and
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Figure 5. Overview of the hierarchical framework in HAVE with two generated preferences, i.e., N = 2.

contains N solutions. Let r0 ∈ Rm be the reference point. Then, the hypervolume metric is defined as:

H(P, r0) =

∫
Rm

1H(P,r0)(z)dz

, where H(P, r0) = {z ∈ Z|∃1 ≤ i ≤ |P | : r0 ⪯ z ⪯ P (i)}.P (i) is the i-th solution in P , ⪯ is the relation operator of
objective dominance, and 1H(P,r0)is a Dirac delta function that equals 1 if z ∈ H(P, r0) and 0 otherwise.

D. Implementation Details of the Baselines
GOMIL (Xiao et al., 2021) is a global optimization method that simultaneously considers the CT and CPA. The author
provides the open-source C++ code. We can extract the required structure from its solution files.

RL-MUL (Zuo et al., 2023) encodes the state into a tensor T described in Section 3 and Appendix C, using ResNet-18
as the network backbone and training based on the DQN algorithm. Different from the Random method, RL-MUL only
chooses the action randomly in warm-up steps. In future steps, it chooses the action that can maximize the masked Q-value
of the network.

RL-Scalar uses the method called the scalarized deep Q-learning algorithm (Roy et al., 2021), which scalarizes the Q values
with a weight vector ω.

We encode our CT following EasyMAC (Zhang et al., 2022) rules and use it to generate Verilog files. In EasyMAC, a legal
CT can be represented as a sequence sct = p0p1 · · · pr, where each pi = (indexi, typei) signifies the index and type of a
compressor. When converting CT into a sequence, we need to follow the order: from a higher column to a lower column,
from the earlier stage to the next stage, and from a compressor with a larger encoded type to a lower one. Moreover, to
ensure a fair comparison, we uniformly use the default adder provided by the synthesis tool for our CPA implementations.

E. Implementation Details on the Meta Agent
E.1. Overview of HAVE

We provide an overview of HAVE in Figure 5.

E.2. Discussion on the Challenge of Delay Constraints Augmented Preference Space

First, the augmented preference space is much larger than the original preference space due to its combinatorial structure
between weight vectors and delay constraints. Second, in general MORL tasks, the reward function of the environment is
invariant across diverse preferences. In contrast, the reward function significantly varies across different preferences in our
augmented preference space, as the delay constraints significantly impact the reward of the circuit synthesis environment.
Thus, the existing offline preference vector random sampling strategy (Yang et al., 2019; Basaklar et al., 2023) suffers from
inefficient exploration, and can be inapplicable to our problem.

E.3. Designed Meta State Features

To identify which preference region is under-explored, we design the following meta-state features based on Pareto points
distribution. To approximate the Pareto points distribution, we track the evolving Pareto front, and divide the interval
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between the maximum area and minimum area N equally, where N is equal to the number of decomposed preference
spaces. Similarly, we divide the interval between the maximum delay and minimum delay N equally as well. Therefore, we
propose to count the number of Pareto points in each sub-interval to approximate the Pareto points distribution. As a result,
we obtain a 2N -dimensional feature vector. The scarcity of Pareto points necessitates a more frequent exploration of its
corresponding preference space.

E.4. Meta Policy Training

Policy Network Let πm denote the meta policy πm : Sm → P(Am), where P(Am) denotes the probability distribution
over the meta action space, and πm(·|s) denotes the probability distribution over the meta action space given the state s. Note
that the meta action space is a joint action space, and thus the probability πm(am|sm) denotes the joint probability of actions
πm([a1m, . . . , aNm]|sm), where am = [a1m, . . . , aNm], am ∈ Am, and aim ∈ Ai

m, i = 1, . . . N . For simplicity and sample-
efficiency, we assume that the sub-actions a1m, . . . , aNm are conditionally independent, which is commonly used in deep
reinforcement learning (Schulman et al., 2017; Haarnoja et al., 2018b). Therefore, we get πm(am|sm) = ΠN

i=1π
i
m(aim|sm).

To parameterize the meta-policy, we propose to use a multi-head neural network, where each head πθi approximates the
probability distribution πi

m(·|sm). The multi-head neural network is a shared neural network architecture with N heads
branching off independently. To train the meta policy, we use a reinforce algorithm following the well-known policy gradient
theorem (Sutton et al., 1999; Sutton & Barto, 2018). We provide implementation details in Appendix E.

Due to the high cost of collecting rewards in the multiplier optimization environment and the data used to train the meta-agent
being acquired over an extended time scale, our meta-agent must achieve high sample efficiency to acquire an effective
preference generation strategy with limited data. Consequently, we implement two simplifications in the algorithm. Initially,
we simplify the action space. Due to the substantial scale difference between the weight vector and delay constraints, as
well as a consistent relationship existing between delay constraints and the preference for delay, we model the preference
generation problem as a ”learn to refine” problem, initiating with a key preference and iteratively refining it. Specifically,
we reduce the action space for each sub-preference space to two actions: 0 and 1. Action 0 signifies an increase in the
preference for delay, whereas action 1 indicates a decrease in the preference for delay. Secondly, we simplify the problem
into a single-step contextual bandit problem, with each episode having a length of 1.

Based on the above simplified problem modeling, we use softmax distribution to model the policy on each sub-action space
πi
m(aim|sm). Specifically, we use a multi-head neural network to parameterize the joint policy πθm(am|sm), where the i-th

head models the softmax distribution πθi
m
(aim|sm). The multi-head neural network contains two hidden layers with 128

units and the ReLu activation function. Finally, based on the above parameterization policy, we use the reinforce algorithm
for training. We use Adam as the optimizer and use a learning rate of 1e-3.

F. Implementation Details on the Adaptive Multi-Task Agent
F.1. Hardware Specification

Our experiments were executed on a Linux-based system equipped with a 3.60 GHz Intel Xeon Gold 6246R CPU and
NVIDIA RTX 3090 GPU.

F.2. Synthesis Tool Setup

Nangate45 is a widely used standard cell library in the semiconductor industry. It is open source and free, and we can obtain
it at https://silvaco.com/services/library-design/. Readers can refer to https://github.com/
The-OpenROAD-Project/OpenROAD-flow-scripts, seeking the artifact of OpenROAD flow matched with the
distribution. EasyMAC is a MAC generator based on Chisel, which takes a sequence representation encoded by its rules
as input to generate the Verilog code. We can directly download the code at https://github.com/pku-dasys/
easymac. One thing to note is that the code can only generate the MAC based on AND-Gate. So we implement the code
to gain the multiplier based on booth-encoding.

F.3. Q-Network Architecture

We use the ResNet-18 as the image encoder, and use a non-parametric normalize layer as the preference encoder. In terms of
the preference encoder, We normalize the delay constraints to the range [0,1] by dividing by the maximum delay constraint.
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Figure 6. We visualize the area-delay curves for a multiplier designed by Wallace (Wallace, 1964) or GOMIL (Xiao et al., 2021) with
increasing synthesis-related delay constraints from a 3D perspective

Then, our multi-head decoder is comprised of multiple multi-layer perceptrons (MLPs). Each MLP contains two hidden
layers with 256 units and the ReLu activation function. To train the Q-network asynchronously, we use an individual SGD
optimizer for each thread, and set the learning rate as 1e-2.

F.4. Details on the Restore then Explore

Specifically, we formulate the environment as a restorable environment, and maintain an elite pool to store visited states
with high area/delay. At the beginning of each episode, we restore to a state sampled from this elite pool. Then, we propose
to encourage the agent to explore unvisited states by a novelty-seeking exploration bonus. For simplicity in implementation,
we instantiate the restoring strategy as a randomly sampling strategy, and the novelty-seeking exploration bonus as the
random network distillation (Burda et al., 2019).

G. More Results
G.1. More Motivating Results

Figure 6 illustrates the area and delay of multipliers vary with the delay constraints from a 3D perspective.

G.2. More Results of Main Evaluation

More details about the minimum area and delay of multipliers can be found at Tables 5 and 6. Through the table, we observe
that HAVE achieves the minimum area and delay on each circuit. A noteworthy point is that HAVE and RL-MUL achieve
the same performance on the 8-bit booth circuit. We attribute this to the relatively small design space of the 8-bit, making it
easier to find the optimal solution. As the design space expands with the increase in scale, the superiority of HAVE which
can more efficiently explore and extend the Pareto frontier becomes more pronounced. Especially in 64-bit booth, it can
reduce 13.4% on delay and save 9.1% area.

G.3. More Results of Ablation Study

Figure 7 shows the Pareto front of the ablation study. We can find HAVE dominates other methods. And with the increase of
the components from RL-MUL to HAVE, the hypervolume continues to grow except for the special case in 8-bit Booth.
Table 7 records more details about the hypervolume of 8-booth design tasks compared to Table 1.
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8-bit And 16-bit And 32-bit And 64-bit And

Method Hypervolume↑ Improvement(%)↑ Hypervolume↑ Improvement(%)↑ Hypervolume↑ Improvement(%)↑ Hypervolume↑ Improvement(%)↑

Wallace 132 NA 288.53 NA 1805.96 NA 7681.4 NA
GOMIL 130.57 -1.08 301.97 4.66 2229.72 23.46 10312.9 34.26
Random 150.92 14.33 352.01 22.00 2104.02 16.50 8256.41 7.49
RL-MUL 160.84 21.85 433.74 50.33 2543.06 40.81 9663.56 25.80
RL-Scalar 160.84 21.85 434.36 50.54 2528.65 40.02 10136.81 31.97

Have (Ours) 165.08 25.06 469.10 62.58 2970.43 64.48 11820.00 53.88

Table 3. We calculate the hypervolume of multipliers based on And-Gate. The results demonstrate that HAVE has the largest hypervolume.
HAVE produces 16.80% more hypervolume than RL-MUL on average and improves by up to 28.08% compared to RL-MUL, and
64.48% compared to Wallace.

8-bit Booth 16-bit Booth 32-bit Booth 64-bit Booth

Method Hypervolume↑ Improvement(%)↑ Hypervolume↑ Improvement(%)↑ Hypervolume↑ Improvement(%)↑ Hypervolume↑ Improvement(%)↑

Wallace 159.89 NA 220.08 NA 1646.54 NA 6756.84 NA
GOMIL 164.42 2.83 285.34 29.65 1777.03 7.93 9459.48 40.00
Random 184.89 15.64 321.74 46.19 1925.95 16.97 7329.6 8.48
RL-MUL 187.48 17.26 376.05 70.87 2272.4 38.01 8952.24 32.49
RL-Scalar 187.48 17.26 369.06 67.69 2263.41 37.46 8642.18 27.90

Have (ours) 187.48 17.26 416.07 89.05 2414.17 46.62 10544.18 56.05

Table 4. We calculate the hypervolume of multipliers based on Booth-encoding.The results demonstrate that HAVE has the largest
hypervolume. HAVE produces 12.59% more hypervolume than RL-MUL on average and improves by up to 23.56% compared to
RL-MUL, and 89.05% compared to Wallace.

G.4. More Results of Generalization

Tables 10 and 11 shows the hypervolume of PE arrays. And Tables 8 and 9 records the minimum area and delay found by
each method across circuits of different scales.

G.5. More Results of Visualization

In this part, we present visualizations of the compressor trees generated by HAVE and Wallace method. Additionally,
Table 12 provides statistics on the number of 3:2 and 2:2 compressors, minimum area, and minimum delay for each
compressor tree, facilitating a more comprehensive comparison. In the figure, blue boxes represent compressors common to
both CTs, while red rounded boxes represent compressors unique to each CT. Figures 8 to 11 shows the visualization of
compressor tree on 8-bit and, 8-bit booth, 16-bit and, 16-bit booth.
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8-bit And 16-bit And

Method Min Area(µm2) ↓ Improvement(%)↑ Min Delay(ns) ↓ Improvement(%)↑ Min Area(µm2) ↓ Improvement(%)↑ Min Delay(ns) ↓ Improvement(%)↑

Wallace 429 NA 0.69 NA 1828 NA 1.26 NA
GOMIL 404 5.83 0.74 -7.25 1705 6.73 1.31 -3.97
Random 404 5.83 0.67 2.90 1787 2.24 1.21 3.97
RL-MUL 397 7.46 0.65 5.80 1769 3.23 1.15 8.73
RL-Scalar 397 7.46 0.65 5.80 1769 3.23 1.15 8.73

Have (ours) 397 7.46 0.64 7.25 1686 7.77 1.15 8.73
32-bit And 64-bit And

Method Min Area(µm2) ↓ Improvement(%)↑ Min Delay(ns) ↓ Improvement(%)↑ Min Area(µm2) ↓ Improvement(%)↑ Min Delay(ns) ↓ Improvement(%)↑

Wallace 7442 NA 2.27 NA 29736 NA 2.95 NA
GOMIL 7034 5.48 2.24 1.32 28567 3.93 2.82 4.41
Random 7401 0.55 2.22 2.20 29728 0.03 2.9 1.69
RL-MUL 7334 1.45 2.13 6.17 29636 0.34 2.78 5.76
RL-Scalar 7371 0.95 2.13 6.17 29702 0.11 2.74 7.12

Have (ours) 7015 5.74 2.08 8.37 28561 3.95 2.68 9.15

Table 5. We record the minimum area and delay of multipliers based on And-Gate. The results demonstrate that HAVE achieves the
minimum area and delay on each circuit design task. Multipliers designed by HAVE achieve a maximum delay reduction of 9.15% and a
maximum area reduction of 7.77% compared to Wallace.

8-bit Booth 16-bit Booth

Method Min Area(µm2) ↓ Improvement(%)↑ Min Delay(ns) ↓ Improvement(%)↑ Min Area(µm2) ↓ Improvement(%)↑ Min Delay(ns) ↓ Improvement(%)↑

Wallace 527 NA 0.96 NA 1867 NA 1.5 NA
GOMIL 517 1.90 0.96 0 1755 6.00 1.49 0.67
Random 519 1.52 0.9 6.25 1816 2.73 1.41 6.00
RL-MUL 514 2.47 0.9 6.25 1768 5.30 1.37 8.67
RL-Scalar 514 2.47 0.9 6.25 1782 4.55 1.37 8.67

Have (ours) 514 2.47 0.9 6.25 1719 7.93 1.35 10.00
32-bit Booth 64-bit Booth

Method Min Area(µm2) ↓ Improvement(%)↑ Min Delay(ns) ↓ Improvement(%)↑ Min Area(µm2) ↓ Improvement(%)↑ Min Delay(ns) ↓ Improvement(%)↑

Wallace 6539 NA 2.51 NA 24647 NA 3.13 NA
GOMIL 6270 4.11 2.52 -0.40 23782 3.51 2.95 5.75
Random 6535 0.06 2.44 2.79 24626 0.09 3.09 1.28
RL-MUL 6447 1.41 2.35 6.37 24542 0.43 2.92 6.71
RL-Scalar 6461 1.19 2.35 6.37 24583 0.26 2.94 6.07

Have (ours) 6257 4.31 2.35 6.37 23773 3.55 2.85 8.95

Table 6. We record the minimum area and delay of multipliers based on Booth-encoding. The results demonstrate that HAVE achieves the
minimum area and delay on each circuit design task. Multipliers designed by HAVE achieve a maximum delay reduction of 10% and a
maximum area reduction of 7.93% compared to Wallace.
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Figure 7. The results demonstrate that the multipliers designed by HAVE Pareto dominate designs by the methods with the increase of
components from RL-MUL to HAVE. It shows each component plays an important role in HAVE.
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8-bit Booth 16-bit Booth 32-bit Booth

Method Hypervolume↑ Improvement(%)↑ Hypervolume↑ Improvement(%)↑ Hypervolume↑ Improvement(%)↑

Wallace 159.89 NA 220.08 NA 1646.54 NA
RL-MUL 187.48 17.26 376.05 70.87 2272.40 38.01

R 187.48 17.26 373.50 69.71 2329.80 41.50
FR 187.48 17.26 397.32 80.53 2395.31 45.48

MFR 187.48 17.26 410.34 86.45 2409.01 46.31
HAVE (Ours) 187.48 17.26 416.07 89.05 2414.17 46.62

Table 7. We calculate the hypervolume of the R, FR, and MFR, compared with Wallace, RL-MUL and HAVE. The results demonstrate
that each component in HAVE plays an important role in improving the area and delay of designed multipliers.

8-bit And 16-bit And

Method Min Area(µm2) ↓ Improvement(%)↑ Min Delay(ns) ↓ Improvement(%)↑ Min Area(µm2) ↓ Improvement(%)↑ Min Delay(ns) ↓ Improvement(%)↑

Wallace 154646 NA 0.69 NA 555527 NA 1.29 NA
GOMIL 148245 4.14 0.74 -7.25 524067 5.66 1.34 -3.88
Random 146406 5.33 0.72 -4.35 545040 1.89 1.25 3.10
RL-MUL 144500 6.56 0.71 -2.90 540546 2.70 1.18 8.53
RL-Scalar 144500 6.56 0.71 -2.90 540546 2.70 1.18 8.53

Have (ours) 144500 6.56 0.68 1.45 519164 6.55 1.18 8.53
32-bit And 64-bit And

Method Min Area(µm2) ↓ Improvement(%)↑ Min Delay(ns) ↓ Improvement(%)↑ Min Area(µm2) ↓ Improvement(%)↑ Min Delay(ns) ↓ Improvement(%)↑

Wallace 2081967 NA 2.3 NA 7967982 NA 2.97 NA
GOMIL 1977644 5.01 2.27 1.30 7668903 3.75 2.85 4.04
Random 2071617 0.50 2.25 2.17 7965938 0.03 2.93 1.35
RL-MUL 2054320 1.33 2.16 6.09 7942377 0.32 2.82 5.05
RL-Scalar 2063990 0.86 2.16 6.09 7959401 0.11 2.76 7.07

Have (ours) 1972741 5.25 2.11 8.26 7667270 3.77 2.71 8.75

Table 8. We record the minimum area and delay of PE arrays based on And-Gate. The results demonstrate that HAVE achieves the
minimum area and delay on each circuit design task. PE arrays designed by HAVE achieve a maximum delay reduction of 8.75% and a
maximum area reduction of 6.56% compared to Wallace.

8-bit Booth 16-bit Booth

Method Min Area(µm2) ↓ Improvement(%)↑ Min Delay(ns) ↓ Improvement(%)↑ Min Area(µm2) ↓ Improvement(%)↑ Min Delay(ns) ↓ Improvement(%)↑

Wallace 179773 NA 0.96 NA 566559 NA 1.56 NA
GOMIL 177050 1.51 0.96 0.00 537822 5.07 1.53 1.92
Random 177731 1.14 0.95 1.04 553484 2.31 1.45 7.05
RL-MUL 176232 1.97 0.95 1.04 541363 4.45 1.4 10.26
RL-Scalar 176232 1.97 0.95 1.04 545040 3.80 1.41 9.62

Have (ours) 176232 1.97 0.95 1.04 528834 6.66 1.4 10.26
32-bit Booth 64-bit Booth

Method Min Area(µm2) ↓ Improvement(%)↑ Min Delay(ns) ↓ Improvement(%)↑ Min Area(µm2) ↓ Improvement(%)↑ Min Delay(ns) ↓ Improvement(%)↑

Wallace 1852756 NA 2.55 NA 6667144 NA 3.21 NA
GOMIL 1783843 3.72 2.56 -0.39 6445695 3.32 3.03 5.61
Random 1851666 0.06 2.48 2.75 6661696 0.08 3.15 1.87
RL-MUL 1829195 1.27 2.39 6.27 6628328 0.58 2.98 7.17
RL-Scalar 1832736 1.08 2.39 6.27 6650664 0.25 3.02 5.92

Have (ours) 1781391 3.85 2.39 6.27 6443516 3.35 2.92 9.03

Table 9. We record the minimum area and delay of PE arrays based on Booth-encoding. The results demonstrate that HAVE achieves the
minimum area and delay on each circuit design task. PE arrays designed by HAVE achieve a maximum delay reduction of 10.26% and a
maximum area reduction of 6.66% compared to Wallace.
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8-bit Booth 16-bit Booth 32-bit Booth 64-bit Booth

Method Hypervolume↑ Improvement(%)↑ Hypervolume↑ Improvement(%)↑ Hypervolume↑ Improvement(%)↑ Hypervolume↑ Improvement(%)↑

Wallace 5696.41 NA 57374.84 NA 231219.68 NA 1091876.15 NA
GOMIL 6080.86 6.75 76522.14 33.37 265519.94 14.83 1635968.26 49.83
Random 6393.49 12.24 81141.03 41.42 279267.53 20.78 1234913.46 13.10
RL-MUL 6612.47 16.08 95165.82 65.87 339493.71 46.83 1578633.59 44.58
RL-Scalar 6612.47 16.08 94687.18 65.03 337335.67 45.89 1444434.37 32.29

HAVE (Ours) 6612.47 16.08 106023.81 84.79 372530.40 61.12 1877712.31 71.97

Table 10. We calculate the hypervolume of the PE arrays based on Booth-encoding. The results demonstrate that HAVE has the largest
hypervolume. HAVE produces 15.15% more hypervolume than RL-MUL on average and improves by up to 27.39% compared to
RL-MUL, and 84.79% compared to Wallace.

8-bit And 16-bit And 32-bit And 64-bit And

Method Hypervolume↑ Improvement(%)↑ Hypervolume↑ Improvement(%)↑ Hypervolume↑ Improvement(%)↑ Hypervolume↑ Improvement(%)↑

Wallace 12511.29 NA 65613.28 NA 344411.77 NA 1493414.77 NA
GOMIL 12010.85 -4.00 68372.12 4.20 450624.39 30.84 2124466.84 42.26
Random 13313.25 6.41 80213.58 22.25 402589.87 16.89 1618902.90 8.40
RL-MUL 15188.23 21.40 101250.37 54.31 476875.33 38.46 2149225.28 43.91
RL-Scalar 15190.40 21.41 101344.04 54.46 473479.45 37.47 2131106.59 42.70

HAVE (Ours) 16073.69 28.47 109866.00 67.44 576194.49 67.30 2470796.40 65.45

Table 11. We calculate the hypervolume of the PE arrays based on And-Gate. The results demonstrate that HAVE has the largest
hypervolume.HAVE produces 17.65% more hypervolume than RL-MUL on average and improves by up to 28.84% compared to
RL-MUL, and 67.44% compared to Wallace.

8-bit And 8-bit Booth 16-bit And 16-bit Booth

Metrics
Kinds

Wallace HAVE-1 HAVE-2 Wallace HAVE-1 HAVE-2 Wallace HAVE-1 Wallace HAVE-1 HAVE-2

3:2 Num 37 36 35 29 29 26 197 192 121 119 115
2:2 Num 18 8 14 13 8 17 64 53 64 15 49

Total Num 55 44 49 42 37 43 261 245 185 134 164
Stage Num 4 4 5 3 3 4 6 6 5 4 6

Minimum Delay 0.6938 0.6378 0.6526 0.9652 0.9117 0.9117 1.2626 1.1383 1.4980 1.3593 1.3868
Minimum Area 429 397 407 527 514 521 1828 1769 1867 1723 1792

Table 12. We provide statistics for each compressor tree, including the number of 3:2 and 2:2 compressors, the minimum area, and the
minimum delay. The HAVE-1 kind represents the CT with fewer compressors and stages has a smaller area and delay. Conversely, the
HAVE-2 kind represents the CT with more compressors and stages but has a smaller area and delay compared with Wallace.
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Figure 8. From left to right, they are Wallace, HAVE-1 and HAVE-2 of 8-bit And circuits.

27



A Hierarchical Adaptive Multi-Task Reinforcement Learning Framework for Multiplier Circuit Design

0123456789101112131415

0123456789101112131415

Stage 1

0123456789101112131415

Stage 2

0123456789101112131415

Stage 3

Wallace
0123456789101112131415

0123456789101112131415

Stage 1

0123456789101112131415

Stage 2

0123456789101112131415

Stage 3

HAVE (Ours)
0123456789101112131415

0123456789101112131415

Stage 1

0123456789101112131415

Stage 2

0123456789101112131415

Stage 3

0123456789101112131415

Stage 4

HAVE (Ours)

Figure 9. From left to right, they are Wallace, HAVE-1 and HAVE-2 of 8-bit booth circuits.

28



A Hierarchical Adaptive Multi-Task Reinforcement Learning Framework for Multiplier Circuit Design

0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

Stage 1

0123456789101112131415161718192021222324252627282930

Stage 2

0123456789101112131415161718192021222324252627282930

Stage 3

0123456789101112131415161718192021222324252627282930

Stage 4

0123456789101112131415161718192021222324252627282930

Stage 5

0123456789101112131415161718192021222324252627282930

Stage 6

Wallace
0123456789101112131415161718192021222324252627282930

0123456789101112131415161718192021222324252627282930

Stage 1

0123456789101112131415161718192021222324252627282930

Stage 2

0123456789101112131415161718192021222324252627282930

Stage 3

0123456789101112131415161718192021222324252627282930

Stage 4

0123456789101112131415161718192021222324252627282930

Stage 5

0123456789101112131415161718192021222324252627282930

Stage 6

HAVE (Ours)

Figure 10. From left to right, they are Wallace, HAVE-1 of 16-bit And circuits.
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Figure 11. From left to right, they are Wallace, HAVE-1 and HAVE-2 of 16-bit Booth circuits.
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