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Abstract
Deep learning has advanced through the combi-
nation of large datasets and computational power,
leading to the development of extensive pre-
trained models like Vision Transformers (ViTs).
However, these models often assume a one-size-
fits-all utility, lacking the ability to initialize mod-
els with elastic scales tailored to the resource
constraints of specific downstream tasks. To
address these issues, we propose Probabilistic
Expansion from LearnGene (PEG) for mixture
sampling and elastic initialization of Vision Trans-
formers. Specifically, PEG utilizes a probabilis-
tic mixture approach to sample Multi-Head Self-
Attention layers and Feed-Forward Networks
from a large ancestry model into a more com-
pact part termed as learngene. Theoretically, we
demonstrate that these learngene can approximate
the parameter distribution of the original ancestry
model, thereby preserving its significant knowl-
edge. Next, PEG expands the sampled learngene
through non-linear mapping, enabling the initial-
ization of descendant models with elastic scales
to suit various resource constraints. Our exten-
sive experiments demonstrate the effectiveness of
PEG and outperforming traditional initialization
strategies.

1. Introduction
The trajectory of deep learning has been significantly shaped
by the integration of vast data resources and powerful com-
putational technologies. This synergy has led to the emer-
gence of extensive pre-trained foundation models (Dosovit-
skiy et al., 2021; Devlin et al., 2019; Radford et al., 2021;

1 School of Computer Science and Engineering, Southeast
University, Nanjing 210096, China 2Key Laboratory of New Gen-
eration Artificial Intelligence Technology and Its Interdisciplinary
Applications (Southeast University), Ministry of Education, China.
Correspondence to: Xin Geng <xgeng@seu.edu.cn>, Xu Yang
<xuyang palm@seu.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

10
…

000

MSA
𝐴1

𝐴2

𝐴3

𝐴4

𝐹

MSA
ሚ𝐴1

ሚ𝐴2

ሚ𝐴3

෨𝐹

…

Layer 𝐿𝑎

MSA
𝐴1

𝐴2

𝐴3

𝐴4

𝐹

Layer 𝐿2

MSA

Layer 𝐿1

MSA

…

Layer 5 

Layer 2 

Layer 1 

Learngene

R
an

d
o

m
ly

 i
n

it
ia

li
ze

d

Sample

Expand

D
es

ce
nd

an
t 

m
od

el
s

Ancestry model

…
L

ay
er

 1
 

…

L
ay

er
 1

 
L

ay
er

 2
 

L
ay

er
5
 

…

L
ay

er
 1

 
L

ay
er

 2
 

L
ay

er
 6

(a) (b)

L
ay

er
 2

 
L

ay
er

 5

𝑝

Figure 1. (a) Existing works (Wang et al., 2022; 2023) primarily
involve selecting a few integral layers as the learngene and manu-
ally integrating them with layers that are randomly initialized. (b)
Our PEG implements a probabilistic mixture to sample MSA of
each layer and FFNs as the learngene and then expands them to
initialize descendant models of elastic scales.

Bubeck et al., 2023; Yang et al., 2023b), notably those
based on Transformer architecture (Vaswani et al., 2017;
Dosovitskiy et al., 2021), including Vision Transformers
(ViTs)(Dosovitskiy et al., 2021). These foundation mod-
els, which are widely utilized across a variety of devices
from smartphones to edge computing devices, act as starting
points(Hanin & Rolnick, 2018; Arpit et al., 2019; He et al.,
2016; Zhang et al., 2021; Wang et al., 2022; 2023) for a
broad range of downstream tasks.

Nevertheless, such a method of model initialization often
assumes that the whole model fits all purposes, ignoring
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specific limitations like memory usage, processing power, or
response time that are important in some downstream tasks.
This one-size-fits-all mindset may not be elastic, particularly
when deploying models on devices with limited resources.
For example, even the 86M Base-Scale ViT (Touvron et al.,
2021) needs to consider how well it fits with the available
resources. Moreover, employing these foundational models
at their full scale runs the risk of negative transfer (Wang
et al., 2019b; Zhang et al., 2022b), potentially carrying over
less favorable aspects to downstream tasks.

To effectively initialize models, (Wang et al., 2022; 2023)
have innovatively introduced the Learngene framework, in-
spired by observations of biological genes. This framework
is designed in two stages: significant knowledge is con-
densed from a large ancestry model into a more compact
part termed as learngene and then the learngene serves as
a start point for initializing descendant models of elastic
scales. As depicted in Fig. 1 (a), existing works (Wang et al.,
2022; 2023) primarily involve selecting a few integral layers
as the learngene and manually integrating them with layers
that are randomly initialized.

However, these methods present two key limitations: (i)
Extracting only certain integral layers directly overlooks the
distribution of knowledge across the unselected layers of the
ancestry model. (ii) The approach of manually integrating
the learngene with randomly initialized layers falls short
in adaptively scaling the model to initialize downstream
models of any customized size.

To tackle these challenges, we propose Probabilistic
Expansion from LearnGene (PEG) for mixture sampling
and elastic initialization of Vision Transformers. As illus-
trated in Fig. 1 (b), for Multi-Head Self-Attention (MSA)
layers, we implement a probabilistic mixture

∑Ha

i=1 pihAi

to derive MSA layers from each layer of an ancestry model,
thereby forming MSA learngene. Here, Ai denotes the pa-
rameters of attention heads within a specific layer of the
ancestry model. Each MSA learngene is a composite of
the original Ha heads, where the weights pk are determined
by probabilistic factors from a standard Gaussian distribu-
tion. This deliberate choice of Gaussian distribution for
generating pk capitalizes on its widespread utility for its
straightforwardness and flexibility, thus amplifying the ef-
fectiveness of learngene in condensing knowledge from an
ancestry model while preserving its performance and gener-
alizability. Similarly, for Feed-Forward Networks (FFNs),
we employ a probabilistic mixture

∑La

i=1 pilFi to sample
FFN layers as the FFN learngene, where Fi denotes the
parameters of FFNs in the ith layer of an ancestry model
with depth La.

During the expanding phase, we further employ probabilis-
tic mixture to sample from both MSA and FFN learngene,
thereby initializing descendant models with flexible scales

tailored to downstream resource constraints. Specifically,
the probabilistic mixture is relaxed to nonlinear learnable
parameters. By simply fine-tuning these parameters accord-
ing to downstream data, we achieve an elastic expansion
in the number of attention heads and FFNs. This process
equips the initialized descendant models with scalability in
both width and depth. Our contributions are summarized
as follows:

• We propose a probabilistic mixture to sample MSA
layers and FFNs as learngene from the ancestry model
and theoretically demonstrate that these learngene can
approximate the parameter distribution of the origi-
nal ancestry model, thereby preserving its significant
knowledge.

• We further introduce non-linear mapping to expand
MSA learngene and FFN learngene for initializing
models with elastic scales.

• Extensive experiments across various datasets vali-
date that PEG not only surpasses traditional initial-
ization strategies but also competes effectively with
more resource-intensive fine-tuning methodologies.

2. Related Work
Model Initialization: Model initialization plays a vital role
in training deep neural networks, affecting their convergence
speed and final performance. Over the years, various initial-
ization techniques have been proposed. These techniques
encompass the widely used random initialization, as well as
more sophisticated methods like Xavier initialization (Glo-
rot & Bengio, 2010) and the Kaiming initialization (He et al.,
2016). Recently, the utilization of pre-trained foundation
models has garnered significant attention as an initialization
strategy prior to fine-tuning for specific tasks (Dosovitskiy
et al., 2021; Devlin et al., 2019; Radford et al., 2021; Yang
et al., 2022; Ni et al., 2022; Bubeck et al., 2023; Wang
et al., 2019a; Yuan et al., 2022; LI Daiyi, 2022; NAN Yucen,
2022; LIU Qinbo, 2022; JI Yuhe, 2023; Yang et al., 2023a;
Shi et al., 2024; Xia et al., 2024; Meng et al., 2023a;b;
2024). Nevertheless, this approach necessitates pre-training
separate models for each downstream task, as depicted in
Figure 2, which does not take into account the resource
constraints and customization of model sizes required for
downstream tasks. Additionally, the reuse of the entire
original model can introduce the risk of negative transfer
effects (Wang et al., 2019b; Zhang et al., 2022b), leading
to unstable performance on downstream tasks. In contrast,
our approach only requires the sampling of a learngene
containing significant knowledge once and can rapidly ex-
pand it into models of elastic sizes to adapt to the varying
complexities and performance for the downstream tasks.
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(a) From-Scratch (b) Pretraining-Finetuning (c) PEG (ours)

Fully Trained Model

Randomly Initialized Model Pre-trained Model
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Ancestry Model
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Initialize

Descendant Models
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Figure 2. (a) Training from scratch involves randomly initializ-
ing models of different scales to adapt to downstream tasks, with
complexity increasing linearly with the number of models. (b)
Pretraining-Finetuning entails reusing the original whole model
each time to adapt to various downstream scenarios. (c) Our PEG
allows us to sample a learngene containing significant knowledge
just once and rapidly expand it to models of elastic scales, ac-
commodating the varying model complexities and performance
requirements of downstream scenarios.

Mixture Models for Transformers. Recently, there has
been a growing interest in leveraging Mixture Models to
enhance Transformers. For instance, in the works (Guo
et al., 2019; Cho et al., 2020), Gaussian priors are intro-
duced to facilitate a better capture of knowledge for down-
stream tasks. Another notable development is the use of
Switch Transformers (Fedus et al., 2022), which employs
a routing algorithm inspired by Mixture of Experts (MoE)
to reduce communication and computational costs in trans-
formers. Moreover, (Nguyen et al., 2022) has derived a
Gaussian mixture model, focusing specifically on attention
heads. This approach aims to reduce redundant heads and
enhance the training efficiency of transformers. However,
it’s worth noting that these methods continue to build upon
the Pretraining-Finetuning initialization paradigm. In con-
trast, our PEG takes a different approach by considering the
flexible initialization of models with elastic scales based on
the requirements of downstream tasks.

3. Methodology
The Learngene framework operates in two distinct phases:
significant knowledge is condensed from a large ancestry
model into a more concise part termed as learngene, which
then forms the basis for initializing descendant models of
elastic scales. Initially, we analyze the Vision Transformers
with a Probabilistic Mixture of MSA and FFNs, demonstrat-
ing that the learngene can closely approximate the parameter
distribution of the original ancestry model, thus retaining its
significant knowledge. Building on this theoretical founda-
tion, in the learngene sampling phase as illustrated in Fig. 3,
we employ a probabilistic mixture to sample MSA and FFN

from the ancestry model. In the learngene expansion phase,
non-linear mapping is introduced to enlarge the MSA learn-
gene and FFN learngene, facilitating the initialization of
descendant models with elastic scales. Next, we briefly
introduce some preliminary concepts related to ViTs.

3.1. Preliminary

In the architecture of Vision Transformer, an initial step
involves segmenting the input image into N distinct
patches. Each patch is then linearly transformed into a
D-dimensional vector. The core of the ViT encoder is a
sequence of layers, each comprising a MSA mechanism and
FFN blocks.

Let us denote the total count of attention heads in each layer
by H . For the hth head, the query matrix Qh, key matrix
Kh, and value matrix Vh, each of dimension RN×dk for
the query and key, and RN×dv for the value, are computed
linearly with learned weights matrices WQ

h , WK
h , and WV

h ,
of dimensions RD×dk and RD×dv respectively. The SA
process for each head is captured as:

Ah = Attention(QhK
⊤
h ,Vh) = softmax

(
QhK

⊤
h√

dk

)
Vh.

(1)

The MSA framework empowers the model to concurrently
process information from various positions and representa-
tion subspaces:

MultiHead(Q,K,V) = Concat(A1, . . . ,AH)WO, (2)

where WO ∈ RHdv×D is a learned weight matrix of dimen-
sion RHdv×D. Additionally, the FFN is defined as:

FFN(x) = ReLU(xW1 + b1)W2 + b2, (3)

where x, the input, is in RN×D, the weight matrices W1

and W2 are in RD×dff and Rdff×D respectively, and the
bias vectors b1 and b2 are in Rdff and RD. Here, dff
represents the dimensionality of the intermediary layer.

3.2. Vision Transformers with a Probabilistic Mixture of
MSA and FFNs

3.2.1. THEORETICAL ANALYSIS FOR MSA

In the ancestry model, for each layer of attention heads
A1, . . . ,Ai, . . . ,AHa

, we hypothesize that each Ai is
drawn from a distribution Qi. Due to the high dimension-
ality and computational complexity of the distribution Q,
we naturally opt for a Probabilistic Mixture of Gaussian
distributions to approximate Q. The theoretical justification
is as follows:

Theorem 3.1. Let’s consider Q ∈ RD′
as a probability

distribution contained within a compact set, characterized
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by a differentiable and bounded density function q. For any
scale parameter α > 0 and any threshold ϵ > 0, there
exists a universal constant C and a number of components
Ha ≤ (C log(1/ϵ))D

′
, enabling the construction of a mix-

ture
∑Ha

i=1 piN (θMSA
i , α2ID′). Here, p1, . . . , pHa

are mix-
ture weights, and θMSA

1 , . . . , θMSA
Ha

are the MSA parameters.
This mixture satisfies the inequality:

sup
x∈Rd

∣∣∣∣∣q(x)−
Ha∑
i=1

piϕ
(
x | θMSA

i , α2ID′
)∣∣∣∣∣ ≤ ϵ,

where ϕ(·|θMSA, α2I) is the Gaussian density function with
mean θMSA and covariance matrix α2ID.

The proof of Theorem 3.1 is provided in Appendix C.
Based on Theorem 3.1, we can sample Hb attention heads
of Gaussian mixture from the each layer of an ancestry
model. Let h = 1, 2, . . . ,Hb. For the jth Gaussian mixture,
Q′

h =
∑Ha

i=1 pihN
(
θMSA
ih , α2ID′

)
approximate the distri-

bution Q with a given accuracy ϵ, along with their corre-
sponding weights p1h, . . . , pHah, and the MSA parameters
θMSA
1h , . . . , θMSA

Hah
. This theoretical assurance enables us to

sample a more compact number of attention heads from the
ancestry model as learngene (i.e., MSA learngene), while
ensuring that the MSA learngene retains as much of the
significant knowledge from the ancestry model as possible.

3.2.2. THEORETICAL ANALYSIS FOR FFNS

In the ancestry model, each FFN layer consists of trans-
formation functions F1, . . . ,Fi, . . . ,FLa

, where we posit
that each Fi is influenced by a distribution Pi. Likewise, a
Probabilistic Mixture of Gaussian distributions is selected
to approximate P, with the theoretical foundation for this
method elaborated as follows:

Theorem 3.2. Consider P ∈ RD′
representing a proba-

bility distribution within a bounded and compact set, char-
acterized by a differentiable and limited density function
f . Given a scale parameter β > 0 and a threshold δ > 0,
there is a universal constant C and a number of components
La ≤ (C log(1/δ))D

′
, allowing the formation of a mixture∑La

i=1 piN (θFFN
i , β2ID). In this expression, p1, . . . , pLa

denote mixture weights, and θFFN
1 , . . . , θFFN

La
are FFN pa-

rameters. This mixture fulfills the conditions:

sup
x∈Rd

∣∣∣∣∣f(x)−
La∑
i=1

piϕ
(
x | θFFNi , β2ID′

)∣∣∣∣∣ ≤ δ,

where ϕ(·|θFFN, β2I) is the Gaussian density function with
mean θFFN and covariance matrix β2ID′ .

Following the rationale of Theorem 3.2, we can ef-
fectively sample Lb FFNs of Gaussian mixtures. Let
l = 1, 2, . . . , Lb. For the lth Gaussian mixture, P′

l =

(a) (b)
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Figure 3. Illustration of Learngene Sampling and Expanding.
(a) For MSA, the attention heads of each layer in the ancestry
model are sampled with Gaussian mixtures into the MSA learn-
gene. Subsequently, the MSA learngene is expanded with learnable
parameters to initialize the descendant models of varying widths.
(b) For FFN, Gaussian mixtures are employed to sample the FFN
learngene from all layers of the ancestry model. The FFN learn-
gene is then expanded with learnable parameters to facilitate the
initialization of descendant models with varying depths.

∑La

i=1 pilN
(
θFFNil , β2ID′

)
approximates the distribution

P with a designated accuracy δ, accompanied by cor-
responding weights p1l, . . . , pLal, and FFN parameters
θFFN1l , . . . , θFFNLal

. Similarly, this theoretical assurance al-
lows us to sample a critical set of FFN layers from the
ancestry model as learngene (i.e., FFN learngene). To sum
up, based on the Probabilistic Mixture of MSA and FFNs,
we are going to elaborate on the learngene sampling in the
next sections.

3.3. Learngene Sampling

3.3.1. MSA SAMPLING

As illustrated in Fig. 3, we introduce an innovative method to
sample the MSA layers from a pre-trained ancestry model.
Originally, each layer of the ancestry model consists of
Ha attention heads. To efficiently sample and refine the
attention heads, we apply the following procedure Hb times:

Ãh = Attention

(
Ha∑
i=1

pih
(
QiK

⊤
i ,Vi

))

s.t., pih ∼ G(0, I),
Ha∑
i=1

pih = 1, pih ≥ 0,

(4)

where h = 1, 2, . . . ,Hb. This formula aims to synthesize
a reduced number of Hb attention head as the MSA learn-
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gene from the ancestry model. Each MSA learngene is a
weighted combination of the original Ha heads, where the
weights pk are probabilistic factors drawn from a standard
Gaussian distribution. The selection of the Gaussian distri-
bution for generating probabilities pk is deliberate, rooted
in its widespread use in machine learning for simplicity and
versatility, enhancing the ability of learngene to efficiently
condense knowledge from a larger model while preserving
performance and generalization.

3.3.2. FFN SAMPLING

Building on the approach used for MSA, we apply a similar
method to the FFNs in a pretrained ancestry model, which
initially consists of La FFN layers. In this context, the FFN
parameters at the kth layer of the ancestry model are denoted
by Fk = (W1,W2,b1,b2). The following formula is
employed to sample and refine the FFN layers:

F̃l =

La∑
k=1

pklFk

s.t., pkl ∼ G(0, I),
La∑
k=1

pkl = 1, pkl ≥ 0,

(5)

where l = 1, 2, . . . , Lb. This equation condenses the FFN
layers into Lb layers as the FFN learngene. Similar to the
MSA learngene, each FFN learngene layer is a weighted
combination of the original La layers, with the weights pil
being probabilistic factors derived from a standard Gaussian
distribution.

3.4. Learngene Expanding

3.4.1. MSA EXPANDING

We expand upon the approach introduced in the previous
section, where we sample MSA learngene Ã1, . . . , ÃHb

from each layer of the ancestry model. For each layer of the
descendant models, we propose the learnable parameters
to expand the number of attention heads. This process is
defined by the following equation:

MultiHead(·) = Concat
(
ϕMSA

(
Ã1, . . . , ÃHb

)
WO

)
,

(6)
Here, ϕ is a learnable transformation function capable of ex-
panding the number of attention heads from Hb to Hc. This
expansion is essential for initializing the descendant model
with Hc attention heads in each layer, offering flexibility to
adapt the number of initialized attention heads according to
the resource constraints of downstream tasks. To implement
this, we utilize a nonlinear mapping such as a neural net-
work employing rectified linear units (ReLU). According
to the adjustments in the number of attention heads, the
weights WO of the projection layer are also proportionally

pruned and then inherited by the descendant models. 1

3.4.2. FFN EXPANDING

We further discuss the process of expanding Lb layers of
FFN learngene as described in Section 3.3. Building upon
the methodology used for expanding MSA, we also em-
ploy learnable parameters to expand the number of FFN
learngene, which helps in initializing descendant models
with an elastic depth. The formulation of this process is as
follows: ϕFFN

(
F̃
)

. Here, ϕFFN serves as a transformative
function that flexibly expands the number of FFNs from
Lb to Lc layers. In summary, our method ensures that the
model can dynamically adjust both its depth and width to
meet the resource requirements of downstream tasks during
initialization.

4. Experiments
4.1. Experimental Setting

Datasets. After initializing the descendant models with the
learngene, we fine-tune them on various downstream tasks,
including Oxford Flowers (Nilsback & Zisserman, 2008),
CUB-200-2011 (Wah et al., 2011), Stanford Cars (Ge-
bru et al., 2017), CIFAR-10 (Krizhevsky et al., 2009),
CIFAR-100 (Krizhevsky et al., 2009), Food101 (Bossard
et al., 2014), iNaturalist-2019 (Tan et al., 2019), ImageNet-
1K (Deng et al., 2009). For detailed dataset descriptions,
see Appendix A.

Training settings. During the learngene expanding phase,
we train the learnable parameters for 100 epochs before
expanding them into descendant models of elastic scales.
After this, we fine-tune these descendant models on down-
stream tasks for 500 epochs, which includes a 10-epoch
warm-up period. The only exception is iNaturalist-2019,
where we train for 100 epochs with a 5-epoch warm-up. For
all tasks, the initial learning rate is set to 5 × 10−4 and a
weight decay of 0.05 is applied.

Architectures. Both the ancestry model and descendant
models are based on DeiT (Touvron et al., 2021), which
comes in three width variants: Tiny, Small, and Base. Ad-
ditionally, as discussed in Sections 4.2.3 and 4.2.4, we con-
duct experiments on Swin Transformer (Liu et al., 2021)
to showcase the versatility of our approach across different
architectures.

4.2. Main Results of Model Initialization

In this section, we evaluate the effectiveness of the PEG
framework in efficiently initializing models, assessing their
performance with Top-1 accuracy.

1Please see Appendix B for more details.
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Table 1. Comparisons of performance on ImageNet-1K between
models trained From-Scratch with 100 epochs and those initialized
via PEG and fine-tuned for 50 epochs.

Model Hc Lc Params (M) FLOPs (G) From-Scratch PEG

Tiny

2
6 1.3 0.3 50.06 50.03
9 1.9 0.4 54.64 54.56

12 2.5 0.5 57.99 58.01

3
6 3 0.6 58.16 57.92
9 4.4 0.9 60.58 60.45

12 5.7 1.2 61.44 61.55

Small

4
6 5 1 61.32 62.28
9 7.3 1.4 63.17 63.91

12 9.5 1.9 64.25 64.46

6
6 11.4 2.3 64.91 64.94
9 16.8 3.4 67.02 69.49

12 22 4.6 68.56 70.24

Base 12

3 22.8 4.5 68.77 69.24
4 29.9 5.9 70.32 70.66
5 36.9 7.4 72.04 72.3
6 44 8.8 73.73 73.98
7 51.2 10.2 74.42 74.63
8 58.2 11.7 76.14 76.19
9 65.3 13.1 76.46 76.82

10 72.4 14.6 76.81 76.95
11 79.5 16 77.03 77.16
12 86.6 17.5 77.22 77.39

4.2.1. INITIALIZING DESCENDANT MODELS OF
ELASTIC SCALES

In real-world scenarios, various downstream tasks often
demand models of different scales to accommodate their
specific requirements. Our PEG addresses this challenge
by offering a flexible solution that expands the sampled
learngene into models of elastic scales. To illustrate, we
conduct the initialization of 22 descendant models on the
ImageNet-1K, each characterized by different configura-
tions, such as the number of attention heads Hc per layer
and the quantity of FFNs Lc in descendant models. As indi-
cated in Tab. 1, PEG not only quickly initializes models of
varying scales but also proves to be a competitive performer
in terms of overall performance. Let’s take Base-scale de-
scendant models as a case in point. We find that PEG not
only achieves better performance but also reduces training
costs by approximately 1.7× (comparing 10× 100 epochs
to 100 + 10× 50 epochs). Furthermore, as we upscale the
initialized descendant models, the performance of PEG con-
tinues to improve. Specifically, while PEG may initially
lag behind fully-trained From-Scratch models in the case
of Tiny-Scale models, it shines with superior performance
for Small and Base-Scale models. This demonstrates that
our PEG effectively addresses the one-size-fits-all problem,
where each model of a novel scale typically requires retrain-
ing from scratch to achieve a good initialization.

4.2.2. INITIALIZATION RESULTS ON DIFFERENT
DOWNSTREAM TASKS

We conduct a comparative analysis of our approach for ini-
tializing descendant or downstream models as follows: (i)
Fine-tuning: This approach pre-trains DeiT on ImageNet
and subsequently fine-tunes the entire model on down-
stream tasks. (ii) From-Scratch: We commence with a
randomly initialized DeiT model and exclusively train it
on the downstream datasets. (iii) Heur-Learngene (Wang
et al., 2022): This strategy involves extracting the last three
layers from a DeiT model pre-trained on ImageNet. These
layers are then stacked with randomly initialized lower lay-
ers to construct a new model. (iv) Weight-Multi (Zhang
et al., 2022a): This method employs Weight Transforma-
tion to pre-train DeiT on ImageNet, followed by fine-tuning
the entire model to adapt it to specific downstream tasks.
Moreover, Weight-Multi utilizes distillation as a trick. (v)
Auto-Learngene (Wang et al., 2023): The first six layers are
extracted from the DeiT and then stacked with randomly
initialized higher layers to initialize the descendant models.

As illustrated in Tab. 2, our PEG significantly outperforms
both From-Scratch and Weight-Multi. When compared to
other Learngene methods, such as Auto-Learngene, PEG ex-
ceeds by 7.81% on the iNaturalist-2019 (iNat-2019) for the
Small-scale descendant models. These results highlight the
superior capability of PEG in efficiently initializing descen-
dant models. Moreover, the performance of PEG outper-
forms that of Fine-tuning on Flowers for the Tiny-scale de-
scendant models, where the entire model is fine-tuned. This
phenomenon can be attributed to the more universally signif-
icant knowledge within the learngene, allowing it to adapt
effectively to various downstream tasks. In contrast, Fine-
tuning risks negative transfer effects (Wang et al., 2019b;
Zhang et al., 2022b) by reusing the entire model, potentially
carrying over less favorable aspects to downstream tasks.

4.2.3. FASTER CONVERGENCE

We conduct an in-depth analysis of training efficiency by
directly comparing our method to From-Scratch on the Ima-
geNet dataset. As depicted in Fig. 4 (b), the results reveal
that our PEG substantially reduces training time, demand-
ing only 3.6 × less training time than From-Scratch on the
Base-scale descendant models. This significant reduction
in training time directly results from the capability of PEG
to offer a superior initialization point for the descendant
models. With the learngene as an enriched starting point,
the models rapidly converge towards their optimal perfor-
mance. Notably, even after just 100 epochs of training,
PEG surpasses the Fine-tuning strategy applied to the entire
pre-trained model. This efficiency represents a substantial
advantage in real-world scenarios, where faster convergence
translates to reduced computational costs and quicker model
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Table 2. Initialization results on different downstream tasks. “I-Params” represent the number of parameters Inherited into the
downstream/descendant models. The symbol ↑ denotes the performance improvement achieved by our method compared to the best-
performing method excluding Fine-tuning. The results presented for PEG are based on the 6-layer descendant model, while the model
depth of other baselines matches that of the descendant model.

Model Method I-Params (M) Flowers CUB-200 CIFAR-10 CIFAR-100 Food-101 iNat-2019 Cars

Tiny

Fine-tuning 2.8 84.79 71.12 96.65 80.81 83.24 58.12 75.71
From-Scratch 0 68.82 59.83 88.3 67.44 61.54 37.16 67.32
Heur-Learngene 1.3 78.67 67.5 91.66 70.19 72.54 41.55 70.68
Weight-Multi 2.8 80.01 66.25 93.07 74.01 77.36 51.22 74.19
Auto-Learngene 2.8 80.84 67.51 93.02 75.83 79.12 52.46 74.20
PEG (ours) 2.5 87.85(↑7.84) 67.97(↑0.46) 96.33(↑3.26) 79.85(↑4.02) 85.37(↑6.25) 56.8(↑4.34) 71.75

Small

Fine-tuning 10.5 91.13 78.13 97.59 84.43 87.8 68.48 86.81
From-Scratch 0 72.91 62.75 92.49 73.32 74.64 50.79 71.63
Heur-Learngene 5.6 82.84 72.64 93.12 78.13 77.09 53.21 81.52
Weight-Multi 10.5 86.37 70.28 93.67 75.98 81.79 59.83 85.01
Auto-Learngene 10.5 87.02 73.31 93.58 79.49 80.25 59.92 84.98
PEG (ours) 9.7 91.01(↑3.99) 78.18(↑5.54) 97.38(↑2.21) 83.59(↑4.1) 87.15(↑5.36) 67.73(↑7.81) 82.57

2.6× Speedup

3.6× Speedup

Figure 4. Faster convergence of DeiT-Base (a) and Swin-Base
(b). Different points represent results for diverse epochs.

deployment.

4.2.4. HIGHER DATA EFFICIENCY

The last advantage of our method is its ability to perform
well even when there is a limited amount of training data
available. To demonstrate this, we conduct experiments on
two subsets of the ImageNet-1K(IN-1K) dataset. One subset
contain 25% of the training data, while the other have 50%.
We train Base-scale descendant models on these subsets and
observe that our method outperform From-Scratch in these
scenarios.

As summarized in Tab. 3, our PEG demonstrates increased
stability as the volume of training data decreases, while not
surpassing From-Scratch performance on the entire dataset.
For example, with just 25% of the training data, PEG sur-
passes From-Scratch by 10.6% on DeiT-Base, while con-
suming only 1

6 of the training resources. This improved data
efficiency can be attributed to the significant knowledge en-
coded within the learngene, which helps descendant models
mitigate overfitting, particularly in situations with limited
data. Furthermore, we conduct experiments on the Swin-
Transformer, yielding similar results. This underscores the
versatility and effectiveness of our approach across different

Table 3. Higher data efficiency. The symbol ↑ indicates the per-
formance gap between our approach and From-Scratch. PEG
initializes the descendant model over 50 training epochs, while
From-Scratch achieves its results after 300 training epochs.

Training data
DeiT-Base Swin-Base

From-Scratch PEG From-Scratch PEG

100% IN-1K 81.8 77.4 83.5 80.3
50% IN-1K 74.7 77.1(↑2.4) 76.2 79.7(↑3.5)
25% IN-1K 65.7 76.3(↑10.6) 68.1 79.5(↑11.4)

model architectures.

4.3. Analysis and Ablation

/In this section, we delve deeper into the analysis and abla-
tion study of PEG. For our experiments, we primarily focus
on the CIFAR-100 dataset, employing Small-scale DeiT as
the foundational ancestry model, unless stated otherwise.

4.3.1. LATENT EMBEDDING VISUALIZATION

Figure 5 displays the T-SNE visualization of feature repre-
sentations obtained from both the From-Scratch and PEG
methods on the CIFAR-10 dataset. This visualization high-
lights a notable disparity in the performance of these two
approaches. In the case of From-Scratch, we observe that it
encounters difficulties in effectively distinguishing between
different classes within the dataset. This struggle can be
attributed to the challenges faced by models trained from
scratch, as they often require an extensive amount of data
and training time to develop meaningful class-specific repre-
sentations. In contrast, our PEG demonstrates a remarkable
capability to rapidly acquire and encode class-specific infor-
mation for downstream tasks. At “Epoch 100”, PEG show-
cases clear clustering patterns and well-defined decision
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Figure 5. T-SNE feature visualization of the descendant model from different epochs.

boundaries. This impressive performance can be attributed
to the ability of PEG to leverage the extensive inter-class
semantic knowledge stored within the learngene, which is
inherited from the ancestry model.

4.3.2. ANALYSIS ON THE SELECTION OF DISTRIBUTION

Tab. 4 presents the results of sampling MSA and FFN learn-
gene with different probabilistic mixtures. Our PEG outper-
forms outperforms the utilization of alternative probability
distributions. This superiority arises from distinct charac-
teristics of these distributions. The uniform distribution
uniformly samples values within a specified range, which
leads to suboptimal initialization due to this absence of cen-
tral tendency. The central tendency of the beta distribution is
comparatively less stable and is reliant on hyperparameters,
making it less consistent for initialization purposes. The
Poisson distribution with its discrete nature may yield dis-
crete initialization weight values, constraining the adaptabil-
ity of initialized weights for downstream tasks. In contrast,
the Gaussian distribution not only exhibits central tenden-
cies but also provides superior continuity. When utilized for
sampling, it positions initialized weights closer to the mean,
facilitating rapid convergence in downstream tasks while
preventing excessive weight dispersion.

Table 4. Analysis on the Selection of Distribution for sampling
MSA and FFN learngene.

Uniform Beta Poisson Gaussian (ours)

83.02 82.13 82.26 83.59

4.3.3. COMPONENT-WISE ANALYSIS

Tab. 5 illustrates the results when descendant models in-
herit various components from the ancestry model. Our
experimental performances lead to the following three con-
clusions: (i) In the case of MSA, inheriting MSAQ and
MSAK is more crucial than MSAV . This observation is
based on the fact that MSAQ and MSAK play pivotal roles
in the self-attention mechanism, carrying significant infor-

Table 5. Ablation study on different components inheriting from
the ancestry model.

MSAQ MSAK MSAV FFN PEG

✓ 75.18
✓ 75.24

✓ 74.74
✓ 78.85

✓ ✓ ✓ 79.02
✓ ✓ ✓ ✓ 83.59

mation for downstream tasks, while MSAV contributes less
to task-related knowledge (Tay et al., 2021; Kim et al., 2021).
(ii) Inheriting the complete MSA is more important than
FFN. This preference is due to MSA’s ability to capture
complex relationships, long-range dependencies, and global
context within images, making it a fundamental component
in Vision Transformers (ViTs). FFN, while important, pri-
marily focuses on local patterns and fine-grained details.
Thus, initializing descendant models with MSA as the learn-
gene component provides them with richer spatial depen-
dencies and context information, significantly benefiting
downstream tasks. (iii) Our PEG, which simultaneously
samples both MSA and FFN as the learngene, attains the
most favorable results and provides further validation of the
effectiveness of our method.

5. Conclusion
In this paper, we introduce a novel approach termed PEG
for mixture sampling and elastic initialization of Vision
Transformers. PEG leverages probabilistic mixtures to sam-
ple MSA layers and FFNs as learngene from an ancestry
model, effectively preserving the significant knowledge of
the original model. During the expansion phase, we em-
ploy non-linear mapping to flexibly adjust the number of
attention heads and FFNs in descendant models, providing
scalability in both width and depth. Extensive experiments
validate the efficiency and scalability of our initialization
method. In the context of initialization methods, PEG not
only expedites model convergence but also tailors models
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to suit downstream tasks, rendering it a valuable asset for
practical applications in the field of Vision Transformers.

Impact Statement
The implementation of learngene in PEG has the potential
for broader societal impact. It introduces learngene as a
medium for facilitating model interactions, thereby safe-
guarding data privacy in both upstream and downstream
tasks. This technology has the capacity to advance responsi-
ble AI development by ensuring data privacy, building trust,
and fostering acceptance in applications across various sec-
tors such as healthcare, finance, and personal devices.
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Dataset # Total #Training #Validation #Testing #Classes

Oxford Flowers (Nilsback & Zisserman, 2008) 8,189 1,020 1,020 6,149 102
CUB-200-2011 (Wah et al., 2011) 11,788 5,394 600 5,794 200
Stanford Cars (Gebru et al., 2017) 16,185 7,329 815 8,041 196
CIFAR10 (Krizhevsky et al., 2009) 65,000 50,000 5,000 10,000 10

CIFAR100 (Krizhevsky et al., 2009) 65,000 50,000 5,000 10,000 100
Food101 (Bossard et al., 2014) 101,000 75,750 25,250 0 101

iNat-2019 (Tan et al., 2019) 268,243 265,213 3030 / 1010

Table 6. Characteristics of the downstream datasets

A. Downstream Datasets
Tab. 6 presents the details of all downstream tasks, with the eight datasets sorted by data size.

B. Projection Layer
According to the adjustments in the number of attention heads, the weights WO of the projection layer are also proportionally
pruned or expanded with the hyperparameter ω and then inherited by the descendant models. Additionally, we directly
inherit the weights of layer normalization, patch embeddings, and position embeddings in the ancestry model, which
constitute only a small fraction of all weights.

C. Derivation of Theorem
For ease of presentation in this proof, we denote, for any probability distribution G:

qG(x) :=

∫
f(x− θ)dG(θ) =

∫
ϕ
(
x | θ, σ2I

)
dG(θ),

where x ∈ Rd and f(x) = 1
(
√
2πσ)d

exp
(
− |x|2

2σ2

)
for a given σ > 0. Here, qG represents the function of f and the probability

distribution G. Given that the space of Gaussian mixtures is dense in the space of continuous probability measures (Ghosal
& Van Der Vaart, 2001), we can conclude that there exists a probability distribution G1 such that:

sup
x∈Rd

|q(x)− qG1(x)| ≤
ϵ

2
. (7)

Our subsequent objective is to establish the existence of a probability measure G2 with at most K supports, where
K ≤ (C log(1/ϵ))d for some universal constant C. This new measure satisfies:

sup
x∈Rd

|qG1
(x)− qG2

(x)| ≤ ϵ

2
. (8)

Exploiting Lemma A. 1 from (Ghosal & Van Der Vaart, 2001; Nguyen et al., 2022), we can find a probability distribution
G2 with at most (2k − 2)d supports, where: ∫

θαd (G1 −G2) (θ) = 0, (9)

for any α = (α1, α2, . . . , αd) ∈ Nd with 0 ≤ |α| =
∑d

j=1 αj ≤ 2k− 2, where θα =
∏d

j=1 θ
αj

j . Now, for any M ≥ 2a
√
d,

we can derive:

∥x− θ∥ ≥ ∥x∥ − ∥θ∥ > M − a
√
d > M/2, (10)

as long as |x| > M and θ ∈ [−a, a]d. This implies:
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sup
∥x∥>M

|qG1(x)− qG2(x)| = sup
∥x∥>M

∣∣∣∣∫ f(x− θ)d (G1 −G2) (θ)

∣∣∣∣
≤ sup

∥x∥>M

∫
1

(
√
2πσ)d

exp

(
−∥x− θ∥2

2σ2

)
≤ 2

(
√
2πσ)d

exp

(
−M2

8σ2

)
.

(11)

Conversely, for any k ≥ 1, we also have:

sup
∥x∥≤M

|qG1
(x)− qG2

(x)| ≤ sup
∥x∥≤M

∫ ∣∣∣∣∣∣f(x− θ)−
k−1∑
j=0

(−1)j∥x− θ∥2j

(
√
2π)dσd+2jj!

∣∣∣∣∣∣ d (G1 +G2) (θ)

≤ 2 sup
∥x∥≤M,θ∈[−a,a]d

∣∣∣∣∣∣f(x− θ)−
k−1∑
j=0

(−1)j∥x− θ∥2j

(
√
2π)dσd+2jj!

∣∣∣∣∣∣
= sup

∥x∥≤M,θ∈[−a,a]d

2

(
√
2πσ)d

∣∣∣∣∣∣exp
(
−∥x− θ∥2

2σ2

)
−

k−1∑
j=0

(−1)j∥x− θ∥2j

σ2jj!

∣∣∣∣∣∣
≤ sup

∥x∥≤M,θ∈[−a,a]d

ek∥x− θ∥2k

σ2k(2k)k
,

(12)

where the final equality arises from: ∫ k−1∑
j=0

(−1)j∥x− θ∥2j

(
√
2π)dσd+2jj!

d (G1 −G2) (θ) = 0, (13)

which can be derived from Eqn. 9. To further bound the right-hand-side (RHS) of Eqn. 12, we use the following inequality:∣∣∣∣∣∣exp(y)−
k−1∑
j=0

(y)j/j!

∣∣∣∣∣∣ ≤ |y|k/k!,

for any y ∈ R. Since k! ≥ (k/e)k for any k ≥ 1, the above bound can be rewritten as:∣∣∣∣∣∣exp(y)−
k−1∑
j=0

(y)j/j!

∣∣∣∣∣∣ ≤ |ye|k

kk
. (14)

Further simplification of Eqn. 12 leads to

sup
∥x∥≤M

|qG1
(x)− qG2

(x)| ≤ sup
∥x∥≤M

∫ ∣∣∣∣∣∣f(x− θ)−
k−1∑
j=0

(−1)j∥x− θ∥2j

(
√
2π)dσd+2jj!

∣∣∣∣∣∣ d (G1 +G2) (θ)

≤ 2 sup
∥x∥≤M,θ∈[−a,a]d

∣∣∣∣∣∣f(x− θ)−
k−1∑
j=0

(−1)j∥x− θ∥2j

(
√
2π)dσd+2jj!

∣∣∣∣∣∣ exp
(
−∥x− θ∥2

2σ2

)
−

k−1∑
j=0

(−1)j∥x− θ∥2j

σ2jj!

∣∣∣∣∣∣
= sup

∥x∥≤M,θ∈[−a,a]d

2

(
√
2πσ)d

∣∣∣∣∣
≤ sup

∥x∥≤M,θ∈[−a,a]d

ek∥x− θ∥2k

σ2k(2k)k
.

13
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In the last inequality, we applied inequality 14 with y = −|x − θ|2/
(
2σ2
)
. For |x| ≤ M and θ ∈ [−a, a]d, we have

|x− θ| ≤ |x|+ |θ| ≤ M + a
√
d. Therefore, we further have:

sup
∥x∥≤M

|pG1(x)− pG2(x)| ≤ sup
∥x∥≤M,θ∈[−a,a]d

ek∥x− θ∥2k

σ2k(2k)k
≤ ek(M + a

√
d)2k

σ2k(2k)k
.

Given that M ≥ 2a
√
d, it follows that M + a

√
d ≤ 3M

2 . Therefore, the above bound can be simplified as:

sup
∥x∥≤M

|qG1
(x)− qG2

(x)| ≤ (9e)kM2k

(8σ2k)
k

. (15)

By choosing M2 = 8σ2 log (1/ϵ′) for some ϵ′ > 0, the bounds in Eqns. 11 and 15 become

sup
∥x∥≤M

|qG1(x)− qG2(x)| ≤
2

(
√
2πσ)d

ϵ′

sup
∥x∥>M

|qG1
(x)− qG2

(x)| ≤ (9e)k (log (1/ϵ′))
k

kk
(16)

As long as we choose k = 9e2 log (1/ϵ′) and ϵ′ ≤ 1, we have

sup
∥x∥>M

|qG1(x)− qG2(x)| ≤ e−k = e−9e2 log(1/ϵ′) = (ϵ′)
9e2 ≤ ϵ′. (17)

By choosing ϵ′ = ϵ

2max
{

2

(
√

2πσ)d
,1
} , the results from Eqns. 16 and 17 indicate that

sup
∥x∥≤M

|qG1(x)− qG2(x)| ≤
ϵ

2
, and sup

∥x∥>M

|qG1(x)− qG2(x)| ≤
ϵ

2
.

Therefore, if we choose M = 8σ2 log

(
2max

{
2

(
√

2πσ)d
,1
}

ϵ

)
and k = 9e2 log

(
2max

{
2

(
√

2πσ)d
,1
}

ϵ

)
, we have

sup
x∈Rd

|qG1
(x)− qG2

(x)| ≤ ϵ

2
.

This implies that we can establish the conclusion of claim 8 by choosing K = (2k−2)d ≤
(
18e2 log

(
2max 2

(
√

2πσ)d
,1

ϵ

))d

.

Combining the results from Eqns. 7 and 8, we can conclude:

sup
x∈Rd

|q(x)− qG2
(x)| ≤ sup

x∈Rd

|q(x)− qG1
(x)|+ sup

x∈Rd

|qG1
(x)− qG2

(x)| ≤ ϵ.

As a consequence, we obtain the conclusion of the theorem.
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