
Learning with Adaptive Resource Allocation

Jing Wang 1 2 Miao Yu 1 2 Peng Zhao 1 2 Zhi-Hua Zhou 1 2

Abstract
The study of machine learning under limited re-
sources has gathered increasing attention, con-
sidering improving the learning efficiency and
effectiveness with budgeted resources. However,
previous efforts mainly focus on single learning
task, and a common resource-limited scenario is
less explored: to handle multiple time-constrained
learning tasks concurrently with budgeted com-
putational resources. In this paper, we point out
that this is a very challenging task because it de-
mands the learner to be concerned about not only
the progress of the learning tasks but also the co-
ordinative allocation of computational resources.
We present the Learning with Adaptive Resource
Allocation (LARA) approach, which comprises
an efficient online estimator for learning progress
prediction, an adaptive search method for com-
putational resource allocation, and a balancing
strategy for alleviating prediction-allocation com-
pounding errors. Empirical studies validate the
effectiveness of our proposed approach.

1. Introduction
The impact of limited computational resources on machine
learning (ML) is of increasing attention due to its significant
influence on the efficiency and effectiveness of the model
training process in various real-world scenarios. This is
particularly noticeable in situations involving large models,
such as large language models (Achiam et al., 2023), which
always demand the use of thousands of GPUs for several
months to achieve effective training, as well as the situa-
tion of tiny training devices such as certain IoT devices or
microcontrollers (Lin et al., 2023), which are incapable of
supporting even regular sized models. All these situations
highlight the diverse challenges posed by computational
resource limitations in different contexts of learning tasks.
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Figure 1. Multiple users upload diverse learning tasks to a shared
computational facility, all intended to be completed before user-
defined deadlines. Due to computational resource limitation, we
aim to complete as many tasks as possible within these constraints.

In order to improve training efficiency and effectiveness
with limited computational resources, various significant
strides have been made in prior research, which include:
improving resource usage efficiency (Dean et al., 2012; Li
et al., 2014), reducing model size (Frankle & Carbin, 2019;
Mirzadeh et al., 2020), designing memory-efficient opti-
mization algorithms (Anil et al., 2019; Hu et al., 2022),
etc. Notably, previous efforts mainly focus on the compu-
tational resource issue of single learning task. However, a
common resource limitation scenario has received less atten-
tion: multiple time-constrained learning tasks competing for
budgeted computational resources, as illustrated in Figure 1.

Consider a practical example of a quantitative finance
startup, where there can be multiple analysts or traders who
aim to train many different learning models to help forecast
the market or manage risks, and these model training tasks
require a large amount of computational resources. Given
their limited budgets, these startups often face challenges
in acquiring advanced computational resources necessary
for concurrently handling everyone’s computational needs.
This limitation typically results in a first-come, first-served
basis in resource allocation. Such an approach can be highly
inefficient, particularly when earlier uploaded tasks use re-
sources poorly, which not only leads to computational power
wastage but also causes delays in executing other critical
tasks. In the dynamic and fast-paced domain of finance,
such delays can incur significant costs, such as missed op-
portunities or delayed responses to emerging risks.

A similar challenge arises when a user purchases or leases
cloud computational services. As the user always needs to
execute multiple tasks concurrently, each corresponding to
different model structures or hyperparameter tunings, these
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computational resources are often incapable of supporting
parallel training for these learning tasks. Consequently, the
user has to adopt a sequential approach for model training.

To this end, Zhou (2023) advocated that the concept of time-
sharing should be introduced to machine learning. On one
hand, this will enable us to take into account the computa-
tional resource constraints in real-world issues mentioned
above and recognize that the performance of machine learn-
ing depends not only on the amount of data received but
also on the computational resources available to process it.
On the other hand, current intelligent supercomputing facili-
ties generally operate in an exclusive manner, allocating a
fixed amount of resources to each user, which can either be
insufficient or excessive, leading to inefficiencies. Such a
working style can be improved if time-sharing concept is
taken into account. For this purpose, Zhou (2023) formally
proposed the Computational Resource Efficient Learning
(CoRE-Learning) paradigm where the key is to consider the
influence of resource scheduling during learning process,
aiming to complete as many tasks on time as possible within
resource limits. In this paper, we present the first practical
CoRE-Learning approach. We identify that the key chal-
lenge of CoRE-Learning lies in the coupling of learning
progress and resource allocation: the learning progress of
each task guides resource allocation, while resource alloca-
tion affects the learning progress of each task.

To tackle the challenge of CoRE-Learning problem, we in-
troduce the Learning with Adaptive Resource Allocation
(LARA) approach, which periodically predicts each task’s
resource requirement and allocates resources accordingly.
LARA consists of three components: (i) Resource predic-
tion: this component adopts an efficient online estimator to
fit the learning progress curve from historical data and pre-
dicts the resources needed for each task to meet success cri-
teria; (ii) Resource allocation: based on each task’s resource
prediction, this component models the resource allocation
problem and employs an adaptive searching method guaran-
teed to find the optimal solution; (iii) Prediction-allocation
balancing: this component employs an exploration strategy
to reduce compounding error caused by the prediction inac-
curacies and their cascading effects. Experimental results
validate the effectiveness of our LARA approach, demon-
strating its capacity to significantly improve resource utiliza-
tion efficiency in the context of CoRE-Learning.

Notation. In this paper, we let {ak}Kk=1 ≜ {a1, ..., aK};
[T ] ≜ {1, 2, ..., T}; [a, b] ≜ {a+ 1, ..., b}; I(·) is indicator
function; |A| denotes the cardinality of set A.

2. Problem Formulation and Key Challenge
In this section, we provide the problem formulation of
CoRE-Learning (Zhou, 2023) and discuss its key challenge.
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Figure 2. An example of uniform allocation within unit time t.

2.1. Problem Formulation

According to Zhou (2023), we consider a task bundle
{Tk}Kk=1 during the time period [T ]. The k-th thread Tk
represents a machine learning training task uploaded by the
user, which is defined by: the task beginning time bk and the
user-defined deadline time dk such that 1 ≤ bk < dk ≤ T ,
signifying the time constraint of k-th thread; the data budget
Nk represents the upper limit of the data amount that k-th
thread can learn within any unit time t ∈ [T ], reflecting the
computational resource capability.

At unit time t, the learner observes a set of active threads
At = {k | bk ≤ t ≤ dk, k ∈ [K]}. The budget computa-
tional resources cannot simultaneously support all threads
k ∈ At to meet their maximum data capabilities Nk, so
the learner needs to select the data throughput {ηk,t}k∈At

such that k-th thread can learn ηk,tNk data within unit
time t. Figure 2 provides an example of allocation for
three threads. The computational budgets bring constraints:
∀k ∈ At, ηk,t ≥ 0;

∑
k∈At

ηk,t ≤ 1. Then, the learner
observes the new training loss value ℓk(s) of k-th thread,
where s represents the amount of accumulated usage data.
The success criteria for k-th thread is that its training loss
reaches a user-defined threshold within the time constraint
[bk − 1, dk]: ℓk(

∑dk

t=bk
ηk,tNk) ≤ ϵk. The learner’s goal

is to maximize the number of tasks that meet their success
criterion within the time constraints.

2.2. Key Challenge

We can model the CoRE-learning problem for task bundle
{Tk}Kk=1 as solving the following optimization problem

max
{ηk,t}k∈[K],t∈[T ]

∑

k∈[K]

I

[
ℓk

(
dk∑

t=bk

ηk,tNk

)
≤ ϵk

]

s.t. ∀t ∈ [T ],
∑

k∈At

ηk,t ≤ 1,

∀k ∈ [K], t ∈ [T ], ηk,t ≥ 0.

(2.1)

The key challenge of Problem (2.1) arises from the coupling
of learning progress and resource allocation. Specifically,
the loss function ℓk(·) is unknown, which requires esti-
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mating ℓk based on early data and solving the allocation
problem with the extrapolated function ℓ̂k(·). The predictive
error in ℓ̂k(·) directly impacts the effectiveness of resource
allocation. Additionally, even with a known ℓk(·), solv-
ing Problem (2.1) remains difficult. The non-convex and
non-continuous nature of the objective function and the ex-
tensive number of parameters make classic methods like
dynamic programming computationally intensive and time-
consuming, potentially affecting the learning process. One
may also consider using reinforcement learning techniques
to deal with the learning-allocation coupling issue, similar
to the exploration-exploitation dilemma. However, these
techniques are not directly applicable to CoRE-Learning
due to the need for efficient, high-frequency re-estimation
and reallocation to minimize the impact on learning tasks.

3. Our Approach
In this section, we present Learning with Adaptive Resource
Allocation (LARA), an innovative approach developed to
manage budgeted computational resources in the context
of CoRE-Learning. LARA comprises three components:
resource prediction, resource allocation, and prediction-
allocation balancing. At each unit time, LARA predicts
the data amount required for each thread to succeed and
then allocates resources based on these predictions. The
balancing component is vital in minimizing compounded
errors from prediction and allocation during training. The
following sections provide detailed discussions: resource
prediction in Section 3.1, resource allocation in Section 3.2,
and prediction-allocation balancing in Section 3.3.

3.1. Resource Prediction

In this part, we introduce our resource prediction method.
Briefly, this process involves analyzing the previously ob-
served training loss values and the corresponding cumulative
training data volume. By applying regression to fit the train-
ing loss curve, LARA extrapolates the fitted loss curve to
predict when it is likely to fall below the success threshold.

Many existing studies indicate that the training loss curves
of various models generally follow the form of a negative
power function (Hestness et al., 2017; Kaplan et al., 2020).
Leveraging this insight, our approach utilizes a negative
power function to fit the training loss curve. Specifically,
for the k-th thread Tk, we model this relationship between
the loss and the training data amount as

ℓk(s) = aks
−bk + ξk,s, (3.1)

where ℓk(s) denotes the training loss value of the cumulative
data amount s for the k-th thread, ak and bk are unknown
positive constants, and ξk,s represents noise. To facilitate a
more efficient regression, we transform it into a linear form

by taking ln(·) on both sides of Eq. (3.1):

rk,s = X⊤
s θk + ξ′k,s, (3.2)

where rk,s ≜ ln ℓk(s), Xs ≜ [ln s; 1], θk ≜ [−bk; ln ak]
and ξ′k,s is the surrogate noise.

It is critical to note that LARA needs to use early samples
from the training loss function to estimate the true trajec-
tory of the loss function curve. Then, we extrapolate this
curve to predict the future data amount required for reduc-
ing the loss function below a specific success threshold.
This extrapolation process requires paying more attention
on minimizing future errors in the function estimation. To
enhance accuracy, recent data is given priority, as it more ac-
curately reflects upcoming trends. Consequently, we adopt
a weighted regularized least squares method (Guo et al.,
1993), which gives increased weight to recent data points
while reducing the influence of older ones. For the k-th
thread Tk, after observing n data pairs {si, ℓk(si)}ni=1, the
estimator θ̂k,n is obtained by solving the following problem:

min
θ

n∑

i=1

γn−i(X⊤
siθ − rk,si)

2, (3.3)

where γ ∈ (0, 1) is the discounted factor, measuring the
degree of discounting to early data. Problem (3.3) admits a
closed-form solution

θ̂k,n = V −1
n

(
n∑

i=1

γn−irk,siXsi

)
, (3.4)

where Vn ≜
∑n

i=1 γ
n−iXsiX

⊤
si is the covariance matrix.

Moreover, we can reformulate the solution (3.4) into an
online update format (Haykin, 2002, Chapter 10.3)

θ̂k,n = θ̂k,n−1 + V −1
n Xsn(rk,sn −X⊤

sn θ̂k,n−1)

V −1
n =

1

γ

(
V −1
n−1 −

V −1
n−1XsnX

⊤
snV

−1
n−1

γ +X⊤
snV

−1
n−1Xsn

)
.

(3.5)

This new format does not require matrix inversion and is
one-pass, in the sense that it processes each data only once,
hence eliminating the need to store historical data and sig-
nificantly enhancing the efficiency of the estimation.

Upon estimating the unknown parameters by Eq. (3.5) as
θ̂k,n = [−b̂k,n, ln âk,n], we derive the estimated negative
power function ℓ̂k(s) = âk,ns

−b̂k,n . By applying the suc-
cess criterion ℓ̂k(s) ≤ ϵk, we can compute the data volume
needed for the k-th thread to achieve its success criterion as
s = exp (1/̂bk,n ln âk,n/ϵk). By subtracting the already used
data amount sn, we obtain the remaining data requirement

Ŝk,n =

⌈
exp

(
1

b̂k,n
ln

âk,n
ϵk

)
− sn

⌉
. (3.6)
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Remark 1. Recent studies on curve extrapolation and scal-
ing laws for various models have yielded notable advance-
ments. For instance, Domhan et al. (2015) employ an ensem-
ble of diverse structural models, leveraging their combined
strengths to approximate the loss curve more accurately.
Alabdulmohsin et al. (2022) suggest using an extrapolation
loss instead of the traditional interpolation loss for better
prediction accuracy. Additionally, Shen & Meinshausen
(2023) introduce engression as an advanced extrapolation
technique. These approaches have demonstrated improved
performance in curve extrapolation tasks. However, these
advanced techniques typically require substantial time and
computational resources for managing multiple models or
optimizing the extrapolation or engression losses. Such ex-
tensive resource requirements are infeasible in the context
of CoRE-Learning, where an efficient estimation algorithm
is essential for frequent updates.

3.2. Resource Allocation

At time τ , let Aτ denote the current active thread set and
Kτ ≜ |Aτ |. We reorder and re-label the threads in Aτ such
that their deadlines satisfying d0 ≤ d1 ≤ d2 ≤ . . . ≤ dKτ

where d0 ≜ τ − 1. Let Sk denotes the data amount still
required for k-th thread to succeed, which can be esti-
mated by estimator (3.6), and the success criteria becomes∑dk

t=d0+1 ηk,tNk ≥ Sk. The learner’s goal at time τ is to
maximize the number of successful threads within the active
thread set Aτ , which can be formulated as

max
{ηk,t}

k∈Aτ ,t∈[d0,dKτ ]

∑

k∈Aτ

I

(
dk∑

t=d0+1

ηk,tNk ≥ Sk

)

s.t. ∀t ∈ [d0, dKτ
],
∑

k∈Aτ

ηk,t ≤ 1,

∀k ∈ Aτ , t ∈ [d0, dKτ
], ηk,t ≥ 0.

(3.7)

The indicator function introduces non-convexity to Prob-
lem (3.7). A typical solution might be convex relaxation
followed by gradient descent. Here instead, we identify
that the nature of non-continuous allows for both dimen-
sionality reduction and discretization of the solution space,
while guaranteeing that the optimal solution is encompassed
within this space. This advantage allows us to develop effi-
cient search methods to effectively locate optimal solutions.

Parameter Reduction. The following lemma presents an
optimal solution representation that reduces the number of
parameters from

∑
k∈Aτ

(dk − d0) to merely Kτ .

Lemma 1. At time τ , there exists a set of time-invariant
parameters {η̃k}k∈Aτ

, where ∀k ∈ Aτ , 0 ≤ η̃k ≤ 1, such
that the optimal solution {η∗k,t}k∈Aτ ,t∈[d0,dKτ ]

to the allo-
cation Problem (3.7) can be characterized by {η̃k}k∈Aτ .
Specifically, for each time interval [dj−1, dj ], j ∈ [Kτ ],

η3,t = η̃3η3,t = (1 − η̃1)(1 − η̃2)η̃3 η3,t = (1 − η̃2)η̃3

η2,t = (1 − η̃1)η̃2 η2,t = η̃2

η1,t = η̃1

d1 d2 d3d0

thread 3

thread 2

thread 1

Figure 3. An example of parameter reduction for three threads.

ηk,t =

{
η̃j , k = j,∏k−1

i=j (1− η̃i)η̃k, j < k ≤ Kτ .
(3.8)

Figure 3 provides an example to illustrate Eq. (3.8).
Lemma 1 shows that we only needs to determine the set
{η̃k}Kτ

k=1 to find the optimal solution of Problem (3.7).

Adaptive Binary Tree Search. After parameter reduction,
the cumulative data amount

∑dk

t=d0+1 ηk,tNk allocated to
thread k can be expressed as Dk(η̃k) ·Nk, where we define
D1(η̃1) ≜ ∆1η̃1, and ∀k ≥ 2,

Dk(η̃k) ≜




k−1∑

j=1

k−1∏

i=j

(1− η̃i)∆j +∆k


 η̃k, (3.9)

where ∆j ≜ dj − dj−1 is the time interval width. A critical
insight is that for each thread, resource allocation has only
two outcomes: success (i.e. Dk(η̃k) ·Nk ≥ Sk) or failure.
Therefore, η̃k can take only two possible values: a value
that ensures the thread’s success or 0. Starting with η̃1,
the decision is either to allocate no resources (η̃1 = 0)
or just enough to meet its requirement (η̃1 = S1/N1∆1).
Once η̃1 is set, a similar decision is made for η̃2. This
process is then iteratively applied to each subsequent thread,
such that when η̃1, . . . , η̃k−1 are determined, we can set
η̃k accordingly. Based on this allocation method, we can
construct a complete binary tree of Kτ layers, such that at
each node in the k-th layer, we make the following allocation

η̃k =

{
0, if αk > 1,

αk, otherwise,
(3.10)

where αk ≜ Sk/Nk(
∑k−1

j=1

∏k−1
i=j (1−η̃i)∆j+∆k). The binary

tree with 2Kτ leaf nodes represents all possible allocation
methods for {η̃k}Kτ

k=1, and our goal is to find the optimal
path within this tree. However, a full tree traversal would
have an impractical time complexity of O(2Kτ ). To this
end, more efficient search methods are required. We find
that prioritizing threads based on earlier deadline times dk
or a lower ratio of required resources to work Sk/Nk can
have a better effect. With this strategy in mind, we have
developed an adaptive search algorithm for the binary tree.
This algorithm allocates resources preferentially to tasks
with earlier deadlines and smaller resource requirements.
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Algorithm 1 Adaptive Binary Tree Search

Input: active thread set A, current time τ , required re-
source Sk, candidate thread set C = ∅

1: Set d0 = τ − 1, ∀k ∈ A, set η̃k = 0
2: Sort and re-label threads in A such that d0 ≤ ... ≤ d|A|
3: for k = 1, 2, ..., |A| do
4: Add k into C
5: if Sk/Nk

dk−d0−
∑

i∈C Si/Ni+Sk/Nk
> 1 then

6: Choose i = argmaxi∈C
Si

Ni
, remove i from C

7: end if
8: end for
9: for k ∈ C do

10: Set η̃k = Sk/Nk

dk−d0−
∑

i∈C,i≤k Si/Ni+Sk/Nk

11: end for
12: return {η̃k}k∈A

Our algorithm maintains a set C to keep track of candidate
threads where each k ∈ C has a non-zero η̃k, then the re-
source allocation rate αk in the allocation condition (3.10)
can be recalculated as αk = Sk/Nk

dk−d0−
∑

i∈C,i≤k Si/Ni+Sk/Nk
.

Initially, C is empty. Starting from k = 1 and progressing to
Kτ , the algorithm first adds thread k to C and if resource al-
location to the k-th thread breaches the constraints (αk > 1),
it then identifies and removes the most resource-demanding
thread from C, determined by i = argmaxi∈C

Si/Ni. Once
all Kτ threads have been considered, the algorithm assigns
η̃k = 0 for k /∈ C and η̃k = αk for all k ∈ C. The overall
algorithm is summarized in Algorithm 1.

Algorithm 1 significantly reduces the time complexity of
binary tree search from O(2Kτ ) to O(Kτ ). Additionally,
the subsequent theorem demonstrates that Algorithm 1 ef-
fectively attains the optimal solution for the Problem (3.7).

Theorem 1 (Optimality). For the allocation Problem (3.7),
the results {η̃k}Kτ

k=1 generated by Algorithm 1 can
be used to construct the optimal resource allocation
{η∗k,t}k∈Aτ ,t∈[d0,dKτ ]

, as outlined in Eq. (3.8).

3.3. Prediction-Allocation Balancing

In previous sections, we introduced a method to predict the
resource requirements for each task to complete each task
based on their learning progress. This prediction is vital for
resource allocation, which in turn influences the learning
progress and future predictions. Initially, our dataset of train-
ing loss observations for each thread is limited, leading to
significant uncertainty in predictions. Early allocation based
on these imprecise predictions could introduce compound-
ing errors, potentially misdirecting resources from feasible
tasks to less feasible ones. We note that it is important to
address this issue early in the process of regular prediction
and allocation. Otherwise, such compounded errors might

Algorithm 2 Learning with Adaptive Resource Allocation

Input: Task bundle {Tk}Kk=1, exploration period Hk

1: Set exploration set Et = ∅, active thread set At = ∅
2: for t = 1, 2, ..., T do
3: Update active thread set At and exploration set Et

4: Calculate resource estimation Ŝk by Eq. (3.6)
5: if Et ̸= ∅ then
6: for all k ∈ Et do
7: Allocate ηk,t = 1/|Et| to thread k
8: end for
9: else

10: Run Algo. 1 with At, t, Ŝk and return {η̃k}k∈At

11: Set η1,t = η̃1 and ∀k ≥ 2, ηk,t =
∏k−1

i=1 (1−η̃i)η̃k
12: Rescale to make sure

∑
k∈At

ηk = 1
13: end if
14: Learn ηk,tNk data for thread k ∈ At and receive new

loss value ℓk for k ∈ At

15: Update regression θ̂k by Eq. (3.5)
16: end for

accumulate over time, reducing the algorithm’s overall ef-
fectiveness. This challenge requires a prediction-allocation
balancing, where resources are allocated widely enough to
ensure accurate predictions, while also being strategically
focused on tasks with the greatest likelihood of success. To
achieve this, we design our balancing strategy based on the
idea of Explore-Then-Exploit (ETE) strategy from bandits
theory (Lattimore & Szepesvári, 2020).

Explore-then-Exploit. At each time τ , we maintain an
exploration set Eτ = {k | ∑τ

t=1 ηk,tNk ≤ Hk, k ∈ At},
where Hk is a predefined exploration threshold. This thresh-
old indicates that if a thread’s cumulative allocated data
amount is below Hk, it requires more data for accurate
evaluation. If Eτ ̸= ∅, implying there are still exists under-
explored active threads, we then allocate the resources of
time unit τ uniformly among all threads in Eτ , such that
∀k ∈ Ek, ηk,τ = 1/|Eτ |. This allocation is vital for gath-
ering sufficient data for precise training loss estimation,
thus significantly reducing errors in resource prediction. It
is important to clarify that this approach differs from pre-
training a model for loss curve fitting, as the exploration
period is a critical part of each thread’s time allocation.
Setting the exploration threshold Hk appropriately is cru-
cial: too long a period can use up excessive time, affecting
subsequent resource allocation, while too short a period
may cause significant prediction errors, exacerbating com-
pounded errors. The complete LARA algorithm with the
Explore-then-Exploit strategy, is detailed in Algorithm 2.

Remark 2. The ETE strategy relies on a exploration thresh-
old, which still depends on an empirical adjustment. This
suggests the need for more adaptive algorithms, such as
the Upper Confidence Bound (UCB). We could adopt UCB
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here by adding a bonus to resource prediction, for exam-
ple, at time τ , set corrected resource prediction as S̃k,n =

Ŝk,n − β
√

ln(τ−bk)/
∑τ

t=bk
ηk,t, where β > 0 is a UCB con-

trol constant, ln(τ−bk) represents the potential data budget,
and

∑τ
t=bk

ηk,t is the actual data received. Less exploration
leads to a larger bonus and a smaller S̃k,n, encouraging more
resource allocation to the thread. However, we have con-
ducted preliminary experiments and found that UCB-type
strategy may not outperform the simple ETE. This UCB-
type strategy may often allocate fewer resources than re-
quired. This is because UCB adopts an optimistic way to
encourage exploration: S̃k,n = Ŝk,n − optimism. So the
allocated resource S̃k,n may be fewer than the actual re-
source required by the task. In the future, we might consider
integrating other adaptive strategies such as Thompson sam-
pling to improve the exploration phase of our approach.

4. Experiments
In this section, we evaluate the empirical performance of our
proposed LARA approach. We begin with an experiment
involving a pure task bundle, where five different models are
trained concurrently on the same dataset to demonstrate our
approach’s efficiency and effectiveness. Next, we conduct
an experiment with a mixed task bundle, where different
models are trained concurrently on different datasets. We
then perform a scalability experiment to assess how our algo-
rithm performs as the number of threads increases. Finally,
we conduct experiments to evaluate the performance of spe-
cific components of our algorithm. In each experiment, each
thread represents a model training task with a specific be-
ginning time bk, deadline dk, and predetermined success
threshold for the loss ϵk. Each time unit t ∈ [T ] is set to one
second. At the start of each time unit, the learner observes
the training loss of the previous time unit and allocates the
resources for the current time unit as needed.

4.1. Pure Task Bundle Experiment

In this part, we consider a pure task bundle, where each task
trains a different model but uses the same dataset.

Setting. We focus on image classification of CIFAR-10
dataset (Krizhevsky et al., 2009). We train five distinct mod-
els concurrently, each featuring unique hyperparameters and
structures. The training loss for all models is calculated as
the average cross-entropy loss over the past training batches.
All five models begin training concurrently, and the begin-
ning time for each thread is set to 0-th second. The specific
settings for each of the five models, including model type,
data budget (Nk), deadline time (dk), and success thresh-
old (ϵk), are outlined in Table 1. Nk is the maximum data
processable per second calculated by the average time to
process unit data during the exploration, and unit data is de-

fined by a batch with 64 data points. For the deadline dk and
success criteria ϵk, we initially designed a series of tasks
that could be completed in short priority order. We then
adjusted certain tasks, creating scenarios with both short
and challenging tasks (small dk, large ϵk) as well as long
and simple ones. For the subsequent experiment over mixed
task bundle, we employed the same generation strategy.

Model ViT LSTM CNN ResNet18 ResNet34
Nk 163 220 375 97 55
dk 500 570 590 610 630
ϵk 1.35 1.18 0.15 0.35 0.45

Table 1. The setting of pure task bundle.

We evaluate the performance of our proposed LARA ap-
proach against several classic resource allocation strategies:
(a) Uniform Allocation (UA), which distributes computa-
tional resources equally across all active threads regardless
of their specific needs or deadlines; (b) Shortest Thread
First (STF), giving priority to threads with the nearest dead-
lines and allocating all resources to them first; (c) Least
Resources First (LRF), allocating resources primarily to
threads requiring the smallest amount of training data Sk,
thereby aiming to quickly complete tasks with lower de-
mands; and (d) Easiest Thread First (ETF), focusing on the
ratio of required data to time constraints Sk/dk−bk, thus pri-
oritizing threads that are relatively easier to complete within
their available time. Both Least Resources First and Easiest
Thread First use the same resource prediction method as
ours, as specified in (3.6). For exploration we set all explo-
ration threshold Hk = 8000, this takes a total of about 335
seconds to explore all threads.

Allocation Result. Figure 4(a) illustrates the results of suc-
cessfully completed thread number using various resource
allocation strategies. Both UA and STF methods allocate
excessive resources to the challenging thread 1, leading
to none of the threads being completed. LRF and ETF
strategies, which employ our provided resource prediction
method, manage to avoid dedicating resources to some of
the more challenging threads. However, their inherently
greedy allocation methods result in the completion of only
two threads. In contrast, the LARA algorithm, by strategi-
cally giving up on the difficult-to-complete thread 1 early,
efficiently allocates resources and successfully completes
the remaining four threads.

4.2. Mixed Task Bundle Experiment

In this part, we consider a mixed task bundle, where each
task trains a different model on a different dataset.

Setting. We consider 10 threads across four different types
of learning tasks: computer vision (CV) with CIFAR-10,
natural language processing (NLP) with IMDB (Maas et al.,
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(b) Mixed task bundle with ϵ1k
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(c) Mixed task bundle with ϵ2k

Figure 4. Effectiveness experiments of resource allocation for pure and mixed task bundles.

2011), reinforcement learning (RL) with Montezuma’s Re-
venge1, and audio processing with Yesno2, each using differ-
ent models. All ten models begin training concurrently, with
the starting time for each thread set to the 0-th second. The
specific settings, including model type, data budget (Nk),
deadline time (dk), and success threshold (ϵk), are outlined
in Table 2. We provide two sets of success thresholds, ϵ1k
and ϵ2k, to characterize task bundles of varying difficulties.

Num Task Model dk ϵ1k ϵ2k Nk

1 CV ViT 530 1.1 0.99 176
2 CV ViT 540 1.35 1.215 176
3 RL DAgger+CNN 545 0.0011 0.0011 69
4 Audio Transformer 585 0.06 0.09 293
5 NLP Attention+LSTM 625 7× 10−4 6.3× 10−4 139
6 CV ResNet18 655 0.55 0.46 107
7 CV ResNet18 685 0.55 0.48 107
8 NLP Attention+LSTM 690 9× 10−4 4.5× 10−4 139
9 Audio Transformer 700 0.08 0.108 293

10 RL DAgger+CNN 710 0.0012 0.0006 69

Table 2. The setting of mixed task bundle.

Allocation Result. Figures 4(b) and 4(c) illustrate the com-
parative results of successfully completed threads using
various resource allocation strategies. The task bundle with
ϵ1k contains difficult short tasks (threads 1 and 2) and easier
longer tasks. Figure 4(b) shows that this scenario is more
suited for UA, which fails only in the short threads but com-
pletes the six easier long threads. STF allocates excessive
resources to challenging threads 1 and 2, leading to only
two tasks in the task bundle being completed. LRF and
ETF, employing our resource prediction method, manage
to avoid dedicating resources to some of the more challeng-
ing threads. However, their inherently greedy allocation
methods result in the completion of only four threads. In
contrast, the LARA algorithm, by strategically giving up on
the difficult-to-complete threads 1 and 2 early, efficiently
allocates resources and successfully completes the remain-
ing eight threads. For the task bundle with ϵ2k, threads 4 and
9 are made easier while the rest become harder, which is

1Details can be found at Montezuma’s Revenge.
2Information about the Yesno dataset is available at Yesno.

more suitable for STF. Figure 4(c) shows that, under this
setup, UA finishes only three tasks. STF finishes five tasks
by completing the two easier tasks. LRF and ETF continue
to perform poorly due to their greedy allocation strategy.
However, our LARA algorithm still manages to complete
six tasks. These scenarios show that our LARA strategy
performs well in different environments, demonstrating its
robustness and effectiveness.

4.3. Scalability Experiment

To more comprehensively validate our experiment, we
aimed to investigate how increasing the number of train-
ing tasks influences the effectiveness of our approach.

Setting. In this part, we focus on image classification of
MNIST dataset (Deng, 2012). To generate task bundles, we
start by randomly selecting a model from those listed in
Table 1 and randomly setting its success threshold ϵ within
a certain range. We run each model to completion with
the full budgeted computational resources, recording the
time taken as its deadline time. This deadline is then used
as the beginning time of the next thread. After all threads
generated, we let all beginning time be 0-second, ensuring
that a series of learning tasks is created in a way that allows
them to be completely solvable using the Shortest Thread
First algorithm. To add complexity, we modify 1/3 of these
tasks by reducing their success thresholds to 1/10 of the
original values, thereby increasing the difficulty of the entire
task bundle. In this experiment, we create task bundles with
10, 25, 50, 75, and 100 threads to analyze how the number of
threads affects the performance of the scheduling algorithm.

Result. Figure 6(a) demonstrates the changes in the num-
ber of successful threads for different resource allocation
strategies as the number of threads increases. It is evident
that LARA consistently outperforms other strategies with an
increasing thread count. Uniform Allocation and Shortest
Thread First, lacking thorough evaluation of threads, show
declining success rates as the number of threads grows. In
contrast, Least Resources First and Easiest Thread First,
utilizing our resource prediction method, perform better

7
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(a) Prediction error over pure task bundle
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(b) Prediction error over mixed task bundle
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Figure 5. Effectiveness and efficiency experiments of resource prediction.

than the former two strategies. This highlights the effec-
tiveness of our resource prediction. However, their reliance
on a greedy allocation strategy limits their effectiveness
compared to LARA. Under the same resource prediction
conditions, LARA continues to outperform them as the
number of threads increases, demonstrating the superior
performance of our allocation algorithm. Figure 6(b) shows
the average time cost for a single round of resource predic-
tion and allocation with our LARA algorithm as the number
of threads increases. It is observed that the time taken for
each update grows linearly with the number of threads. No-
tably, even with 100 threads, a single update period requires
only 0.0007 seconds. Since LARA performs a periodical
resource prediction and allocation every second, this time
cost has a negligible impact on the model training process.
Moreover, all model training tasks are executed on the GPU,
while prediction and allocation tasks are handled on the
CPU, further minimizing LARA’s impact on model training.

4.4. Component Performance Evaluation

In this section, we evaluate the performance of different
resource prediction methods on a pure task bundle in Table 1
and on a mixed task bundle in Table 2.

Setting. We compare the prediction performance of our pro-
posed Weighted Least Squares (WLS) method with several
extrapolation methods mentioned in Remark 1: (a) Least
Squares (LS); (b) the M4 estimator (Alabdulmohsin et al.,
2022); and (c) Engression (Shen & Meinshausen, 2023). We
evaluate these four extrapolation methods based on two mea-
sures: (i) the average prediction error, calculated for each
task using the formula |Ŝ − S|/S, where Ŝ is the predicted
resource and S is the true resource, then averaging these
errors across the entire task bundle; and (ii) the average time
cost of a single round of prediction. For the WLS, we set
the discounted factor γ to 0.9. Both the M4 and Engression
methods are applied with their default settings. To perform
the extrapolations, we use varying amounts of data points
(specifically, 60, 80, up to 200 data points) for each task.
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Figure 6. Scalability experiments.

Prediction Result. Figure 5(a) illustrates how the average
prediction error changes as more data points are used for
the pure task bundle. Surprisingly, the results reveal that the
WLS method results in a lower prediction error compared
to methods specifically designed for extrapolation. The
LS method, which is originally for interpolation, shows the
worst performance in this scenario. Figure 5(b) explores per-
formance over the mixed task bundle. Here, WLS performs
slightly worse than the two extrapolation-specific strategies
but significantly better than LS. Among these methods, En-
gression outperforms the others for extrapolation. Addition-
ally, Figures 5(c) demonstrate that WLS incurs significantly
lower time costs compared to both the M4 estimator and
Engression. This suggests that WLS offers a good balance
between accuracy and efficiency, achieving relatively pre-
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cise outcomes efficiently. We also conducted parameter
sensitivity tests on some components of our algorithm. For
more experimental details, please refer to Appendix B.

5. Related Topics and Discussion
In this section, we will discuss some topics related to com-
bining machine learning with resource scheduling.

Distributed Machine Learning. Distributed Machine
Learning (DML) (Dean et al., 2012; Li et al., 2014) aims
to improve the training efficiency of a single large-scale
model through distributed computing strategies, especially
in scenarios with sufficient computational resources. Dur-
ing the learning process, DML promotes parallel processing
by dividing data and model training tasks, and achieves
load balancing through reasonable resource allocation meth-
ods to accelerate the training process. Although DML also
considers the problem of combining machine learning and
resource allocation, it diverges significantly from our study.
In DML, multiple training tasks are usually coordinated,
and the efficiency of each training task is ensured through
resource allocation to maximize the efficiency and effect of
the entire model training. In contrast, our focus is on train-
ing multiple independent learning tasks concurrently with
budgeted computing resources. Here, each learning task
competes for these budgeted resources, which requires care-
ful evaluation of each learning task and making informed
task-wise trade-offs in resource allocation.

Tiny/Edge Machine Learning. Tiny/Edge ML (Lin et al.,
2023) focuses on processing learning tasks on devices with
extremely limited resources. A line of studies (Wang et al.,
2020a;b; Zhou et al., 2021) explored parallel training of
multiple learning tasks on power-constrained edge devices,
aiming to ensure the effectiveness of each learning task
through power resource allocation. Although these works
also study the scheduling of multiple learning tasks under
resource limitations, they have yet to consider the key chal-
lenge caused by the coupling of learning and allocation, as
raised in our paper. In their approach, each task’s learn-
ing progress is known in advance, escaping the uncertainty
inherent in the learning process and reducing the issue to
a purely computational problem. Furthermore, this also
exhibits many setup differences, including the absence of
deadlines and varying objectives for scheduling, etc. In
contrast, in our study, we cannot obtain any prior before the
start of each task. This requires us to predict the learning
progress of each task during the resource allocation process.
The uncertainty caused by the prediction will significantly
affect the allocation decisions, requiring us to balance the
accuracy of prediction and the effectiveness of allocation.

Related Studies in Operation System. Recently, a line
of operating system research focuses on designing clus-

ter schedulers to improve the efficiency and effectiveness
of parallel training of multiple learning tasks. Efforts de-
voted to maximizing the efficiency of CPU or GPU clusters
by Zhang et al. (2017) and Peng et al. (2018) also involve
integrating learning task management with resource alloca-
tion. However, our research diverges fundamentally in both
its objectives and challenges. Unlike these studies, which
often rely on pre-training estimations of learning progress,
our approach requires the real-time estimation for learning
progress of each task during the training phase. Our objec-
tive is not just to minimize time or maximize performance;
instead, we are faced with the problem of making strategic
decisions about which tasks to prioritize. Sometimes, this
means making the difficult choice to sacrifice the completion
of certain tasks to ensure the successful execution of others.
This trade-off between the completion of individual tasks
and the overall success of the learning objectives is a unique
aspect of our research, distinguishing it fundamentally from
existing studies on combining learning and scheduling.

6. Conclusion and Future Work
In this paper, we consider the Computational Resource Ef-
ficient Learning (CoRE-Learning) problem which aims to
manage multiple time-constrained learning tasks with bud-
geted computational resources. We identify that the key
challenge of this problem lies in the coupling of learning
progress and resource allocation. To address this issue, we
propose the LARA approach which periodically predicts
the learning progress of each learning task, and allocates
resources accordingly. LARA consists of three essential
components: an efficient online estimator to predict the
resource requirements of each thread, an adaptive search-
ing method for resource allocation guaranteed to find the
optimal solution and an exploration strategy for prediction-
allocation balancing. Through a series of experiments, we
validate the effectiveness of our approach in handling multi-
ple learning tasks with limited computational resources.

Currently, our LARA approach is in a preliminary stage,
with several directions open for future research in this field.
Methodologically, we use WLS for resource prediction,
which is essentially an interpolation strategy for extrapolat-
ing loss curves. Therefore, future work could explore effi-
cient and extrapolation-specific strategies. For prediction-
allocation balancing, we employ the ETE approach, which
depends on predefined exploration thresholds. Future re-
search could investigate more adaptive exploration methods,
such as ideas based on Thompson sampling. Theoretically,
while the optimality has been proved for our resource allo-
cation method, it remains open on how to provide gener-
alization guarantees for the overall process. Future work
could introduce curve extrapolation or scaling law theories
to provide the theoretical basis and establish the learnability
guarantee in the context of CoRE-Learning framework.
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A. Proofs
In this section, we provide the analysis for our resource allocation strategy. In Appendix A.1, we analyze our parameter
reduction method and prove that optimal solutions to Problem 3.7 can still be found after reduction, which is captured in
Lemma 1. In Appendix A.2, we provide a proof for the optimality of our adaptive binary tree search method for Problem 3.7.

A.1. Proof of Lemma 1

Proof. For Problem 3.7, we let set C, comprising KC threads, represent those successfully completed under the optimal
allocation solution denoted by {η∗k,t}k∈C,t∈[d0,dKC

]. The threads in C are sorted and labeled such that the deadline time
satisfies that d0 < d1 < d2 < ... < dKC

, where d0 represents the current unit time. Then the optimal allocation should
satisfy the following three optimal conditions,

(i) ∀k ∈ C,Dk ≜
dk∑

t=d0+1

η∗k,t ≥
Sk

Nk
;

(ii) ∀t ∈ [d0, dKC
],
∑

k∈C

η∗k,t ≤ 1;

(iii) ∀k ∈ C, ∀t ∈ [d0, dKC
], η∗k,t ≥ 0.

At the same time, it can also be found that the allocation method that satisfies these three conditions is the optimal allocation
method. We can first modify the optimal allocation {η∗k,t}k∈C,t∈[d0,dKC

] such that in any interval [di−1, di] satisfying
i ∈ C, di−1 ̸= di, η∗k,t = η∗k,[di−1,di]

is time-invariant. For the interval [di−1, di], we let

η∗k,[di−1,di]
=

∑di

t=di−1+1 η
∗
k,t

di − di−1
, (A.1)

we can find that the allocation (A.1) still satisfies the optimal condition:

(i) ∀k ∈ C,

k∑

i=1

(di − di−1)η
∗
k,[di−1,di]

=

k∑

i=1

di∑

t=di−1+1

η∗k,t =

dk∑

t=d0+1

η∗k,t = Dk ≥ Sk

Nk
,

(ii) ∀i ∈ C,
∑

k∈C

η∗k,[di−1,di]
=

∑
k∈C

∑di

t=di−1+1 η
∗
k,t

di − di−1
=

∑di

t=di−1+1

∑
k∈C η∗k,t

di − di−1
≤ di − di−1

di − di−1
= 1,

(iii) ∀k ∈ C, ∀i ∈ C, η∗k,[di−1,di]
=

∑di

t=di−1+1 η
∗
k,t

di − di−1
≥ 0.

Based on condition (ii), we know that
∑k

j=1 η
∗
j,[di−1,di]

≤∑j∈C η∗j,[di−1,di]
≤ 1, then we have

∀i ∈ C,∀k ∈ C, η∗k,[di−1,di]
≤ 1−

k−1∑

j=1

η∗j,[di−1,di]
,

then ∀k ∈ C, we have

k∑

i=1

η∗k,[di−1,di]
(di − di−1) = Dk

k∑

i=1


1−

k−1∑

j=1

η∗j,[di−1,di]


 (di − di−1) ≥ Dk

k∑

i=1

(di − di−1)−
k∑

i=1

k−1∑

j=1

η∗j,[di−1,di]
(di − di−1) ≥ Dk
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dk − d0 −
k−1∑

j=1

k∑

i=1

η∗j,[di−1,di]
(di − di−1) ≥ Dk

dk − d0 −
k−1∑

j=1

Dj ≥ Dk.

So we have ∀k ∈ C,

Dk

dk − d0 −
∑k−1

j=1 Dj

≤ 1. (A.2)

For the 1-st thread, we define η̃1,[d0,d1] ≜ η∗1,[d0,d1]
, then we have

(d1 − d0)η̃k,[d0,d1] = D1,

then for the interval [d0, d1], we can define

η̃2,[d0,d1] ≜
η∗2,[d0,d1]

(1− η̃1,[d0,d1])

η̃3,[d0,d1] ≜
η∗3,[d0,d1]

(1− η̃1,[d0,d1])(1− η̃2,[d0,d1])

...

η̃k,[d0,d1] ≜
η∗k,[d0,d1]∏k−1

i=1 (1− η̃i,[d0,d1])

...

Similarly, for any interval [di−1, di], i ∈ C, we can define

η̃i,[di−1,di] ≜ η∗i,[di−1,di]

...

η̃k,[di−1,di] ≜
η∗k,[di−1,di]∏k−1

j=i (1− η̃j,[di−1,di])

...

Based on the success criteria and definition of η̃i,[di−1,di], we have

η̃1,[d0,d1](d1 − d0) = D1

(1− η̃1,[d0,d1])η̃2,[d0,d1](d1 − d0) + η̃2,[d1,d2](d2 − d1) = D2

...

k−1∑

j=1

k−1∏

i=j

(1− η̃i,[di−1,di])η̃k,[dj−1,dj ](dj − dj−1) + η̃k,[dk−1,dk](dk − dk−1) = Dk

...

Next, we try to prove that for any k, η̃k,[d0,d1], ..., η̃k,[dk−1,dk] can be replace by a fixed η̃k, which still satisfies these three
optimal conditions. We let

η̃k =
Dk∑k−1

j=1

∏k−1
i=j (1− η̃i)(dj − dj−1) + (dk − dk−1)

, (A.3)

13
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And for any interval [di−1, di], i ∈ C, the allocation becomes

η∗i,[di−1,di]
= η̃i

...

η∗k,[di−1,di]
=

k−1∏

j=i

(1− η̃j)η̃k

...

then we satisfies condition (i) as follows,

k−1∑

j=1

k−1∏

i=j

(1− η̃i)η̃k(dj − dj−1) + η̃k(dk − dk−1) = Dk.

Moving η̃k on the left side of the equation to the right, we have

Dk

η̃k
=

k−1∑

j=1

k−1∏

i=j

(1− η̃i)(dj − dj−1) + (dk − dk−1)

=

k−2∑

j=1

k−2∏

i=j

(1− η̃i)(dj − dj−1)(1− η̃k−1) + (1− η̃k−1)(dk−1 − dk−2) + (dk − dk−1)

=(1− η̃k−1)




k−2∑

j=1

k−2∏

i=j

(1− η̃i)(dj − dj−1) + (dk−1 − dk−2)


+ (dk − dk−1)

=
Dk−1

η̃k−1
−Dk−1 + (dk − dk−1)

=

k∑

i=1

(di − di−1)−
k−1∑

i=1

Di

=dk − d0 −
k−1∑

i=1

Di.

Then we still have

η̃k =
Dk

dk − d0 −
∑k−1

i=1 Di

,

based on property (A.2), we have ∀k ∈ C, η̃k ≤ 1. Then we have

∀i ∈ C,
∑

k∈C

η∗k,[di−1,di]
= η̃i +

KC∑

k=i+1

k−1∏

j=i

(1− η̃j)η̃k

≤ η̃i +

KC−1∑

k=i+1

k−1∏

j=i

(1− η̃j)η̃k +

KC−1∏

j=i

(1− η̃j)

≤ η̃i +

KC−2∑

k=i+1

k−1∏

j=i

(1− η̃j)η̃k +

KC−2∏

j=i

(1− η̃j)

≤ η̃i + 1− η̃i

= 1,

which satisfies the condition (ii). Building upon the conditions that ∀k ∈ C, η̃k ≤ 1, the sequence of deadlines d0 <
. . . < dKC

, and the allocation method as described by equation (A.3), we can obtain that ∀k ∈ C, η̃k ≥ 0. Based on this
observation, η∗k,[di−1,di]

further satisfies the condition (iii), thus we complete the proof.
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Figure 7. Example of Binary Search Tree with 3-layers.

A.2. Proof of Theorem 1

Proof. For the Problem 3.7, let set C, comprising KC threads, denote those successfully completed under the optimal
allocation solution denoted by {η∗k,t}k∈C,t∈[d0,dKC

]. According to Lemma 1, we know that there exists a set of {η̃∗k}k∈Aτ
,

where ∀k ∈ Aτ , 0 ≤ η̃∗k ≤ 1, can formulate a solution with Eq. (3.8) also achieve set C, such that ∀k ∈ C,Dk(η̃
∗
k)·Nk ≥ Sk,

where Dk is defined in Eq. (3.9), representing accumulated data throughput. Since Dk(η̃k) is a linear monotonically
increasing function with respect to η̃k, which means there exists set of {η̃k}k∈Aτ

, where ∀k ∈ C, 0 ≤ η̃k ≤ η̃∗k satisfying
Dk(η̃k) ·Nk = Sk and ∀k /∈ C, η̃k = 0. This means {η̃k}k∈Aτ will also achieve the optimal solution, since the indicator
function in Problem 3.7 only need Dk(η̃k) ·Nk = Sk to success. Now for η̃k for each thread k ∈ Aτ only has two outcomes:
success (Dk(η̃k) ·Nk ≥ Sk) or failure (η̃k = 0), which can be formulated as

η̃k =




0, if Sk

Nk(
∑k−1

j=1

∏k−1
i=j (1−η̃i)(dj−dj−1)+1)

> 1,

Sk

Nk(
∑k−1

j=1

∏k−1
i=j (1−η̃i)(dj−dj−1)+1)

, otherwise.
(A.4)

We can observe that, η̃k is determined by the previous η̃1, . . . , η̃k−1. Based on this allocation method, we can construct a com-
plete binary tree of Kτ layers, Figure 7 provides a example for illstration, where αk ≜ Sk/Nk(

∑k−1
j=1

∏k−1
i=j (1−η̃i)(dj−dj−1)+1).

Now the optimal solution of Problem 3.7 is the path contains maximum number of η̃k = αk, αk ≤ 1 within this tree.

So now, we just need to prove that, the output of Algorithm 1, is the optimal path of this tree such that contains maximum
number of η̃k = αk, αk ≤ 1. We present an exchange argument to prove the optimality of Algorithm 1 for finding the
optimal path. Let A and B denote two sequences of threads, ordered by their duration, representing the choices made by
our algorithm and a hypothetical alternative, respectively. In these sequences, threads are either chosen to be allocated just
enough resources, or not included at all. The success count for A is #succA, and we assume that B has a higher success
count #succB > #succA.

Defining A and B. Sequence A represents the threads chosen by our algorithm, while sequence B represents an alternate
set of threads with a presumed higher success rate. Both A and B are ordered based on thread deadline time, with
shorter-duration threads prioritized.

Identifying the First Divergence. By comparing sequences A and B, we identify the first point of divergence at thread k.
Two scenarios are considered: (i) A includes thread k but B does not; (ii) B includes thread k but A does not.

(i) If A chooses thread k and B does not, we examine the subsequent threads in sequence. If B selects a later thread k + i
that A omits, we can replace thread k + i in B with k because A’s choice reflects a more resource-efficient selection.
We continue this process until we reach a thread k + j where up to k + j, #succB equals #succA. Since A makes more
resource-efficient choices, we can align B’s choices with A without reducing #succB .

(ii) If B includes thread k, it implies that at thread k, A also considers k but ultimately replaces it with a later thread i
where Di < Dk. If B selects k but not i, we can directly replace k in B with i, maintaining #succB . If B selects both
k and i, and a thread j exists with Dj < Dk not chosen by B, then we can replace k in B with j. If no such j exists
and all threads in A with D < Dk are included in B, it becomes impossible for B to have #succB > #succA.

Conclusion. By evaluating each thread from 1 to K and adjusting B to match A, a contradiction arises if we assume
#succB > #succA. Therefore, no better choice exists than the output of Algorithm 1, confirming its optimality.
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(a) Curve fitting performance of thread 1

1 2 3 4
Data volume ×104

0

2

4

6

P
re

di
ct

io
n 

E
rr

or

×105

Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

(b) Convergence of prediction error

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5
0

1

2

3

4

5

A
ve

ra
ge

 T
im

e 
(s

ec
on

ds
)

×10 4
5.08e-04

2.87e-04
2.75e-04 2.84e-04

2.97e-04

(c) Average time of single round prediction

Figure 8. Effectiveness and efficiency experiments in resource prediction.
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Figure 9. Performance of computational resource allocation.

B. Experimental Supplement
In this section, we provide supplementary information for our experiments. Appendix B.1 outlines the specific settings for
the model structures used in our experiments. Appendix B.2 presents detailed illustrations of the resource prediction and
resource allocation process for the pure task bundle experiments. Additionally, we conduct parameter sensitivity tests in
Appendix B.3 to explore the performance of the LARA algorithm under different exploration thresholds Hk and various
discounted factors γ, respectively.

B.1. Implementation Details

In this section, we will discuss the implementation of the model architectures detailed in Table 1 and Table 2. For Table 1,
the first model is a Vision Transformer (ViT) (Dosovitskiy et al., 2021), implemented as a Simple ViT model.3 The second
model is a Long Short-Term Memory (LSTM) network, comprising two LSTM layers followed by three fully connected
layers. The third model is a Convolutional Neural Network (CNN), including three convolutional layers, two pooling layers,
and two fully connected layers. The fourth and fifth models are ResNet18 and ResNet34, respectively (He et al., 2016).

For Table 2, the implementations are as follows: Tasks 1 and 2 use ViT, and tasks 6 and 7 use ResNet18, both of which
follow the implementations described in Table 1. Tasks 3 and 10 use a DAgger+CNN model, involving five iterations
of convolutional and pooling layers, followed by flattening and three fully connected layers. Tasks 5 and 8 use an
Attention+LSTM model, where the embedding results are fed into a self-attention layer, followed by LSTM layers. The
final hidden state is passed through four fully connected layers. Tasks 4 and 9 use a Transformer model, which processes the
input through a TransformerEncoder and then passes it through a fully connected layer.

B.2. Details of Pure Task Bundle Experiments

In this section, we present additional details for the pure task bundle experiments described in Section 4.1. First, we illustrate
the loss function curve fitting performance of the weighted least squares method for each threads, as well as the associated
time costs. Next, we provide a detailed view of the real-time resource allocation process over the running of the five-thread

3https://github.com/lucidrains/vit-pytorch?tab=readme-ov-file
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(a) Curve fitting of thread 2
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(b) Curve fitting of thread 3
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(c) Curve fitting of thread 4
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(d) Curve fitting of thread 5

Figure 10. Loss function curve fitting of weighted least square on different models.

experiment and show how the completion status of each thread changes over time.

Prediction Result. Figure 8(a) shows the fitting and extrapolation of the loss function for thread 1, using the loss values
observed during the exploration phase. The performance across the remaining four threads is shown in Figure 10. We
compare our weighted least squares method, with a discounted factor γ = 0.9, against the regular least squares approach.
The weighted least squares method provides a closer approximation to the actual loss function during the extrapolation phase
and outperforms the regular method, despite slightly inferior performance during the interpolation phase. This indicates that
weighted least squares is more suitable for predicting future trends of the loss function. Figure 8(b) presents the estimation
error between the estimated and actual data amounts needed to meet the success criteria. The estimation error progressively
diminishes and eventually converges to zero as the volume of data increases. Figure 8(c) shows the average time taken for
resource prediction across different tasks. It demonstrates that the time cost of a single round prediction across different
model training tasks is generally consistent, indicating minor impact from model differences. This time cost is negligible
compared to the time unit (e.g., one second), and therefore does not impact the model training process.

Allocation Result. Figure 9(a) illustrates the dynamic changes in data throughput ηk,t for LARA, highlighting the process of
ongoing iterative adjustments in resource prediction and resource allocation. The first 335 seconds is the exploration period,
such that all the threads have equal data throughput 0.2. Initially, LARA fully explores thread 1 during the exploration
period and abandons it directly after the exploration period due to its low likelihood of completion. Subsequently, between
335 and 500 seconds, LARA continually refines its resource allocation strategy, and pauses the thread 5 (has the most ample
time) multiple times to prioritize resources for other more urgent tasks around 450-second. Around 500-second, it prioritizes
allocating more resources to thread 2 and thread 3 due to their more urgent deadlines. The remaining resources are then
directed towards completing threads 4 and 5. Figure 9(b) illustrates the comparative results of successfully completed
threads over time using various resource allocation strategies. Both Shortest Thread First and Uniform Allocation methods
allocate excessive resources to the challenging thread 1, leading to none of the threads being completed. Least Resources
First and Easiest Thread First strategies, employing our provided resource prediction method, manage to avoid dedicating
resources to some of the more challenging threads. However, their inherently greedy allocation methods result in the
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Figure 11. Parameter sensitivity tests of exploration threshold Hk and discounted factor γ.

completion of only two threads. In contrast, the LARA algorithm, by strategically giving up on the difficult-to-complete
thread 1 early, efficiently allocates resources and successfully completes the remaining four threads.

B.3. Parameter Sensitivity Tests

In this section we conduct the sensitivity experiments to study the LARA’s performance under different exploration thresholds
Hk and dicounted factors γ, repectively. Both experiments focus on the mixed task bundle over different sets of success
criteria (ϵ1k and ϵ2k), as outlined in Table 2.

Exploration threshold Hk. We test the success thread number of our LARA algorithm with different choices of the
exploration threshold Hk with a fixed discounted factor γ = 0.9. Figure 11(a) shows that LARA’s performance decreases
when Hk is either too small or too large, and becomes relatively stable when lies in an appropriate region 4000 − 6000.
When Hk is too small, the precision of resource predictions is very low, leading to poor resource allocation. Conversely, a
too large Hk results in excessive exploration time, leaving inadequate time for effective resource allocation.

Discounted factor γ. We evaluate the successful thread number of LARA employing weighted LS estimators with different
discounted factors γ with a fixed Hk = 6000. Figure 11(b) shows that when γ is either too large (close to 1) or too small
(close to 0.5), there is a significant increase in prediction error, leading to bad performance of LARA. Both results over task
bundles with success criteria ϵ1k and ϵ2k indicate that when discounted factor γ in an appropriate region 0.85 − 0.95, the
performance of LARA approaches its optimum.
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