
Calibration Bottleneck: Over-compressed Representations are Less Calibratable

Deng-Bao Wang 1 2 Min-Ling Zhang 1 2

Abstract
Although deep neural networks have achieved
remarkable success, they often exhibit a signifi-
cant deficiency in reliable uncertainty calibration.
This paper focus on model calibratability, which
assesses how amenable a model is to be well
recalibrated post-hoc. We find that the widely
used weight decay regularizer detrimentally af-
fects model calibratability, subsequently leading
to a decline in final calibration performance after
post-hoc calibration. To identify the underlying
causes leading to poor calibratability, we delve
into the calibratability of intermediate features
across the hidden layers. We observe a U-shaped
trend in the calibratability of intermediate features
from the bottom to the top layers, which indicates
that over-compression of the top representation
layers significantly hinders model calibratability.
Based on the observations, this paper introduces
a weak classifier hypothesis, i.e., given a weak
classification head that has not been over-trained,
the representation module can be better learned to
produce more calibratable features. Consequently,
we propose a progressively layer-peeled training
(PLP) method to exploit this hypothesis, thereby
enhancing model calibratability. Our comparative
experiments show the effectiveness of our method,
which improves model calibration and also yields
competitive predictive performance.

1. Introduction
In machine learning systems, a reliable predictive mod-
els should not only yield high accuracy but also offer
heightened uncertainty when their predictions are prone
to inaccuracy. While modern deep neural networks (DNNs)
have achieved remarkable success in high-dimensional
prediction tasks like computer vision, speech recognition,
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and natural language processing, they have exhibited a
notable deficiency in reliably estimating uncertainty (Guo
et al., 2017; Minderer et al., 2021; Wang et al., 2024).
This uncertainty issue can lead to adverse consequences,
particularly in scenarios involving safety-critical decision-
making, and therefore, it has been the subject of extensive
research in recent years (Gupta et al., 2021; Ashukha
et al., 2019; Wang et al., 2021; 2023). To systematically
investigate DNNs’ uncertainty estimation problem, Guo
et al. (2017) conducted a comprehensive study within this
context and made two significant observations: (i) The
miscalibration of model confidence, which can be used
to reflect the uncertainty degree, is closely associated with
large model capacity and the absence of regularization in
training. And (ii) simple post-hoc methods like temperature
scaling (TS) (Platt et al., 1999) and histogram binning
(HB) (Zadrozny & Elkan, 2001) can effectively address
the miscalibration issue.

Taking inspiration from the study of (Guo et al., 2017), two
predominant strategies have been extensively investigated
to improve the calibration performance of DNNs: Train-
time calibration and post-hoc calibration. For the former
strategy, some well-known methods which initially designed
to improve generalization have been found also beneficial
for calibration, including label smoothing (Müller et al.,
2019), mixup (Thulasidasan et al., 2019), self-distillation
(Guo et al., 2021) and focal loss (Mukhoti et al., 2020). The
latter strategy aims to recalibrate predictions in a post-hoc
fashion by establishing a mapping from raw outputs to well-
calibrated confidences. Typically, these approaches usually
incorporate extra parameters which necessitate tuning on
further validation data during the post-hoc calibration. There
is a surge of studies aimed at improving calibration by
designing new post-hoc calibration approaches (Müller
et al., 2019; Mukhoti et al., 2020; Joo & Chung, 2021;
Kull et al., 2019; Rahimi et al., 2020; Gupta et al., 2021).
Although numerous post-hoc calibration approaches have
been proposed in recent years, TS remains the most widely
used one due to its simplicity and effectiveness. It is
worth noting that TS only needs one single parameter, the
temperature of softmax layer, to be adjusted in post-hoc
calibration phase. Moreover, different from binning-based
methods like HB, TS does not compromise the dense output
confidences in post-hoc calibration phase.
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(a) Raw and calibrated ECE (b) Error and calibrated ECE.

Figure 1. Results of ResNet-18 on CIFAR-100. (a) Raw and
calibrated ECE (based on TS) with varied weight decay strengths.
(b) Calibrated ECE and classification error of a bunch of models
trained with varied weight decay coefficients. Please refer to the
Appendix A.1 for details on all the experiments in this paper.

As the aforementioned two types of methods can indepen-
dently enhance calibration performance in different phases,
it seems logical to combine them for superior performance.
However, previous studies have shown that while methods
like label smoothing, mixup and self-distillation, are effec-
tive in enhancing calibration performance during training,
they do not necessarily result in superior result than models
by standard training after post-hoc calibration (Wang et al.,
2021; Zhu et al., 2023; Wang et al., 2023). As Ashukha et al.
(2019) suggested, comparison between different models
might be inequitable if the post-hoc calibration is not taken
into consideration. Therefore, in this study, rather than
addressing the calibration challenge encountered during
training, we shift our focus to the concept of calibratability.
Informally, model calibratability can be defined as:

The calibratability of model f in terms of a specific
post-hoc calibrator ψ, indicates this model’s ability
of leveraging ψ to gain further improvement on its
calibration performance.

Specifically, we say that model f1 is more calibratable than
model f2, if the calibration performance of the composite
model f1◦ψ is superior to that of f2◦ψ. In this work, we
particularly observe that weight decay, the de-facto standard
regularization technique for training modern DNNs, tends
to adversely make models less calibratable, despite it has
been identified by Guo et al. (2017) as a significant factor
in improving calibration. To ground our motivation, we first
make the following observations.

Observation 1. As is shown in Figure 1(a), we find that
raw Expected Calibration Error (ECE) would decrease by
increasing the regularization strength, well after a specific
point it would be negatively impacted by having too much
weight decay. However, calibrated ECE would continue to
increase when more regularization is added and it is almost
always lower than raw ECE. This observation suggests that
carefully selecting a regularization strength that minimizes
ECE may not be as effective as applying standard training
and then performing post-hoc calibration.

Observation 2. As is shown in Figure 1(b), we observe a
trade-off between calibrated ECE and classification error
among a bunch of models trained with varied regularization
strengths. This observation raises a particularly thorny
question: Are calibratability and discriminability inherently
at odds within deep neural networks? Moreover, Figure 9
shows that calibrated ECE worsens over training epochs, sig-
naling a decline in calibratability during learning dynamics.
As the classification error usually decreases continuously
during training, this also raises the concern about the conflict
between calibratability and discriminability.

Given the above observations, this paper aims to investigate
why deep neural networks are less calibratable, particularly
when applying regularization during training. To this
end, we delve into the calibratability of the intermediate
features of the hidden layers, and illustrate that the calibrated
ECE of the linear classifiers build on these intermediate
features across layers from the bottom to the top exhibit a
trend of initial decline, followed by a remarkable increase
at a certain layer. We demonstrate through empirical
evidences that this phenomenon is related to the information
bottleneck principle of deep learning, which results in an
unexpected side effect of the information compression on
model calibration. We suggest that the cause of calibrability
degradation may be the over-training of a few top layers
and the subsequent over-compression of hidden features,
introducing the weak classifier hypothesis: Learning more
calibratable representations that requires a weaker classifi-
cation head. Building upon this, we propose an efficient and
effective training strategy called Progressively Layer-Peeled
(PLP) training to overcome the calibration bottleneck,
thereby enhancing model calibratability. Intuitively, our
approach gradually freeze the parameters of top layers
during the training process, to ensure that the top layers
of a neural network do not excessively perform information
compression. We conduct experiments on several image
classification datasets, and the results demonstrate that
our method improves the calibrated performance without
significantly compromising the predictive performance.

Our contributions can be summarized as four-fold:

• We find that weight decay actually diminishes DNNs’
calibratability, which raises concerns about the inherent
relationship of calibratability and discriminability, both
of which are crucial to achieve reliable classification.

• We delve into the calibratability of intermediate features,
revealing that the calibratability of features exhibits a
U-shaped trend, with an initial decline and subsequent
increase, from the bottom to the top layers.

• We suggest that the information bottleneck principle
is responsible for the decline in model calibratability,
and empirically demonstrate that over-compression of
representations leads to less calibratable models.
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• We introduce a hypothesis stating that learning calibrat-
able representations necessitates the use of weak heads.
Inspired by this hypothesis, we propose a simple yet
effective method called PLP. Experimental results show
that PLP achieves superior balance between model
calibratability and predictive performance.

2. Background
Train-time Calibration. There has been a surge of research
on improving model calibration by utilizing implicit or
explicit regularization techniques during the training. Most
of these techniques follow the principle of confidence
penalty to address the overconfidence issue of DNNs (Guo
et al., 2017; Müller et al., 2019; Patra et al., 2023; Tao et al.,
2023a; Wei et al., 2022). Label Smoothing, a technique
widely used to mitigate overfitting, shown to improve model
calibration by preventing the networks from producing
overconfident predictions (Szegedy et al., 2016; Müller et al.,
2019). Wang et al. (2021) suggest that label smoothing
can be viewed as equivalent to applying maximum-entropy
regularization on model training. Patra et al. (2023)
and Joo & Chung (2021) proposed to directly leverage
maximum-entropy-based regularization terms in loss to
penalize the overconfident outputs. There are also some
implicit regularization methods that are initially proposed
to improve generalization, have also been found beneficial
for calibration, such as mixup training, self-distillation and
focal loss (Thulasidasan et al., 2019; Zhang et al., 2022; Guo
et al., 2021; Mukhoti et al., 2020; Tao et al., 2023b). For
example, Mukhoti et al. (2020) found that focal loss can be
viewed as an upper bound on the regularized KL-divergence
loss, where the regularizer is the negative entropy of model
outputs, and hence replacing cross-entropy with focal loss
has the effect of adding a maximum-entropy regularization
in model training. In addition to the methods mentioned
above, weight decay, which is a simpler method and now the
standard de-facto regularization technique in deep learning,
has also been found to significantly impact model calibration
in the pioneering study by (Guo et al., 2017). It is shown
that by setting appropriate weight decay coefficients, it can
greatly improve model calibration performance.

Post-hoc Calibration. Post-hoc calibration approaches
work by recalibrating the model outputs after training,
and this kind of approaches has been widely studied for
many years (Platt et al., 1999; Zadrozny & Elkan, 2001;
Naeini et al., 2015; Patel et al., 2021; Tomani et al.,
2021). Among these approaches, scaling-based approaches
is widely considered the simplest and most effective. Platt
Scaling (PS) is a classical parametric approach to calibrate
binary classifiers (Platt et al., 1999). It learns scalar
parameters a, b ∈ R and outputs q̂ = s (az + b) as the
calibrated probability, where zi is a non-probabilistic model

output s is the Sigmoid function. Learnable parameters a
and b can be optimized using the Negative Log-Likelihood
(NLL) loss over the validation set. Temperature Scaling
(TS) is an extension of PS for multi-class classification
tasks and neural network models. It only requires learning a
single learnable parameter, the temperature of the Softmax
layer, to recalibrate the model outputs. Given a logit
vector z with C dimensions, the recalibrated confidence
after TS can be expressed as: q̂ = maxi

exp(zi/T )∑C
c=1 exp(zc/T )

.
By scaling the logit vector into a new vector wich same
dimension, the sharpness of output probabilities can be
changed. Specifically, TS softens the output probabilities
with temperature T > 1 and sharpens the probabilities
with temperature T < 1. The scaling operation can be
instantiated with other forms that involve more learnable
scaling parameters. Vector scaling and matrix scaling learn
a specific scalar for each class with linear transformation
Wz+b, where W is a full matrix and restricted to be
a diagonal matrix in matrix scaling and vector scaling
respectively. In addition to scaling-based approaches, other
forms of post-hoc calibration approaches such as binning-
based and isotonic regression-based approaches have also
been used for calibrating deep models (Zadrozny & Elkan,
2001; Patel et al., 2021; Zadrozny & Elkan, 2002). However,
these methods produce discrete confidences and usually
require larger validation sets, while their effectiveness is
often inferior to scaling-based methods (Guo et al., 2017).

Model Calibratability. In general, model calibratability
considers the interaction of training-time calibration and
post-hoc calibration methods. Several studies have focused
on this setting and found that these two types of methods
may not necessarily be mutually beneficial (Wang et al.,
2021; Bouniot et al., 2023; Tao et al., 2024). The
preliminary investigation in (Wang et al., 2021) shown
that although label smoothing and maximum entropy
regularization do help model calibration by penalizing
overconfident outputs, they do not work well in conjunction
with post-hoc calibration techniques. They further found
that the confidence penalty effect of mixup also harm
model calibratability and proposed to mitigate this issue
by avoiding the implicit label smoothing operation in
mixup (Wang et al., 2023). Zhu et al. (2023) found that
data distillation tends to discard semantically meaningful
information and models trained on distilled datasets are
not calibratable. Currently, there are only a few works
studied model calibratability, and these studies primarily
consider mitigating the negative impact of regularization
to improve existing train-time calibration methods. It is
unclear why these regularization methods can diminish
model calibratability. In this paper, we mainly focus
on weight decay, a standard regularization technique in
modern deep learning, and attempt to delve deeper into the
underlying reasons for the decline in calibratability.
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(a) VGG-11 (b) ResNet-18 (c) ResNet-50 (d) ResNet-110

Figure 2. The accuracy (top) and calibrated ECE (bottom) of linear probing over hidden layers on CIFAR-100 with different model
architectures. The models are trained with different weight decay coefficients, varying in the range of 5×10−5 to 5×10−4 with intervals
of 2.5×10−5. The highlighted values in the first row represents the average accuracy of linear probing across all models.

3. What Makes Models Less Calibratable?
3.1. On Calibratability of Intermediate Features

Given the significance of calibratability, it is imperative to
understand why regularized training can undermine model
calibrability, especially considering that regularization is
recognized as crucial for the effective training of DNNs. In
the above experiments, we observed a gradual deterioration
of calibratability over training time, especially when strong
regularization is involved. To gain further insight, it would
be interesting to explore how the forward propagation
process affects calibratability. Therefore, this section
initiates the investigation by evaluating the calibratability
of intermediate features across hidden layers of the neural
networks. We build linear classifiers on the intermediate
features of well trained neural networks, and examine the
calibratability of these linear classifiers. Specifically, given
a pretrained neural network, we first freeze its bottom k
layers, then perform linear probing on these frozen layers
by stochastic gradient descent optimization. Despite the
feature dimensions are different, the linear classifiers upon
different layers are trained with the same learning scheme.
For the implementation details such as optimization policies
and frozen layer numbers, please refer to Appendix A.1.

The U-shaped calibratability. Figure 2 shows the results
of three different models on CIFAR-100. Each curve
represents the linear probing performance over the hidden
layers of the same well trained model. We can observe
that as the layer depth increases, the accuracy of linear
probing gradually increases, which aligns with our intuition.
However, the calibrated ECE over the hidden layers follows
an intriguing trend: The bottom layers generally yield
relatively large calibrated ECE, which tend to decrease
as we move deeper; Then, the deepest few layers, those
near the top of neural networks, exhibit a striking raising

on calibrated ECE, while these layers contribute little to
the predictive performance. The U-shaped calibratability
collapse is observed across various network architectures,
while the numbers of those specific top layers at which
the calibration performance starts to deteriorate may vary
depending on architectures. This phenomenon indicates
that although models trained with different regularization
strengths can have significantly different performance, their
calibrated ECE at a certain intermediate hidden layer is very
close. Interestingly, the optimal calibrated ECE achieved by
different curves is almostly converge to the same level. As
we discussed above, there is a negative correlation between
the accuracy and calibrated ECE when employing different
regularization strengths. Here, if we focus on the hidden
layers, the relationship between the two becomes more
complex. By dividing a neural network into two parts, the
correlation between these two properties can be decoupled.
For the bottom (top) layers, accuracy and calibrated ECE
exhibit a clear negative (positive) correlation.

The role of top layers. As is highlighted in Figure 2, the
most top layers usually offer minimal gains in terms of
accuracy while inflicting significant damage to calibrated
ECE. For instance, the average accuracy of linear probing
on the 17th layer of ResNet-18 is very close to that on
the 15th layer, but at the cost of a significant increase in
calibrated ECE. It suggests that discarding certain feature
extraction layers at the top and replacing them with simple
linear layers can enhance calibration performance without
compromising much accuracy. This leads us to rethink the
role of the top layers of neural networks as they induce an
undesired calibration bottleneck. Moreover, the experiments
demonstrate that this phenomenon exists across models
with different depths. In comparison to deeper models
like ResNet-18 and ResNet-50, the proportion of layers
impairing calibratability is even higher for VGG-11.
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(a) VGG-11 (b) ResNet-18 (c) VGG-11 (d) ResNet-18

Figure 3. (a-b) The trend of the calibrated ECE and mutual information estimated by two methods with varying regularization strength.
(c-d) Decoder-based reconstruction loss of models trained with different weight decay coefficients. The highlighted red values indicate the
Pearson correlation coefficient between the reconstruction loss and the calibrated ECE for each layer.

3.2. Over-compression May Hurt Calibratability

It is widely recognized that that the layer-wise compression
of data by neural networks is crucial for their generalization
performance. Shwartz-Ziv & Tishby (2017) and Saxe et al.
(2019) revisited the information bottleneck principle (Tishby
et al., 2000) to explain deep neural networks. They found
that during training, deep neural networks first fit the data
and then compress the information carried by the hidden
layer features, and the compression intensity increases with
the layer depth. Given that information compression, as
noted in prior research, and the calibratability collapse we
have observed both occur in the top layers, it naturally leads
us to hypothesize that the information compression may be
responsible for the diminished calibratability performance.
In this subsection, we attempt to establish a connection
between these two aspects through analytical experiments.

Specifically, the mutual information I(x, z) between the
original feature x and the intermediate feature h can
be use to measure the amount of retained information
in intermediate feature h. Due to the intractability of
the mutual information in high dimensional space1, we
adopt the following two methods to estimate the mutual
information between x and h . For more implementation
details and a discussion on the rationale behind this strategy
for estimating mutual information, please refer to the
description in Appendix A.1.

Rate distortion-based estimation. Rate distortion is a
concept in the field of lossy data compression, which
measures the compactness of a random distribution. Given
a random variable z and a specified value ϵ > 0, the rate
distortion R(z, ϵ) denotes the minimal number of binary bits
required to encode z such that the expected decoding error is

1Shwartz-Ziv & Tishby (2017) use binning-based approxima-
tion to estimate the mutual information, however, it was found
that binning-based method is highly sensitive to the choice of
activation functions used in the hidden layers, and some of the
claims in (Shwartz-Ziv & Tishby, 2017) do not hold true in the
general case (Saxe et al., 2019; Lorenzen et al., 2021).

less than ϵ, i.e., the reconstructed ẑ satisfies E [∥z − ẑ∥2] ≤
ϵ. Here, we use the estimation method proposed in (Ma
et al., 2007) to calculate the rate distortion, which has been
successful used in deep learning (Yu et al., 2020).

Decoder-based estimation. As is discussed in (Wang
et al., 2020), the mutual information can be bound by:
I(x,h) = H(x)−H(x | h) ≥ H(x)−R(x | h), where
R(x|h) denotes the expected reconstruction error and
H(x) denotes the marginal entropy of x, as a constant.
Therefore, we can estimate R(x|h) by training a decoder
to measure the minimal reconstruction loss: I(h,x) ≈
maxw [H(x)−Rw(x | h)]. Similar to the linear probing
experiments in the previous subsection, we build decoder
upon the intermediate layers and fit it to the training data to
measure the minimal reconstruction loss it can achieve.

Figure 3(a) and 3(b) illustrate the calibrated ECE of linear
probing on the features of the last representation layer with
different regularization strengths, along with the mutual
information estimated by the above two methods. It can be
observed that there is a high correlation between the degree
of information compression and model calibratability. When
training with stronger regularization, the model tends to
exhibit a more pronounced data compression effect, which
often leads to an improvement in the model’s representa-
tional capacity. However, information compression tends
to compromise the model’s calibratability to some extent,
which explains the observed negative correlation between
accuracy and calibrated ECE in Figure 1.

Figure 3(c) and 3(d) present the mutual information between
original features and intermediate features estimated by
decoder-based method. It can be observed that as the depth
increases, the reconstruction loss becomes larger, indicating
an increase in the degree of information compression. More
importantly, the information compression in the last few
layers exhibits a sudden increase, consistent with the rising
of calibrated ECE in Figure 2. Additionally, the degree of
information compression in the last few layers is greatly
influenced by the regularization strength, while the bottom
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hidden layers show relatively little variation. Taking ResNet-
18 as an example, if we focus on the features from the
11th and 13th layer, all models achieve similar calibrated
ECE and reconstruction loss. However, the models trained
with larger weight decay yield more string raising for both
calibration and reconstruction loss in the 15th and 17th layer.
This demonstrate an unexpected negative impact of over-
compression of neural networks for model calibratability.
As prior works on information compression of deep neural
networks highlighted its benefits for improving predictive
performance, this results further underscore concerns about
the trade-off between calibratability and discriminability.

4.Weak Classifiers Achieve Good Calibrataility
4.1. An Observation with Frozen Top Layers

After identifying that the top layers over-compress the
information, thereby reducing model calibrability, we now
explore how to prevent these layers from excessive infor-
mation compression during training. As the compression
and calibration degradation often occurs in the later stage of
training, we firstly adopt a simple top-layer early stopping
strategy to see if we can mitigate the harm of calibrability
by avoiding the overtraining of top layers. Given a neural
network, we select some specific layers as the cut points,
and freeze the parameters of the layers upon these cut
points after the model has been trained for a certain number
of epochs. We conduct experiments on CIFAR-100 with
ResNet-18 and VGG-11. The layer indices of the cut points
and freezing epochs is presented in Figure 4 and 10. Each
cell in the heatmaps displays the corresponding calibrated
ECE and accuracy at the end of training with a specific
top-layer early stopping policy.

As we can observed, the cut points of the hidden layers
and the freezing epoch have significant impacts on both
the calibrated ECE and accuracy. In general, freezing
the parameters of the top layers in later training stage
improves accuracy but reduces calibrability. On the other
hand, an earlier freezing epoch enhances model calibrability
but decreases accuracy. It is shown that some specific
top-layer early stopping policies can achieve quite good
trade-off between accuracy and calibrated ECE that even
surpasses the performance of full training. As is highlighted
with a red and blue boxes, freezing the parameters of
the 16th and above layers of ResNet-18 before the 30th
epoch, and the 5th and above layers of VGG-11 at the
50th epoch can yield impressive results. If we consider
the top layers as the classification module and the bottom
layers as the representation module, this empirically justify
a weak classifier hypothesis: Given a weak classifier that
has not been overtrained, the representation module can
be learned better in terms of producing more calibratable
features. While the performance of this top-layer early

(a) Calibrated ECE (b) Accuracy

Figure 4. The heatmaps of calibrated ECE and accuracy of ResNet-
18 on CIFAR-100 with a series of top-layer early stopping
strategies. Warmer colors indicate worse calibratability, while
cooler colors signify better predictive performance.

stopping strategy is very sensitive to the choices of layer
index and freezing epochs, thus far, we can design more
advanced methods based on this observation.

4.2. Progressively Layer-Peeled Training

We propose a straightforward method called Progressively
Layer-Peeled (PLP) training to better exploit the weak clas-
sifier hypothesis, which is expected to improve calibration
without sacrificing much accuracy. Our experiments suggest
that finding an optimal results by freezing a specific portion
of parameters at a given frozen epoch is challenging, given
the myriad of possible combinations of layer cut points and
freezing epochs. To address this, PLP gradually frozen the
hidden layers from top to down during the whole training
procedure. Specifically, for a neural network with L layers,
we first divide it into K (K<=L) parts, for which the cut
points can lies between every adjacent layers or two adjacent
parts containing several layers, such as two adjacent blocks
in ResNets. Then, we partition the training duration into K
phases and gradually freeze the parameters of the exposed
top layers as the training progresses. The number of training
phases is the same with the number of the layer groups,
thereby all groups can be exposed as the top trainable part
for a certain epochs. For the number of epochs in each
training phase Tk, k ∈ {1, 2, ...,K}, we can evenly partition
the total number of epochs into K phases, or set other
partitioning strategies to adjust the timing of freezing the
top layers. Here, we adopted a simple heuristic partitioning
strategy: For the kth phase, we determine its training epochs
as: Tk =

⌊
kγ−(k−1)γ

Kγ · T
⌋

, where γ is a hyperparameter
used to control the distribution of training epochs across
all phases. With γ equal to 1, the total training epochs will
evenly partitioned into all phases. With γ greater than 1,
starting freezing epoch for all groups during training will
occur earlier. We set γ to 1 in the comparative experiment
and conduct empirical analysis on the impact of γ. Figure 7
shows a simple example of PLP when K = 3 and γ = 1.
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(a) VGG-11 (b) ResNet-18 (c) ResNet-50 (d) VGG-11 / ResNet-18

Figure 5. (a-c) The accuracy (top) and calibrated ECE (bottom) of linear probing over hidden layers of PLP-trained models on CIFAR-100.
(d) Decoder-based reconstruction loss of models trained with different weight decay coefficients (top: ResNet-18; bottom: VGG-11).

There are several existing works employing the top-down
training strategy. Fang et al. (2021) introduced the layer-
peeled model, from which we actually drew inspiration for
the name of our method, as a nonconvex yet analytically
tractable optimization framework to better understand
deep neural networks. Based on this model, Yang et al.
(2022) proposed to learn a neural network from class-
imbalanced datasets, with the classifier (i.e., the last fully
connected layer of a neural network) randomly initialized
as an equiangular tight frame and fixed during training.
Zhang et al. (2019) proposed a progressive top-down
training method to alleviate the undertraining of the bottom
layers. However, there is a fundamental distinction between
our method and theirs: their methods are based on the
good classifier hypothesis, which posits that, assuming
a fixed classifier is sufficiently well-trained, the bottom
layers can be further enhanced to align with this strong
classifier. Moreover, they employ the retraining strategy
with reinitialized bottom layers.

Calibratability of intermediate features. Following the
linear probing experiment in Figure 2, we present in Figure
5 the calibrated ECE and accuracy over hidden layers of
models trained with PLP strategy under different weight
decay coefficients. As is shown, the top layer features of
PLP-trained models exhibit better calibratability without
the U-shaped trend observed in Figure 2. Interestingly, the
results of ResNet-50 and VGG-11 show a double descent
phenomenon. Specifically, after a slight increase in the
calibrated ECE at a few top layers, the last layer reaches a
notably low level of calibrated ECE. Another interesting
observation is that, unlike the limited improvement of
accuracy of the top layers in Figure 2, the top layers of the
PLP-trained model, despite having fewer training epochs,
consistently contribute to the enhancement of the model’s
accuracy. It shown that for ResNet-18, in Figure 2, the

accuracy improvement from the 15th to the 17th layer is only
0.14%, while in Figure 5(b) the improvement from the 15th
to the 17th layer is 2.36%. We also assess the information
compression of the intermediate features from the model
trained with PLP in Figure 5(d). It’s important to note that
the y-axis range here is the same as in Figure 3, but we can
see that the the results depicted in these figures are quite
different. As the layers deepen, the intermediate features
of PLP-trained models also exhibit a trend of gradual
compression, but there is no significant difference among
models trained with different weight decay coefficients.
It suggest that PLP can avoid the excessive information
compression as observed in Figure 3.

Results with varying γ. Now, we show the improvement
in calibratability brought by the PLP under different coeffi-
cients. PLP includes a hyperparameter γ, which determines
the starting epoch at which the top layers begin to be frozen.
When γ is smaller, top layers will start freezing later, and
when it approaches 0, PLP becomes equivalent to standard
training. As γ increases, the number of epochs for training
the top layers reduces. Here, we selected seven parameter
values within the range of 0.75 to 1.25 to see the impact
of this parameter. Taking our experimental setup of 350
epochs as an example, when γ is set to 0.75 and 1.25, the
training epochs counts for the outermost layer are 17 and
57, respectively. When gamma is set to 0, as illustrated
in the leftmost column of the figure, PLP degenerates
into standard training. Overall, as shown in Figure 6,
our method demonstrates consistent performance within
a reasonable parameter range on calibrated ECE across all
weight decay coefficients. Specifically, PLP exhibits greater
improvement in calibratability under strong regularized
training. Moreover, on CIFAR-100, where standard training
obtains poor calibrated ECE, a larger γ (i.e., earlier top layer
freezing) yields better results.
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Table 1. The comparative results of several metrics on four datasets. The boldface and underline denote the best and the second best
results of each row. Due to limited space, the terms ECE, AECE and NLL here refer to the calibrated results.

Method SVHN CIFAR-10 CIFAR-100 Tiny-ImageNet Avg.
RankECE AECE NLL ACC ECE AECE NLL ACC ECE AECE NLL ACC ECE AECE NLL ACC

R
es

N
et

-1
8

Standard 0.44 0.43 .166 95.5 0.83 0.81 .181 94.4 2.61 2.51 0.99 73.8 1.43 1.28 1.99 54.1 4.69
Weight Decay 0.77 0.79 .182 95.0 1.03 1.42 .169 95.1 4.60 4.49 0.92 77.3 1.66 1.81 2.06 53.1 5.88

Brier 0.55 0.49 .166 95.6 1.03 1.28 .189 94.4 3.31 3.23 1.00 74.4 2.60 2.66 2.24 49.2 6.31
MMCE 0.93 1.00 .189 95.1 1.06 0.93 .197 94.2 2.28 2.26 1.03 72.5 1.19 1.22 1.98 54.1 6.19

Distillation 1.06 1.80 .186 95.4 1.54 3.03 .212 94.4 6.99 6.93 1.07 75.6 1.14 0.89 1.86 56.0 6.81
Label Smoothing 0.96 1.71 .173 95.7 1.46 2.99 .216 94.7 4.41 4.41 1.05 76.2 1.88 1.74 2.11 54.7 6.75

Focal Loss 0.59 0.65 .164 95.7 1.13 1.42 .192 93.9 1.19 1.08 0.92 74.2 2.50 2.49 1.97 53.2 5.44
Mixup 1.95 1.96 .232 94.5 1.13 1.43 .168 95.9 1.18 1.30 0.92 76.9 1.59 1.69 2.03 54.4 5.75
MIT 0.83 1.03 .306 91.7 0.68 0.54 .156 94.9 2.03 1.73 0.89 75.6 1.36 1.59 2.22 49.1 5.25
PLP 0.55 0.45 .161 95.6 0.58 0.49 .165 94.5 0.93 0.91 0.86 75.5 0.96 0.98 1.82 56.1 1.94

R
es

N
et

-5
0

Standard 0.64 0.79 .164 95.7 0.76 0.73 .180 94.4 2.73 2.70 0.96 74.6 1.66 1.70 1.70 60.2 4.44
Weight Decay 1.01 1.03 .249 93.6 1.03 1.21 .167 94.9 4.04 4.00 0.87 78.1 2.68 2.69 1.76 59.6 5.94

Brier 1.32 1.47 .179 95.8 0.70 0.75 .182 94.5 3.03 2.99 1.06 72.4 3.37 3.44 1.68 61.9 5.88
MMCE 1.17 1.37 .193 95.6 1.56 1.53 .198 94.2 2.10 1.94 0.97 73.5 1.30 1.12 1.68 60.3 5.69

Distillation 1.58 2.82 .200 95.7 1.51 3.04 .221 94.3 5.82 6.29 1.18 72.9 1.43 1.26 1.62 61.3 7.12
Label Smoothing 1.71 2.96 .201 95.8 1.54 3.62 .250 94.5 5.08 5.27 1.15 75.1 3.88 4.00 1.79 62.2 7.94

Focal Loss 1.22 1.46 .170 95.7 1.12 1.20 .203 93.5 1.13 1.25 0.92 73.9 2.62 2.76 1.67 59.5 5.81
Mixup 2.11 2.12 .196 95.5 1.48 1.56 .165 96.1 2.77 3.06 0.93 77.5 2.50 2.50 1.70 62.1 5.75
MIT 0.93 1.20 .262 93.2 0.66 0.47 .152 95.2 2.21 2.17 0.85 76.7 2.37 2.35 1.70 60.1 4.44
PLP 0.63 0.45 .159 95.8 0.48 0.48 .163 94.7 1.09 1.06 0.89 74.2 1.10 0.92 1.57 61.3 2.00

(a) CIFAR-10, Calibrated ECE (b) CIFAR-100, Calibrated ECE (c) CIFAR-10, Accuracy (d) CIFAR-100, Accuracy

Figure 6. The calibrated ECE and accuracy of PLP-trained ResNet-18 under different regularization coefficients and varying γ. The
results without using PLP are indicated within the blue box.

Comparison with other methods. We conduct comparative
experiments with other calibration methods on four image
classification datasets. All the reported results are based
on the average of 5 random trials. The implementation
details including dataset splitting, training policies and
the introduction of comparison methods can be found in
Appendix A.1. Table 1 shows the accuracy as well as the
calibrated ECE, calibrated Adaptive Expected Calibration
Error (AECE) and calibrated NLL. It can be observed that
PLP achieves the best average results on these metrics and is
highly robust to different datasets and architectures. Where
standard training already achieves satisfactory calibration,
our method largely maintains the performance, while in
cases where standard training falls short in calibration, our
approach offers notable enhancements. Conversely, the
performance of the regularization methods is extremely
unstable and even worse than standard training in general.
Among these comparison methods, label smoothing and
distillation, which are based on label softening mechanism,
exhibit the poorest calibratability, despite their usual gains in
accuracy. While methods like mixup and focal loss perform

well on certain datasets, their overall performance does
not match ours. Remarkably, the trainable calibration loss
MMCE, which is specifically designed to enhance calibra-
tion in training, significantly harms model calibratability.

5. Conclusions
In this work, we refocused our attention from train-time
calibration performance to explore model calibratability. To
investigate the reasons for the decline in neural networks’s
calibratability, we delve into the calibratability of the
intermediate features of the hidden layers of neural networks.
Our findings indicate that overtraining in the network’s
top layers is the primary challenge, implying that a more
conservative discriminability at these layers could improve
calibratability. This insight correlates with the information
compression inherent in deep neural networks and highlights
the negative impact of over compression on uncertainty
calibration. To address this, we introduced a progressive
layer-peeled training strategy aimed at reducing the adverse
effects of overtraining on model calibratability.
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A. Appendix
A.1. Experimental Details

Datasets. The experiments in main text are based on four
widely used image classification datasets: SVHN (Netzer
et al., 2011), CIFAR-10, CIFAR-100 (Krizhevsky, 2009)
and Tiny-ImageNet (Deng et al., 2009). SVHN is an image
dataset which consists of 32×32 colored images of 0∼9
digits. CIFAR-10 and CIFAR-100 consist of 32×32 colored
natural images arranged in 10 and 100 classes, respectively.
For Tiny-ImageNet, the experiments are based on images
resized as 64x64. We split the original training dataset into
training set and validation set for main training and post-hoc
calibration with the following ratios: 68257/5k for SVHN,
45k/5k for CIFAR-10/100 and 90k/10k for Tiny-ImageNet.

Training details. We conduct experimental analysis based
on three models ResNet-18, ResNet-50 and VGG-11 in
the main paper. To learn these models, we use SGD
as the opimizer with a momentum of 0.9 and a weight
decay of 10−4 unless otherwise specified. We train on
SVHN/CIFAR-10/CIFAR-100 by total 350 epochs with the
initial learning rate as 0.1, and divide it by a factor of 10
after 150 epochs and 250 epochs respectively. For Tiny-
ImageNet, we conduct training based on the open sourced
pretrained models. Based on the pretrained models, we
train 200 epochs with the initial learning rate as 0.01, and
divide it by a factor of 2 after every 30 epochs. We set the
batch size as 128 on SVHN/CIFAR-10/CIFAR-100, and 64
on Tiny-ImageNet. In Table 2, we set the weight decay
of PLP as 0.0005 for SVHN/CIFAR-10/CIFAR-100, and
0.0001 for Tiny-ImageNet. Code is available at
https://github.com/dengbaowang/PLP.

Post-hoc Calibration. For post-hoc calibration, we adopt
TS as the post-hoc calibration method in the experiments
of the main paper. We also conduct experiment with Vector
Scaling (VS) and present the results in Appendix A.2.
For both TS and VS, we use the LBFGS to optimize the
parameters on validation set.

Linear probing details. In Figure 2, we conduct linear
probing on the features extracted from hidden layers. For
hidden layer features with different dimensions, we simply
flatten the feature tensors of each layer into one-dimensional
vectors and train fully connected layers as classifiers based
on them. Here, we train the linear classifier by using SGD
with a momentum of 0.9 and a weight decay of 10−4. We
train the classifier for 10 epochs with the initial learning rate
as 0.1, and decay it by a factor of 10 after 6 and 8 epochs
respectively. To access the calibratability of hidden features,
we also apply temperature scaling to the linear classifier
after linear probing.

The choices of cut points. As we discussed in Section
3.2, the PLP method needs to first divide all the layers into

Frozen layersTrainable layers

Training epochs

Figure 7. An illustration of PLP training.

multiple parts, for which the cut points can lies between
the adjacent groups containing several adjacent layers.
Here, we divide ResNet-18 and ResNet-50 into 11 parts
with the cut point sets {2, 4, 6, 8, 10, 12, 14, 16, 17, 18}
and {11, 17, 23, 26, 29, 32, 38, 41, 44, 47}, respectively,
and divide VGG-11 into 6 parts with the cut point set
{2, 3, 4, 6, 9}.

Rate distortion-based mutual information estimation.
Rate distortion measures the compactness of a random dis-
tribution. Given a random variable z ∈ Rd and a specified
value ϵ>0, the rate distortion R(z, ϵ) denotes the minimal
number of binary bits required to encode z such that the
expected decoding error is less than ϵ, i.e., the reconstructed
ẑ satisfies E [∥z − ẑ∥2] ≤ ϵ. However, we lack knowledge
about the distribution of intermediate features and can only
access the specific feature tensors corresponding to each
sample. Ma et al. (2007) proposed an analytical expression
for calculating the number of binary bits needed to encoded
finite samples: L(Z, ϵ)

.
=
(
m+d
2

)
log det

(
I + d

mϵ2ZZ
⊤
)

,
where Z denotes the feature matrix of a batch of samples
Z=[z1, z2, ...,zm], m denotes the batch size. We employe
the extended version of this analytical expression for multi-
class data to estimate mutual information in our experiments.
For more implementation details, we recommend referring
to (Yu et al., 2020).

Decoder-based mutual information estimation. In Figure
3, we estimate the mutual information I(x,h) by training
a decoder parameterized by w to obtain the minimal
reconstruction loss on training data (Wang et al., 2020). We
directly use the binary cross-entropy loss in original feature
space to estimate the mutual information. Specifically, we
train a light-weight decoder with two convolutional layers
using Adam optimizer for 30 epochs with a constant learning
rate 0.01. We are primarily focus on the comparisons of
information across intermediate layers and between different
models rather than obtaining the exact values of I(x,h).
Therefore, the utilization of the same training policy among
all layers or models makes the comparisons fair.

Evaluation metrics. A perfectly calibrated classifier
is expected to satisfy P(ŷ = y | p̂ = p) = p for p∈ [0, 1].
Given this, calibration performance could be measured
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(a) CIFAR-100, ResNet-18 (b) CIFAR-100, ResNet-50 (c) CIFAR-10, ResNet-18 (d) CIFAR-10, ResNet-50

Figure 8. The accuracy (top) and calibrated ECE (bottom) of linear probing over hidden layers of models trained with different methods.

Figure 9. The calibrated ECE over training epochs of ResNet-18
on CIFAR-100.

by the difference between accuracy and confidence in
expectation, i.e., Ep̂ [P(ŷ=y | p̂=p)−p]. In practice,
this can be approximated by first grouping all the
samples into M equally spaced bins {Bm}Mm=1

with respect to their confidence scores, and taking a
weighted average of the accuracy/confidence difference
between these bins. Formally, ECE is defined as
ECE=

∑M
m=1

|Bm|
N |acc (Bm)−avgConf (Bm)|, where N

denotes the total number of samples in testing set. Different
from ECE that bins with equal confidence interval, AECE
adaptively groups the samples into intervals with same
sample size. In this way, each bin Br in {Br}Rr=1 has N

M
samples and the metric can be formally defined as (Nixon
et al., 2019): AECE= 1

R

∑R
r=1 |acc (Br)− avgConf (Br)|.

In our experiments, we set the bin number as 15 for both
ECE and AECE.

A.2. Complementary Results

Feature calibratability. In the main text, we present the
empirical study on the feature calibratability of models
tained with different weight decay coefficients. Similarly,
we now conduct the experiments for other comparative
methods in Figure 8. On CIFAR-100, the pronounced U-
shaped trend in feature calibratability is also shown with
these methods. Most comparative methods induce the
increase in calibratability in the last few layers, while our

(a) Calibrated ECE (b) Accuracy

Figure 10. The heatmaps of calibrated ECE and accuracy of
VGG-11 on CIFAR-100 with a series of top-layer early stopping
strategies. Warmer colors indicate worse calibratability, while
cooler colors signify better predictive performance.

method largely mitigates this U-shaped trend. It should be
noted that due to the differences in dataset difficulty, the
calibration performance on CIFAR-10 is much better than
that on CIFAR-100. However, as we can see, the detrimental
impact of the top layers on calibratability observed in the
main text still remains. Furthermore, the number of layers
causing a decline in calibratability is consistent with the that
on CIFAR-100, but the degree of degradation is somewhat
less pronounced on CIFAR-10.

Results with block-wise PLP. We have conducted addi-
tional experiments with K set to 4 for ResNet-18 and
ResNet-50 on CIFAR-10 and CIFAR-100. By treating each
block as a layer group for parameter freezing, we have
observed in Figure 11 that PLP with K = 4 also consistently
yields better calibratability than standard training. These
results are in line with our original results, showing that
increasing the γ can enhance the calibrated ECE achieved
by PLP. The results suggest that the hyperparameter γ,
which controls the distribution of training epochs of different
layers, plays a more critical role in determining the overall
performance than K.
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Table 2. The comparative results of several metrics on four datasets with Vector Scaling. The boldface and underline denote the best and
the second best results of each row. Due to limited space, the terms ECE, AECE and NLL here refer to the calibrated results.

Model & Method SVHN CIFAR-10 CIFAR-100 Tiny-ImageNet Avg.
RankECE AECE NLL ACC ECE AECE NLL ACC ECE AECE NLL ACC ECE AECE NLL ACC

R
es

N
et

-1
8

Standard 0.38 0.44 .168 95.5 0.89 0.84 .178 94.4 2.96 2.74 1.00 73.8 1.67 1.59 1.99 54.1 4.56
Weight Decay 0.68 0.73 .183 95.0 1.01 1.25 .166 95.1 4.86 4.78 0.93 77.3 2.26 2.17 2.05 53.1 6.19

Brier 0.51 0.53 .166 95.6 1.06 1.18 .185 94.4 3.46 3.38 1.01 74.4 3.41 3.40 2.21 49.2 6.50
MMCE 0.88 0.96 .189 95.1 1.01 0.82 .187 94.2 2.69 2.64 1.04 72.5 1.21 1.25 1.97 54.1 5.81

Distillation 1.02 1.54 .186 95.4 1.52 2.10 .207 94.4 6.86 6.70 1.07 75.6 1.77 1.79 1.86 56.0 7.06
Label Smoothing 0.92 1.46 .173 95.7 1.52 2.31 .210 94.7 4.58 4.57 1.05 76.2 2.11 2.06 2.11 54.7 6.75

Focal Loss 0.62 0.63 .164 95.7 1.13 1.33 .189 93.9 1.68 1.56 0.93 74.2 2.03 2.08 1.96 53.2 5.50
Mixup 1.76 1.77 .228 94.5 0.94 1.19 .164 95.9 1.54 1.55 0.91 76.9 1.94 1.80 2.00 54.4 5.00
MIT 0.77 0.82 .303 91.7 0.56 0.55 .152 94.9 2.10 2.04 0.88 75.6 2.06 2.09 2.17 49.1 5.44
PLP 0.50 0.45 .163 95.6 0.60 0.57 .166 94.5 1.50 1.41 0.88 75.5 1.63 1.55 1.81 56.1 2.19

R
es

N
et

-5
0

Standard 0.65 0.74 .164 95.7 0.82 0.65 .178 94.4 3.12 3.05 0.96 74.6 2.08 2.03 1.70 60.2 4.69
Weight Decay 0.82 0.81 .244 93.6 0.95 1.04 .163 94.9 4.37 4.36 0.87 78.1 3.38 3.33 1.75 59.6 5.88

Brier 1.31 1.45 .179 95.8 0.68 0.70 .178 94.5 3.45 3.34 1.07 72.4 4.03 4.01 1.67 61.9 5.88
MMCE 1.02 1.20 .193 95.6 1.26 1.16 .190 94.2 2.42 2.42 0.98 73.5 1.49 1.51 1.70 60.3 5.81

Distillation 1.63 2.27 .200 95.7 1.63 2.27 .216 94.3 6.18 6.18 1.18 72.9 1.97 1.90 1.60 61.3 7.25
Label Smoothing 1.67 2.37 .202 95.8 1.21 2.36 .241 94.5 5.08 5.01 1.15 75.1 4.21 4.20 1.77 62.2 7.81

Focal Loss 1.21 1.33 .170 95.7 1.19 1.30 .200 93.5 1.65 1.57 0.93 73.9 2.30 2.30 1.66 59.5 5.69
Mixup 1.71 1.72 .191 95.5 1.31 1.36 .160 96.1 2.64 2.73 0.91 77.5 2.44 2.49 1.69 62.1 5.44
MIT 0.77 1.03 .262 93.2 0.54 0.57 .148 95.2 2.24 2.09 0.84 76.7 2.95 2.92 1.68 60.1 4.31
PLP 0.68 0.44 .158 95.8 0.59 0.59 .163 94.7 1.32 1.25 0.91 74.2 1.48 1.50 1.57 61.3 2.25

(a) SVHN (b) CIFAR-10 (c) CIFAR-100 (d) Tiny-ImageNet

Figure 11. Calibrated ECE of PLP-trained ResNet-18 and ResNet-50 with K = 4 (block-wise PLP training) and varying γ on four
datasets. The blue solid lines represents the results of models trained using the PLP strategy, while the red dashed line represents the
results without employing the PLP strategy.

Results with vector scaling. In all the experiments above,
we employed TS as the post-hoc calibration method. This
choice is due to the fact that TS is considered the simplest
and most effective method while preserving the dence model
outputs. We conducted similar comparative experiments
by replacing it with vector scaling. The results shown
in Table 2 indicate that when using vector scaling as the
post-hoc calibration method, the comparative results of
between models trained with different methods are generally
consistent to that in Table 1. Our method achieved the best
results in general.

Calibration performance of raw outputs. Although
this work focuses on model calibratability rather than raw
calibration performance, we unintentionally discovered that
the PLP is also very helpful in improving the calibration
performance for the model’s raw outputs. The experimental
results in Figure 12 demonstrate that increasing γ (i.e.,
earlier top layer freezing) can also improve raw calibration,
and this effect is consistent across the four datasets.

A.3. Comparison Methods

We compared several methods in the experiments of the
main text: (stronger) weight decay, label smoothing, self-
distillation, mixup, focal loss, Maximum Mean Calibration
Error (MMCE), Brier and mixup in training (MIT). Among
these methods, the former five ones are not original designed
for calibration but has been found beneficial to it in recent
studies. MMCE is a specifically designed loss function term
for calibration. MIT is proposed to mitigate the harm of
the original mixup for calibration. Brier loss is the simple
mean squared error between the predicted confidences and
the ground-truth one-hot labels, which was considered as an
important baseline as it can be decomposed into calibration
and refinement (DeGroot & Fienberg, 1983). For all these
methods, we adopt the same optimizer, learning rate and the
number of epochs in training as discussed at the beginning of
Appendix. Most of these methods involve hyperparameters
that need to be determined before training. Here is a brief
introduction to these methods:
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(a) SVHN (b) CIFAR-10 (c) CIFAR-100 (d) Tiny-ImageNet

(e) SVHN (f) CIFAR-10 (g) CIFAR-100 (h) Tiny-ImageNet

Figure 12. Raw ECE of PLP-trained ResNet-18 with varying γ on four datasets. The blue solid lines represents the results of models
trained using the PLP strategy, while the red dashed line represents the results without employing the PLP strategy.

• Label smoothing is widely used to reduce overfitting
of DNNs (Szegedy et al., 2016). The mechanism of
LS is simple: when training with CE loss, the one-
hot label vector y is replaced with soft label vector
ỹ, whose elements can be formally denoted as ỹi =
(1 − ϵ)yi + ϵ/K,∀i ∈ {1, ...,K}, where ϵ > 0 is a
strength coefficient.

• Mixup takes the convex combinations between pairs of
examples and their labels: x̃i = λxi+(1−λ)xj , ỹi =
λyi + (1− λ)yj , where λ is sampled from Beta(α, α)
with α> 0. A larger α will result in a higher degree
of mixing strength, thus making the mixed labels
smoother.

• Focal loss is originally proposed to address the class
imbalance problem in object detection.It is formally
defined as: Lf = −(1 − fθ

y )
γ log fθ

y , where γ is a
predefined coefficient. (Mukhoti et al., 2020) found
that the models learned by focal loss produce output
probabilities which are already very well calibrated.

• MMCE is a continuous and differentiable proxy for
calibration error and is normally used as a regularizer
alongside the commonly used cross-entropy loss,
where a weighting factor β could be used to balance
the contribution of MMCE (Kumar et al., 2018).

• Brier loss is the simple the mean squared error between
the predicted confidences and the ground-truth one-hot
labels, which was considered as an important baseline

as it can be decomposed into calibration and refinement
(DeGroot & Fienberg, 1983).

• MIT is a derived version of mixup for improving model
calibration. The hyperparameter γ plys the same role
with that of the original mixup.

In Figure 8, Table 1 and 2, the hyperparameters for
the comparison methods are chosen based on commonly
recommended values in the literature: a decay ratio of
5×10−4 for weight decay, ϵ as 0.1 for label smoothing,
α as 1 for mixup and MIT, γ as 3 for focal loss and β as 0.5
for MMCE.

A.4. Future Work

We think the following problems are desired to be explored:
(1) Conducting experiments to analyze calibratability on
larger datasets and a variety of network architectures would
be a valuable next step. This could involve examining
the impact of the pre-training on the calibratability of
downstream tasks, especially within the prevalent pre-
training/fine-tuning paradigm in modern machine learning.
(2) Investigating the performance of model calibratability
under distribution shift is crucial for real-world applications.
Also, developing post-hoc or test-time calibration methods
that are robust to distribution shifts could lead to models
that provide reliable predictions in diverse and changing
environments. (3) Theoretical analysis of calibratability
could offer insights into the fundamental principles to
produce well-calibrated models.
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