
Benign Overfitting in Adversarial Training of Neural Networks

Yunjuan Wang 1 Kaibo Zhang 1 Raman Arora 1

Abstract
Benign overfitting is the phenomenon wherein
none of the predictors in the hypothesis class can
achieve perfect accuracy (i.e., non-realizable or
noisy setting), but a model that interpolates the
training data still achieves good generalization. A
series of recent works aim to understand this phe-
nomenon for regression and classification tasks
using linear predictors as well as two-layer neural
networks. In this paper, we study such a benign
overfitting phenomenon in an adversarial setting.
We show that under a distributional assumption,
interpolating neural networks found using adver-
sarial training generalize well despite inference-
time attacks. Specifically, we provide conver-
gence and generalization guarantees for adversar-
ial training of two-layer networks (with smooth as
well as non-smooth activation functions) showing
that under moderate ℓ2 norm perturbation budget,
the trained model has near-zero robust training
loss and near-optimal robust generalization error.
We support our theoretical findings with an em-
pirical study on synthetic and real-world data.

1. Introduction
Neural networks have been widely used in real-world appli-
cations, achieving state-of-the-art performance on various
tasks such as image classification and speech recognition.
Despite their tendency to be over-parameterized and capa-
ble of interpolating the training data with significant label
noise, neural networks perform surprisingly well on pre-
viously unseen test data. This seemingly contradicts the
classical learning theory where overfitting to the training
data would typically hinder with generalization. Such phe-
nomena, known as benign overfitting (Bartlett et al., 2020),
is technically characterized by the following conditions:
(1) the trained classifier perfectly fits the noisy training

1Department of Computer Science, Johns Hopkins Uni-
versity, Baltimore, USA. Correspondence to: Yunjuan Wang
<ywang509@jhu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

data, achieving zero training error; (2) no classifier in the
related hypothesis class can achieve near-zero generaliza-
tion error; (3) the trained classifier achieves near-optimal
generalization error. Several recent works seek to unravel
the mystery of benign overfitting in various settings, includ-
ing training linear models (Bartlett et al., 2020; Chatterji
et al., 2022), kernel methods (Belkin et al., 2018; Liang
& Rakhlin, 2020; Mei & Montanari, 2022) and training of
neural networks (Frei et al., 2022; Cao et al., 2022).

While models based on neural networks have been tremen-
dously successful, they are highly vulnerable to small, nearly
imperceptible, albeit strategic, perturbation of data. These
perturbations, called adversarial examples, are abundant and
easy to find computationally (Bubeck et al., 2021). The po-
tential of such adversarial attacks to substantially degrade
the performance of an otherwise well-performing model has
been a source of significant concern regarding deployment
of machine learning models in real-world systems. It is no
surprise, then, that developing algorithms that can provably
defend against such attacks and are guaranteed to improve
the robustness of machine learning has gained tremendous
traction in recent years.

One of the most prominent empirical defense algorithms
against inference-time attacks is the adversarial training
method of Madry et al. (2018). Adversarial training pro-
ceeds by simulating attacks as part of training – generating
adversarial examples from (clean) training examples and
using them to train a neural network. We can view adver-
sarial training as a two-player game, wherein the learner
seeks to minimize their error on the training set while an
adversary strives to maximize the error by crafting small
strategic corruptions of the input training examples. Several
empirical studies show that by using adversarial training
or its variants (Zhang et al., 2019; Wang et al., 2020), the
learner returns a model that is more resilient to perturbations
in the input space (Madry et al., 2018; Shafahi et al., 2019b;
Dong et al., 2020; Pang et al., 2021).

In contrast to the benign overfitting phenomenon that occurs
in the standard (clean) setting, Sanyal et al. (2020) identi-
fied a sufficient condition on the data distribution that hurts
robust generalization when the classifier perfectly fits the
noisy label data. This “robust overfitting” phenomenon was
also confirmed by Rice et al. (2020) showing that on sev-

1

Benign Overfitting in Adversarial Training of Neural Networks

eral real-world datasets, the robust test loss increases after
the first learning rate decay while the robust training loss
keeps decreasing throughout training. This naturally begs
the question whether the modern wisdom of training neural
networks to zero training loss also extends to adversarial
settings, or in other words, if benign overfitting can occur in
adversarial training. Chen et al. (2023) took a first step in
studying benign overfitting for adversarially trained linear
models and provide empirical results for both linear clas-
sifiers and neural networks. They acknowledged that it is
nontrivial to generalize the analysis to neural networks and
leave it for future work.

In this paper, we resolve the open question posed by Chen
et al. (2023), asserting that benign overfitting can also occur
in adversarially trained neural networks under certain data
distributions. Our key contributions are as follows.

1. Given training data generated from a mixture distribution
with label noise, we establish convergence guarantees
for adversarial training of two-layer neural networks
showing that robust training loss can be driven to zero,
thereby robustly interpolating the noisy training data. We
consider the hypothesis class given by two-layer neural
networks. We consider smooth as well as non-smooth
activation functions. Furthermore, we do not make any
assumption about the robust realizability of data.

2. We provide generalization guarantees on both the clean
test error and the robust test error, demonstrating that they
simultaneously achieve the near-optimal standard and
adversarial risk. In particular, for a moderately large net-
work we show that for ℓ2 norm-bounded additive adver-
sarial attacks, if the perturbation budget is not too large,
the robust test error approximates the label noise rate.

3. We validate our theoretical results with experiments on
both synthetic and real-world datasets.

1.1. Related Work

Benign Overfitting. A significant body of recent works
has delved into understanding why predictors that interpo-
late noisy training data can still achieve a good general-
ization performance, with a particular emphasis on linear
models, e.g., linear regression (Bartlett et al., 2020; Hastie
et al., 2022; Zou et al., 2021b; Chatterji et al., 2022; Koehler
et al., 2021), sparse regression (Wang et al., 2022a; Chatterji
& Long, 2022), logistic regression (Chatterji & Long, 2021;
Wang et al., 2021), ridge regression (Tsigler & Bartlett,
2020), and kernel methods (Belkin et al., 2018; Liang et al.,
2020; Liang & Rakhlin, 2020; Mei & Montanari, 2022).

For nonlinear model such as neural networks, analyzing
benign overfitting becomes much more challenging. There
has been some progress toward addressing this challenge.
Frei et al. (2022) provided a first such guarantee for finite-

width neural networks trained on logistic loss for data drawn
from a Gaussian mixture model. Concurrently, Cao et al.
(2022) characterized the generalization guarantees of two-
layer convolutional neural networks, assuming that input
data is a sum of a label-dependent signal patch and a label-
independent noise patch. While the works above consider a
smooth activation function, follow-up studies by Kou et al.
(2023) and Xu & Gu (2023) extended the results to SGD for
training neural networks with non-smooth activations (e.g.,
ReLU). Recently, Zhu et al. (2023) further extended these
findings to deep neural networks in the lazy regime.

Robust Overfitting. Numerous works focus on mitigat-
ing overfitting in adversarial settings following the work of
Rice et al. (2020). These include approaches that employ
heuristic ideas, such as early stopping, adding regulariza-
tion, adapting cyclic learning rate schedules (Rice et al.,
2020), and smoothing the logits or weights during train-
ing (Chen et al., 2021), among others (Pang et al., 2021;
Huang et al., 2020; Dong et al., 2022). Thw works of Xiao
et al. (2022); Clarysse et al. (2022); Fu & Wang (2023)
provide some theoretical justification for these practical ap-
proaches. Donhauser et al. (2021) and Dong et al. (2021)
implicate memorization – neither work provides any theo-
retical results to support their claim. However, follow-up
work by Li & Li (2023) considers a patch data distribution
with a meaningful signal patch embedded in noisy patches–
they show that the ability of a model class to memorize
spurious features (noisy patches) leads to overfitting. More
recently, Li et al. (2022) argued that robust generalization
may require exponentially large models.

Robust Generalization Guarantees. A standard techni-
cal tool for establishing generalization bounds is that of
uniform convergence. Several works build on this idea to
give generalization guarantees for the robust loss, by ana-
lyzing Rademacher complexity (Yin et al., 2019; Khim &
Loh, 2018; Awasthi et al., 2020), VC dimension (Cullina
et al., 2018; Montasser et al., 2020), or the covering num-
ber (Balda et al., 2019; Mustafa et al., 2022; Li & Telgarsky,
2023), of the hypothesis class or utilizing PAC Bayesian
analysis (Viallard et al., 2021; Xiao et al., 2023) and margin-
theoretic analysis (Farnia et al., 2018). However, by defini-
tion, these guarantees rely on bounding the generalization
gap, i.e., the difference between the empirical and expected
error, of all hypothesis in the hypothesis class simultane-
ously. As such, uniform convergence bounds are unable
to explain the benign overfitting phenomenon, wherein the
empirical and expected errors of an interpolating predictor
are not close to each other.

Computational Guarantees. The statistical guarantees
based on uniform convergence fail to explain benign over-
fitting. It is natural then to rely on a more direct (e.g.,

2

Benign Overfitting in Adversarial Training of Neural Networks

trajectory-based) analysis of the output of the training al-
gorithm. However, a good theoretical understanding of
why and when adversarial training succeeds remains elusive.
Much of the recent work (Charles et al., 2019; Li et al.,
2020; Zou et al., 2021a; Chen et al., 2023) has focused on
studying adversarial training of linear models wherein the
adversarial examples are given in a simple closed-form ex-
pression – this simplifies the problem greatly reducing it to
standard training. Of special relevance to us in this body
of results, is the work of Chen et al. (2023) who claim to
demonstrate benign overfitting for linear models; yet, they
fail to show that the model returned by adversarial training
in the setting they consider has small robust training error,
making their claim questionable.

Adversarial training of neural networks was analyzed
by Gao et al. (2019) and further improved by Zhang et al.
(2020); however, both of these works focus on ensuring
convergence of the training procedure and do not provide
generalization guarantees on robust loss. This gap has been
addressed in very recent work by Li & Telgarsky (2023).
However, the work of Li & Telgarsky (2023), and the prior
work all focus on the lazy training regime, which, unfortu-
nately, has been proven to be at odds with robustness (Wang
et al., 2022b). Finally, Allen-Zhu & Li (2022) present an
analysis of adversarial training when initialized using a net-
work returned by standard (clean) training instead of random
initialization. Mianjy & Arora (2023) provide an end-to-end
analysis of adversarial training beyond the NTK setting with
a variant of adversarial training that involves using a slightly
different (reflected) loss for the inner loop maximization
problem (for finding an attack vector as part of adversarial
training), yet, their results are limited to robustly realiz-
able distributions, which cannot justify benign overfitting
as there is no noise in their setting.

2. Preliminaries
Notation. Throughout the paper, we denote scalars, vec-
tors, and matrices with lowercase italics, lowercase bold,
and uppercase bold Roman letters, respectively; e.g., u, u,
and U. We use [m] to denote the set {1, 2, . . . ,m} and
use both ∥ · ∥ and ∥ · ∥2 for ℓ2-norm. Given a matrix
U = [u1, . . . , um] ∈ Rd×m, we use ∥U∥F and ∥U∥2 to rep-
resent the Frobenius norm and spectral norm, respectively.
We use B2(u, α) to denote the ℓ2 ball centered at u ∈ Rd of
radius α. We use the standard O-notation (O, Θ and Ω).

2.1. Problem Setup

We focus on binary classification and denote the input space
and label space as X = Rd,Y = {±1}, respectively. We
assume that the data are drawn from a noisy mixture data
distribution D on X × Y that, along with its variants, has
been studied in several recent works (Chatterji & Long,

2021; Cao et al., 2021; Frei et al., 2022). Formally, we
consider the following data distribution.
Definition 2.1 (Data Distribution). Let Dclust be a λ-strongly
log-concave distribution over Rd for some λ > 0. We
assume that Dclust = D(1)

clust × · · · × D(d)
clust is a product

distribution whose marginals are all mean-zero with the
sub-Gaussian norm at most one. We further assume that
Eξ∼Dclust [∥ξ∥

2
] ≥ κd holds for some 0 < κ < 1. Let

Dc be a distribution over X × Y . We first draw a sample
(xc, yc) ∼ Dc by sampling yc ∈ {±1} uniformly at random,
sampling ξ ∼ Dclust, and setting xc = ycµ + ξ. Given a
noise rate β > 0, we define our true data distribution D
to be any distribution over X × Y such that the marginal
distribution of D and Dc on X are the same, and the total
variation distance between the two distributions is bounded
by β, i.e., dTV(Dc,D) ≤ β.

The standard coupling lemma states that given two distribu-
tions D and Dc over the same domain Z = X × Y , there
exists a joint distribution over Z×Z such that the marginals
along the projections (z, z′) 7→ z and (z, z′) 7→ z′ are D
and Dc, respectively. Given that the marginal on X for D
and Dc are the same (see the definition above), this implies
that for (x, y) ∼ D, (xc, yc) ∼ Dc, P(x = xc) = 1 and
P(y ̸= yc) ≤ β. The definition above includes two settings:
1) Independent label flip, where for each sample, label y is
obtained by flipping yc with probability at most β, indepen-
dent of how other labels are generated; 2) Non-independent
label flip, where there exists potential correlations between
labels y. A yet another special instance that has been stud-
ied extensively in the adversarial learning literature is that
of Gaussian distribution (Javanmard et al., 2020; Dobriban
et al., 2020; Dan et al., 2020) which is a special case of the
data generative model above for β = 0.

Hypothesis Class. We focus on learning two-layer neural
networks defined as: f(x;W) := 1√

m

∑m
s=1 asϕ(⟨ws, x⟩)

where m is an even integer representing the number of
hidden nodes and ϕ : R → R is an activation func-
tion. The weight matrix at the bottom layer is denoted
as W = [w1, . . . ,wm] ∈ Rd×m and the weight vector at the
top layer by a = [a1, . . . , am] = [1, . . . , 1,−1, . . . ,−1] ∈
Rm. The top layer weight vector a is kept fixed through-
out the training process. The weight vectors at the bot-
tom layer are initialized randomly as w0

s ∼ N(0, ω2
initI),

for s ∈
{
1, . . . , m2

}
, and setting w0

s = w0
s−m

2
for s ∈{

m
2 + 1, . . . ,m

}
. This ensures symmetry at initialization

and yields f(x;W0) = 0 for all x. This symmetric initializa-
tion technique is commonly used in related work (Langer,
2021; Bartlett et al., 2021; Montanari & Zhong, 2022) and
we employ here for analytical purposes.

Training Data. We are given a training data of size
n sampled i.i.d. from the noisy data distribution, S =

3

Benign Overfitting in Adversarial Training of Neural Networks

{(xi, yi)}ni=1 ∼ D. Let C denote the set of indices of train-
ing data corresponding to the clean labels; i.e., for i ∈ C, we
have that (xi, yi) ∼ Dc; similarly, let N denote the indices
corresponding to noisy labels; i.e., (xi,−yi) ∼ Dc ∀i ∈ N .

Loss Function. The 0-1 loss of a predictor f(·,W)
on a data point (x, y) is defined as ℓ0/1((x, y);W) =
1 (yf(x;W) ≤ 0), where 1(·) is the indicator function. For
computational reasons, as is typical, we use the logistic loss,
denoted ℓ(z) = log (1 + exp (−z)), to train the two-layer
neural networks. The population and the empirical loss
w.r.t. ℓ(·) are denoted as L(W) := E(x,y)∼Dℓ(yf(x;W))

and L̂(W) := 1
n

∑n
i=1 ℓ(yif(xi;W)).

Robust Loss. We consider ℓ2 norm-bounded adversarial
attacks with a perturbation budget of size α > 0. The set
of all such perturbations for an input example x ∈ X is
represented by B2(x, α). This threat model motivates min-
imizing the robust 0-1 loss defined as ℓ0/1rob ((x, y);W) =
maxx̃∈B2(x,α) 1(yf(x̃;W) ≤ 0). The population and empir-
ical risk w.r.t. the 0-1 loss and the robust 0-1 loss, respec-
tively, are denoted as L0/1, L̂0/1, L0/1

rob , and L̂0/1
rob . Analo-

gously, the population and empirical robust risk w.r.t. the
(surrogate) logistic loss ℓ(·) are defined as:

Lrob(W) := E(x,y)∼D max
x̃∈B2(x,α)

ℓ(yf(x̃;W))

L̂rob(W) :=
1

n

n∑
i=1

max
x̃i∈B2(xi,α)

ℓ(yif(x̃i;W)).

Note that we are ultimately interested in bounding the 0-1
loss and its robust variant.

Algorithm 1 Gradient Descent-based Adversarial Training
Input: Step size η, perturbation budget per sample α. Num-

ber of iterations T .
Initialize W0 randomly.
for t = 0, . . . , T − 1 do

for i = 1, . . . , n do
x̃ti = argmaxx̃i∈B2(xi,α) ℓ(yif(x̃i;Wt)).

end for
Update Wt+1 = Wt − η

n

∑n
i=1 ∇ℓ(yif(x̃

t
i;Wt))

end for
return: WT

Adversarial Training. The gradient descent-based ad-
versarial training algorithm is presented in Algo-
rithm 1. We denote the adversarial training exam-
ple for some input xi given model parameter Wt, at
round t as x̃ti = argmaxx̃i∈B2(xi,α) ℓ(yif(x̃i;Wt)) =
argminx̃i∈B2(xi,α) yif(x̃i;Wt). A bi-product of our initial-
ization is that f(·;W0) is the zero function at initialization
(see the paragraph titled “Hypothesis Class”).

Therefore, at t = 0, all perturbations of all training data
fare equally, i.e., perturbing data does not increase the train-
ing loss. Therefore, for simplicity, we simply choose to
not perturb the training data at iteration t = 01. The pro-
posed symmetric initialization and simple modification of
the training procedure at t = 0 is instrumental in proving
Lemma 4.1, which further yields tight results.

We make the following assumptions on the problem setup.
Specifically, we consider a high dimensional setting where
the dimension d is much larger than the number of training
samples n, as stated below in Assumption (1). Such a regime
is popular in biomedical settings where the data comes from
limited patient information such as MRI or DNA sequence.

Assumption 1. Let δ ∈ (0, 1/2). We assume
that there exists a positive constant C such that
the following holds: (1) The dimension satisfies
d ≥ Cmax{∥µ∥2 n, n2

(
log (n/δ) + α2

)
}. (2) noise

rate β ∈ [0, 1/C]. (3) Initialization variance satisfies
ωinit

√
md ≤ η. (4) Step size η ≤ (Cd2)−1. (5) The

number of samples satisfies n ≥ C log (m/δ). (6) Adver-
sarial perturbation α ≤ ∥µ∥.

Assumption (3) requires a small initialization to ensure that
the first step of adversarial training dominates the behavior
of the neural network, pushing it beyond the lazy train-
ing regime. Such initialization technique has also been
introduced in previous work (Ba et al., 2019; Xing et al.,
2021). Given that the objective of adversarial training is
to achieve a classifier that is robust against small input per-
turbations imperceptible to human eyes, Assumption (6)
is reasonable as it imposes a mild constraint on the attack
strength. Finally, we note that we can relax Assumption (1)
to d ≥ Cmax{∥µ∥2n, n2 log (n/δ)}, thereby removing the
dependence on α (see discussion in Section 4.1). We work
with the assumption above to keep our arguments and proofs
relatively simple and accessible.

3. Main Result
In this section, we present our main result providing the-
oretical guarantees for adversarial training of neural net-
works. We assume that the underlying distribution is the
noisy mixture distribution described in Section 2.1. Further,
we consider network architectures with both smooth and
non-smooth activation functions – while we show identical
results for both cases, we need slightly different assump-
tions for the two. Therefore, we first separately describe
each setting before presenting a unified result.

1Due to this simple modification, we can allow perturbation
budget α to be as large as ∥µ∥ (see Assumption (6)). On the other
hand, if we allow for non-zero perturbation at t = 0, we will need
α ≤ c ∥µ∥ for some c ∈ [0, 1).

4

Benign Overfitting in Adversarial Training of Neural Networks

3.1. Smooth Activation Function

Here we consider a strictly increasing, 1-Lipschitz, H-
smooth activation function that is approximately homoge-
neous with ϕ(0) = 0. Formally, there exists γ,H > 0, 0 ≤
ζ < 1, c1 ≥ 0, c2 ≥ 0 such that 0 < γ ≤ ϕ′(z) ≤ 1, ϕ′(z)
is H-Lipschitz, and |ϕ′(z) · z − ϕ(z)| ≤ c1 + c2 |z|ζ ,∀z ∈
R. Smooth activation functions have been extensively stud-
ied both theoretically and empirically (Liu & Di, 2021;
Biswas et al., 2022). One example of such an activation
function that satisfies our condition is the smoothed Leaky
ReLU activation (Frei et al., 2022) defined as follows:

ϕSLReLU(z) =

z − 1−γ

4H , z ≥ 1
H

1−γ
4 Hz2 + 1+γ

2 z, |z| ≤ 1
H

γz − 1−γ
4H , z ≤ − 1

H

. (1)

However, we do need an additional assumption on top of
what (Frei et al., 2022) require. In particular, we assume
that ϕ′(z)z and ϕ(z) are close to each other. We argue that
this is a mild assumption, and holds trivially for standard
ReLU and Leaky ReLU, with c1 = c2 = 0. For ϕSLReLU(z),
of (Frei et al., 2022), the assumption holds with ζ = 0
with c1 = 1−γ

4H , and c2 = 0. The reason we need this
additional assumption is because the neural networks with
ϕSLReLU(z) activation function are no longer homogeneous.
Consequently, without the assumption, we end up with terms
in the upper bound on the empirical robust risk that depends
on the Frobenius norm of the weight matrix (see Section 4.3
for more details).

3.2. Non-smooth activation function

Here, we consider a more practical setting where the acti-
vation function is no longer smooth. We consider a homo-
geneous non-smooth activation function that satisfies the
following properties.

ϕ(0) = 0, ϕ′(z)z = ϕ(z),∀z ∈ R;
0 ≤ ϕ′(z) ≤ 1,∀z ∈ R;
∃γ ∈ (0, 1], s.t.ϕ′(z) ≥ γ,∀z > 0.

This includes ReLU and Leaky ReLU activation functions.

3.3. Theoretical Guarantees

Our main result establishes benign overfitting in adversar-
ially trained neural networks. In particular, we show that
adversarial training converges to neural networks with zero
robust training loss and with standard (clean) test error close
to the noise rate. Furthermore, for small attack strength, α,
the robust test error also converges to the noise rate. For-
mally, we show the following.

Theorem 3.1. Let ε > 0, δ ∈ (0, 1/2). Let κ ∈ (0, 1) and
λ > 0 as given in Definition 2.1. We consider the following

regimes and parameter settings for smooth and non-smooth
activations functions, respectively.

Smooth Activation. Let ϕ be a γ-leaky H-smooth ac-

tivation with 0 ≤ ζ < 1. Set T̄ =
(35+8

√
m/d3

γ∥µ∥ηε
) 2

1−ζ .
We assume that there exists some constant C > 0 such
that Assumption 1 holds, (A1) d ≤ ∥µ∥4 /C, and (A2)
∥µ∥2 ≥ C log (n/δ).

Non-smooth Activation. Let ϕ be a non-smooth activa-
tion with γ ∈ (0, 1]. Set T̄ = Ω

(
1

∥µ∥2γ2ηε2

)
. We as-

sume that there exists some constant C > 0 such that
Assumption 1 holds, (B1) m ≥ C log (n/δ), and (B2)

∥µ∥2 ≥ Cmax
{√

d
n log (md/nδ), log (n/δ)

}
.

Then, there exists a constant c > 0 such that after running
Algorithm 1 for T ≥ T̄ iterations, we have that with proba-
bility at least 1− 2δ over the random initialization and the
draw of an i.i.d. sample of size n, the following holds:

1. The robust training loss satisfies L̂rob(WT) ≤ ε, the ro-
bust training error satisfies L̂0/1

rob (WT) = 0.
2. The clean test error satisfies

L0/1(WT) ≤ β + 2exp
(
− cλn ∥µ∥4

C2d

)
.

3. For α
∥µ∥ ≤ 1

C

√
n∥µ∥2

d , the robust test error satisfies

L
0/1
rob (WT)≤β+2exp

(
−cλ ∥µ∥2

(∥µ∥
C

√
n

d
− α

∥µ∥

)2)
.

3.4. Discussion

Theorem 3.1 shows that adversarially-trained neural
networks can interpolate the noisy training data. In fact,
the trained network correctly classifies all training data
after the first step of adversarial training. For generalization
guarantees, Theorems 3.1 suggests an interesting interplay
between the parameters d, n, and ∥µ∥. Importantly, when
n ≫ Ω̃

(
d

∥µ∥4

)
, it ensures a small clean test error. Further-

more, when n≫ Ω̃
(d(1+α)2

∥µ∥4

)
2, the robust test error is also

guaranteed to be small. This result aligns with the literature
suggesting that adversarial robustness requires more
data (Schmidt et al., 2018). Notably, the clean test error ob-
tained through the adversarial training algorithm shares the
same bound as that derived through gradient descent (Frei
et al., 2022; Xu & Gu, 2023), even when the perturbation
size α is as large as the signal size ∥µ∥. For the robust
generalization error, the constraint on the perturbation can

2If we fix α
∥µ∥ to be a constant, then n ≫ Ω̃

(
d

∥µ∥2
)

guarantees
the robust test error to be small. This is verified in Section 5.

5

Benign Overfitting in Adversarial Training of Neural Networks

be the same scale as the signal size; i.e. α ≤ O(∥µ∥) when
d = Θ(n ∥µ∥2). It is worth noting that the robust test error
decreases as n/d increases or as the attack strength α

∥µ∥
decreases, which is consistent with the findings in previous
literature (Schmidt et al., 2018; Shafahi et al., 2019a).

For non-smooth activation functions, Assumption (B1) is
a relatively mild constraint on the network width. As-
sumption (B2) is slightly more stringent compared to
Assumption (A2). However, it is worth noting that in
the clean setting, the minimax generalization error is at
least O(exp(−min(∥µ∥2 , n ∥µ∥4 /d))) (Giraud & Verze-
len, 2019), implying that (B2) is unavoidable up to logarith-
mic factors if we desire a classifier with good generalization.

Next, we provide a lower bound on the robust test error that
is independent of the algorithm as well as hypothesis class.

Theorem 3.2. We consider independent label flip with
probability β. Let p(x) be the density function of Dclust.
For any given classifier f(·;W), when α < ∥µ∥, we have
L
0/1
rob (W) ≥ β + 1−2β

4

∫
Rd min{p(ξ), p(ξ + v)}dξ, where

v = 2 (1− α/ ∥µ∥)µ. When α ≥ ∥µ∥, the robust test error
satisfies L0/1

rob (W) ≥ 0.5.

Consider the special instance of when Dclust is standard
Gaussian. Theorem 3.2 recovers the optimal risk in Do-
briban et al. (2020) up to a scaling factor when β = 0.
Moreover, the upper bound on the robust test error (denoted
as UBD) that we provide in Theorem 3.1 and the lower
bound (denoted as LBD) in Theorem 3.2 satisfy the follow-
ing: (UBD−β)=(LBD − β)O(n∥µ∥2/d). Our upper bound
roughly matches the lower bound when n∥µ∥2

d = Ω(1).

Overfitting with Adversarial Training. While our result
may, at first, seem in conflict with the robust overfitting
phenomenon that observed by recent empirical studies,
we note that there is actually no contradiction with this
empirical observation as we consider a specific data-
generative model and a bound on the size of the adversarial
perturbation during adversarial training. Indeed, recent
empirical studies by (Dong et al., 2021) and (Yu et al., 2022)
confirm that small α prevents adversarial training from
overfitting. Furthermore, (Xing et al., 2022) explored the
phase transition between standard training and adversarial
training and showed that the optimization trajectories in the
two settings are close to each other when α is small. One
interesting future direction is to justify the generalization
guarantee for moderately large attack strength α

∥µ∥ .

Comparison with Theoretical Works. Several recent
works focus on giving convergence and generalization guar-
antees for adversarial training (Gao et al., 2019; Zhang et al.,
2020; Mianjy & Arora, 2023; Li & Telgarsky, 2023); here
we compare and contrast our work with each of these.

The work of (Gao et al., 2019) prove convergence for a mod-
ified algorithm for adversarial training wherein the iterates
are projected onto a norm ball to ensure that the network
weights stay close to initialization. However, they further
need to assume that a robust network exists in the vicinity
of the initialization. Such an assumption has been shown
to be invalid in a recent work (Wang et al., 2022b). In a
related work, (Zhang et al., 2020) provide a fine-grained
convergence analysis for datasets that are well-separated.
More recently, (Li & Telgarsky, 2023) give convergence and
generalization guarantees for adversarial training of shal-
low networks with early stopping. Unfortunately, all of the
aforementioned works are limited to the lazy regime (aka,
the NTK setting) which has been shown to be at odds with
adversarial robustness (Wang et al., 2022b). (Mianjy &
Arora, 2023) were the first to provide both convergence and
generalization guarantees beyond the NTK regime, yet their
analysis was restricted to robust realizable data distributions.

Our work stands out from prior work in several ways. First,
we study the standard adversarial training algorithm com-
monly used in practice. Second, we give convergence guar-
antees for adversarial training on non-separable data, unlike
other works that make restrictive assumptions regarding lin-
ear separability and robust realizability. Finally, our results
hold for neural networks that can be trained for arbitrary
many iterations allowing

∥∥Wt
∥∥ to go to infinity, i.e., beyond

the NTK regime.

4. Proof Sketch
We begin by providing some intuition for our proof. We
show that when the perturbation size is not large (α ≤ ∥µ∥),
the trajectory of the adversarial training remains close to
that of the standard training. Furthermore, given a good
initialization of the neural network the dynamics of the
training algorithm can be shown to be nearly linear. We also
leverage a result from high dimensional probability, that
the training data we draw is (nearly) separable even though
the underlying data distribution is non-separable. We show
that both of these events happen with high probability and
establish what we refer to as a “good” run of the algorithm
and are central to our proof.

Next, we formalize this intuition and provide a brief proof
sketch of our main result. We focus primarily on neural net-
works with smooth activation function (i.e., Theorem 3.1)
and note the differences in the analysis when extending the
result to the non-smooth activation functions. In our analy-
sis, we borrow many ideas from (Frei et al., 2022) and (Xu
& Gu, 2023). However, the extension is not straightforward
and our focus in this section is on highlighting the technical
challenges we overcome and the key insights we utilized
in our analysis. We also identify several non-rigorous ar-
guments and present a discussion regarding technical im-

6

Benign Overfitting in Adversarial Training of Neural Networks

provements over (Frei et al., 2022); we defer them to Ap-
pendix B.1 due to space limitations. For detailed proofs, we
refer the reader to the Appendix.

4.1. Properties of Adversarial Training Examples

For convergence and generalization guarantees, Assump-
tion (6) allows the perturbation α to be as large as ∥µ∥. This
requires a fine-grained analysis of the properties of the ad-
versarial examples generated during the training process, as
characterized in the following lemma.

Lemma 4.1. ∀t ∈ N, i ∈ [n], the distance between x̃ti and
span{x1, . . . , xn} satisfies dist(x̃ti, span{x1, . . . , xn}) ≤
min

{
ωinit

√
md/η, α

}
.

Essentially, a smaller initialization on the model weight ωinit
leads to a shorter distance between the generated adversar-
ial examples to the linear subspace spanned by the train-
ing data {xi}ni=1. Notably, dist(x̃ti, span{x1, . . . , xn}) ≤
min {1, α} due to Assumption (3). This helps us control
the size of

∣∣〈µ, x̃ti〉∣∣ = O(∥µ∥2), independently of α when
α is relatively large.

We can leverage another property of x̃ti to relax Assump-
tion (1) to d ≥ Cmax{∥µ∥2n, n2 log (n/δ)}. In particular,
we show that the angle between the direction of the addi-
tive adversarial perturbation for each training examples, i.e.,
yi(x̃ti − xi), and the direction of the combined training data
(i.e., −

∑n
k=1 ykxk) is small. This allows us to control the

size of
〈
x̃ti, x̃

t
j

〉
for all i, j ∈ [n]. Both of these properties

we discuss above are crucial to our analysis and proofs.

4.2. Generalization Guarantee

As a proof strategy we seek to get an upper bound on the
robust test error in terms of a lower bound on the normalized
expected conditional margin. This follows using a concen-
tration argument given that Dclust is λ-strongly log-concave.

Lemma 4.2. Suppose that E(x,yc)∼Dc [ycf(x;W)|yc = ȳ]−
∥W∥2 α ≥ 0 holds for both ȳ = 1 and ȳ = −1. Then, there
exists a universal constant c > 0 such that

L
0/1
rob (W)≤β+

∑
ȳ∈{−1,+1}

exp
(
−cλ

(E(x,yc)∼Dc [ycf(x;W)|yc = ȳ]

∥W∥2
−α

)
2
)

To get a lower bound on the normalized expected condi-
tional margin, we leverage the smoothness property of
the activation function to derive a lower bound on the
increment in the un-normalized margin for an independent
test example (x, y).

Lemma 4.3 (Informal). For some constant C2, with high
probability, we have for any t ≥ 0 and (x, y) ∈ Rd ×{±1},

there exist ρ̃ti = ρ
(
Wt, x̃ti, x

)
∈ [γ2, 1] such that

y
[
f(x;Wt+1)− f(x;Wt)

]
≥ η

n

n∑
i=1

g̃i(Wt)
(
ξ̃ti

〈
yix̃t

i, yx
〉
− H ∥x∥2 C2

2dη

2
√
mn

)
.

where g̃i(Wt) = −ℓ′(yif(x̃ti;Wt)) = 1

1+exp(yif(x̃ti;W
t))

.

For the non-smooth activation function, we get a similar
result which we defer to the Appendix due to space
constraints. Finally, we seek a positive lower bound on
un-normalized expected conditional margin for model Wt

by expressing it in terms of the cumulative increments
of margin; i.e., showing E(x,yc)∼Dc|yc=1[ycf(x;Wt)] =∑T
t=1 E(x,yc)∼Dc|yc=1[ycf(x;Wt) − ycf(x;Wt−1)] +

E(x,yc)∼Dc|yc=1[ycf(x;W0)]. A positive lower bound
holds trivially positive if

〈
yix̃ti, ycx

〉
is always bounded

below by some positive constant. However, due to the
presence of noisy labels yi and adversarial examples x̃i,〈
yix̃ti, ycx

〉
may be negative. Note, though, that the term〈

yix̃ti, ycx
〉

scales with g̃i(Wt). If we can show that g̃i(Wt)
is of the same order across all training examples, and
assume a small perturbation budget and that only a small
fraction of labels are noisy, then we can mitigate the effect
of the negative terms. The key lemma providing such a
result by bounding the loss ratio is as follows.

Lemma 4.4 (Informal). Given Assumption 1, there is an
absolute constant Cr > 0 such that with high probability,
we have for all t ≥ 0, maxi,j∈[n]

g̃i(Wt)
g̃j(Wt) ≤ Cr.

To see why the above holds, note that for any given i, j ∈ [n],

we have that g̃i(Wt)
g̃j(Wt) ≤ max

{
2,

2 exp(−yif(x̃ti;W
t))

exp(−yjf(x̃tj ;W
t))

}
, where

x̃ti = argminx̃i∈B2(xi;α) yif(x̃i;Wt). For successive iter-

ates we get that
exp(−yif(x̃t+1

i ;Wt+1))
exp(−yjf(x̃t+1

j ;Wt+1))
≤ exp(−yif(x̃ti;W

t))
exp(−yjf(x̃tj ;W

t))
·

exp(yif(x̃t+1
i ;Wt)−yif(x̃t+1

i ;Wt+1))
exp(yjf(x̃tj ;W

t)−yjf(x̃tj ;W
t+1))

. Finally, we use induction

to complete the proof.

For smooth activation functions, the proof of Lem-
mas 4.3 and 4.4, follows by controling the term
y
[
f(x;Wt+1)− f(x;Wt)

]
via Taylor approximation. For

non-smooth activation functions, we need to ensure that
there exist enough neurons have positive activations at ini-
tialization as well as throughout the training process.

Lemma 4.5 (Informal). Given Assumption 1
and (B2), with high probability, for all s ∈ [m],
we have

∣∣{i ∈ [n] : yi = as,
〈
w1
s, xi

〉
≥ α

∥∥w1
s

∥∥}∣∣ =
Θ(n); for all i ∈ [n], we have∣∣{s ∈ [m] : yi = as,

〈
w1
s, xi

〉
≥ α

∥∥w1
s

∥∥}∣∣ = Θ(m).

7

Benign Overfitting in Adversarial Training of Neural Networks

4.3. Convergence Guarantee

In order to control the robust training loss, a naive approach
would be to decouple the increment of the robust training
loss, from iterate t to t+ 1, into two terms as follows:

L̂rob(Wt+1)−L̂rob(Wt)

=
1

n

n∑
i=1

[(
ℓ(yif(x̃t+1

i ;Wt+1))−ℓ(yif(x̃ti;Wt+1))
)

+
(
ℓ(yif(x̃ti;Wt+1))−ℓ(yif(x̃ti;Wt))

)]
.

The second term can be controlled by the smoothness
property of the loss function. The first term, unfortu-
nately, is upper bounded by

∥∥Wt+1
∥∥∥∥x̃t+1

i − x̃ti
∥∥, and

the robust training loss hence inevitably depends on the
norm of iterates

∥∥Wt+1
∥∥ if no additional assumptions are

made. This poses a problem if we do not constrain the
model weights within a bounded domain, as

∥∥Wt
∥∥ may

tend to infinity as the number of epochs increases. To
mitigate this issue, we instead control the robust train-
ing loss via the norm of the iterates. Specifically, we
first show that L̂rob(WT) ≤ 2

T

∑T−1
t=0 Grob(Wt) where

Grob(W) := 1
n

∑n
i=1 maxx̃i∈B2(xi,α) −ℓ′(yif(x̃i;W)); this

holds due to a property of the loss ℓ(·) (see the Appendix
for more details). We then bound Grob(Wt) by a con-
stant scaling of

〈
−∇L̂rob(Wt),V

〉
, where V ∈ Rm×d is

a matrix with row vs = asµ/ ∥µ∥. We achieve this re-
sult using Lemma 4.4 and the fact that only a small frac-
tion labels are noisy. Given

∑T−1
t=0

〈
−∇L̂rob(Wt),V

〉
=〈

WT ,V
〉
−
〈
W0,V

〉
≤
∥∥WT

∥∥
F
+
∥∥W0

∥∥, the only thing
we need to prove is that the growth rate of ∥WT ∥ is smaller
than O(T). This property holds for both smooth activa-
tion functions that satisfy our construction and non-smooth
activation functions such as ReLU and Leaky ReLU.

5. Experiments
In this section, we present a simple empirical study on
a synthetic dataset to support our theoretical results. We
follow the generative model in Section 2 to synthesize a
dataset with independent label flips when generating y from
yc. We set µ = ∥µ∥2 [1, 0, 0, . . . , 0]

⊤, β = 0.1, and gen-
erate n = 100 training samples and 2K test samples with
the noise vector sampled from the standard multivariate
Gaussian distribution, ξ ∼ N (0, I). We train a two-layer
ReLU network with width 1K. We use the default initializa-
tion in PyTorch and train the network applying full-batch
gradient-descent based adversarial training using logistic
loss for 1K iterations. We use PGD attack to generate ad-
versarial examples with attack strength α/ ∥µ∥ and attack
stepsize α/(5 ∥µ∥) for 20 iterations. The outer minimiza-
tion is trained using an initial learning rate of 0.1 with decay

Figure 1. Clean test accuracy (left) / robust test accuracy (right)
as a function of signal size ∥µ∥ and dimension d, for a fixed
perturbation ratio α/ ∥µ∥ = 0.1.

Figure 2. Robust training loss (left) / robust test error (right) as a
function of training iterations. Top row: fix d = 1000, α

∥µ∥ = 0.1.
Middle row: fix ∥µ∥ = 5.0, α

∥µ∥ = 0.1. Bottom row: fix ∥µ∥ =
5.0, d = 1000. Each curve is averaged over 10 runs and shaded
regions show standard error.

by 10 after training for every 500 iterations. We note that
adversarial training achieves 100% robust training accuracy.
We estimate the robust test accuracy using the same PGD
attack. We consider settings with varying dimension d and
attack strength α

∥µ∥ .

For our first experiment, we fix the perturbation ratio α
∥µ∥ =

0.1, and vary the value of the signal strength ∥µ∥ from 1
to 10 and the dimension d from 1K to 18K. We show the
results in Figure 1 as a heat map of clean accuracy and
robust accuracy averaged over ten independent random runs.
We observe a phase transition for both clean accuracy and
robust accuracy at the value of dimension d around O(∥µ∥4)
for clean accuracy and O(∥µ∥2) for robust accuracy. This
is consistent with the main theorems (see discussion in
Section 3.4).

8

Benign Overfitting in Adversarial Training of Neural Networks

For our next experiment, we plot the robust training loss and
robust test error as a function of the number of training iter-
ations in Figure 2. For the top row, we fix d = 1000, α

∥µ∥ =

0.1, and vary the signal size ∥µ∥ ∈ [4, 6, 8, 10]; for the
middle row, we fix ∥µ∥ = 5.0, α

∥µ∥ = 0.1, vary dimension
d ∈ [500, 1000, 1500]; for the bottom row, we fix ∥µ∥ =
5.0, d = 1000, vary attack rate α

∥µ∥ ∈ [0.05, 0.1, 0.15]. We
observe that the robust training loss goes to zero while the
robust test error converges to the label noise rate of 0.1. Fur-
thermore, smaller ∥µ∥, larger d, and larger α

∥µ∥ all lead to
worse robust test error, which is consistent with our theory.

We observe the same trends on MNIST dataset even though
the data generative assumptions are no longer valid; we
defer a detailed discussion to the Appendix.

6. Conclusion
In this paper, we show benign overfitting in adversarial train-
ing of two-layer neural networks under a noisy mixture data
distribution. Specifically, we show that under ℓ2 norm per-
turbations, the robust training loss converges to zero while
the robust generalization error is near-optimal. Our work
suggests several promising future directions. Our results as-
sume a generative model with a structured log-concave data
distribution. It is natural to explore whether our findings
can be extended to more general data distributions. Another
interesting direction is to investigate whether our results
generalize to the setting where the data dimension and the
number of training samples have the same scale. Finally,
we note that our main result only partially characterizes the
phase transition from small to large test errors for small and
large attack strengths, respectively. An important next step
is to provide generalization guarantees for attacks of mod-
erate strength and to explore the relationship between the
perturbation size, signal size, dimension, and the number of
training samples.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
This research was supported, in part, by DARPA GARD
award HR00112020004 and NSF CAREER award IIS-
1943251.

References
Allen-Zhu, Z. and Li, Y. Feature purification: How adversar-

ial training performs robust deep learning. In 2021 IEEE
62nd Annual Symposium on Foundations of Computer
Science (FOCS), pp. 977–988. IEEE, 2022.

Awasthi, P., Frank, N., and Mohri, M. Adversarial learning
guarantees for linear hypotheses and neural networks.
In International Conference on Machine Learning, pp.
431–441. PMLR, 2020.

Ba, J., Erdogdu, M., Suzuki, T., Wu, D., and Zhang, T.
Generalization of two-layer neural networks: An asymp-
totic viewpoint. In International conference on learning
representations, 2019.

Balda, E. R., Behboodi, A., Koep, N., and Mathar, R. Ad-
versarial risk bounds for neural networks through sparsity
based compression. arXiv preprint arXiv:1906.00698,
2019.

Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A.
Benign overfitting in linear regression. Proceedings of
the National Academy of Sciences, 117(48):30063–30070,
2020.

Bartlett, P. L., Montanari, A., and Rakhlin, A. Deep learning:
a statistical viewpoint. Acta numerica, 30:87–201, 2021.

Belkin, M., Ma, S., and Mandal, S. To understand deep
learning we need to understand kernel learning. In Inter-
national Conference on Machine Learning, pp. 541–549.
PMLR, 2018.

Biswas, K., Kumar, S., Banerjee, S., and Pandey, A. K.
Smooth Maximum Unit: Smooth Activation Function
for Deep Networks using Smoothing Maximum Tech-
nique. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 794–803,
2022.

Bubeck, S., Cherapanamjeri, Y., Gidel, G., and Tachet des
Combes, R. A single gradient step finds adversarial ex-
amples on random two-layers neural networks. Advances
in Neural Information Processing Systems, 34:10081–
10091, 2021.

Cao, Y., Gu, Q., and Belkin, M. Risk bounds for over-
parameterized maximum margin classification on sub-
gaussian mixtures. Advances in Neural Information Pro-
cessing Systems, 34:8407–8418, 2021.

Cao, Y., Chen, Z., Belkin, M., and Gu, Q. Benign Overfit-
ting in Two-layer Convolutional Neural Networks. arXiv
preprint arXiv:2202.06526, 2022.

9

Benign Overfitting in Adversarial Training of Neural Networks

Charles, Z., Rajput, S., Wright, S., and Papailiopoulos, D.
Convergence and margin of adversarial training on sepa-
rable data. arXiv preprint arXiv:1905.09209, 2019.

Chatterji, N. S. and Long, P. M. Finite-sample analysis of
interpolating linear classifiers in the overparameterized
regime. The Journal of Machine Learning Research, 22
(1):5721–5750, 2021.

Chatterji, N. S. and Long, P. M. Foolish crowds support
benign overfitting. The Journal of Machine Learning
Research, 23(1):5448–5459, 2022.

Chatterji, N. S., Long, P. M., and Bartlett, P. L. The interplay
between implicit bias and benign overfitting in two-layer
linear networks. The Journal of Machine Learning Re-
search, 23(1):12062–12109, 2022.

Chen, J., Cao, Y., and Gu, Q. Benign overfitting in ad-
versarially robust linear classification. In Conference on
Uncertainty in Artificial Intelligence, 2023.

Chen, T., Zhang, Z., Liu, S., Chang, S., and Wang, Z. Ro-
bust overfitting may be mitigated by properly learned
smoothening. In International Conference on Learning
Representations, 2021.

Clarysse, J., Hörrmann, J., and Yang, F. Why adversar-
ial training can hurt robust accuracy. arXiv preprint
arXiv:2203.02006, 2022.

Cullina, D., Bhagoji, A. N., and Mittal, P. PAC-learning in
the presence of adversaries. Advances in Neural Informa-
tion Processing Systems, 31, 2018.

Dan, C., Wei, Y., and Ravikumar, P. Sharp statistical guara-
tees for adversarially robust gaussian classification. In
International Conference on Machine Learning, pp. 2345–
2355. PMLR, 2020.

Dobriban, E., Hassani, H., Hong, D., and Robey, A. Prov-
able tradeoffs in adversarially robust classification. arXiv
preprint arXiv:2006.05161, 2020.

Dong, C., Liu, L., and Shang, J. Label noise in adversarial
training: A novel perspective to study robust overfitting.
Advances in Neural Information Processing Systems, 35:
17556–17567, 2022.

Dong, Y., Fu, Q.-A., Yang, X., Pang, T., Su, H., Xiao, Z.,
and Zhu, J. Benchmarking adversarial robustness on
image classification. In proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 321–331, 2020.

Dong, Y., Xu, K., Yang, X., Pang, T., Deng, Z., Su, H., and
Zhu, J. Exploring memorization in adversarial training.
In International Conference on Learning Representations,
2021.

Donhauser, K., Tifrea, A., Aerni, M., Heckel, R., and Yang,
F. Interpolation can hurt robust generalization even when
there is no noise. Advances in Neural Information Pro-
cessing Systems, 34:23465–23477, 2021.

Farnia, F., Zhang, J. M., and Tse, D. Generalizable adver-
sarial training via spectral normalization. arXiv preprint
arXiv:1811.07457, 2018.

Frei, S., Chatterji, N. S., and Bartlett, P. Benign overfitting
without linearity: Neural network classifiers trained by
gradient descent for noisy linear data. In Conference on
Learning Theory, pp. 2668–2703. PMLR, 2022.

Fu, S. and Wang, D. Theoretical analysis of robust overfit-
ting for wide DNNs: An NTK approach. arXiv preprint
arXiv:2310.06112, 2023.

Gao, R., Cai, T., Li, H., Hsieh, C.-J., Wang, L., and Lee, J. D.
Convergence of adversarial training in overparametrized
neural networks. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

Giraud, C. and Verzelen, N. Partial recovery bounds for clus-
tering with the relaxed k-means. Mathematical Statistics
and Learning, 1(3):317–374, 2019.

Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R. J.
Surprises in high-dimensional ridgeless least squares in-
terpolation. Annals of statistics, 50(2):949, 2022.

Huang, L., Zhang, C., and Zhang, H. Self-adaptive training:
beyond empirical risk minimization. Advances in neural
information processing systems, 33:19365–19376, 2020.

Javanmard, A., Soltanolkotabi, M., and Hassani, H. Precise
tradeoffs in adversarial training for linear regression. In
Conference on Learning Theory, pp. 2034–2078. PMLR,
2020.

Khim, J. and Loh, P.-L. Adversarial risk bounds via function
transformation. arXiv preprint arXiv:1810.09519, 2018.

Koehler, F., Zhou, L., Sutherland, D. J., and Srebro, N.
Uniform convergence of interpolators: Gaussian width,
norm bounds and benign overfitting. Advances in Neural
Information Processing Systems, 34:20657–20668, 2021.

Kou, Y., Chen, Z., Chen, Y., and Gu, Q. Benign Over-
fitting for Two-layer ReLU Networks. arXiv preprint
arXiv:2303.04145, 2023.

Langer, S. Analysis of the rate of convergence of fully
connected deep neural network regression estimates with
smooth activation function. Journal of Multivariate Anal-
ysis, 182:104695, 2021.

10

Benign Overfitting in Adversarial Training of Neural Networks

Li, B. and Li, Y. Why clean generalization and robust
overfitting both happen in adversarial training. arXiv
preprint arXiv:2306.01271, 2023.

Li, B., Jin, J., Zhong, H., Hopcroft, J., and Wang, L. Why
robust generalization in deep learning is difficult: Perspec-
tive of expressive power. Advances in Neural Information
Processing Systems, 35:4370–4384, 2022.

Li, J. D. and Telgarsky, M. On achieving optimal adversar-
ial test error. In International Conference on Learning
Representations, 2023.

Li, Y., Fang, E., Xu, H., and Zhao, T. Implicit bias of gradi-
ent descent based adversarial training on separable data.
In International Conference on Learning Representations,
2020.

Liang, T. and Rakhlin, A. Just interpolate: Kernel “ridge-
less” regression can generalize. 2020.

Liang, T., Rakhlin, A., and Zhai, X. On the multiple descent
of minimum-norm interpolants and restricted lower isom-
etry of kernels. In Conference on Learning Theory, pp.
2683–2711. PMLR, 2020.

Liu, X. and Di, X. TanhExp: A Smooth Activation Function
with High Convergence Speed for Lightweight Neural
Networks. IET Computer Vision, 15(2):136–150, 2021.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learn-
ing Representations, 2018.

Mei, S. and Montanari, A. The generalization error of
random features regression: Precise asymptotics and the
double descent curve. Communications on Pure and
Applied Mathematics, 75(4):667–766, 2022.

Mianjy, P. and Arora, R. Robustness guarantees for ad-
versarially trained neural networks. Advances in neural
information processing systems, 2023.

Montanari, A. and Zhong, Y. The interpolation phase transi-
tion in neural networks: Memorization and generalization
under lazy training. The Annals of Statistics, 50(5):2816–
2847, 2022.

Montasser, O., Hanneke, S., and Srebro, N. Reducing ad-
versarially robust learning to non-robust PAC learning.
Advances in Neural Information Processing Systems, 33:
14626–14637, 2020.

Mustafa, W., Lei, Y., and Kloft, M. On the generalization
analysis of adversarial learning. In International Con-
ference on Machine Learning, pp. 16174–16196. PMLR,
2022.

Pang, T., Yang, X., Dong, Y., Su, H., and Zhu, J. Bag of
tricks for adversarial training. In International Confer-
ence on Learning Representations, 2021.

Rice, L., Wong, E., and Kolter, Z. Overfitting in adversari-
ally robust deep learning. In International Conference on
Machine Learning, pp. 8093–8104. PMLR, 2020.

Sanyal, A., Dokania, P. K., Kanade, V., and Torr, P. H.
How benign is benign overfitting? arXiv preprint
arXiv:2007.04028, 2020.

Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and
Madry, A. Adversarially robust generalization requires
more data. Advances in neural information processing
systems, 31, 2018.

Shafahi, A., Huang, W. R., Studer, C., Feizi, S., and Gold-
stein, T. Are adversarial examples inevitable? In Interna-
tional Conference on Learning Representations, 2019a.

Shafahi, A., Najibi, M., Ghiasi, M. A., Xu, Z., Dickerson,
J., Studer, C., Davis, L. S., Taylor, G., and Goldstein,
T. Adversarial training for free! Advances in Neural
Information Processing Systems, 32, 2019b.

Tsigler, A. and Bartlett, P. L. Benign overfitting in ridge
regression. arXiv preprint arXiv:2009.14286, 2020.

Vershynin, R. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cam-
bridge university press, 2018.

Viallard, P., VIDOT, E. G., Habrard, A., and Morvant, E. A
pac-bayes analysis of adversarial robustness. Advances
in Neural Information Processing Systems, 34:14421–
14433, 2021.

Wang, G., Donhauser, K., and Yang, F. Tight bounds for
minimum ℓ1-norm interpolation of noisy data. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 10572–10602. PMLR, 2022a.

Wang, K., Muthukumar, V., and Thrampoulidis, C. Benign
overfitting in multiclass classification: All roads lead to
interpolation. Advances in Neural Information Processing
Systems, 34:24164–24179, 2021.

Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., and Gu, Q. Im-
proving adversarial robustness requires revisiting misclas-
sified examples. In International Conference on Learning
Representations, 2020.

Wang, Y., Ullah, E., Mianjy, P., and Arora, R. Adversarial
robustness is at odds with lazy training. Advances in
Neural Information Processing Systems, 35:6505–6516,
2022b.

11

Benign Overfitting in Adversarial Training of Neural Networks

Xiao, J., Fan, Y., Sun, R., Wang, J., and Luo, Z.-Q. Stability
analysis and generalization bounds of adversarial training.
arXiv preprint arXiv:2210.00960, 2022.

Xiao, J., Sun, R., and Luo, Z.-Q. Pac-bayesian adversarially
robust generalization bounds for deep neural networks.
In The Second Workshop on New Frontiers in Adversarial
Machine Learning, 2023.

Xing, Y., Song, Q., and Cheng, G. On the generalization
properties of adversarial training. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 505–513.
PMLR, 2021.

Xing, Y., Song, Q., and Cheng, G. Phase transition from
clean training to adversarial training. In Advances in
Neural Information Processing Systems, 2022.

Xu, X. and Gu, Y. Benign overfitting of non-smooth neural
networks beyond lazy training. International Conference
on Artificial Intelligence and Statistics, pp. 11094–11117,
2023.

Yin, D., Kannan, R., and Bartlett, P. Rademacher complexity
for adversarially robust generalization. In International
conference on machine learning, pp. 7085–7094. PMLR,
2019.

Yu, C., Han, B., Shen, L., Yu, J., Gong, C., Gong, M., and
Liu, T. Understanding robust overfitting of adversarial
training and beyond. In International Conference on
Machine Learning, pp. 25595–25610. PMLR, 2022.

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and
Jordan, M. Theoretically principled trade-off between
robustness and accuracy. In International conference on
machine learning, pp. 7472–7482. PMLR, 2019.

Zhang, Y., Plevrakis, O., Du, S. S., Li, X., Song, Z., and
Arora, S. Over-parameterized adversarial training: An
analysis overcoming the curse of dimensionality. Ad-
vances in Neural Information Processing Systems, 33:
679–688, 2020.

Zhu, Z., Liu, F., Chrysos, G., Locatello, F., and Cevher,
V. Benign overfitting in deep neural networks under
lazy training. In International Conference on Machine
Learning, pp. 43105–43128. PMLR, 2023.

Zou, D., Frei, S., and Gu, Q. Provable robustness of adver-
sarial training for learning halfspaces with noise. In In-
ternational Conference on Machine Learning, pp. 13002–
13011. PMLR, 2021a.

Zou, D., Wu, J., Braverman, V., Gu, Q., and Kakade, S.
Benign overfitting of constant-stepsize SGD for linear
regression. In Conference on Learning Theory, pp. 4633–
4635. PMLR, 2021b.

12

Benign Overfitting in Adversarial Training of Neural Networks

Supplementary Material

A. Additional Experiments

Figure 3. Robust test accuracy on synthetic dataset as a
function of d and α

∥µ∥ for a fixed ∥µ∥ = 5.

For the synthetic dataset, we also run an additional experiment. We
fix the signal size ∥µ∥ = 5.0, vary dimension d from 500 to 6K and
perturbation ratio α

∥µ∥ from 0.05 to 0.45. Figure 3 plots the robust ac-
curacy as a heat map averaged over ten independent runs. Our findings
indicate that, increasing the dimension leads to a smaller perturbation
ratio required to achieve the same level of robust test accuracy.

In order to see if our results extend beyond the generative data model
we consider in this paper, we run the same set of experiments as above
on the MNIST dataset. MNIST is a dataset of 28 × 28 greyscale
handwritten digits. We extract examples corresponding to images of
the digits ‘0’ and ‘1’, resulting in 12,665 training examples and 2,115
test examples. We view the input image as a vector input of size d and
normalize the data to ensure that the ℓ2 norm of each input vector is
equal to ∥µ∥. A random subset of size n = 100 is used for training.
We do not introduce any label noise; i.e., β = 0. We train a two-layer ReLU network with width 1K using the same training
procedure as for the experiments on the synthetic data.

Figure 4. Clean test accuracy (left) / robust test accuracy (right) on MNIST dataset as a function of signal size ∥µ∥ and dimension d, for a
fixed perturbation ratio α/ ∥µ∥ = 0.3

Figure 5. Robust test accuracy (right) as a function of
dimension d and perturbation ratio α

∥µ∥ , for a fixed
signal size ∥µ∥ = 5.0 on MNIST

The perturbation ratio is set to α
∥µ∥ = 0.3, the signal size ∥µ∥ is

varied from 0.1 to 2.0. We downsample the images by different
factors to simulate data with dimension d ranging between 25 and
784. We plot the heat map for both the clean accuracy and the robust
accuracy averaged over ten independent random runs in Figure 4. We
observe a phase transition in both subplots at the value of dimension d
around O(∥µ∥4) for clean accuracy and O(∥µ∥2) for robust accuracy.
This confirms that even when the data distribution deviates from a
Gaussian mixture model, the result in Theorem 3.1 is still indicative
of an interesting relationship between d, ∥µ∥, α

∥µ∥ and n.

As for the MNIST, for a second set of experiments, we fix the signal
size to ∥µ∥ = 5.0 and vary the dimension d from 25 to 784 and
perturbation ratios α

∥µ∥ from 0.05 to 0.45. The resulting heat map of
robust accuracy averaged over five independent runs is presented in
Figure 5. We see a similar trend as in Figure 3.

We also plot the robust training loss and robust test error as a function of the number of training iterations in Figure 6. For
the left column, we fix d = 784, α

∥µ∥ = 0.1, and vary the signal size ∥µ∥ ∈ [3, 5, 7, 10]; for the middle column, we fix

13

Benign Overfitting in Adversarial Training of Neural Networks

Figure 6. Robust training loss (top) / robust test error (bottom) on MNIST dataset as a function of training iterations. Left column: fix
d = 784, α

∥µ∥ = 0.1. Middle column: fix ∥µ∥ = 5.0, α
∥µ∥ = 0.1. Right column: fix ∥µ∥ = 10.0, d = 784. Each curve is averaged over

5 runs and shaded regions show standard error.

∥µ∥ = 5.0, α
∥µ∥ = 0.1, vary dimension d ∈ [289, 400, 784, 1024]; for the right column, we fix ∥µ∥ = 10.0, d = 784, vary

attack rate α
∥µ∥ ∈ [0.05, 0.1, 0.15, 0.2]. We observe that both the robust training loss and the robust test error goes to zero.

B. Missing Proofs
We start by introducing some important notations that will be used throughout our proof. We find the negative derivative
of the logistic loss to be useful in our discussion; we denote it as g(z) := −ℓ′(z) = 1/(1 + exp (z)). Note that g(·)
is non-negative and decreasing and can serve as a surrogate for the 0-1 loss. More importantly, we can check that
finding adversarial examples that maximize ℓ(·) is equivalent to maximizing g(·), i.e., argmaxx̃i∈B2(xi,α) ℓ(yif(x̃i;W)) =

argmaxx̃i∈B2(xi,α) g(yif(x̃i;W)). For simplicity, we denote ℓ̃i(W) and g̃i(W) to represent maxx̃i∈B2(xi,α) ℓ(yif(x̃i;W))
and maxx̃i∈B2(xi,α) g(yif(x̃i;W)), respectively. The empirical risk and the robust empirical risk w.r.t. the surrogate loss
g(·) are denoted as

Ĝ(W) :=
1

n

n∑
i=1

g(yif(xi;W)), Ĝrob(W) :=
1

n

n∑
i=1

max
x̃i∈B2(xi,α)

g(yif(x̃i;W)).

B.1. Missing Proofs in Section 3.1

Improvements over (Frei et al., 2022). We have identified two non-rigorous arguments in the proof of (Frei et al., 2022)
and addressed them in our analysis. The first issue arises in the Lemma 4.1 of (Frei et al., 2022), where the concentration
inequality for the Lipschitz function class (Equation (2) in (Frei et al., 2022)) is applied. However, the expectation should be
taken with respect to x instead of (x, y). To resolve this, we introduce Lemma B.2, conditioning on the label yc, and apply
the concentration argument twice. The second issue is found in the proof of Lemma 4.11, Equation 24 in (Frei et al., 2022),
specifically in the calculation of E(x,yc)∼Dc [ξi ⟨yixi, ycx⟩]. In their analysis, the expectation is taken only over ⟨yixi, ycx⟩,
but it should also consider the dependence of ξi on x. In our analysis, presented in Lemma B.14, we provide a careful
treatment of this expression, incorporating the additional assumption that d ≤ ∥µ∥4

C .

Theorem B.1. Let ε > 0, δ ∈ (0, 1/2). κ ∈ (0, 1) and λ > 0 are defined in Definition 2.1. Let ϕ be a γ-leaky H-smooth

activation with 0 ≤ ζ < 1. Set T̄ =
(35+8

√
m/d3

γ∥µ∥ηε
) 2

1−ζ . There exists some constant C > 0 such that Assumption 1 and the

following holds: (A1) The dimension satisfies d ≤ ∥µ∥4 /C. (A2) The signal size satisfies ∥µ∥2 ≥ C log (n/δ). Then there

14

Benign Overfitting in Adversarial Training of Neural Networks

exists a constant c > 0 such that after running Algorithm 1 for T ≥ T̄ iterations, we have that with probability at least
1− 2δ over the random initialization and the draw of an i.i.d. sample of size n, the following holds:

1. The robust training loss satisfies L̂rob(WT) ≤ ε, the robust training error satisfies L̂0/1
rob (WT) = 0.

2. The clean test error satisfies
L0/1(WT) ≤ β + 2exp

(
− cλn ∥µ∥4

C2d

)
.

3. For α
∥µ∥ ≤ 1

C

√
n∥µ∥2

d , the robust test error satisfies

L
0/1
rob (WT)≤β+2exp

(
−cλ ∥µ∥2

(∥µ∥
C

√
n

d
− α

∥µ∥

)2)
.

Proof of Theorem B.1. By Lemma B.3 and Lemma B.4, a good run occurs with probability at least 1 − 2δ. The robust
training loss bound is proved in Lemma B.15. For the robust loss, we apply Lemma B.2 with Lemma B.14, which give us
with probability at least 1− 2δ,

L
0/1
rob (WT) = P(x,y)∼D[∃x̃ ∈ B2(x, α) s.t. y ̸= sign(f(x̃;WT))]

≤ β + exp

(
−cλ

(E(x,yc)∼Dc [ycf(x;W)|yc = −1]

∥W∥2
− α

)2)
+ exp

(
−cλ

(E(x,yc)∼Dc [ycf(x;W)|yc = 1]

∥W∥2
− α

)2)
≤ β + 2 exp

(
−cλ

(
γ2

√
n

32C2

√
d
∥µ∥2 − α

)2
)

≤ β + 2 exp

(
−cλ

(√
n

C
√
d
∥µ∥2 − α

)2
)
, (Choose C ≥ 32C2

γ2)

where the last line holds for α
∥µ∥ ≤ 1

C

√
n∥µ∥2

d , so that
√
n

C
√
d
∥µ∥2 − α ≥ 0.

Similar for the standard loss, applying Lemma B.2 gives us

L0/1(WT) ≤ β + exp

−cλ

(
E(x,yc)∼Dc [ycf(x;WT)

∣∣yc = 1]

∥W∥2

)2

+ exp

−cλ

(
E(x,yc)∼Dc [ycf(x;WT)

∣∣yc = −1]

∥W∥2

)2

≤ β + 2 exp

(
−cλ

(
γ2

√
n

32C2

√
d
∥µ∥2

)2
)

(Lemma B.14)

≤ β + 2 exp

(
−cλ

(√
n

C
√
d
∥µ∥2

)2
)

(Choose C ≥ 32C2

γ2)

= β + 2 exp

(
−cλn ∥µ∥

4

C2d

)
.

The proof of Theorem 3.1 builds upon a sequence of Lemmas, which we show below. Lemma B.2 bound the robust test
error by the normalized expected conditional margin via a concentration argument.

15

Benign Overfitting in Adversarial Training of Neural Networks

Lemma B.2. Suppose that E(x,yc)∼Dc [ycf(x;W)|yc = ȳ]− ∥W∥2 α ≥ 0 holds for both ȳ = 1 and ȳ = −1. Then, there
exists a universal constant c > 0 such that

L
0/1
rob (W) ≤ β +

∑
ȳ∈{−1,+1}

exp
(
− cλ

(E(x,yc)∼Dc [ycf(x;W)|yc = ȳ]

∥W∥2
− α

)2)
,

L0/1(W) ≤ β +
∑

ȳ∈{−1,+1}

exp
(
− cλ

(E(x,yc)∼Dc [ycf(x;W)|yc = ȳ]

∥W∥2

)2)
.

Proof of Lemma B.2. We have

L
0/1
rob (W) = P(x,y)∼D [∃x̃ ∈ B2(x, α) s.t. y ̸= sign(f(x̃;W))]

= P(x,y)∼D [∃x̃ ∈ B2(x, α) s.t. yf(x̃;W) ≤ 0]

≤ β + P(x,yc)∼Dc [∃x̃ ∈ B2(x, α) s.t. ycf(x̃;W) ≤ 0]

= β + P(x,yc)∼Dc

[
min

x̃∈B2(x,α)
ycf(x̃;W) ≤ 0

]
.

For any x̃ ∈ B2(x, α), we have

|ycf(x;W)− ycf(x̃;W)| = 1√
m

∣∣∣∣∣
m∑
s=1

as [ϕ(⟨ws, x⟩)− ϕ(⟨ws, x̃⟩)]

∣∣∣∣∣
≤ 1√

m

m∑
s=1

|as| |⟨ws, x − x̃⟩| (ϕ is 1-Lipschitz)

≤ 1√
m

√√√√ m∑
s=1

a2s

√√√√ m∑
s=1

⟨ws, x − x̃⟩2 (Cauchy-Schwartz)

= ∥W(x − x̃)∥
≤ ∥W∥2 α. (By the definition of the spectral norm)

Since Dclust is λ-strongly log concave, and ycf(x;W) is ∥W∥2-Lipschitz, there is an absolute constant c̄ > 0 such that for
any q ≥ 1, ∥ycf(x;W)− E[ycf(x;W)]∥Lq ≤ c̄ ∥W∥2

√
q/λ. Therefore, there is an absolute constant c > 0 such that for

any t ≥ 0, for fixed yc = 1 (same for yc = −1), we have

P (ycf(x;W)− E[ycf(x;W)] ≤ −t) ≤ exp

(
−cλ

(
t

∥W∥2

)2
)
. (2)

where the expectation is w.r.t. x. Choose t = E[ycf(x;W)]− ∥W∥2 α ≥ 0, we have

P(x,yc)∼Dc

(
min

x̃∈B2(x,α)
ycf(x̃;W) ≤ 0

∣∣∣∣yc = 1

)
= P(x,yc)∼Dc

(
ycf(x;W)− E(x,yc)∼Dc

[
ycf(x;W)

∣∣∣yc = 1
]
≤ ycf(x;W)

− E(x,yc)∼Dc

[
ycf(x;W)

∣∣∣yc = 1
]
− min

x̃∈B2(x,α)
ycf(x̃;W)

∣∣∣∣yc = 1

)

≤ P(x,yc)∼Dc

(
ycf(x;W)− E(x,yc)∼Dc

[
ycf(x;W)

∣∣∣yc = 1
]
≤ ∥W∥2 α

− E(x,yc)∼Dc

[
ycf(x;W)

∣∣∣yc = 1
] ∣∣∣∣yc = 1

)

16

Benign Overfitting in Adversarial Training of Neural Networks

≤ exp

−cλ

E(x,yc)∼Dc

[
ycf(x;W)

∣∣∣yc = 1
]
− ∥W∥2 α

∥W∥2

2
 .

Consider both yc = 1 and yc = −1 gives us

L
0/1
rob (W) ≤ β + P(x,yc)∼Dc

(
min

x̃∈B2(x,α)
ycf(x̃;W) ≤ 0

)
= β + P(x,yc)∼Dc

(
min

x̃∈B2(x,α)
ycf(x̃;W) ≤ 0

∣∣∣∣yc = −1

)
· P(yc = 1)

+ P(x,yc)∼Dc

(
min

x̃∈B2(x,α)
ycf(x̃;W) ≤ 0

∣∣∣∣yc = −1

)
· P(yc = −1)

≤ β + exp

−cλ

E(x,yc)∼Dc [ycf(x;W)
∣∣∣yc = 1]− ∥W∥2 α

∥W∥2

2

+ exp

−cλ

E(x,yc)∼Dc [ycf(x;W)
∣∣∣yc = −1]− ∥W∥2 α

∥W∥2

2
 .

Similarly,

L0/1(W)

= P(x,y)∼D[yf(x;W) ≤ 0]

≤ β + P(x,yc)∼Dc

[
ycf(x;W) ≤ 0

]
≤ β + P(x,yc)∼Dc

[
ycf(x;W) ≤ 0|yc = 1

]
+ P(x,yc)∼Dc

[
ycf(x;W) ≤ 0|yc = −1

]
≤ β + P(x,yc)∼Dc

[
ycf(x;W)− E(x,yc)∼Dc [ycf(x;W)|yc = 1] ≤ −E(x,yc)∼Dc [ycf(x;W)|yc = 1]|yc = 1

]
+ P(x,yc)∼Dc

[
ycf(x;W)− E(x,yc)∼Dc [ycf(x;W)|yc = −1] ≤ −E(x,yc)∼Dc [ycf(x;W)|yc = −1]|yc = −1

]
≤ β + exp

−cλ

(
E(x,yc)∼Dc [ycf(x;W)

∣∣yc = 1]

∥W∥2

)2
+ exp

−cλ

(
E(x,yc)∼Dc [ycf(x;W)

∣∣yc = −1]

∥W∥2

)2
 .

Now we only need to derive a lower bound on the normalized expected conditional margin. Below is a series of structural
results that leads us to our destination. Lemma B.3 and B.4 are the properties of initialized network weights as well as the
generated data.

Lemma B.3. Under Assumption 1, (A1) and (A2), there is a universal constant C0 > 1 such that with probability at least
1− δ/2 over the random initialization,

1

2
ω2

initd ≤
∥∥w0

s

∥∥2
2
≤ 3

2
ω2

initd,∀s ∈ [m];
∥∥W0

∥∥
2
≤ C0ωinit(

√
m+

√
d)

Proof of lemma B.3. For any fixed s, note that
∥∥w0

s

∥∥2
2

is a ω2
init-multiple of a chi-squared random variable with d degrees of

freedom. By concentration of the χ2 distribution, for any t ∈ (0, 1],

P
(∣∣∣∣ 1

dω2
init

∥∥w0
s

∥∥2
2
− 1

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−dt2/8

)
.

17

Benign Overfitting in Adversarial Training of Neural Networks

In particular, if we choose t = 1/2, with probability at least 1− 2 exp (−d/32), we have

1

2
ω2

initd ≤
∥∥w0

s

∥∥2
2
≤ 3

2
ω2

initd.

Applying a union bound, with probability at least 1− 2m exp (−d/32), we have

1

2
ω2

initd ≤
∥∥w0

s

∥∥2
2
≤ 3

2
ω2

initd,∀s ∈ [m].

Note that

1− 2m exp (−d/32)
≥ 1− 2δ exp (n/C − d/32) (Assumption (5))
≥ 1− 2δ exp (−d/64) (d ≥ 64n from Assumption (1), Assumption (A2) and C sufficiently large)
≥ 1− δ/4. (d ≥ 192 from Assumption (1), Assumption (A2) and C sufficiently large)

Therefore 1
2ω

2
initd ≤

∥∥w0
s

∥∥2
2
≤ 3

2ω
2
initd,∀s ∈ [m] holds with probability at least 1− δ/4.

For the spectral norm, since the entries of [w1, . . . ,wm
2
]/ωinit are i.i.d. standard normal variables, by Theorem 4.4.5 in

(Vershynin, 2018), there exists a universal constant c > 0 such that for any u ≥ 0, with probability at least 1− 2 exp
(
−u2

)
,

we have ∥∥[w1, . . . , wm
2
]
∥∥
2
≤ cωinit(

√
m/2 +

√
d+ u).

In particular, taking u =
√
log (8/δ), we have with probability at least 1 − δ/4,

∥∥[w1, . . . ,wm
2
]
∥∥
2
≤ cωinit(

√
m/2 +√

d+
√
log (8/δ)). Since

∥∥W0
∥∥
2
=

√
2
∥∥[w1, . . . ,wm

2
]
∥∥
2

holds by symmetric initialization, and
√
d ≥

√
C log (1/δ) ≥√

log (8/δ) by Assumption (1) and C sufficiently large, we are done with the spectral norm.

Lemma B.4. Let (xi, yi) ∼ D,∀i ∈ [n], where xi = yciµ+ ξi, P(yci ̸= yi) ≤ β. Given 0 < κ < 1 in Definition 2.1, there
exists C1 = 10

κ > 1 such that for large enough C, with probability at least 1− δ over Dn, the following hold

(C1) ∀i ∈ [n], κd2 ≤ ∥ξi∥2 ≤ (3 + κ
2)d, d/C1 ≤ ∥xi∥2 ≤ C1d; ∀x̃i, x̃′i ∈ B2(xi, α), d/(4C1) ≤

(√
d/C1 − α

)2
≤

∥x̃i∥2 ≤
(√
C1d+ α

)2 ≤ 4C1d,
〈
x̃i, x̃′

i

〉
≥
(√

d/C1 − α
)2

≥ d/(4C1).

(C2) ∀i ̸= j ∈ [n], |⟨ξi, ξj⟩| ≤ C1

(√
d log (n/δ)

)
, |⟨xi, xj⟩| ≤ C1

(
∥µ∥2 +

√
d log (n/δ)

)
.

∀x̃i ∈ B2(xi, α), x̃j ∈ B2(xj , α), |⟨x̃i, x̃j⟩| ≤ C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2,

|⟨xi, x̃j⟩| ≤ C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ α

√
C1d.

(C3) ∀z1, z2, . . . , zn ∈ R,
∥∥∥∥ n∑
i=1

ziξi

∥∥∥∥2 ≤ 4d
n∑
i=1

z2i .

(C4) ∀x̃i ∈ B2(xi, α), ∀z1, z2, . . . , zn ∈ R, d
8C1

·
n∑
i=1

z2i ≤
∥∥∥∥ n∑
i=1

zix̃i

∥∥∥∥2 ≤ 8C1d ·
n∑
i=1

z2i .

(C5) ∀i ∈ C,
∣∣∣⟨µ, yixi⟩ − ∥µ∥2

∣∣∣ ≤ ∥µ∥2 /2, ∀x̃i ∈ B2(xi, α), 12 ∥µ∥
2 − ∥µ∥α ≤ ⟨µ, yix̃i⟩ ≤ 3

2 ∥µ∥
2
+ ∥µ∥α.

(C6) ∀i ∈ N ,
∣∣∣⟨µ, yixi⟩+ ∥µ∥2

∣∣∣ ≤ ∥µ∥2 /2, ∀x̃i ∈ B2(xi, α),− 3
2 ∥µ∥

2 − ∥µ∥α ≤ ⟨µ, yix̃i⟩ ≤ −1
2 ∥µ∥

2
+ ∥µ∥α.

(C7) The number of noisy samples satisfies |N |/n ≤ β +
√

2
C .

18

Benign Overfitting in Adversarial Training of Neural Networks

Proof of Lemma B.4. The proof is a simple extension of Lemma 13 in (Chatterji & Long, 2021). For statement (C1),
κd
2 ≤ ∥ξi∥2 ≤ (3 + κ

2)d and d/C1 ≤ ∥xi∥2 ≤ C1d follows directly from the proof of Lemma 19 in (Chatterji & Long,
2021). Since

∥xi − x̃i∥ ≤ α ≤ ∥µ∥ (Assumption (6))

≤ 1

2

√
d

C1
(d ≥ C ∥µ∥2 n from Assumption (1) with sufficiently large C)

≤ 1

2
∥xi∥ ,

d/(4C1) ≤
(√

d/C1 − α
)2

≤ ∥x̃i∥2 ≤
(√
C1d+ α

)2 ≤ 4C1d holds. Because
∥∥xi − x̃′i

∥∥ ≤ α ≤ 1
2 ∥xi∥ also holds,

through some simple calculation, we have
〈
x̃i, x̃′

i

〉
≥ (∥xi∥ − α)2 ≥

(√
d/C1 − α

)2
≥ d/(4C1).

For statement (C2), |⟨ξi, ξj⟩| ≤ C1

(√
d log (n/δ)

)
and |⟨xi, xj⟩| ≤ C1

(
∥µ∥2 +

√
d log (n/δ)

)
follows directly from the

proof of Lemma 20 in (Chatterji & Long, 2021).

|⟨x̃i, x̃j⟩| = |⟨xi, xj⟩+ ⟨x̃i − xi, xj⟩+ ⟨xi, x̃j − xj⟩+ ⟨x̃i − xi, x̃j − xj⟩|
≤ |⟨xi, xj⟩|+ α ∥xi∥+ α ∥xj∥+ ∥x̃i − xi∥ · ∥x̃j − xj∥

≤ C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2.

|⟨xi, x̃j⟩| = |⟨xi, xj⟩+ ⟨xi, x̃j − xj⟩|
≤ |⟨xi, xj⟩|+ α ∥xi∥

≤ C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ α

√
C1d.

The statement (C3) holds since∥∥∥∥∥
n∑
i=1

ziξi

∥∥∥∥∥
2

=

n∑
i=1

z2i ∥ξi∥
2
+ 2

∑
i<j

zizj ⟨ξi, ξj⟩

≤
n∑
i=1

z2i (3 +
κ

2
)d+ 2C1

∑
i<j

z2i + z2j
2

√
d log (n/δ) ((C1), (C2))

≤
n∑
i=1

z2i (3 +
κ

2
)d+ 2C1

∑
i<j

z2i + z2j
2

d√
Cn

(Assumption (1))

≤ (3 +
κ

2
+

C1√
C
)d

n∑
i=1

z2i ≤ 4d

n∑
i=1

z2i . (C sufficiently large)

The statement (C4) holds since∥∥∥∥∥
n∑
i=1

zix̃i

∥∥∥∥∥
2

=

n∑
i=1

z2i ∥x̃i∥2 + 2
∑
i<j

zizj ⟨x̃i, x̃j⟩

≤
n∑
i=1

z2i 4C1d+ 2
∑
i<j

z2i + z2j
2

(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)
((C1), (C2))

≤
(
4C1d+ n

(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)) n∑
i=1

z2i

≤ 8C1d

n∑
i=1

z2i (Assumption (1), C sufficiently large)

19

Benign Overfitting in Adversarial Training of Neural Networks

and ∥∥∥∥∥
n∑
i=1

zix̃i

∥∥∥∥∥
2

=

n∑
i=1

z2i ∥x̃i∥2 + 2
∑
i<j

zizj ⟨x̃i, x̃j⟩

≥
n∑
i=1

z2i
d

4C1
− 2

∑
i<j

z2i + z2j
2

(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)
((C1), (C2))

≥
(

d

4C1
− n

(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)) n∑
i=1

z2i

≥ d

8C1

n∑
i=1

z2i . (Assumption (1), C sufficiently large)

Statement (C5) and statement (C6) follow similarly from the proof of Lemma 21 and 22 in (Chatterji & Long, 2021) and
combining the fact that

|⟨µ, yixi⟩ − ⟨µ, yix̃i⟩| ≤ ∥µ∥ · ∥xi − x̃i∥ ≤ ∥µ∥α.

The last statement follows from Hoeffding’s inequality:

P(|N |/n− β >

√
2

C
)

≤ e−2n(
√

2
C)2

≤ e−2C log(1/δ)(2
C) (Assumption (5))

= δ4

≤ δ/6. (δ < 0.5)

Definition B.5. If the events in Lemma B.3 and Lemma B.4 occur, let us say that we have a good run.

Lemma B.3 and Lemma B.4 show that a good run occurs with probability at least 1 − 2δ. In the following we assume
a good run occurs. Lemma B.6 leverages the smoothness property of activation function and derive the result via Taylor
approximation. Lemma B.7 characterizes the relationship between L̂rob(·) and Ĝrob(·). Lemma B.8 further derives the
bounds on the gradient norm given adversarial training example, as well as the pairwise correlations of the gradients given
different adversarial training examples. These are standard results that have been derived by (Frei et al., 2022), and we
simply extend them for adversarial training scenario.

Lemma B.6 (Lemma 4.5 in (Frei et al., 2022)). For an H-smooth activation ϕ and any W,V ∈ Rm×d, and x ∈ Rd, we have

|f(x;W)− f(x;V)− ⟨∇f(x;V),W − V⟩| ≤ H ∥x∥2

2
√
m

∥W − V∥22 .

Lemma B.7. Let C1 > 1 be the constant from Lemma B.4. For an H-smooth activation ϕ and any W,V ∈ Rm×d, on a
good run it holds that

1√
C1d+ α

∥∥∥∇L̂rob(W)
∥∥∥
F
≤ Ĝrob(W) ≤ L̂rob(W) ∧ 1.

Proof of Lemma B.7. Since ϕ is 1-Lipschitz, we have ∀x̃i ∈ B2(xi, α),

∥∇f(x̃i;W)∥2F =
1

m

m∑
s=1

∥asϕ′(⟨ws, x̃i⟩)x̃i∥
2 ≤

(√
C1d+ α

)2
. (3)

20

Benign Overfitting in Adversarial Training of Neural Networks

For ∀i ∈ [n], choose x̃i = argmaxx̃∈B2(xi,α) ℓ(yif(x̃i;W)) so that ℓ̃i(W) = ℓ(yif(x̃;W)), g̃i(W) = g(yif(x̃i;W)), we
have ∥∥∥∇L̂rob(W)

∥∥∥
F
=

∥∥∥∥∥ 1n
n∑
i=1

g̃i(W)yi∇f(x̃i;W)

∥∥∥∥∥
F

≤ 1

n

n∑
i=1

g̃i(W) ∥∇f(x̃i;W)∥F (Jensen’s inequality)

≤
√
C1d+ α

n

n∑
i=1

g̃i(W) (Equation (3))

≤
√
C1d+ α

n

n∑
i=1

min
(
ℓ̃i(W), 1

)
(By the definition of g̃i(W) and ℓ̃i(W))

≤
(√

C1d+ α
)(

L̂rob(W) ∧ 1
)
. (Jensen’s inequality)

Lemma B.8. Let C1 > 1 be the constant from Lemma B.4. For a γ-leaky, H-smooth activation ϕ, on a good run, for any
i, j ∈ [n], i ̸= j, ∀x̃i ∈ B2(xi, α),∀x̃′i ∈ B2(xi, α),∀x̃j ∈ B2(xj , α), we have

|⟨∇f(xi,W),∇f(x̃j ,W)⟩| ≤ C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ α

√
C1d,

|⟨∇f(x̃i,W),∇f(x̃j ,W)⟩| ≤ C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2.

Moreover, for any i ∈ [n] and any W ∈ Rm×d, we have(√
d/C1 − α

)2
γ2 ≤ ∥∇f(x̃i;W)∥2F ≤

(√
C1d+ α

)2
,(√

d/C1 − α
)2
γ2 ≤

∣∣〈∇f(x̃i,W),∇f(x̃′i,W)
〉∣∣ ≤ (√C1d+ α

)2
.

Proof of Lemma B.8. The proof is similar as Lemma 4.7 in (Frei et al., 2022).

⟨∇f(x,W),∇f(y,W)⟩ = 1

m
⟨x, y⟩

m∑
s=1

ϕ′(⟨ws, x⟩)ϕ′(⟨ws, y⟩).

Therefore,

|⟨∇f(x,W),∇f(y,W)⟩| = 1

m
|⟨x, y⟩|

m∑
s=1

ϕ′(⟨ws, x⟩)ϕ′(⟨ws, y⟩) ∈ [γ2 |⟨x, y⟩| , |⟨x, y⟩|].

Thus, the first two inequalities follow from Lemma B.4 (C2). The last two inequalities follow from Lemma B.4 (C1).

Lemma B.9 plays a crucial role in our analysis. It demonstrates that the margin increases with each epoch of adversarial
training, given any adversarial examples. More importantly, it proves the loss g is at the same scale across all adversarial
training examples.

Lemma B.9. For a γ-leaky, H-smooth activation ϕ, there is a constant Cr =
64C1

(√
C1+0.5

√
1
C1

)2

γ2 such that on a good run,
provided C > 1 is sufficiently large, we have for all t ≥ 0,

ykf(x̃k;Wt+1) ≥ ykf(x̃k;Wt) ≥ 0,∀x̃k ∈ B2(xk, α),∀k ∈ [n],

max
i,j∈[n]

g(yif(x̃ti;Wt))

g(yjf(x̃tj ;Wt))
≤

16
(√
C1d+ α

)2
γ2
(√

d/C1 − α
)2 ≤ Cr,

where x̃ti = argmaxx̃∈B2(xi,α) ℓ(yif(x̃;Wt)), x̃tj = argmaxx̃∈B2(xj ,α) ℓ(yjf(x̃;Wt)).

21

Benign Overfitting in Adversarial Training of Neural Networks

Proof of Lemma B.9. By Fact A.2 in (Frei et al., 2022), we have

g(x)

g(y)
≤ max

(
2, 2

exp (−x)
exp (−y)

)
holds for any x, y ∈ R, so

max
i,j∈[n]

g(yif(x̃ti;Wt))

g(yjf(x̃tj ;Wt))
≤ max

(
2, 2 · max

i,j∈[n]

exp
(
−yif(x̃ti;Wt)

)
exp

(
−yjf(x̃tj ;Wt)

)) .
In the remainder of the proof we will show that the ratio of the exponential losses is bounded. We will prove it by induction.
Since a good run occurs, all the events in Lemma B.3 and Lemma B.4 occurs. In particular, we have

∥∥W0
∥∥
2
≤ C0ωinit(

√
m+√

d) and
∥∥x̃0i
∥∥ ≤

√
C1d+ α. Note that at initialization, we have |f(x̃0i ;W0)| = 0. For any x̃i ∈ B2(xi, α), x̃j ∈ B2(xj , α),

consider t = 0, we have

max
i,j∈[n]

exp
(
−yif(x̃0i ;W0)

)
exp

(
−yjf(x̃0

j ;W0)
) = 1 ≤

8
(√
C1d+ α

)2
γ2
(√

d/C1 − α
)2 .

Assume the result holds at time t and consider the case t + 1. For simplicity we only consider the exponential ratio for

the first sample and the second sample, and denote At :=
exp(−y1f(x̃t1;W

t))
exp(−y2f(x̃t2;W

t))
. Then At ≤

8(
√
C1d+α)

2

γ2
(√

d/C1−α
)2 . Fix k ∈ [n],

consider ∀x̃k ∈ B(xk, α), define ρ̃ti =
1
m

∑m
s=1 ϕ

′
(〈

w(t)
s , x̃k

〉)
ϕ′
(〈

w(t)
s , x̃ti

〉)
∈ [γ2, 1]. We first need to show that

ykf(x̃k;Wt+1) ≥ ykf(x̃k;Wt).

yk
[
f(x̃k;Wt+1)− f(x̃k;Wt)

]
≥ yk

[〈
∇f(x̃k;Wt),Wt+1 − Wt

〉]
− H ∥x̃k∥2

2
√
m

∥∥Wt+1 − Wt
∥∥2
2

(for y ∈ {±1}, apply Lemma B.6)

= ykη

[〈
∇f(x̃k;Wt),

1

n

n∑
i=1

g̃i(Wt)yi∇f(x̃ti;Wt)

〉]
− H ∥x̃k∥2 η2

2
√
m

∥∥∥∇L̂rob(Wt)
∥∥∥2
2

≥ η

[
1

n

n∑
i=1

g̃i(Wt)
〈
yk∇f(x̃k;Wt), yi∇f(x̃ti;Wt)

〉]
−
H
(√
C1d+ α

)4
η2

2
√
m

Ĝrob(Wt) (Lemma B.7)

=
η

n

g̃k(Wt)ρ̃tk
〈
x̃tk, x̃k

〉
+
∑
i ̸=k

g̃i(Wt)ρ̃ti
〈
yix̃ti, ykx̃k

〉−
H
(√
C1d+ α

)4
η2

2
√
m

Ĝrob(Wt)

≥ η

n

̃gk(Wt)

γ2(√d/C1−α
)2
−maxj g̃j(Wt)

g̃k(Wt)

∑
i ̸=k

(
C1

(
∥µ∥2+

√
d log (n/δ)

)
+2α

√
C1d+α

2
) (Lemma B.4)

−
H
(√
C1d+ α

)4
η2

2
√
m

Ĝrob(Wt)

≥ η

n

[
g̃k(Wt)

(
γ2
(√

d/C1 − α
)2

− Crn
(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

))]
(By induction, maxj g̃j(Wt)

g̃k(Wt) ≤ Cr)

−
H
(√
C1d+ α

)4
η2

2
√
m

Ĝrob(Wt)

≥
ηγ2

(√
d/C1 − α

)2
2n

g̃k(Wt)−
H
(√
C1d+ α

)4
η2

2
√
m

Ĝrob(Wt)

(this line holds with large enough C via Assumption (1))

22

Benign Overfitting in Adversarial Training of Neural Networks

≥ ηĜrob(Wt)

γ2
(√

d/C1 − α
)2

2nCr
−
H
(√
C1d+ α

)4
η

2
√
m

 (By induction, g̃k(Wt) ≥ 1
Cr
Ĝrob(Wt))

≥ ηĜrob(Wt)

γ2
(

1
2

√
d/C1

)2
2nCr

−
H
(
2
√
C1d

)4
η

2
√
m

 (Assumption (6) and Assumption (1))

≥ ηĜrob(Wt)

γ2
(

1
2

√
d/C1

)2
2nCr

−
H
(
2
√
C1d

)4
2Cd2

 (Assumption (4))

≥ 0, (4)

where the last line holds from Assumption (1) with sufficiently large C.

Now we are back to prove the upper bound of the exponential ratio At. We have

At+1 =
exp

(
−y1f(x̃t+1

1 ;Wt+1)
)

exp
(
−y2f(x̃t+1

2 ;Wt+1)
)

=
exp

(
−y1f(x̃t1;Wt)

)
exp

(
−y2f(x̃t2;Wt)

) · exp (y1f(x̃t1;Wt)− y1f(x̃t+1
1 ;Wt+1)

)
exp

(
y2f(x̃t2;Wt)− y2f(x̃t+1

2 ;Wt+1)
)

≤ At ·
exp

(
y1f(x̃t+1

1 ;Wt)− y1f(x̃t+1
1 ;Wt+1)

)
exp

(
y2f(x̃t2;Wt)− y2f(x̃t2;Wt+1)

) (By the definition of x̃t1, x̃
t+1
2)

= At ·
exp

(
y1f(x̃t+1

1 ;Wt)− y1f(x̃t+1
1 ;Wt − η

n

∑n
i=1 ∇ℓ(yif(x̃

t
i;Wt)))

)
exp

(
y2f(x̃t2;Wt)− y2f(x̃t2;Wt − η

n

∑n
i=1 ∇ℓ(yif(x̃

t
i;Wt)))

)
≤ At ·

exp
(
− η
n

∑n
i=1 y1yig(yif(x̃

t
i;Wt))

〈
∇f(x̃t+1

1 ;Wt),∇f(x̃ti;Wt)
〉)

exp
(
− η
n

∑n
i=1 y2yig(yif(x̃

t
i;Wt))

〈
∇f(x̃t2;Wt),∇f(x̃ti;Wt)

〉) (Lemma B.6)

· exp

2H
(√
C1d+ α

)2
η2

√
m

∥∥∥∥∥ 1n
n∑
i=1

∇ℓ(yif(x̃ti;Wt))

∥∥∥∥∥
2

= At · exp
(
− η

n
g(y1f(x̃t1;Wt))

〈
∇f(x̃t+1

1 ;Wt),∇f(x̃t1;Wt)
〉

+
η

n
g(y2f(x̃t2;Wt))

〈
∇f(x̃t2;Wt),∇f(x̃t2;Wt)

〉)
·
exp

(
− η
n

∑
i ̸=1 y1yig(yif(x̃

t
i;Wt))

〈
∇f(x̃t+1

1 ;Wt),∇f(x̃ti;Wt)
〉)

exp
(
− η
n

∑
i ̸=2 y2yig(yif(x̃

t
i;Wt))

〈
∇f(x̃t2;Wt),∇f(x̃ti;Wt)

〉)
· exp

2H
(√
C1d+ α

)2
η2

√
m

∥∥∥∥∥ 1n
n∑
i=1

∇ℓ(yif(x̃ti;Wt))

∥∥∥∥∥
2
 ,

where the first inequality holds since exp
(
y1f(x̃t+1

1 ;Wt)
)

≥ exp
(
y1f(x̃t1;Wt)

)
, exp

(
y2f(x̃t+1

2 ;Wt+1)
)

≤
exp

(
y2f(x̃t2;Wt+1)

)
by the definition of x̃t1, x̃

t+1
2 .

We next bound each of the above term separately. For the first term, we have

exp
(
− η
n
g(y1f(x̃t1;Wt))

〈
∇f(x̃t+1

1 ;Wt),∇f(x̃t1;Wt)
〉
+
η

n
g(y2f(x̃t2;Wt))

〈
∇f(x̃t2;Wt),∇f(x̃t2;Wt)

〉)
= exp

(
−g(y2f(x̃

t
2;Wt))η

n

(
g(y1f(x̃t1;Wt))

g(y2f(x̃t2;Wt))

〈
∇f(x̃t+1

1 ;Wt),∇f(x̃t1;Wt)
〉
−
〈
∇f(x̃t2;Wt),∇f(x̃t2;Wt)

〉))
≤ exp

(
−g(y2f(x̃

t
2;Wt))γ2η

n

(
g(y1f(x̃t1;Wt))

g(y2f(x̃t2;Wt))

(√
d/C1 − α

)2
−
(√
C1d+ α

)2
γ2

))
(Lemma B.8)

23

Benign Overfitting in Adversarial Training of Neural Networks

= exp

−
g(y2f(x̃t2;Wt))ηγ2

(√
d/C1 − α

)2
n

g(y1f(x̃t1;Wt))

g(y2f(x̃t2;Wt))
−

(√
C1d+ α

)2
γ2
(√

d/C1 − α
)2

 .

For the second term, we have

exp
(
− η
n

∑
i ̸=1 y1yig(yif(x̃

t
i;Wt))

〈
∇f(x̃t+1

1 ;Wt),∇f(x̃ti;Wt)
〉)

exp
(
− η
n

∑
i ̸=2 y2yig(yif(x̃

t
i;Wt))

〈
∇f(x̃t2;Wt),∇f(x̃ti;Wt)

〉)
≤ exp

(
η

n

∑
i ̸=1

g(yif(x̃ti;Wt))
∣∣〈∇f(x̃t+1

1 ;Wt),∇f(x̃ti;Wt)
〉∣∣

+
η

n

∑
i ̸=2

g(yif(x̃ti;Wt))
∣∣〈∇f(x̃t2;Wt),∇f(x̃ti;Wt)

〉∣∣)

≤ exp

(
2η

n

n∑
i=1

g(yif(x̃ti;Wt))
(
C1 ∥µ∥2 + C1

√
d log (n/δ) + 2α

√
C1d+ α2

))
. (Lemma B.8)

For the third term, we have

exp

2H
(√
C1d+ α

)2
η2

√
m

∥∥∥∥∥ 1n
n∑
i=1

∇ℓ(yif(x̃ti;Wt))

∥∥∥∥∥
2

≤ exp

(
2H
(√
C1d+ α

)4
η2

√
m

· 1
n

n∑
i=1

g(yif(x̃ti;Wt))

)
(Lemma B.7)

≤ exp

(
η

n

n∑
i=1

g(yif(x̃ti;Wt))

)
. (Large enough C for assumption (4))

Combining the above results gives us that

At+1 ≤ At ·exp

−g(y2f(x̃t2;Wt))ηγ2
(√

d
C1

− α
)2

n

g(y1f(x̃t1;Wt))

g(y2f(x̃t2;Wt))
−
(√
C1d+ α

)2
γ2
(√

d
C1

− α
)2

· exp

(
2η

n

n∑
i=1

g(yif(x̃ti;Wt))
(
C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2

))
.

Now consider the following two cases. If g(y1f(x̃t1;W
t))

g(y2f(x̃t2;W
t))

≤ 2(
√
C1d+α)

2

γ2
(√

d/C1−α
)2 , then we have

At+1 ≤ At · exp
(
g(y2f(x̃t2;Wt))η(

√
C1d+ α)2

n

)
(g(y2f(x̃t2;Wt)) ≥ 0)

· exp

(
2η

n

n∑
i=1

g(yif(x̃ti;Wt))
(
C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2

))

≤ At · exp

(
η
(√
C1d+ α

)2
n

)
exp

(
2η
(
C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2

))
(0 ≤ g(yif(x̃ti;Wt)) ≤ 1)

≤ 2g(y1f(x̃t1;Wt))

g(y2f(x̃t2;Wt))
exp

(
η
(√
C1d+ α

)2
n

)
exp

(
2η
(
C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2

))
(12 exp (−z) ≤ g(z) ≤ exp (−z) ,∀z ≥ 0; Equation (4))

24

Benign Overfitting in Adversarial Training of Neural Networks

=
4
(√
C1d+ α

)2
γ2
(√

d/C1 − α
)2 exp

(
2η

(
C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2 +

(√
C1d+ α

)2
2n

))

≤
8
(√
C1d+ α

)2
γ2
(√

d/C1 − α
)2 ,

where the last line holds from Assumption (4) with sufficiently large C so that the following holds

2η

(
C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2 +

(√
C1d+ α

)2
2n

)

=
η
(√
C1d+ α

)2
n

+ 2η
(
C1 ∥µ∥2 + α2

)
+ 4η

(
C1

√
d log (n/δ) + α

√
C1d

)
≤ (2

√
C1d)

2

Cd2n
+

2(2C1 ∥µ∥2)
Cd2

+
4(C1

√
d2

Cn2 + C1d)

Cd2
(Assumption (1), (4), (6) with sufficiently large C)

≤ 1

8
.

Otherwise, g(y1f(x̃t1;W
t))

g(y2f(x̃t2;W
t))

>
2(

√
C1d+α)

2

γ2
(√

d/C1−α
)2 , then we have

At+1 ≤ At · exp

−
g(y2f(x̃t2;Wt))ηγ2

(√
d/C1 − α

)2
n

g(y1f(x̃t1;Wt))

g(y2f(x̃t2;Wt))
−

(√
C1d+ α

)2
γ2
(√

d/C1 − α
)2

· exp

(
2ηg(y2f(x̃t2;Wt))

n

n∑
i=1

g(yif(x̃i;Wt))

g(y2f(x̃2;Wt))

(
C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2

))

≤ At · exp

−
g(y2f(x̃t2;Wt))ηγ2

(√
d/C1 − α

)2
n

g(y1f(x̃t1;Wt))

g(y2f(x̃t2;Wt))
−

(√
C1d+ α

)2
γ2
(√

d/C1 − α
)2

· exp

2ηg(y2f(x̃t2;Wt))
(
C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2

)
max

2,
16
(√
C1d+ α

)2
γ2
(√

d/C1 − α
)2

≤ At · exp

(
− g(y2f(x̃t2;Wt))η

((√
C1d+ α

)2
n

−
32
(√
C1d+ α

)2
γ2
(√

d/C1 − α
)2 (C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2

)))

(Assumption that g(y1f(x̃t1;W
t))

g(y2f(x̃t2;W
t))

>
2(

√
C1d+α)

2

γ2
(√

d/C1−α
)2)

≤ At ≤
8
(√
C1d+ α

)2
γ2
(√

d/C1 − α
)2 ,

where the last line holds from Assumption (6), Assumption (1) with C being sufficiently large that

32
(√
C1d+ α

)2
γ2
(√

d/C1 − α
)2 (C1 ∥µ∥2 + 2C1

√
d log (n/δ) + 2α

√
C1d+ α2

)

25

Benign Overfitting in Adversarial Training of Neural Networks

≤
32
(√
C1d+ α

)2
γ2
(

1
2

√
d/C1

)2 (C1
d

Cn
+ 4C1

√
d
√

log (n/δ) + α2 + ∥µ∥2
)

≤
32
(√
C1d+ α

)2
γ2
(

1
2

√
d/C1

)2
(
C1

d

Cn
+ 4C1

√
d2

Cn2
+

d

Cn

)

≤
(√
C1d+ α

)2
n

.

We have shown through induction that

max
i,j∈[n]

g(yif(x̃ti;Wt))

g(yjf(x̃tj ;Wt))
≤

16
(√
C1d+ α

)2
γ2
(√

d/C1 − α
)2 .

By Assumption (6) and Assumption (1), we know α ≤ ∥µ∥ ≤ 1
2

√
d/C1. Therefore,

max
i,j∈[n]

g(yif(x̃ti;Wt))

g(yjf(x̃tj ;Wt))
≤

16
(√
C1d+ α

)2
γ2
(√

d/C1 − α
)2 ≤

64C1

(√
C1 + 0.5

√
1
C1

)2
γ2

= Cr.

With Lemma B.9, we can characterize a property of the adversarial training example x̃ti:during training the perturbed data x̃ti
is close to the linear subspace span{x1, . . . , xn} in Rd.

Lemma B.10. ∀t ∈ N and i ∈ [n], the distance between x̃ti and span{x1, . . . , xn} satisfies dist(x̃ti, span{x1, . . . , xn}) ≤
min

{
ωinit

√
md

η , α
}

.

Proof of Lemma B.10. We define Cd = ωinit
√
md

η for simplicity. The upper bound α is obvious because the perturbation size
is α. Now we look at Cd. We prove the result via induction. Consider time t = 0, from the symmetric initialization, for any
given x, we have f(x;W0) = 0 is a constant function. Therefore, for any given training data xi, generating the adversarial
examples by adding any perturbations on xi cannot increase the training loss. For simplicity, we consider the algorithm runs
standard GD at time t = 0; i.e. no adversarial training examples are generated for the first step, the adversarial training
process starts at t ≥ 1. This gives us that dist(x̃0i , span{x1, . . . , xn}) = dist(xi, span{x1, . . . , xn}) = 0 ≤ Cd. Suppose
we have dist(x̃si , span{x1, . . . , xn}) ≤ Cd holds for any 1 ≤ s ≤ t− 1, and we will now prove the result for t.

Recall x̃tk = argmaxx̃∈B2(xk,α) ℓ(ykf(x̃;Wt)). We decompose x̃tk = x̃tk,∥ + x̃tk,⊥, where x̃tk,∥ ∈ span{x1, . . . , xn} and
x̃tk,⊥⊥ span{x1, . . . , xn}. Assume ∥x̃tk,⊥∥2 > Cd, and we will prove via contradiction.

Figure 7. Graphical illustration of adversarial examples and corresponding vectors that used in the proof of Lemma B.10.

26

Benign Overfitting in Adversarial Training of Neural Networks

As the loss function is monotonically decreasing, x̃tk = argminx̃∈B2(xk,α) ykf(x̃;Wt). As a result, there is no feasible

direction that is also a descent direction. Here we construct directions vθ = −x̃tk,⊥ − θyk(
n∑
i=1

yixi) for every θ ∈ R that

satisfies 0 < θ <
∥x̃tk,⊥∥2

2√
(α2−∥x̃tk,⊥∥2

2)·8C1dn
. We have that

〈
x̃tk − xk, vθ

〉
=

〈
x̃tk,⊥ + x̃tk,∥ − xk,−x̃tk,⊥ − θyk(

n∑
i=1

yixi)

〉

=

〈
x̃tk,∥ − xk,−θyk(

n∑
i=1

yixi)

〉
+
〈
x̃tk,⊥,−x̃tk,⊥

〉
≤ θ∥x̃tk,∥ − xk∥2 · ∥

n∑
i=1

yixi∥2 − ∥x̃tk,⊥∥22

≤ θ
√
(α2 − ∥x̃tk,⊥∥22) · 8C1dn− ∥x̃tk,⊥∥22 < 0, (Lemma B.4 (C4))

therefore vθ are feasible directions. From the above discussion, we know that vθ cannot be descent directions. Pick

θ =
∥x̃tk,⊥∥2

2√
8α2C1dn

. From the form of the classifier ykf(x̃;Wt) = yk
1√
m

m∑
s=1

asϕ(⟨wts, x̃⟩), and combining the fact that ϕ is

strictly increasing with ϕ′ ∈ [γ, 1], we know there exists s0 ∈ [m] such that ykas0
〈
wts0 , vθ

〉
≥ 0.

0 ≥ ykas0
〈
wts0 ,−vθ

〉
=

t−1∑
t′=0

ykas0

〈
wt

′+1
s0 − wt

′

s0 , x̃
t
k,⊥ + θyk(

n∑
i=1

yixi)

〉
+ ykas0

〈
w0
s0 , x̃

t
k,⊥ + θyk(

n∑
i=1

yixi)

〉

=

t−1∑
t′=0

ykas0

〈
ηas0
n
√
m

n∑
k′=1

g̃k′(Wt′)ϕ′(
〈

wt
′

s0 , x̃
t′

k′

〉
)yk′ x̃t

′

k′ , x̃
t
k,⊥ + θyk(

n∑
i=1

yixi)

〉
+ ykas0

〈
w0
s0 , x̃

t
k,⊥ + θyk(

n∑
i=1

yixi)

〉

=

t−1∑
t′=0

〈
η

n
√
m

n∑
k′=1

g̃k′(Wt′)ϕ′(
〈

wt
′

s0 , x̃
t′

k′

〉
)yk′ x̃t

′

k′,∥, θ(

n∑
i=1

yixi)

〉

+

t−1∑
t′=0

yk

〈
η

n
√
m

n∑
k′=1

g̃k′(Wt′)ϕ′(
〈

wt
′

s0 , x̃
t′

k′

〉
)yk′ x̃t

′

k′,⊥, x̃
t
k,⊥

〉
+ ykas0

〈
w0
s0 , x̃

t
k,⊥ + θyk(

n∑
i=1

yixi)

〉

Applying Lemma B.3 and Lemma B.4 (C4), the third term can be bounded by∣∣∣∣∣ykas0
〈

w0
s0 , x̃

t
k,⊥ + θyk(

n∑
i=1

yixi)

〉∣∣∣∣∣ ≤ ∥∥w0
s0

∥∥(∥∥x̃tk,⊥
∥∥+ ∥∥∥∥∥θyk(

n∑
i=1

yixi)

∥∥∥∥∥
)

≤ 2ωinit
√
d(
∥∥x̃tk,⊥

∥∥+ θ
√

8C1dn)

For the second term, we have

t−1∑
t′=0

yk

〈
η

n
√
m

n∑
k′=1

g̃k′(Wt′)ϕ′(
〈

wt
′

s0 , x̃
t′

k′

〉
)yk′ x̃t

′

k′,⊥, x̃
t
k,⊥

〉

≤ η

n
√
m

t−1∑
t′=0

〈
n∑

k′=1

g̃k′(Wt′)x̃t
′

k′,⊥, x̃
t
k,⊥

〉
(ϕ′(·) ≤ 1)

≤
t−1∑
t′=0

Cdη√
m
Ĝrob(Wt′)

∥∥x̃tk,⊥
∥∥ (Lemma B.9, induction that ∥x̃t

′

k′,⊥∥2 ≤ Cd,∀t′ ∈ [t− 1])

27

Benign Overfitting in Adversarial Training of Neural Networks

For the first term, we have

t−1∑
t′=0

〈
η

n
√
m

n∑
k′=1

g̃k′(Wt′)ϕ′(
〈

wt
′

s0 , x̃
t′

k′

〉
)yk′ x̃t

′

k′,∥, θ(

n∑
i=1

yixi)

〉

= θ
η

n
√
m

t−1∑
t′=0

 n∑
k′=1

〈
γg̃k′(Wt′)x̃t

′

k′,∥, xk′
〉
−

n∑
k′=1

∑
i ̸=k′

〈
g̃k′(Wt′)x̃t

′

k′ , xi
〉

≥ θ
η√
m

t−1∑
t′=0

Ĝrob(Wt′)

Cr

(
γd

4C1
− n

(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ α

√
C1d

)
)

)
(Lemma B.4, B.9)

≥ θ

t−1∑
t′=0

γηdĜrob(Wt′)

8C1Cr
√
m

(Assumption (1))

As a result, we have

ykas0
〈
wts0 ,−vθ

〉
≥ θ

t−1∑
t′=0

γηdĜrob(Wt′)

8C1Cr
√
m

−
t−1∑
t′=0

Cdη√
m
Ĝrob(Wt′)∥x̃tk,⊥∥2 − 2ωinit

√
d(∥x̃tk,⊥∥2 + θ

√
8C1dn)

(∥x̃t
′

k′,⊥∥2 ≤ Cd from induction)

≥
∥x̃tk,⊥∥22√
8α2C1dn

t−1∑
t′=0

γηdĜrob(Wt′)

8C1Cr
√
m

−
t−1∑
t′=0

Cdη√
m
Ĝrob(Wt′)∥x̃tk,⊥∥2 − 2ωinit

√
d(∥x̃tk,⊥∥2 +

∥x̃tk,⊥∥22
α

)

(plug in θ)

≥
∥x̃tk,⊥∥22√
α2C1dn

t−1∑
t′=0

γηdĜrob(Wt′)

32C1Cr
√
m

−
t−1∑
t′=0

Cdη√
m
Ĝrob(Wt′)∥x̃tk,⊥∥2 − 2ωinit

√
d∥x̃tk,⊥∥2

(ωinit ≤ η√
md

≤ η√
Cmn

and C sufficiently large)

≥
Cd∥x̃tk,⊥∥2√
α2C1dn

t−1∑
t′=0

γηdĜrob(Wt′)

32C1Cr
√
m

−
t−1∑
t′=0

Cdη√
m
Ĝrob(Wt′)∥x̃tk,⊥∥2 − 2ωinit

√
d∥x̃tk,⊥∥2

≥
Cd∥x̃tk,⊥∥2√
α2C1dn

t−1∑
t′=0

γηdĜrob(Wt′)

32C1Cr
√
m

− 5

t−1∑
t′=0

Cdη√
m
Ĝrob(Wt′)∥x̃tk,⊥∥2

(
t−1∑
t′=0

Ĝrob(W
t′) ≥ Ĝrob(W

0) = 1
2)

> 0. (d ≥ Cnα2 from Assumption (1), and C sufficiently large)

This is a contradiction. Therefore, we have proved dist(x̃tk, span{x1, . . . , xn}) = ∥x̃tk,⊥∥2 ≤ Cd. By induction, proof is
complete.

Using Lemma B.10, we can prove a different version of Lemma B.4 (C5) and (C6) that will be used later.

Lemma B.11. ∀i ∈ C, 1
3 ∥µ∥

2 ≤
〈
µ, yix̃ti

〉
≤ 3 ∥µ∥2. ∀i ∈ N , −3 ∥µ∥2 ≤

〈
µ, yix̃ti

〉
≤ − 1

3 ∥µ∥
2.

Proof of Lemma B.11. From Lemma B.4 (C5) and (C6), we know that 1
2 ∥µ∥

2 ≤ ⟨µ, yixi⟩ ≤ 2 ∥µ∥2 holds for all i ∈ C, and
−2 ∥µ∥2 ≤ ⟨µ, yixi⟩ ≤ −1

2 ∥µ∥
2 holds for all i ∈ N . Therefore, it suffices to prove |

〈
µ, yix̃ti

〉
− ⟨µ, yixi⟩ | ≤ 1

6 ∥µ∥
2. We

can decompose x̃ti−xi = (x̃ti−xi)∥+(x̃ti−xi)⊥, where (x̃ti−xi)∥ ∈ span{x1, . . . , xn} and (x̃ti−xi)⊥⊥ span{x1, . . . , xn}.
From Lemma B.10, ∥(x̃ti − xi)⊥∥2 ≤ min{Cd, α} ≤ Cd ≤ 1. For the parallel component, we can write (x̃ti − xi)∥ =
n∑
k=1

zkxk, where zk ∈ R. From Lemma B.4 (C4), α2 ≥ ∥x̃ti − xi∥22 ≥ ∥(x̃ti − xi)∥∥22 ≥ d
8C1

·
n∑
k=1

z2k. Thus,
√

8C1nα2

d ≥√
n

n∑
k=1

z2k ≥
n∑
k=1

|zk|.

28

Benign Overfitting in Adversarial Training of Neural Networks

Now we can prove the statement.

|
〈
µ, yix̃ti

〉
− ⟨µ, yixi⟩ | = |

〈
µ, x̃ti − xi

〉
|

≤ |
〈
µ, (x̃ti − xi)∥

〉
|+ |

〈
µ, (x̃ti − xi)⊥

〉
|

≤
n∑
k=1

|zk| · | ⟨µ, xk⟩ |+ Cd∥µ∥

≤
√

8C1nα2

d
· 2∥µ∥2 + Cd∥µ∥

≤ 1

6
∥µ∥2 . (Assumption (A2), Assumption (1) and C being sufficiently large)

With Lemma B.9, we are able to give a tighter bound on the norm of Wt.

Lemma B.12. There is a constant C2 > 1 such that

∥∥Wt
∥∥
F
≤
∥∥W0

∥∥
F
+ C2η

√
d

n

t−1∑
s=0

Ĝrob(Ws).

Proof of Lemma B.12. By triangle inequality we have that∥∥Wt
∥∥
F
=
∥∥∥Wt−1 − η∇L̂rob(Wt−1)

∥∥∥
F

≤
∥∥Wt−1

∥∥+ ∥∥∥η∇L̂rob(Wt−1)
∥∥∥
F

≤
∥∥W0

∥∥
F
+ η

t−1∑
s=0

∥∥∥∇L̂rob(Ws)
∥∥∥
F
. (Telescope)

Consider x̃si = argmaxx̃i∈B2(xi,α) ℓ(yif(x̃i;Ws)). Then we have the following∥∥∥∇L̂rob(Ws)
∥∥∥2
F

=
1

n2

∥∥∥∥∥
n∑
i=1

g̃i(Ws)yi∇f(x̃si ;Ws)

∥∥∥∥∥
2

F

=
1

n2

 n∑
i=1

(g̃i(Ws))
2 ∥∇f(x̃si ;Ws)∥2F +

∑
i̸=j

yiyj g̃i(Ws)g̃j(Ws)
〈
∇f(x̃si ;Ws),∇f(x̃sj ;Ws)

〉
≤ 1

n2

[
n∑
i=1

(g̃i(Ws))
2
(√

C1d+ α
)2

+
∑
i ̸=j

g̃i(Ws)g̃j(Ws)
(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)]
(Lemma B.8)

≤ 1

n2
max
k∈[n]

g̃k(Ws)

n∑
i=1

g̃i(Ws)
(
2C1d+ 2α2+n

(
C1 ∥µ∥2+C1

√
d log (n/δ)+2α

√
C1d+ α2

))
≤ 5C1d

n
max
k∈[n]

g̃k(Ws)Ĝrob(Ws),

where the last line follows Assumption (1) and Assumption (6).

29

Benign Overfitting in Adversarial Training of Neural Networks

Applying Lemma B.9 gives us

max
k∈[n]

g̃k(Ws) ≤ Cr
n

n∑
i=1

g̃i(Ws) = CrĜrob(Ws).

Define C2 :=
√
5C1Cr, then we have∥∥∥∇L̂rob(Ws)

∥∥∥
F
≤
√

5C1Crd

n
Ĝrob(Ws) = C2

√
d

n
Ĝrob(Ws). (5)

As a result, we have

∥∥Wt
∥∥
F
≤
∥∥W0

∥∥
F
+ C2η

√
d

n

t−1∑
s=0

Ĝrob(Ws). (6)

Recall that our goal is to give a lower bound on the normalized expected conditional margin. We start by giving a lower
bound in terms of the cumulative increments of margin given any independent test example (x, y), shown in Lemma B.13.

Lemma B.13. Let C2 > 1 be the constant from Lemma B.12. For a γ-leaky, H-smooth activation ϕ, on a good run, we
have for any t ≥ 0 and (x, y) ∈ Rd × {±1}, there exist ρ̃ti = ρ

(
Wt, x̃ti, x

)
∈ [γ2, 1] such that

y
[
f(x;Wt+1)− f(x;Wt)

]
≥ η

n

n∑
i=1

g̃i(Wt)

(
ρ̃ti
〈
yix̃ti, yx

〉
− H ∥x∥2 C2

2dη

2
√
mn

)

Proof of Lemma B.13. Note that since a good run occurs, Lemma B.6 implies

∣∣f(x;Wt+1)− f(x;Wt)−
〈
∇f(x;Wt),Wt+1 − Wt

〉∣∣ ≤ H ∥x∥2

2
√
m

∥∥Wt+1 − Wt
∥∥2
2

(7)

Therefore, we have

y
[
f(x;Wt+1)− f(x;Wt)

]
≥ y

[〈
∇f(x;Wt),Wt+1 − Wt

〉]
− H ∥x∥2

2
√
m

∥∥Wt+1 − Wt
∥∥2
2

(for y ∈ {±1}, apply (7))

= yη

[〈
∇f(x;Wt),

1

n

n∑
i=1

g̃i(Wt)yi∇f(x̃ti;Wt)

〉]
− H ∥x∥2 η2

2
√
m

∥∥∥∇L̂rob(Wt)
∥∥∥2
2

≥ η

[
1

n

n∑
i=1

g̃i(Wt)
〈
y∇f(x;Wt), yi∇f(x̃ti;Wt)

〉]
− H ∥x∥2 C2

2dη
2

2
√
mn

Ĝrob(Wt)

(Equation (5),
∥∥∥∇L̂rob(Wt)

∥∥∥
2
≤
∥∥∥∇L̂rob(Wt)

∥∥∥
F

, Ĝrob(Wt) ≤ 1)

=
η

n

n∑
i=1

g̃i(Wt)

(
ρ̃ti
〈
yix̃ti, yx

〉
− H ∥x∥2 C2

2dη

2
√
mn

)
(Ĝrob(Wt) = 1

n

∑n
i=1 g̃i(W

t))

where the last equality follows by defining

ρ̃ti = ρ(Wt, x̃ti, x) =
1

m

m∑
s=1

ϕ′
(〈

w(t)
s , x

〉)
ϕ′
(〈

w(t)
s , x̃ti

〉)
∈ [γ2, 1].

30

Benign Overfitting in Adversarial Training of Neural Networks

Leveraging Lemma B.9 and B.13, we now formally derive a lower bound on the normalized expected conditional margin.

Lemma B.14. For a γ-leaky H-smooth activation ϕ, and for all C > 1 sufficiently large, on a good run, for any t ≥ 1, we
have

E(x,y)∼Dc
[
yf(x;Wt)|y = 1

]∥∥Wt
∥∥
2

≥ γ2
√
n

32C2

√
d
∥µ∥2 ;

E(x,y)∼Dc
[
yf(x;Wt)|y = −1

]∥∥Wt
∥∥
2

≥ γ2
√
n

32C2

√
d
∥µ∥2 .

where C2 is the constant from Lemma B.12.

Lemma B.14. From Lemma B.12, we have

∥∥Wt
∥∥
F
≤
∥∥W0

∥∥
F
+ C2η

√
d

n

t−1∑
s=0

Ĝrob(Ws).

Recall the following definition

ρ̃ti = ρ(Wt, x̃ti, x) =
1

m

m∑
s=1

ϕ′
(〈

w(t)
s , x

〉)
ϕ′
(〈

w(t)
s , x̃ti

〉)
∈ [γ2, 1].

By Lemma B.11, we have

E(x,y)∼Dc [ρ̃
t
i

〈
yix̃ti, µ

〉
|y = 1] ≥

{
1
3γ

2∥µ∥2, i ∈ C
−3 ∥µ∥2 , i ∈ N

If i ∈ C:

E(x,y)∼Dc

[
ρ̃ti
〈
yix̃ti, yx

〉 ∣∣∣y = 1
]

= E(x,y)∼Dc

[
ρ̃ti
〈
yix̃ti, yx − µ

〉
+ ρ̃ti

〈
yix̃ti, µ

〉 ∣∣∣y = 1
]

≥ E(x,y)∼Dc

[
ρ̃ti
〈
yix̃ti, yx − µ

〉
· 1(
〈
yix̃ti, yx − µ

〉
≥ 0)

∣∣∣y = 1
]

+ E(x,y)∼Dc

[
ρ̃ti
〈
yix̃ti, yx − µ

〉
· 1(
〈
yix̃ti, yx − µ

〉
< 0)

∣∣∣y = 1
]
+

1

3
γ2∥µ∥2

≥ E(x,y)∼Dc

[
γ2
〈
yix̃ti, yx − µ

〉
· 1(
〈
yix̃ti, yx − µ

〉
≥ 0)

∣∣∣y = 1
]

+ E(x,y)∼Dc

[〈
yix̃ti, yx − µ

〉
· 1(
〈
yix̃ti, yx − µ

〉
< 0)

∣∣∣y = 1
]
+

1

3
γ2∥µ∥2

= −1− γ2

2
E(x,y)∼Dc

[∣∣〈yix̃ti, yx − µ
〉∣∣]+ 1

3
γ2∥µ∥2

≥ −1− γ2

2
c3
∥∥〈yix̃ti, yx − µ

〉∥∥
ψ2

+
1

3
γ2∥µ∥2 (c3 is an absolute constant)

≥ −1− γ2

2
c4
∥∥yix̃ti∥∥2 + 1

3
γ2∥µ∥2 (c4 is an absolute constant)

≥ −1− γ2

2
c4(
√
C1d+ α) +

1

3
γ2∥µ∥2.

If i ∈ N :

E(x,y)∼Dc

[
ρ̃ti
〈
yix̃ti, yx

〉 ∣∣∣y = 1
]

= E(x,y)∼Dc

[
ρ̃ti
〈
yix̃ti, yx − µ

〉
+ ρ̃ti

〈
yix̃ti, µ

〉 ∣∣∣y = 1
]

31

Benign Overfitting in Adversarial Training of Neural Networks

≥ E(x,y)∼Dc

[
ρ̃ti
〈
yix̃ti, yx − µ

〉
· 1(
〈
yix̃ti, yx − µ

〉
≥ 0)

∣∣∣y = 1
]

+ E(x,y)∼Dc

[
ρ̃ti
〈
yix̃ti, yx − µ

〉
· 1(
〈
yix̃ti, yx − µ

〉
< 0)

∣∣∣y = 1
]
− 3 ∥µ∥2

≥ E(x,y)∼Dc

[
γ2
〈
yix̃ti, yx − µ

〉
· 1(
〈
yix̃ti, yx − µ

〉
≥ 0)

∣∣∣y = 1
]

+ E(x,y)∼Dc

[〈
yix̃ti, yx − µ

〉
· 1(
〈
yix̃ti, yx − µ

〉
< 0)

∣∣∣y = 1
]
− 3 ∥µ∥2

= −1− γ2

2
E(x,y)∼Dc

[∣∣〈yix̃ti, yx − µ
〉∣∣ ∣∣∣y = 1

]
− 3 ∥µ∥2

≥ −1− γ2

2
c3
∥∥〈yix̃ti, yx − µ

〉∥∥
ψ2

− 3 ∥µ∥2 (c3 is an absolute constant)

≥ −1− γ2

2
c4
∥∥yix̃ti∥∥2 − 3 ∥µ∥2 (c4 is an absolute constant)

≥ −1− γ2

2
c4(
√
C1d+ α)− 3 ∥µ∥2 .

E(x,y)∼Dc

[
yf(x;Ws+1)− yf(x;Ws)

∣∣∣y = 1
]

≥ η

n

n∑
i=1

g̃i(Ws)E(x,y)∼Dc

[
ρ̃ti
〈
yix̃ti, yx

〉
− H ∥x∥2 C2

2dη

2
√
mn

∣∣∣y = 1

]
(Lemma B.13)

≥ η

(
1

n

∑
i∈C

g̃i(Ws)

(
−1− γ2

2
c4(
√
C1d+ α) +

1

3
γ2∥µ∥2

)

+
1

n

∑
i∈N

g̃i(Ws)

(
−1− γ2

2
c4(
√
C1d+ α)− 3 ∥µ∥2

)
− Hc5dC

2
2dη

2
√
mn

Ĝrob(Ws)

)
(c5 is an absolute constant)

= η

(
−1− γ2

2
c4(
√
C1d+ α) +

1

3
γ2∥µ∥2

)
·

((
1− Hc5C

2
2d

2η(
−(1− γ2)c4(

√
C1d+ α) + 2

3γ
2∥µ∥2

)√
mn

)
Ĝrob(Ws)

−

(
1 +

(1− γ2)c4(
√
C1d+ α) + 6 ∥µ∥2

−(1− γ2)c4(
√
C1d+ α) + 2

3γ
2∥µ∥2

)
1

n

∑
i∈N

g̃i(Ws)

)

≥ η

(
−1− γ2

2
c4(
√
C1d+ α) +

1

3
γ2 ∥µ∥2

)

·

(1− Hc5C
2
2d

2η(
−(1− γ2)c4(

√
C1d+ α) + 2

3γ
2 ∥µ∥2

)√
mn

 Ĝrob(Ws)

− (β +

√
2

C
)Cr

(
1 +

(1− γ2)c4(
√
C1d+ α) + 6 ∥µ∥2

−(1− γ2)c4(
√
C1d+ α) + 2

3γ
2 ∥µ∥2

)
Ĝrob(Ws)

)

≥ ηĜrob(Ws)

4

(
−1− γ2

2
c4(
√
C1d+ α) +

1

3
γ2 ∥µ∥2

)
≥ ηĜrob(Ws)γ2

16
∥µ∥2 ,

where the second last inequality follows from η ≤ 1
Cd2 ≤

1
3γ

4∥µ∥2√mn
Hc5C2

2d
2 , β ≤ 1/C, d ≤ ∥µ∥4

C ≤ γ4∥µ∥4

9c24C1
, α ≤ ∥µ∥ ≤

√
C1d

32

Benign Overfitting in Adversarial Training of Neural Networks

and C being sufficiently large so that

Hc5C
2
2d

2η(
−(1− γ2)c4(

√
C1d+ α) + 2

3γ
2 ∥µ∥2

)√
mn

≤
1
3γ

4 ∥µ∥2

−(1− γ2)c4(2
√
C1d) +

2
3γ

2 ∥µ∥2

≤
1
3γ

4 ∥µ∥2

− 2
3γ

2(1− γ2) ∥µ∥2 + 2
3γ

2 ∥µ∥2
= 0.5,

and

(β +

√
2

C
)Cr

(
1 +

(1− γ2)c4(
√
C1d+ α) + 6 ∥µ∥2

−(1− γ2)c4(
√
C1d+ α) + 2

3γ
2 ∥µ∥2

)

≤ (
1

C
+

√
2

C
)Cr

(
1 +

(1− γ2)c4(2
√
C1d) + 6 ∥µ∥2

−(1− γ2)c4(2
√
C1d) +

2
3γ

2 ∥µ∥2

)

≤ (
1

C
+

√
2

C
)Cr

(
1 +

2
3γ

2(1− γ2) ∥µ∥2 + 6 ∥µ∥2

− 2
3γ

2(1− γ2) ∥µ∥2 + 2
3γ

2 ∥µ∥2

)

= (
1

C
+

√
2

C
)Cr

(
1 +

2
3γ

2(1− γ2) + 6
2
3γ

4

)
≤ 0.25.

The third last inequality follows from Lemma B.9 that∑
i∈N

g̃i(Ws) ≤ |N | ·max
i
g̃i(Ws)

≤ |N |
n

n∑
k=1

max
i
g̃i(Ws)

≤ Cr · |N | · Ĝrob(Ws)

≤ Cr(β +

√
2

C
)nĜrob(Ws). (8)

The last inequality follows from d ≤ ∥µ∥4

C ≤ γ4∥µ∥4

144c24C1
, and α ≤ ∥µ∥ ≤

√
C1d so that

− 1− γ2

2
c4(
√
C1d+ α) +

1

3
γ2 ∥µ∥2

≥ −1− γ2

2
c4(2

√
C1d) +

1

3
γ2 ∥µ∥2

≥ −1− γ2

12
γ2 ∥µ∥2 + 1

3
γ2∥µ∥2

≥ 1

4
γ2 ∥µ∥2 .

Applying the above result gives us the following

E(x,y)∼Dc
[
yf(x;Wt)|y = 1

]∥∥Wt
∥∥
2

=
E(x,y)∼Dc

[
yf(x;W0)|y = 1

]
+
∑t−1
s=0 E(x,y)∼Dc

[
yf(x;Ws+1)− yf(x;Ws)|y = 1

]∥∥Wt
∥∥
2

≥
∑t−1
s=0 Ĝrob(Ws)ηγ2

16
∥∥Wt

∥∥
F

∥µ∥2 . (f(x;W0) = 0 via symmetric initialization)

33

Benign Overfitting in Adversarial Training of Neural Networks

Note that we have

Ĝrob(W0) =
1

n

n∑
i=1

g̃i(W0) = − 1

n

n∑
i=1

ℓ′(yif(x̃0i ;W0)) =
1

2
. (9)

Along with Lemma B.3, Assumption (3) and Assumption (1) gives us∥∥W0
∥∥
F
≤ 2ωinit

√
md ≤ 2η ≤ η

√
d/nĜrob(W0). (10)

Then if
∥∥Wt

∥∥
F
≤ 2

∥∥W0
∥∥
F

, we have

E(x,y)∼Dc
[
yf(x;Wt)|y = 1

]∥∥Wt
∥∥
2

≥
∑t−1
s=0 Ĝrob(Ws)ηγ2

32
∥∥W0

∥∥
F

∥µ∥2

≥
∑t−1
s=0 Ĝrob(Ws)ηγ2

32η
√
d/nĜrob(W0)

∥µ∥2 (Equation (10))

≥
√
nγ2

32
√
d
∥µ∥2 . (

∑t−1
s=0 Ĝrob(Ws) ≥ Ĝrob(W0))

If
∥∥Wt

∥∥
F
> 2

∥∥W0
∥∥
F

, by Lemma B.12, we have

2
∥∥W0

∥∥
F
≤
∥∥Wt

∥∥
F
≤
∥∥W0

∥∥
F
+ C2η

√
d/n

t−1∑
s=0

Ĝrob(Ws).

Thus we have

E(x,y)∼Dc
[
yf(x;Wt)|y = 1

]∥∥Wt
∥∥
2

≥
∑t−1
s=0 Ĝrob(Ws)ηγ2

32C2η
√
d/n

∑t−1
s=0 Ĝrob(Ws)

∥µ∥2

≥
√
nγ2

32C2

√
d
∥µ∥2 .

Similarly, we can get

E(x,y)∼Dc
[
yf(x;Wt)

∣∣y = −1
]∥∥Wt

∥∥
2

≥ γ2
√
n

32C2

√
d
∥µ∥2 .

We finally provide the convergence guarantees of robust training loss in Lemma B.15.

Lemma B.15. For a γ-leaky, H-smooth activation ϕ, provided C > 1 is sufficiently large, then on a good run we have that,∥∥∥∇L̂rob(Wt)
∥∥∥
F
≥ γ ∥µ∥

4
Ĝrob(Wt)

Moreover, the robust training loss satisfies

L̂rob(WT) ≤
35 + 8

√
m
d3

γ ∥µ∥ ηT 1−ζ
2

Proof of Lemma B.15. Consider x̃ti as the adversarial example given model parameter Wt; i.e., x̃ti =

argmaxx̃i∈B2(xi,α) ℓ(yif(x̃i;Wt)). We first need to show a lower bound for
∥∥∥∇L̂rob(Wt)

∥∥∥
F

=

34

Benign Overfitting in Adversarial Training of Neural Networks

supU:∥U∥F=1

〈
−∇L̂rob(Wt),U

〉
, and it suffices to construct a matrix V with Frobenius norm at most one such

that
〈
−∇L̂rob(Wt),V

〉
is bounded from below by a positive constant. To this end, choose V ∈ Rm×d be the matrix with

rows vs = asµ
∥µ∥

√
m
,∀s ∈ [m]. Then ∥V∥F = 1 since as = ±1, and we have for any W ∈ Rm×d,

⟨∇f(xi;W),V⟩ = 1√
m

m∑
s=1

asϕ
′(⟨ws, xi⟩) ⟨vs, xi⟩ =

〈
µ

∥µ∥
, xi

〉
1

m

m∑
s=1

ϕ′(⟨ws, xi⟩) (11)

By Lemma B.4 and Lemma B.11, we have{
yi ⟨µ, xi⟩ ≥ 1

2 ∥µ∥
2
, i ∈ C

|⟨µ, xi⟩| ≤ 3
2 ∥µ∥

2
, i ∈ N

,

{
yi
〈
µ, x̃ti

〉
≥ 1

3 ∥µ∥
2
, i ∈ C∣∣〈µ, x̃ti〉∣∣ ≤ 3 ∥µ∥2 , i ∈ N

And ∀z, ϕ′(z) ≥ γ > 0, equation (11) implies that we have the following lower bound for any W ∈ Rm×d,

yi ⟨∇f(xi;W),V⟩ ≥
{

γ
2 ∥µ∥ , i ∈ C

− 3
2 ∥µ∥ , i ∈ N , yi

〈
∇f(x̃ti;W),V

〉
≥
{

γ
3 ∥µ∥ , i ∈ C
−3 ∥µ∥ , i ∈ N

This allows for a lower bound on
〈
−∇L̂rob(Wt),V

〉
, since

〈
−∇L̂rob(Wt),V

〉
=

1

n

n∑
i=1

g̃i(Wt)yi
〈
∇f(x̃ti;Wt),V

〉
≥ 1

n

∑
i∈C

g̃i(Wt)
γ

3
∥µ∥ − 1

n

∑
i∈N

g̃i(Wt)3 ∥µ∥

=
γ ∥µ∥
3

[
Ĝrob(Wt)− (1 +

9

γ
)
1

n

∑
i∈N

g̃i(Wt)

]

≥ γ ∥µ∥
3

[
Ĝrob(Wt)− (1 +

9

γ
) · Cr(β +

√
2

C
)Ĝrob(Wt)

]
(Equation (8))

≥ γ ∥µ∥
4

Ĝrob(Wt), (12)

where the last line holds by C being sufficiently large so that

(1 +
9

γ
) · Cr(β +

√
2

C
)

≤ (1 +
9

γ
) · Cr(

1

C
+

√
2

C
)

≤ 1

4
.

Thus we have

Ĝrob(Wt) ≤ 4

γ ∥µ∥

〈
−∇L̂rob(Wt),V

〉
≤ 4

γ ∥µ∥

∥∥∥∇L̂rob(Wt)
∥∥∥
F
. (13)

We next give an upper bound on
∥∥Wt

∥∥2
F

as follows:∥∥Wt+1
∥∥2
F

(14)

=
∥∥∥Wt − η∇L̂rob(Wt)

∥∥∥2
F

35

Benign Overfitting in Adversarial Training of Neural Networks

=
∥∥Wt

∥∥2
F
+ η2

∥∥∥∇L̂rob(Wt)
∥∥∥2
F
− 2η

1

n

n∑
i=1

ℓ′(yif(x̃ti;Wt))yi
〈
∇f(x̃ti;Wt),Wt

〉
≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(Wt)2 − 2η

1

n

n∑
i=1

ℓ′(yif(x̃ti;Wt))yi
〈
∇f(x̃ti;Wt),Wt

〉
(Equation (5))

=
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(Wt)2 + 2η

1

n

n∑
i=1

g(yif(x̃ti;Wt))yi

m∑
s=1

as√
m
ϕ′(
〈
wts, x̃

t
i

〉
)
〈
wts, x̃

t
i

〉
=
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(Wt)2 + 2η

1

n

n∑
i=1

g(yif(x̃ti;Wt))yi

m∑
s=1

as√
m
ϕ(
〈
wts, x̃

t
i

〉
)

+ 2η
1

n

n∑
i=1

g(yif(x̃ti;Wt))yi

m∑
s=1

as√
m
(ϕ′(

〈
wts, x̃

t
i

〉
)
〈
wts, x̃

t
i

〉
− ϕ(

〈
wts, x̃

t
i

〉
))

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(Wt)2 + 2η

1

n

n∑
i=1

g(yif(x̃ti;Wt))yif(x̃ti;Wt)

+ 2η
1

n

n∑
i=1

g(yif(x̃ti;Wt))

m∑
s=1

1√
m

∣∣ϕ′(〈wts, x̃ti〉) 〈wts, x̃ti〉− ϕ(
〈
wts, x̃

t
i

〉
)
∣∣

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
+

2

3
η + 2η

1

n

n∑
i=1

m∑
s=1

1√
m
(c1 + c2

∣∣〈wts, x̃ti〉∣∣ζ) (g(z)z ≤ 1
3 , g(z) ≤ 1)

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
+

2

3
η + 2ηc1

√
m+

2ηc2√
m

1

n

n∑
i=1

∥∥x̃ti
∥∥ζ
2

m∑
s=1

∥∥wts
∥∥ζ
2

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
+

2

3
η + 2ηc1

√
m+

2ηc2√
m

1

n

n∑
i=1

∥∥x̃ti
∥∥ζ
2
m1− ζ

2

∥∥Wt
∥∥ζ
F

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
+

2

3
η + 2ηc1

√
m+ 2ηc2m

1−ζ
2 (
√
C1d+ α)ζ

∥∥Wt
∥∥ζ
F
.

Then we have∥∥Wt+1
∥∥2−ζ
F

≤ (
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
+

2

3
η + 2ηc1

√
m+ 2ηc2m

1−ζ
2 (
√
C1d+ α)ζ

∥∥Wt
∥∥ζ
F
)

2−ζ
2 .

If
∥∥Wt

∥∥
F
≤ 1,

∥∥Wt+1
∥∥2−ζ
F

≤
(
1 + η2

C2
2d

n
+

2

3
η + 2ηc1

√
m+ 2ηc2m

1−ζ
2 (
√
C1d+ α)ζ

) 2−ζ
2

≤
∥∥Wt

∥∥2−ζ
F

+

(
1 + η2

C2
2d

n
+

2

3
η + 2ηc1

√
m+ 2ηc2m

1−ζ
2 (
√
C1d+ α)ζ

) 2−ζ
2

≤
∥∥Wt

∥∥2−ζ
F

+1+
2− ζ

2
·
(
η2
C2

2d

n
+
2

3
η+2ηc1

√
m+2ηc2m

1−ζ
2 (
√
C1d+α)

ζ

)
.

If
∥∥Wt

∥∥
F
> 1,

∥∥Wt+1
∥∥2−ζ
F

≤
∥∥Wt

∥∥2−ζ
F

1 + η2
C2

2d
n + 2

3η + 2ηc1
√
m+ 2ηc2m

1−ζ
2 (

√
C1d+ α)ζ

∥∥Wt
∥∥ζ
F∥∥Wt

∥∥2
F

2−ζ
2

≤
∥∥Wt

∥∥2−ζ
F

1+ 2− ζ

2
·
η2

C2
2d
n + 2

3η+2ηc1
√
m+2ηc2m

1−ζ
2 (

√
C1d+α)

ζ
∥∥Wt

∥∥ζ
F∥∥Wt

∥∥2
F

36

Benign Overfitting in Adversarial Training of Neural Networks

≤
∥∥Wt

∥∥2−ζ
F

+
2− ζ

2
·
(
η2
C2

2d

n
+

2

3
η + 2ηc1

√
m+ 2ηc2m

1−ζ
2 (
√
C1d+ α)ζ

)
.

Combining the two cases, we have

∥∥Wt+1
∥∥2−ζ
F

≤
∥∥Wt

∥∥2−ζ
F

+1+
2− ζ

2
·
(
η2
C2

2d

n
+
2

3
η+2ηc1

√
m+2ηc2m

1−ζ
2 (
√
C1d+α)

ζ

)
.

Summing up the above inequality, we get

∥∥WT
∥∥2−ζ
F

≤
∥∥W0

∥∥2−ζ
F

+T ·
(
1+

2− ζ

2
·
(
η2
C2

2d

n
+
2

3
η+2ηc1

√
m+2ηc2m

1−ζ
2 (
√
C1d+α)

ζ

))
.

Thus, ∥∥WT
∥∥
F

≤
(∥∥W0

∥∥2−ζ
F

+T ·
(
1 +

2− ζ

2
·
(
η2
C2

2d

n
+
2

3
η+2ηc1

√
m+2ηc2m

1−ζ
2 (
√
C1d+α)

ζ

))) 1
2−ζ

≤
∥∥W0

∥∥
F
+ T

1
2−ζ ·

(
1 +

2− ζ

2
·
(
η2
C2

2d

n
+

2

3
η + 2ηc1

√
m+ 2ηc2m

1−ζ
2 (
√
C1d+ α)ζ

)) 1
2−ζ

≤
∥∥W0

∥∥
F
+ T

1
2−ζ ·

(
1 +

1

2
·
(
η2
C2

2d

n
+

2

3
η + 2ηc1

√
m+ 2ηc2m

1−ζ
2 (
√
C1d+ α)ζ

))
=
∥∥W0

∥∥
F
+ T

1
2−ζ ·

(
1 + η2

C2
2d

2n
+

1

3
η + ηc1

√
m+ ηc2m

1−ζ
2 (
√
C1d+ α)ζ

)
.

Consider the correlation between iterates weight and V as follows:〈
Wt+1,V

〉
=
〈

Wt − η∇L̂rob(Wt),V
〉

=
〈
Wt,V

〉
− η

〈
∇L̂rob(Wt),V

〉
= . . .

=
〈
W0,V

〉
− η

t∑
s=0

〈
∇L̂rob(Ws),V

〉
. (15)

Recall from Lemma B.9 that ∀t ≥ 0, ykf(x̃k;Wt+1) ≥ ykf(x̃k;Wt),∀x̃k ∈ B2(xk, α),∀k ∈ [n]. Then we have
ykf(x̃Tk ;WT) ≥ ykf(x̃Tk ;Wt), and therefore ℓ(ykf(x̃Tk ;WT)) ≤ ℓ(ykf(x̃Tk ;Wt)) ≤ ℓ(ykf(x̃tk;Wt)) by definition that
x̃ti = argmaxx̃i∈B2(xi,α) ℓ

(
yif(x̃i;Wt)

)
, t ≤ T . As a result, we have

L̂rob(WT)

=
1

n

n∑
i=1

max
x̃i∈B2(xi,α)

ℓ
(
yif(x̃i;WT)

)
≤ 1

T

T−1∑
t=0

1

n

n∑
i=1

max
x̃i∈B2(xi,α)

ℓ
(
yif(x̃i;Wt)

)
≤ 1

T

T−1∑
t=0

2

n

n∑
i=1

max
x̃i∈B2(xi,α)

−ℓ′
(
yif(x̃i;Wt)

)
(ℓ (z) ≤ −2ℓ′(z) when z ≥ 0, Equation (4))

=
2

T

T−1∑
t=0

Ĝrob(Wt)

37

Benign Overfitting in Adversarial Training of Neural Networks

≤ 8

γ ∥µ∥T

T−1∑
t=0

〈
−∇L̂rob(Wt),V

〉
(Equation (13))

=
8

γ ∥µ∥ ηT
(〈

WT ,V
〉
−
〈
W0,V

〉)
(Equation (15))

≤ 8

γ ∥µ∥ ηT
(∥∥WT

∥∥
F
+
∥∥W0

∥∥
F

)
≤ 8

γ ∥µ∥ ηT

(
2
∥∥W0

∥∥
F
+T

1
2−ζ ·
(
1+η2

C2
2d

2n
+
1

3
η + ηc1

√
m+ηc2m

1−ζ
2 (
√
C1d+α)

ζ

))
≤ 8

γ ∥µ∥ ηT
1−ζ
2−ζ

(
2
∥∥W0

∥∥
F
+1+η2

C2
2d

2n
+
1

3
η+ηc1

√
m+ηc2m

1−ζ
2 (
√
C1d+α)

ζ

)
≤ 8

γ ∥µ∥ ηT
1−ζ
2−ζ

(
ωinit

√
6md+

4

3
+ η

(
C2

2dη

2n
+ (c1 + c2)

√
m(
√
C1d+ α)

))
(Lemma B.3)

≤ 8

γ ∥µ∥ ηT
1−ζ
2−ζ

(√
6η +

4

3
+ η

(
C2

2dη

2n
+ (c1 + c2)

√
m(
√
C1d+ α)

))
(Assumption (3))

≤ 8

γ ∥µ∥ ηT
1−ζ
2−ζ

(√
6 +

4

3
+

1

Cd2

(
C2

2d

2nCd2
+ (c1 + c2)

√
m(
√
C1d+ α)

))
(Assumption (4))

≤ 8

γ ∥µ∥ ηT
1−ζ
2−ζ

(√
6 +

4

3
+

1

2
+

√
m

d3

)
(choose C > max{1, C1, C2, 4(c1 + c2)

2} be large enough)

≤
35 + 8

√
m
d3

γ ∥µ∥ ηT 1−ζ
2

.

∀ε > 0, T ≥
(

35+8
√

m
d3

γ∥µ∥ηϵ

) 2
1−ζ

guarantees L̂rob(WT) ≤ ε.

For the smooth Leaky ReLU activation function of (Frei et al., 2022), we have the following result as corollary.

Corollary B.16. For the γ-leaky H-smooth ReLU activation ϕSLReLU defined in Equation (1), and for κ ∈ (0, 1), λ > 0
defined in Definition 2.1. There exists some constant C > 0 such that Assumption 1, (A1) and (A2) hold, then we have that
with probability at least 1− 2δ over the random initialization and the draws of the samples, the robust training loss satisfies

L̂rob(WT) ≤
30 + 6√

H
m

1
4

γ ∥µ∥√η
√
T
.

Proof of Corollary B.16. Here our activation function ϕ is ϕSLReLU. The definition of ϕSLReLU gives us that

ϕ′(z)z =

z = ϕ(z) + 1−γ

4H , z ≥ 1
H

1−γ
2 Hz2 + 1+γ

2 z = ϕ(z) + 1−γ
4 Hz2, |z| ≤ 1

H

γz = ϕ(z) + 1−γ
4H , z ≤ − 1

H

.

Therefore, ϕ′(z)z − ϕ(z) ≤ 1−γ
4H . Similar as Lemma B.15, we have Ĝrob(Wt) ≤ 4

γ∥µ∥

∥∥∥∇L̂rob(Wt)
∥∥∥
F

. In terms of the

upper bound on
∥∥Wt

∥∥2
F

, we have∥∥Wt+1
∥∥2
F

=
∥∥∥Wt − η∇L̂rob(Wt)

∥∥∥2
F

=
∥∥Wt

∥∥2
F
+ η2

∥∥∥∇L̂rob(Wt)
∥∥∥2
F
− 2η

1

n

n∑
i=1

ℓ′(yif(x̃ti;Wt))yi
〈
∇f(x̃ti;Wt),Wt

〉
38

Benign Overfitting in Adversarial Training of Neural Networks

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(Wt)2 − 2η

1

n

n∑
i=1

ℓ′(yif(x̃ti;Wt))yi
〈
∇f(x̃ti;Wt),Wt

〉
(Equation (5))

=
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(Wt)2 + 2η

1

n

n∑
i=1

g(yif(x̃ti;Wt))yi
1√
m

m∑
s=1

asϕ
′(
〈
wts, x̃

t
i

〉
)
〈
wts, x̃

t
i

〉
=
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(Wt)2 + 2η

1

n

n∑
i=1

g(yif(x̃ti;Wt))yi
1√
m

m∑
s=1

asϕ(
〈
wts, x̃

t
i

〉
)

+ 2η
1

n

n∑
i=1

g(yif(x̃ti;Wt))
1− γ

4H

√
m (ϕ′(z)z − ϕ(z) ≤ 1−γ

4H)

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(Wt)2 + 2η

1

n

n∑
i=1

g(yif(x̃ti;Wt))yif(x̃ti;Wt) + η
√
m
1− γ

2H
(g(z) ≤ 1)

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
+

2

3
η + η

√
m
1− γ

2H
(g(z)z ≤ 1

3)

≤
∥∥Wt

∥∥2
F
+ η

C2
2d

nCd2
+

2

3
η + η

√
m
1− γ

2H
(Assumption (4))

≤
∥∥Wt

∥∥2
F
+ η

(
5

3
+

1− γ

2H

√
m

)
.

Telescoping gives us that ∥∥WT
∥∥2
F
≤ ∥W0∥2F + η

(
5

3
+

1− γ

2H

√
m

)
T.

As a result, we have

L̂rob(WT) =
1

n

n∑
i=1

max
x̃i∈B2(xi,α)

ℓ
(
yif(x̃i;WT)

)
≤ 1

T

T−1∑
t=0

1

n

n∑
i=1

max
x̃i∈B2(xi,α)

ℓ
(
yif(x̃i;Wt)

)
≤ 1

T

T−1∑
t=0

2

n

n∑
i=1

max
x̃i∈B2(xi,α)

−ℓ′
(
yif(x̃i;Wt)

)
(ℓ (z) ≤ −2ℓ′(z) when z ≥ 0, Equation (4))

=
2

T

T−1∑
t=0

Ĝrob(Wt)

≤ 8

γ ∥µ∥T

T−1∑
t=0

〈
−∇L̂rob(Wt),V

〉
(Equation (13))

=
8

γ ∥µ∥ ηT
(〈

WT ,V
〉
−
〈
W0,V

〉)
(Equation (15))

≤ 8

γ ∥µ∥ ηT
(∥∥WT

∥∥
F
+
∥∥W0

∥∥
F

)
≤ 8

γ ∥µ∥ ηT

(
2
∥∥W0

∥∥
F
+

√
η

(
5

3
+

1− γ

2H

√
m

)
T

)

≤ 8

γ ∥µ∥ ηT

(
ωinit

√
6md+

√
η

(
5

3
+

1− γ

2H

√
m

)
T

)
(Lemma B.3)

≤ 8

γ ∥µ∥ ηT

(
√
6η +

√
η

(
5

3
+

1− γ

2H

√
m

)
T

)
(Lemma (3))

39

Benign Overfitting in Adversarial Training of Neural Networks

≤
30 + 6√

H
m

1
4

γ ∥µ∥√η
√
T
.

B.2. Missing Proofs in Section 3.2

Theorem B.17. Let ε > 0, δ ∈ (0, 1/2). κ ∈ (0, 1) and λ > 0 are defined in Definition 2.1. Let ϕ be a non-smooth

activation with γ ∈ (0, 1]. Set T̄ =
(

30
∥µ∥γc0

√
ηε

)2
. There exists some constant C > 0 such that Assumption 1 and the

following holds: (B1) The network width satisfies m ≥ C log (n/δ). (B2) ∥µ∥2 ≥ Cmax
{√

d
n log (md/nδ), log (n/δ)

}
.

Then there exists a constant c > 0 such that after running Algorithm 1 for T ≥ T̄ iterations, we have that with probability at
least 1− 2δ over the random initialization and the draw of an i.i.d. sample of size n, the following holds:

1. The robust training loss satisfies L̂rob(WT) ≤ ε, the robust training error satisfies L̂0/1
rob (WT) = 0.

2. The clean test error satisfies
L0/1(WT) ≤ β + 2exp

(
− cλn ∥µ∥4

C2d

)
.

3. For α
∥µ∥ ≤ 1

C

√
n∥µ∥2

d , the robust test error satisfies

L
0/1
rob (WT)≤β+2exp

(
−cλ ∥µ∥2

(∥µ∥
C

√
n

d
− α

∥µ∥

)2)
.

Proof of Theorem B.17. This proof is similar with the proof of Theorem B.1. The robust training loss bound is proved in
Lemma B.29. For the generalization guarantee, apply Lemma B.2 with Lemma B.33, with probability at least 1− 2δ,

L
0/1
rob (WT) = P(x,y)∼D[∃x̃ ∈ B2(x, α) s.t. y ̸= sign(f(x̃;WT))]

≤ β + exp

−cλ

(
E(x,yc)∼Dc [ycf(x;WT)

∣∣yc = 1]∥∥WT
∥∥
2

− α

)2

+ exp

−cλ

(
E(x,yc)∼Dc [ycf(x;WT)

∣∣yc = −1]∥∥WT
∥∥
2

− α

)2

≤ β + 2 exp

(
−cλ

(√
n

C
√
d
∥µ∥2 − α

)2
)
, (Choose C ≥ 16C2

c9
)

where the last line holds for α
∥µ∥ ≤ ∥µ∥

√
n

C
√
d

, so that
√
n

C
√
d
∥µ∥2 − α ≥ 0.

Similarly, we have

L0/1(WT) ≤ β + exp

−cλ

(
E(x,yc)∼Dc [ycf(x;WT)

∣∣yc = 1]∥∥WT
∥∥
2

)2

+ exp

−cλ

(
E(x,yc)∼Dc [ycf(x;WT)

∣∣yc = −1]∥∥WT
∥∥
2

)2

≤ β + 2 exp

(
−cλn ∥µ∥

4

C2d

)
.

The proof of Theorem B.17 builds upon a sequence of Propositions and Lemmas, which we show below.

Proposition B.18 defines a set G to characterize the index of noise that have large variance, and show the size of set G is
large.

40

Benign Overfitting in Adversarial Training of Neural Networks

Proposition B.18. Let ξ = [ξ1, . . . , ξd]⊤ denote the random vector sampled from Dclust. Define G = {i ∈ [d]|E(ξi)2 ≥ κ
2 }.

Then the number of elements |G| ≥ κ
2−κd.

Proof of Proposition B.18. Since each ξi has subgaussian norm at most 1, we have 2 ≥ E exp
(
(ξi)2

)
≥ 1 + E(ξi)2, so

E(ξi)2 ≤ 1. Suppose |G| < κ
2−κd, then we have

κd ≤ E ∥ξ∥2=
∑
i∈G

E(ξi)2+
∑
i/∈G

E(ξi)2 ≤ |G|·1+(d− |G|)· κ
2
< d · κ

2
+(1− κ

2
)

κ

2− κ
d = κd,

which is a contradiction.

Lemma B.19 provides properties of the initialized network weights, similar to Lemma B.3 except we have an additional
result that the averaged initialized weights variance that belongs to set G are not small. This additional result will be used in
proving Lemma B.21.

Lemma B.19. There is a universal constantC0 > 1 such that with probability at least 1−3δ/4 over the random initialization,

1

2
ω2

initd ≤
∥∥w0

s

∥∥2
2
≤ 3

2
ω2

initd, ∀s ∈ [m];
∥∥W0

∥∥
2
≤ C0ωinit(

√
m+

√
d);∑

i∈G(w
0
s,i)

2

|G|
≥ 1

4

∑
i∈[d](w

0
s,i)

2

d
,∀s ∈ [m].

Here G is defined in Proposition B.18.

Proof of Lemma B.19. The first part is proved in Lemma B.3, and it holds with probability at least 1− δ/2.

For the second part, for any fixed s ∈ [m], by concentration of the χ2 distribution, we have

P

(∣∣∣∣∣ 1

|G|ω2
init

∑
i∈G

(w0
s,i)

2 − 1

∣∣∣∣∣ ≥ 1

2

)
≤ 2 exp (−|G|/32) ,

P

∣∣∣∣∣∣ 1

dω2
init

∑
i∈[d]

(w0
s,i)

2 − 1

∣∣∣∣∣∣ ≥ 1

 ≤ 2 exp (−d/8) .

Applying a union bound over all s ∈ [m],∑
i∈G(w

0
s,i)

2

|G|
≥ 1

2
ω2

init ≥
1

4

∑
i∈[d](w

0
s,i)

2

d

holds with probability at least

1− 2m exp (−|G|/32)− 2m exp (−d/8)

≥ 1− 2m exp

(
− κ

32(2− κ)
d

)
− 2m exp (−d/8) (Proposition B.18)

≥ 1− 2δ exp

(
n/C − κ

32(2− κ)
d

)
− 2δ exp (n/C − d/8) (Assumption (5))

≥ 1− 2δ exp

(
−(

κ

32(2− κ)
C log (2)− 1/C)

)
− 2δ exp (−(C log (2) /8− 1/C))

(d ≥ Cn2 log (2) from Assumption (1); C sufficiently large)

≥ 1− δ/4. (C sufficiently large)

The proof is complete by taking a union bound over the above claims.

The following anti-concentration inequality is helpful in proving Lemma B.21.

41

Benign Overfitting in Adversarial Training of Neural Networks

Proposition B.20. [Anti-concentration of subgaussian random variables] Assume X is a c-subgaussian random variable
with E[X] = 0,E[X2] = 1, then

P
(
X ≥ 1

10c2

)
≥ 0.04

220
2
3 c4

.

Proof of Lemma B.20. Denote a = 1
10c2 , A = 220

1
3 c2 and B = 0.04

A2 . From 2 ≥ E exp
(
X2

c2

)
≥ 1 + EX2

c2 we know c ≥ 1.

Consider a truncated version of X defined by X̃ = X · 1a≤|X|≤A. We have

EX̃ = EX̃ − EX = −E
(
X · 1|X|<a

)
− E

(
X · 1|X|>A

)
.

It is trivial that
∣∣E (X · 1|X|<a

)∣∣ ≤ a. By subgaussian tail bound one may compute∣∣E (X · 1|X|>A
)∣∣

≤ E
(
|X| · 1|X|>A

)
≤
∫ A

0

P (|X| > A) dt+

∫ ∞

A

P (|X| > t) dt

≤ 2A · exp
(
−A

2

c2

)
+

∫ ∞

A

2 exp

(
− t

2

c2

)
dt

≤ 2A · exp
(
−A

2

c2

)
+
c2

A
exp

(
−A

2

c2

)
.

These imply ∣∣∣EX̃∣∣∣ ≤ a+ 2A · exp
(
−A

2

c2

)
+
c2

A
exp

(
−A

2

c2

)
.

Similarly,

1 = EX2 =E
(
X2 · 1|X|<a

)
+ E

(
X2 · 1|X|>A

)
+ EX̃2

≤ a2 + 2A2 · exp
(
−A

2

c2

)
+ 2c2 exp

(
−A

2

c2

)
+ EX̃2.

Thus, ∣∣∣EX̃2 − 1
∣∣∣ ≤ a2 + 2A2 · exp

(
−A

2

c2

)
+ 2c2 exp

(
−A

2

c2

)
.

Let X̃+ = max(X̃, 0) and X̃− = max(−X̃, 0), then X̃+ and X̃− are non-negative and X̃ = X̃+ − X̃−, X̃2 = X̃2
+ + X̃2

−.
We thus have ∣∣∣EX̃+ − EX̃−

∣∣∣ ≤ a+ 2A · exp
(
−A

2

c2

)
+
c2

A
exp

(
−A

2

c2

)
,

EX̃2
+ + EX̃2

− ≥ 1− a2 − 2A2 · exp
(
−A

2

c2

)
− 2c2 exp

(
−A

2

c2

)
.

Now assume to the contrary that P (X ≥ a) < B. We have

EX̃+ ≤ A · P (|X| ≥ a) < A ·B,
EX̃2

+ < A2 ·B,

EX̃− ≤ EX̃+ + a+ 2A · exp
(
−A

2

c2

)
+
c2

A
exp

(
−A

2

c2

)
< A ·B + a+ 2A · exp

(
−A

2

c2

)
+
c2

A
exp

(
−A

2

c2

)
,

EX̃2
− ≤ A · EX̃− < A

(
A ·B + a+ 2A · exp

(
−A

2

c2

)
+
c2

A
exp

(
−A

2

c2

))
.

42

Benign Overfitting in Adversarial Training of Neural Networks

These together imply

EX̃2
+ + EX̃2

− < A2 ·B +A

(
A ·B + a+ 2A · exp

(
−A

2

c2

)
+
c2

A
exp

(
−A

2

c2

))
< 1− a2 − 2A2 · exp

(
−A

2

c2

)
− 2c2 exp

(
−A

2

c2

)
,

which is a contradiction. The last inequality holds since

RHS − LHS =1− a2 − 2A2 · exp
(
−A

2

c2

)
− 2c2 exp

(
−A

2

c2

)
−A2 ·B −A

(
A ·B + a+ 2A · exp

(
−A

2

c2

)
+
c2

A
exp

(
−A

2

c2

))
= 1− a2 − 2A2 ·B −A · a− 4A2 · exp

(
−A

2

c2

)
− 3c2 exp

(
−A

2

c2

)
= 1− 1

100c4
− 0.08−A · a− 4A2 · exp

(
−A

2

c2

)
− 3c2 exp

(
−A

2

c2

)
≥ 1− 1

100
− 0.08−A · a− 8A2/

(
A2

c2

)2

− 3c2/
A2

c2

= 1− 0.09− 1.5(22c4a2)
1
3 = 1− 0.09− 1.5(0.22)

1
3 > 0.

This completes the proof.

By combining Proposition B.18, Lemma B.19, and Proposition B.20, we establish the existence of enough neurons with
positive activation at the first and second step of adversarial training, as stated in Lemma B.21. This lemma plays a vital role
throughout the entire proof of networks with non-smooth activation functions.
Lemma B.21. Suppose the events in Lemma B.4 and Lemma B.19 hold. Given Assumption 1, (B1) and (B2), there exists a
constant c0 > 0 that only depends on κ such that with probability at least 1− δ/5,

∀s ∈ [m],
∣∣{i ∈ [n] : yi = as,

〈
w0
s, xi

〉
> 0
}∣∣ ≥ c0n;

∀i ∈ [n],
∣∣{s ∈ [m] : yi = as,

〈
w0
s, xi

〉
> 0
}∣∣ ≥ c0m.

∀s ∈ [m],
∣∣{i ∈ [n] : yi = as,

〈
w1
s, xi

〉
≥ α

∥∥w1
s

∥∥}∣∣ ≥ c0n;

∀i ∈ [n],
∣∣{s ∈ [m] : yi = as,

〈
w1
s, xi

〉
≥ α

∥∥w1
s

∥∥}∣∣ ≥ c0m.

Proof of Lemma B.21. Firstly, we prove the result for w0
s, i.e., the first 2 statements. Fix any given (xi, yi). Recall that

xi = yciµ+ξi, where yci is the clean label, ξi ∼ Dclust is the noise. Note that
〈
w0
s, xi

〉
= yci

〈
w0
s, µ
〉
+
〈
w0
s, ξi

〉
. The first term

is a centered Gaussian with variance ω2
init ∥µ∥

2, therefore applying concentration argument gives us with probability at least
1−δ/20, maxs∈[m]

∣∣〈w0
s, µ
〉∣∣ ≤ 4ωinit ∥µ∥

√
log (m/δ). For the second term, condition on ξi, which is a centered Gaussian

with variance ω2
init ∥ξi∥

2
,∀s ∈ [m]. Since P

(〈
w0
s, ξi

〉
≥ ωinit∥ξi∥

10

)
≥ 1

5 , applying the Hoeffding’s inequality gives us with

probability at least 1− exp (−m/225), there exists a subset Ji ∈ [m] with |Ji| ≥ m/15 such that
〈
w0
s, ξi

〉
≥ ωinit∥ξi∥

10 and
as = yi, ∀s ∈ Ji. Conditioning on ∥ξi∥2 ≥ κd

2 obtained in Lemma B.4, we have that〈
w0
s, xi

〉
≥ −4ωinit ∥µ∥

√
log (m/δ) + ωinit ∥ξi∥ /10 (Proposition B.19)

≥ ωinit

(√
κd/20− 4 ∥µ∥

√
log (m/δ)

)
≥ ωinit

(√
κd/20− 4

√
d/C

)
> 0,

where the last line holds via Assumption (1) and (5) for large enough C. Combining the above arguments, we have with
probability at least 1− δ/20− n exp (−m/225),

∀i ∈ [n],
∣∣{s ∈ [m] : yi = as,

〈
w0
s, xi

〉
> 0
}∣∣ ≥ m

15
.

43

Benign Overfitting in Adversarial Training of Neural Networks

Given m ≥ C log (n/δ), the above holds with probability at least 1− δ/10.

For the other statement, we can condition on w0
s similarly. Denote Xi =

〈
w0
s

∥w0
s∥2

, ξi

〉
, Yi = Xi√

EX2
i

. It is obvious that

EYi = 0 and EY 2
i = 1.

EX2
i =

∑
j∈[d](w

0
s,j)

2E(ξji)2

∥w0
s∥

2
2

≥
∑
j∈G(w

0
s,j)

2E(ξji)2∑
j∈[d](w

0
s,j)

2
(here G is defined in Proposition B.18)

≥ |G| · κ/2
4d

≥ κ2

16− 8κ
. (Lemma B.19 and Proposition B.18)

From Proposition 2.6.1 in (Vershynin, 2018), there exists a universal constant c1 such that ∥Yi∥ψ2
=

∥Xi∥ψ2√
EX2

i

≤ c1
√
16−8κ
κ .

Applying Proposition B.20 gives us that

P
(
Xi ≥

κ3

10(c1)2(16− 8κ)
3
2

)
≥ P

(
Yi ≥

κ2

10(c1)2(16− 8κ)

)
≥ 0.04(

κ4

220
2
3 (c1)4(16− 8κ)2

).

Therefore,
〈
w0
s, ξi

〉
> 0 holds with probability at least 0.04(κ4

220
2
3 (c1)4(16−8κ)2

). Consider yci be the clean label that is

uniformly distributed on {−1,+1} and is independent of ξi, then we have

P
(〈

w0
s, ξi

〉
> 0, as = yci |w0

s

)
=

1

2
P
(〈

w0
s, ξi

〉
> 0|w0

s

)
≥ 0.02(

κ4

220
2
3 (c1)4(16− 8κ)2

).

Similar with the previous part, since ω2
init3d/2 ≥

∥∥w0
s

∥∥2 ≥ ω2
initd/2 holds, applying Hoeffding’s inequality, with probability

at least 1− δ/20−m exp

(
−5× 10−5(κ4

220
2
3 (c1)4(16−8κ)2

)2n

)
,

∀s ∈ [m],
∣∣{i ∈ [n] : yci = as,

〈
w0
s, xi

〉
> 0
}∣∣ ≥ 0.015(

κ4

220
2
3 (c1)4(16− 8κ)2

)n.

When C is sufficiently large and n ≥ C log (m/δ) as assumed in Assumption (5), the above holds with probability at least
1− δ/10. Note that |{i ∈ [n]; yi ̸= yci }| ≤

(
1/C +

√
2/C

)
n ≤ 0.005(κ4

220
2
3 (c1)4(16−8κ)2

)n holds for a sufficient large C.

Thus,

∀s ∈ [m],
∣∣{i ∈ [n] : yi = as,

〈
w0
s, xi

〉
> 0
}∣∣ ≥ 0.01(

κ4

220
2
3 (c1)4(16− 8κ)2

)n.

The proof of the first two statements is complete by taking a union bound over the above two claims.
Now we are going to prove the last two statements. We consider the algorithm runs standard GD at time t = 0; i.e. no
adversarial training examples are generated for the first step, the adversarial training process starts at t ≥ 1. The gradient

descent update gives us w1
s = w0

s +
ηas

2n
√
m

n∑
k=1

ϕ′(
〈
w0
s, xk

〉
)ykxk.

∀s ∈ [m],
∣∣{i ∈ [n] : yi = as,

〈
w0
s, xi

〉
> 0
}∣∣ ≥ c0n. For these i,

〈
w1
s, xi

〉
− α

∥∥w1
s

∥∥ =
〈
w0
s, xi

〉
+

〈
ηas

2n
√
m

n∑
k=1

ϕ′(
〈
w0
s, xk

〉
)ykxk, xi

〉
− α

∥∥w1
s

∥∥
44

Benign Overfitting in Adversarial Training of Neural Networks

≥−
√

3

2
ωinit

√
d · 2

√
C1d+

η

2n
√
m

(
γ
d

C1
− nC1

(
∥µ∥2 +

√
d log (n/δ)

))
− α

(√
3

2
ωinit

√
d+

η

2n
√
m

√
8C1dn

)
(Lemma B.19 and Lemma B.4)

≥−
√

3

2
ωinit

√
d · 3

√
C1d+

η

2n
√
m

(
γ

2C1
−
√

8C1

C

)
d

(α ≤ ∥µ∥ ≤
√

d
Cn ≤

√
C1d and Assumption (1))

≥ η

2n
√
m

(
γ

2C1
−
√

8C1

C
−
√

54C1n2

d

)
d (Assumption (3))

>0. (d ≥ Cn2 log (2) from Assumption (1) and C sufficiently large)

Therefore, ∀s ∈ [m],
∣∣{i ∈ [n] : yi = as,

〈
w1
s, xi

〉
≥ α

∥∥w1
s

∥∥}∣∣ ≥ c0n.
Similarly, ∀i ∈ [n],

∣∣{s ∈ [m] : yi = as,
〈
w1
s, xi

〉
≥ α

∥∥w1
s

∥∥}∣∣ ≥ c0m.

Definition B.22. If the events in Lemma B.4, B.19 and B.21 occur, let us say that we have a good run.

A good run occurs with probability at least 1− 2δ. In the following proof, we condition on a good run occurs.

The following proposition presents several properties of the distribution Dclust, which are crucial for establishing the
generalization guarantees.

Proposition B.23. Assume ξ ∼ Dclust. Then the following holds:

(D1) For any fixed v ∈ Rd, for any δ̄ < 0.5, with probability at least 1− δ̄ w.r.t ξ, |⟨v, ξ⟩| ≤ c6 ∥v∥
√

log
(
1/δ̄
)
, where c6

is an absolute constant.

(D2) For any δ̄ < 0.5, with probability at least 1 − δ̄ w.r.t ξ, ∥ξ∥2 ≤ 9d(log
(
1/δ̄
)
). In particular, denote event E ={

∥ξ∥ ≥ 6
√
log
(
1/δ̄
)
d
}

, we have E [∥ξ∥1 (E)] ≤ 8δ̄4 ·
√
d · log

(
1/δ̄
)
.

Proof of B.23. We first prove (D1). Note that the coordinates of ξ are independent variables with ψ2 norm at most 1. From
Hoeffding’s inequality, there exists a universal constant c such that

P
(
|⟨v, ξ⟩| > c6 ∥v∥

√
log
(
1/δ̄
))

≤ 2 exp
(
−cc26 ∥v∥

2
log
(
1/δ̄
)
/ ∥v∥2

)
= 2δ̄cc

2
6 .

By selecting c6 =
√

2
c , we get

P
(
|⟨v, ξ⟩| > c6 ∥v∥

√
log
(
1/δ̄
))

≤ 2δ̄2 ≤ δ̄.

Next we prove (D2). Note that the coordinates of ξ = [ξ1, ξ2, . . . , ξd]⊤ are independent variables with ψ2 norm at most 1.
From Bernstein’s inequality, there exists a universal constant c such that for every t > 0,

P
(
∥ξ∥2 − E ∥ξ∥2 > t

)
≤ exp

(
−cmin

{
t2

d
, t

})
.

Since 2 ≥ E exp
(
(ξi)2

)
≥ 1 + E(ξi)2, we have E ∥ξ∥2 =

∑d
i=1 E(ξi)2 ≤ d.

Select t = max

{√
d log(1/δ̄)

c ,
log(1/δ̄)

c

}
, then P

(
∥ξ∥2 − E ∥ξ∥2 > t

)
≤ δ̄. Therefore, with probability at least 1− δ̄ w.r.t

45

Benign Overfitting in Adversarial Training of Neural Networks

ξ,

∥ξ∥2 ≤E ∥ξ∥2 +max

√
d log

(
1/δ̄
)

c
,
log
(
1/δ̄
)

c

≤ d+

√
d log

(
1/δ̄
)

c
+

log
(
1/δ̄
)

c

≤ 9d(log
(
1/δ̄
)
). (d is sufficiently large since C is sufficiently large; δ̄ < 0.5)

As for the last statement,

E [∥ξ∥1 (E)]

=

∫ ∞

0

P (∥ξ∥1 (E) ≥ t) dt

=

∫ 6
√

log(1/δ̄)d

0

P (∥ξ∥1 (E) ≥ t) dt+

∫ ∞

6
√

log(1/δ̄)d
P (∥ξ∥1 (E) ≥ t) dt

≤ 6
√

log
(
1/δ̄
)
d · P

(
∥ξ∥1 (E) ≥ 6

√
log
(
1/δ̄
)
d

)
+

∫ ∞

6
√

log(1/δ̄)d
exp

(
− t2

9d

)
dt (P

(
∥ξ∥2 > 9d(log

(
1/δ̄
)
)
)
≤ δ̄)

≤ 6
√

log
(
1/δ̄
)
d · δ̄4 +

∫ ∞

0

exp

−

(
t+ 6

√
log
(
1/δ̄
)
d
)2

9d

 dt

≤ 6
√

log
(
1/δ̄
)
d · δ̄4 +

∫ ∞

0

exp

−
12t
√
log
(
1/δ̄
)
d+ 36 log

(
1/δ̄
)
d

9d

 dt

= 6
√

log
(
1/δ̄
)
d · δ̄4 + δ̄4

9d

12
√
log
(
1/δ̄
)
d

≤ 8δ̄4 ·
√
d · log

(
1/δ̄
)
. (δ̄ < 0.5)

Before proceeding to the next Lemma, we define some important notations which will be used frequently later. We define

λi(x;Wt) =
1

m

m∑
s=1

ϕ
(〈

wts − η∇wsL̂rob(Wt), x
〉)

− ϕ(⟨wts, x⟩)〈
−η∇wsL̂rob(Wt), x

〉 ϕ′(
〈
wts, x̃

t
i

〉
),

so that the following holds:

yf(x;Wt+1)− yf(x;Wt)

=
1√
m

m∑
s=1

as
ϕ
(〈

wts − η∇wsL̂rob(Wt), x
〉)

− ϕ(⟨wts, x⟩)〈
−η∇wsL̂rob(Wt), x

〉 〈
−η∇wsL̂rob(Wt), yx

〉

=
η

mn

n∑
i=1

m∑
s=1

ϕ
(〈

wts − η∇wsL̂rob(Wt), x
〉)

− ϕ(⟨wts, x⟩)〈
−η∇wsL̂rob(Wt), x

〉 g̃i(Wt)ϕ′(
〈
wts, x̃

t
i

〉
)
〈
yix̃ti, yx

〉
=
η

n

n∑
i=1

g̃i(Wt)λi(x;Wt)
〈
yix̃ti, yx

〉
.

46

Benign Overfitting in Adversarial Training of Neural Networks

For any t ≥ 1, We define A(t) as the set of pairs (i, s) such that the neurons s is active for the adversarial examples
∀x̃i ∈ B2(xi, α); i.e.,

A(t) :=
{
(i, s) ∈ [n]× [m] :

〈
wts, x̃i

〉
> 0,∀x̃i ∈ B2(xi, α)

}
.

For notation simplicity, we also define

A(0) :=
{
(i, s) ∈ [n]× [m] :

〈
wts, xi

〉
> 0
}
.

Denote its coordinate as

Ai(t) : = {s ∈ [m] : (i, s) ∈ A(t)} ,
As(t) : = {i ∈ [n] : (i, s) ∈ A(t)} .

Proposition B.24. For any t ≥ 1 and any pair (i, s) ∈ A(t), we have ∀x̃i ∈ B2(xi, α), ϕ′(⟨wts, x̃i⟩) ≥ γ. Moreover,
λi(x̃i;Wt) ≥ γ2

∣∣Ai(t) ∩ Ai(t+ 1)
∣∣ /m.

Proof. The definition of A(t) implies that ⟨wts, x̃i⟩ > 0,∀x̃i ∈ B2(xi, α). By the definition of activation function we have
ϕ′(⟨wts, x̃i⟩) ≥ γ.

The definition of λi(x̃i;Wt) gives us the following:

λi(x̃i;Wt) ≥ γ

m

∑
s∈Ai(t)∩Ai(t+1)

ϕ
(〈

wt+1
s , x̃i

〉)
− ϕ(⟨wts, x̃i⟩)〈

wt+1
s , x̃i

〉
− ⟨wts, x̃i⟩

≥ γ2

m

∣∣Ai(t) ∩ Ai(t+ 1)
∣∣ .

We further define T := {(i, s) ∈ [n]× [m] : yi = as} and similarly we denote

T i : = {s ∈ [m] : (i, s) ∈ T } ,
Ts : = {i ∈ [n] : (i, s) ∈ T }

Lemma B.25. On a good run we have ∣∣Ai(1) ∩ T i
∣∣ ≥ ∣∣Ai(0) ∩ T i

∣∣ ≥ c0m,

|As(1) ∩ Ts| ≥ |As(0) ∩ Ts| ≥ c0n.

Proof of Lemma B.25. The proof of Lemma B.21 implies that ∀i ∈ [n], s ∈ [m],∣∣{i ∈ [n] : yi = as,
〈
w1
s, x̃i

〉
> 0,∀x̃i ∈ B2(xi, α)

}∣∣ ≥ ∣∣{i ∈ [n] : yi = as,
〈
w0
s, xi

〉
> 0
}∣∣ ≥ c0n,∣∣{s ∈ [m] : yi = as,

〈
w1
s, x̃i

〉
> 0,∀x̃i ∈ B2(xi, α)

}∣∣ ≥ ∣∣{s ∈ [m] : yi = as,
〈
w0
s, x̃i

〉
> 0
}∣∣ ≥ c0m.

Combine with the definition of A and T conclude the proof.

In the following Lemma, we will 1) prove the number of neurons with positive activation increases as the training epochs
increases; 2) provide both an upper bound and a lower bound on the increment in the un-normalized margin for arbitrary
adversarial training examples; 3) show the loss g is at the same scale across all adversarial training examples. An analog of
Lemma B.26 is Lemma B.9 for neural networks with smooth activation functions.

Lemma B.26. On a good run, there exists a constant Cr > 0 that only depends on κ, γ such that for any t ≥ 0, we have

(E1) A(t) ∩ T ⊂ A(t+ 1) ∩ T .

(E2) ηc0γ
2g̃i(Wt)
2n

(√
d
C1

− α
)2

≤ yif(x̃i;Wt+1)− yif(x̃i;Wt) ≤ 3η
n

(
C1d+ α2

)
g̃i(Wt),∀x̃i ∈ B2(xi, α),∀i ∈ [n].

47

Benign Overfitting in Adversarial Training of Neural Networks

(E3) maxi,j∈[n]
g(yif(x̃ti;W

t))
g(yjf(x̃tj ;W

t))
≤ Cr.

Here c0 is the constant introduced in Lemma B.21

Proof of Lemma B.26. We prove via induction. Recall x̃ti = argmaxx̃i∈B2(xi,α) ℓ(yif(x̃i;Wt)). Similar as network with
smooth activation functions, we have the following

max
i,j∈[n]

g(yif(x̃ti;Wt))

g(yjf(x̃tj ;Wt))
≤ max

(
2, 2 · max

i,j∈[n]

exp
(
−yif(x̃ti;Wt)

)
exp

(
−yjf(x̃tj ;Wt)

)) .
Therefore we only need max

i,j∈[n]

exp(−yif(x̃ti;W
t))

exp(−yjf(x̃tj ;W
t))

≤ Cr/2 to hold. Note that at initialization, max
i,j∈[n]

exp(−yif(x̃0i ;W
0))

exp(−yjf(x̃0j ;W
0))

= 1 ≤

Cr/2.

Without loss of generality, we choose i = 1, j = 2. Through induction, at iteration t, we have
exp(−y1f(x̃t1;W

t))
exp(−y2f(x̃t2;W

t))
≤ Cr/2.

Now we are proving with the following order: (E1), (E2) and (E3) for t+1. The t = 0 case of (E1) is proved in Lemma B.21.
For any t ≥ 1 and (i, s) ∈ A(t) ∩ T , we have yias = 1 and ⟨wts, x̃i⟩ > 0,∀x̃i ∈ B2(xi, α) > 0 by definition, we have〈

wt+1
s , x̃i

〉
−
〈
wts, x̃i

〉
=

η

n
√
m

n∑
k=1

ykasg̃k(Wt)ϕ′(
〈
wts, x̃

t
k

〉
)
〈
x̃tk, x̃i

〉
=

η

n
√
m
g̃i(Wt)ϕ′(

〈
wts, x̃

t
i

〉
)
〈
x̃ti, x̃i

〉
+

η

n
√
m

∑
k ̸=i

ykasg̃k(Wt)ϕ′(
〈
wts, x̃

t
k

〉
)
〈
x̃tk, x̃i

〉
≥ η

n
√
m

Ĝrob(Wt)

Cr
γ
(√

d/C1−α
)2

− η√
m
Ĝrob(Wt)

(
C1

(
∥µ∥2+

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)
≥ η

n
√
m

Ĝrob(Wt)

Cr
γ
(√

d/C1−α
)2

− η

n
√
m
Ĝrob(Wt)d

(
C1 + 1

C
+

√
5C1√
C

)
(Assumption (1))

≥ η

2n
√
m

Ĝrob(Wt)

Cr
γ
(√

d/C1 − α
)2

> 0. (α ≤ ∥µ∥ ≤ 1
2

√
d/C1; C sufficiently large)

This implies that (i, s) ∈ A(t+ 1) ∩ T , therefore (E1) holds.

Next we consider the following for any t ≥ 1

yif(x̃i;Wt+1)− yif(x̃i;Wt)

=
η

n

n∑
k=1

g̃k(Wt)λk(x̃i;Wt)
〈
ykx̃tk, yix̃i

〉
=
η

n
g̃i(Wt)λi(x̃i;Wt)

〈
x̃ti, x̃i

〉
+
η

n

∑
k ̸=i

g̃k(Wt)λk(x̃i;Wt)
〈
ykx̃tk, yix̃i

〉
.

The first term gives us

η

n
g̃i(Wt)λi(x̃i;Wt)

〈
x̃ti, x̃i

〉
≥ η

n
g̃i(Wt)λi(x̃i;Wt)

(√
d/C1 − α

)2
≥ η

n
g̃i(Wt)

γ2

m

∣∣Ai(t) ∩ Ai(t+ 1)
∣∣ (√d/C1 − α

)2
(Proposition B.24)

≥ η

n
g̃i(Wt)

γ2

m

∣∣Ai(0) ∩ T i
∣∣ (√d/C1 − α

)2
((E1))

48

Benign Overfitting in Adversarial Training of Neural Networks

≥ ηγ2c0
n

(√
d/C1 − α

)2
g̃i(Wt). (Lemma B.25)

On the other hand,

η

n
g̃i(Wt)λi(x̃i;Wt)

〈
x̃ti, x̃i

〉
≤ η

n

(√
C1d+ α

)2
g̃i(Wt).

The second terms tells us that

η

n

∣∣∣∣∣∣
∑
k ̸=i

g̃k(Wt)λk(x̃i;Wt)
〈
ykx̃tk, yix̃i

〉∣∣∣∣∣∣
≤ η

(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)
Ĝrob(Wt)

≤ ηdg̃i(Wt)

n
. (Ĝrob(Wt) ≤ Cr g̃i(Wt); Assumption (1) for large enough C)

Similarly,

η

n

∑
k ̸=i

g̃k(Wt)λk(x̃i;Wt)
〈
ykx̃tk, yix̃i

〉
≥ −η

(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)
Ĝrob(Wt)

≥ −ηCr
(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)
g̃i(Wt) (Ĝrob(Wt) ≤ Crg̃i(Wt))

≥ −ηγ
2c0
2n

(
0.5
√
d/C1

)2
g̃i(Wt) (Assumption (1) for large enough C)

≥ −ηγ
2c0
2n

(√
d/C1 − α

)2
g̃i(Wt).

Summing the two terms together we have (E2) holds for any t ≥ 1. Now let’s look at the t = 0 case of (E2). From the
proof of Lemma B.21, for any i ∈ [n], there are at least c0m many s ∈ [m], such that yi = as and

〈
w1
s, x̃i

〉
≥ η

5n
√
m

γ
C1
d.

Combining the fact that |
〈
w0
s, x̃i

〉
| ≤

√
3
2ωinit

√
d2

√
C1d ≤ η

√
6C1d√
m

≤ η
n
√
m

√
6C1√

C log(2)
d and C is sufficiently large, we

know that

λk(x̃i;W0) =
1

m

m∑
s=1

ϕ
(〈

w1
s, x̃i

〉)
− ϕ(

〈
w0
s, x̃i

〉
)

⟨w1
s − w0

s, x̃i⟩
ϕ′(
〈
w0
s, x̃

0
k

〉
) ∈ [

c0γ
2

1.1
, 1].

yif(x̃i;W1)− yif(x̃i;W0) =
η

n

n∑
k=1

g̃k(W0)λk(x̃i;W0)
〈
ykx̃0k, yix̃i

〉
Similar with the logic for t ≥ 1, we get

yif(x̃i;W1)− yif(x̃i;W0)

≥ ηγ2c0
1.1n

(√
d/C1 − α

)2
g̃i(W0)− ηCr

(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)
g̃i(W0)

≥ ηγ2c0
2n

(√
d/C1 − α

)2
g̃i(W0)

and

yif(x̃i;W1)− yif(x̃i;W0) ≤ η

n
(
√
C1d+ α)2g̃i(W0) + ηCr

(
C1

(
∥µ∥2 +

√
d log (n/δ)

)
+ 2α

√
C1d+ α2

)
g̃i(W0)

≤ 3η

n
(C1d+ α2)g̃i(W0)

49

Benign Overfitting in Adversarial Training of Neural Networks

Now the proof of (E2) is complete. This implies that yif(x̃ti;Wt) ≥ 0,∀t ≥ 0, i ∈ [n]. Applying the above gives us the
following,

exp
(
−y1f(x̃t+1

1 ;Wt+1)
)

exp
(
−y2f(x̃t+1

2 ;Wt+1)
)

=
exp

(
−y1f(x̃t1;Wt)

)
exp

(
−y2f(x̃t2;Wt)

) · exp (y1f(x̃t1;Wt)− y1f(x̃t+1
1 ;Wt+1)

)
exp

(
y2f(x̃t2;Wt)− y2f(x̃t+1

2 ;Wt+1)
)

≤
exp

(
−y1f(x̃t1;Wt)

)
exp

(
−y2f(x̃t2;Wt)

) · exp (y1f(x̃t+1
1 ;Wt)− y1f(x̃t+1

1 ;Wt+1)
)

exp
(
y2f(x̃t2;Wt)− y2f(x̃t2;Wt+1)

)
≤

exp
(
−y1f(x̃t1;Wt)

)
exp

(
−y2f(x̃t2;Wt)

) · exp
3η

n

(
C1d+ α2

)
g̃2(Wt)− ηc0γ

2

2n

(√
d

C1
− α

)2

g̃1(Wt)

=

exp
(
−y1f(x̃t1;Wt)

)
exp

(
−y2f(x̃t2;Wt)

) ·exp
ηc0γ2

2n

(√
d

C1
−α

)2

g̃2(Wt)

 3η
n

(
C1d+ α2

)
ηc0γ2

2n

(√
d
C1

−α
)2 − g̃1(Wt)

g̃2(Wt)

 ,

where the first inequality holds since exp
(
y1f(x̃t+1

1 ;Wt)
)

≥ exp
(
y1f(x̃t1;Wt)

)
, exp

(
y2f(x̃t+1

2 ;Wt+1)
)

≤
exp

(
y2f(x̃t2;Wt+1)

)
by the definition of x̃t1, x̃

t+1
2 .

If g̃1(Wt)
g̃2(Wt) ≥

3η
n (C1d+α

2)
ηc0γ

2

2n

(√
d/C1−α

)2 =
6(C1d+α

2)
c0γ2

(√
d/C1−α

)2 , then
exp(−y1f(x̃t+1

1 ;Wt+1))
exp(−y2f(x̃t+1

2 ;Wt+1))
≤ exp(−y1f(x̃t1;W

t))
exp(−y2f(x̃t2;W

t))
≤ Cr/2. Otherwise

we have

exp
(
−y1f(x̃t+1

1 ;Wt+1)
)

exp
(
−y2f(x̃t+1

2 ;Wt+1)
)

≤ 2g̃1(Wt)

g̃2(Wt)
· exp

(
3η

n

(
C1d+ α2

)
g̃2(Wt)− ηc0γ

2

2n

(√
d/C1 − α

)2
g̃1(Wt)

)
≤

12
(
C1d+ α2

)
c0γ2

(√
d/C1 − α

)2 exp

(
3η

n

(
C1d+ α2

))
(g̃i(Wt) ≤ 1)

≤
24
(
C1d+ α2

)
c0γ2

(√
d/C1 − α

)2 ≤ Cr/2,

where the last line holds due to exp
(
3η
n

(
C1d+ α2

))
≤ 2 for η ≤ 1/Cd2 with C ≥ 6C1

log(2) given by Assumption (4).

Assumption (1) and Assumption (6) gives us that α ≤ ∥µ∥ ≤ 0.5
√

d
C1

. As a result, there exists a constant Cr =

192C1(C1+1/(4C1))
c0γ2 ≥ 48(C1d+α

2)

c0γ2
(√

d/C1−α
)2 such that the Lemma statement holds, where C1 comes from Lemma B.4.

Similar with the smooth activation setting, we can characterize a property of the adversarial training example x̃ti using
Lemma B.26: during training the perturbed data x̃ti is close to the linear subspace span{x1, . . . , xn} in Rd.

Lemma B.27. ∀t ∈ N and i ∈ [n], the distance between x̃ti and span{x1, . . . , xn} satisfies dist(x̃ti, span{x1, . . . , xn}) ≤
min

{
ωinit

√
md

η , α
}

.

Proof of Lemma B.27. We define Cd = ωinit
√
md

η for simplicity. The upper bound α is obvious because the perturbation size
is α. Now we look at Cd. We prove the result via induction. Consider time t = 0, from the symmetric initialization, for any
given x, we have f(x;W0) = 0 is a constant function. Therefore, for any given training data xi, generating the adversarial
examples by adding any perturbations on xi cannot increase the training loss. For simplicity, we consider the algorithm runs
standard GD at time t = 0; i.e. no adversarial training examples are generated for the first step, the adversarial training

50

Benign Overfitting in Adversarial Training of Neural Networks

process starts at t ≥ 1. This gives us that dist(x̃0i , span{x1, . . . , xn}) = dist(xi, span{x1, . . . , xn}) = 0 ≤ Cd. Suppose
we have dist(x̃si , span{x1, . . . , xn}) ≤ Cd holds for any 0 ≤ s ≤ t− 1, and we will now prove the result for t.

Recall x̃tk = argmaxx̃∈B2(xk,α) ℓ(ykf(x̃;Wt)). We decompose x̃tk = x̃tk,∥ + x̃tk,⊥, where x̃tk,∥ ∈ span{x1, . . . , xn} and
x̃tk,⊥⊥ span{x1, . . . , xn}. Assume ∥x̃tk,⊥∥2 > Cd, and we will prove via contradiction. As the loss function is monotonically
decreasing, x̃tk = argminx̃∈B2(xk,α) ykf(x̃;Wt). As a result, there is no feasible direction that is also a descent direction.

Here we construct directions vθ = −x̃tk,⊥ − θyk(
n∑
i=1

yixi) for every θ ∈ R that satisfies 0 < θ <
∥x̃tk,⊥∥2

2√
(α2−∥x̃tk,⊥∥2

2)·8C1dn
. We

have that

〈
x̃tk − xk, vθ

〉
=

〈
x̃tk,⊥ + x̃tk,∥ − xk,−x̃tk,⊥ − θyk(

n∑
i=1

yixi)

〉

=

〈
x̃tk,∥ − xk,−θyk(

n∑
i=1

yixi)

〉
+
〈
x̃tk,⊥,−x̃tk,⊥

〉
≤ θ∥x̃tk,∥ − xk∥2 · ∥

n∑
i=1

yixi∥2 − ∥x̃tk,⊥∥22

≤ θ
√
(α2 − ∥x̃tk,⊥∥22) · 8C1dn− ∥x̃tk,⊥∥22 < 0, (Lemma B.4 (C4))

therefore vθ are feasible directions. From the above discussion, we know that vθ cannot be descent directions. Pick
θ =

∥x̃tk,⊥∥2
2√

8α2C1dn
. Since sufficient neurons are activated for every x̃ ∈ B2(xk, α), we know there exist at least c0m many

s ∈ [m] such that
〈
wts, x̃

t
k

〉
> 0. From the form of the classifier ykf(x̃;Wt) = yk

1√
m

m∑
s=1

asϕ(⟨wts, x̃⟩), and combining the

fact that ϕ is strictly increasing on (0,+∞), there exists an s0 such that ykas0
〈
wts0 , vθ

〉
≥ 0.

0 ≥ ykas0
〈
wts0 ,−vθ

〉
=

t−1∑
t′=0

ykas0

〈
wt

′+1
s0 − wt

′

s0 , x̃
t
k,⊥ + θyk(

n∑
i=1

yixi)

〉
+ ykas0

〈
w0
s0 , x̃

t
k,⊥ + θyk(

n∑
i=1

yixi)

〉

=

t−1∑
t′=0

ykas0

〈
ηas0
n
√
m

n∑
k′=1

g̃k′(Wt′)ϕ′(
〈

wt
′

s0 , x̃
t′

k′

〉
)yk′ x̃t

′

k′ , x̃
t
k,⊥ + θyk(

n∑
i=1

yixi)

〉
+ ykas0

〈
w0
s0 ,x̃

t
k,⊥ + θyk(

n∑
i=1

yixi)

〉

=

t−1∑
t′=0

〈
η

n
√
m

n∑
k′=1

g̃k′(Wt′)ϕ′(
〈

wt
′

s0 , x̃
t′

k′

〉
)yk′ x̃t

′

k′,∥, θ(

n∑
i=1

yixi)

〉

+

t−1∑
t′=0

yk

〈
η

n
√
m

n∑
k′=1

g̃k′(Wt′)ϕ′(
〈

wt
′

s0 , x̃
t′

k′

〉
)yk′ x̃t

′

k′,⊥, x̃
t
k,⊥

〉
+ ykas0

〈
w0
s0 , x̃

t
k,⊥ + θyk(

n∑
i=1

yixi)

〉

≥ θ

t−1∑
t′=0

c0γηdĜrob(Wt′)

8C1Cr
√
m

−
t−1∑
t′=0

Cdη√
m
Ĝrob(Wt′)∥x̃tk,⊥∥2 − 2ωinit

√
d(∥x̃tk,⊥∥2 + θ

√
8C1dn)

(∥x̃t
′

k′,⊥∥2 ≤ Cd from induction, and sufficiently many neurons activated)

≥
∥x̃tk,⊥∥22√
8α2C1dn

t−1∑
t′=0

c0γηdĜrob(Wt′)

8C1Cr
√
m

−
t−1∑
t′=0

Cdη√
m
Ĝrob(Wt′)∥x̃tk,⊥∥2 − 2ωinit

√
d(∥x̃tk,⊥∥2 +

∥x̃tk,⊥∥22
α

) (plug in θ)

≥
∥x̃tk,⊥∥22√
α2C1dn

t−1∑
t′=0

c0γηdĜrob(Wt′)

32C1Cr
√
m

−
t−1∑
t′=0

Cdη√
m
Ĝrob(Wt′)∥x̃tk,⊥∥2 − 2ωinit

√
d∥x̃tk,⊥∥2

(ωinit ≤ η√
md

≤ η√
Cmn

and C sufficiently large)

≥
Cd∥x̃tk,⊥∥2√
α2C1dn

t−1∑
t′=0

c0γηdĜrob(Wt′)

32C1Cr
√
m

−
t−1∑
t′=0

Cdη√
m
Ĝrob(Wt′)∥x̃tk,⊥∥2 − 2ωinit

√
d∥x̃tk,⊥∥2

51

Benign Overfitting in Adversarial Training of Neural Networks

≥
Cd∥x̃tk,⊥∥2√
α2C1dn

t−1∑
t′=0

c0γηdĜrob(Wt′)

32C1Cr
√
m

− 5

t−1∑
t′=0

Cdη√
m
Ĝrob(Wt′)∥x̃tk,⊥∥2 (

t−1∑
t′=0

Ĝrob(W
t′) ≥ Ĝrob(W

0) = 1
2)

> 0. (d ≥ Cnα2 from Assumption (1), and C sufficiently large)

This is a contradiction. Therefore, we have proved dist(x̃tk, span{x1, . . . , xn}) = ∥x̃tk,⊥∥2 ≤ Cd. By induction, proof is
complete.

Similar with the smooth activation setting, we can prove a different version of Lemma B.4 (C5) and (C6) that will be used
later.

Lemma B.28. ∀i ∈ C, 1
3 ∥µ∥

2 ≤
〈
µ, yix̃ti

〉
≤ 3 ∥µ∥2. ∀i ∈ N , −3 ∥µ∥2 ≤

〈
µ, yix̃ti

〉
≤ − 1

3 ∥µ∥
2.

Proof of Lemma B.28. From Lemma B.4 (C5) and (C6), we know that 1
2 ∥µ∥

2 ≤ ⟨µ, yixi⟩ ≤ 2 ∥µ∥2 holds for all i ∈ C, and
−2 ∥µ∥2 ≤ ⟨µ, yixi⟩ ≤ −1

2 ∥µ∥
2 holds for all i ∈ N . Therefore, it suffices to prove |

〈
µ, yix̃ti

〉
− ⟨µ, yixi⟩ | ≤ 1

6 ∥µ∥
2. We

can decompose x̃ti−xi = (x̃ti−xi)∥+(x̃ti−xi)⊥, where (x̃ti−xi)∥ ∈ span{x1, . . . , xn} and (x̃ti−xi)⊥⊥ span{x1, . . . , xn}.
From Lemma B.10, ∥(x̃ti − xi)⊥∥2 ≤ min{Cd, α} ≤ Cd ≤ 1. For the parallel component, we can write (x̃ti − xi)∥ =
n∑
k=1

zkxk, where zk ∈ R. From Lemma B.4 (C4), α2 ≥ ∥x̃ti − xi∥22 ≥ ∥(x̃ti − xi)∥∥22 ≥ d
8C1

·
n∑
k=1

z2k. Thus,
√

8C1nα2

d ≥√
n

n∑
k=1

z2k ≥
n∑
k=1

|zk|.

Now we can prove the statement.

|
〈
µ, yix̃ti

〉
− ⟨µ, yixi⟩ | = |

〈
µ, x̃ti − xi

〉
|

≤ |
〈
µ, (x̃ti − xi)∥

〉
|+ |

〈
µ, (x̃ti − xi)⊥

〉
|

≤
n∑
k=1

|zk| · | ⟨µ, xk⟩ |+ Cd∥µ∥

≤
√

8C1nα2

d
· 2∥µ∥2 + Cd∥µ∥

≤ 1

6
∥µ∥2 . (Assumption (B2), Assumption (1) and C being sufficiently large)

Lemma B.29, an analog of Lemma B.15, aims at providing the convergence guarantees of robust training loss for networks
with non-smooth activation functions.

Lemma B.29. For a non-smooth homogeneous activation function ϕ, provided C > 1 is sufficiently large, then on a good
run, the robust training loss satisfies

L̂rob(WT) ≤ 30

∥µ∥ γc0
√
ηT

.

where c0 > 1 is the constant in Lemma B.21.

Proof of Lemma B.29. The proof is similar with Lemma B.15. We first need to show a lower bound for
∥∥∥∇L̂rob(Wt)

∥∥∥
F
=

supU:∥U∥F=1

〈
−∇L̂rob(Wt),U

〉
, and it suffices to construct a matrix V with Frobenius norm at most one such that〈

−∇L̂rob(Wt),V
〉

is bounded from below by a positive constant. To this end, choose V ∈ Rm×d be the matrix with rows

vs = 1√
m
asµ/ ∥µ∥ ,∀s ∈ [m]. Then ∥V∥F = 1 since as = ±1, and we have for any Wt,

〈
∇f(x̃i;Wt),V

〉
=

m∑
s=1

1√
m
asϕ

′(
〈
wts, x̃i

〉
) ⟨vs, x̃i⟩ =

〈
µ

∥µ∥
, x̃i

〉
1

m

m∑
s=1

ϕ′(
〈
wts, x̃i

〉
).

52

Benign Overfitting in Adversarial Training of Neural Networks

1 ≥ 1

m

m∑
s=1

ϕ′(
〈
wts, x̃i

〉
)

≥ 1

m

∑
s∈Ai(t)∩T i

ϕ′(
〈
wts, x̃i

〉
) (Only count the neurons that satisfy ⟨wts, x̃i⟩ > 0)

≥ 1

m

∑
s∈Ai(0)∩T i

ϕ′(
〈
wts, x̃i

〉
) ≥ c0γ. (Lemma B.26)

By Lemma B.4 and Lemma B.28, we have{
yi ⟨µ, xi⟩ ≥ 1

2 ∥µ∥
2
, i ∈ C

|⟨µ, xi⟩| ≤ 3
2 ∥µ∥

2
, i ∈ N

,

{
yi ⟨µ, x̃i⟩ ≥ 1

3 ∥µ∥
2
, i ∈ C

|⟨µ, x̃i⟩| ≤ 3 ∥µ∥2 , i ∈ N

And ∀z > 0, ϕ′(z) ≥ γ > 0, so applying Lemma B.25, we have the following lower bound for any Wt,

yi
〈
∇f(xi;Wt),V

〉
≥
{
γ
2 ∥µ∥ · c0, i ∈ C
− 3

2 ∥µ∥ , i ∈ N , yi
〈
∇f(x̃i;Wt),V

〉
≥
{
γ
3 ∥µ∥ · c0, i ∈ C
−3 ∥µ∥ , i ∈ N

Similar as Lemma B.15, we have 〈
−∇L̂rob(Wt),V

〉
≥ γ ∥µ∥

4
c0Ĝrob(Wt).

Thus we have

Ĝrob(Wt) ≤ 4

γ ∥µ∥ c0

〈
−∇L̂rob(Wt),V

〉
≤ 4

γ ∥µ∥ c0

∥∥∥∇L̂rob(Wt)
∥∥∥
F
.

We next give an upper bound on
∥∥Wt

∥∥2
F

as follows:∥∥Wt+1
∥∥2
F

(16)

=
∥∥∥Wt − η∇L̂rob(Wt)

∥∥∥2
F

=
∥∥Wt

∥∥2
F
+ η2

∥∥∥∇L̂rob(Wt)
∥∥∥2
F
− 2η

1

n

n∑
i=1

ℓ′(yif(x̃ti;Wt))yi
〈
∇f(x̃ti;Wt),Wt

〉
≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(Wt)2 − 2η

1

n

n∑
i=1

ℓ′(yif(x̃ti;Wt))yi
〈
∇f(x̃ti;Wt),Wt

〉
(Equation (5))

=
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(Wt)2 + 2η

1

n

n∑
i=1

g(yif(x̃ti;Wt))yi

m∑
s=1

as√
m
ϕ′(
〈
wts, x̃

t
i

〉
)
〈
wts, x̃

t
i

〉
=
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
Ĝrob(Wt)2 + 2η

1

n

n∑
i=1

g(yif(x̃ti;Wt))yif(x̃ti;Wt)

≤
∥∥Wt

∥∥2
F
+ η2

C2
2d

n
+

2

3
η. (g(z)z ≤ 1

3 , g(z) ≤ 1)

Telescoping gives us that ∥∥Wt
∥∥2
F
≤
∥∥W0

∥∥2
F
+

(
η2
C2

2d

n
+

2

3
η

)
t.

We apply the same argument as B.15. Recall from Lemma B.26 (E2) that ∀t ≥ 0, ykf(x̃k;Wt+1) ≥ ykf(x̃k;Wt),∀x̃k ∈
B2(xk, α),∀k ∈ [n]. Then we have ykf(x̃Tk ;WT) ≥ ykf(x̃Tk ;Wt), and therefore ℓ(ykf(x̃Tk ;WT)) ≤ ℓ(ykf(x̃Tk ;Wt)) ≤
ℓ(ykf(x̃tk;Wt)) by definition that x̃ti = argmaxx̃i∈B2(xi,α) ℓ

(
yif(x̃i;Wt)

)
, t ≤ T . As a result, we have

L̂rob(WT) =
1

n

n∑
i=1

max
x̃i∈B2(xi,α)

ℓ
(
yif(x̃i;WT)

)
53

Benign Overfitting in Adversarial Training of Neural Networks

≤ 1

T

T−1∑
t=0

1

n

n∑
i=1

max
x̃i∈B2(xi,α)

ℓ
(
yif(x̃i;Wt)

)
=

1

T

T−1∑
t=0

2

n

n∑
i=1

max
x̃i∈B2(xi,α)

−ℓ′
(
yif(x̃i;Wt)

)
(ℓ (z) ≤ −2ℓ′(z) when z ≥ 0, Lemma B.26 (E2))

=
2

T

T−1∑
t=0

Ĝrob(Wt)

≤ 8

∥µ∥ γc0T

T−1∑
t=0

〈
−∇L̂rob(Wt),V

〉
=

8

∥µ∥ γc0ηT
(〈

WT ,V
〉
−
〈
W0,V

〉)
(Equation (15))

≤ 8

∥µ∥ γc0ηT
(∥∥WT

∥∥
F
+
∥∥W0

∥∥
F

)
≤ 8

∥µ∥ γc0ηT

(
2
∥∥W0

∥∥
F
+

√(
η2
C2

2d

n
+

2

3
η

)
T

)

≤ 8

∥µ∥ γc0ηT

(
ωinit

√
6md+

√(
C2

2d

nCd2
+

2

3

)
ηT

)
(Lemma B.3, Assumption (4))

≤ 8

∥µ∥ γc0ηT

(
√
6η +

√(
1

nd
+

2

3

)
ηT

)
. (Choose C ≥ C2

2)

≤ 30

∥µ∥ γc0
√
ηT

.

Thus ∀ε > 0, T ≥
(

30
∥µ∥γc0

√
ηε

)2
guarantees L̂rob(WT) ≤ ε.

Now we switch to prove generalization guarantees. Lemma B.30 provides lower bound on both the local difference
of asy

(〈
wt+1
s , x

〉
− ⟨wts, x⟩

)
and the global difference of asy

(
⟨wts, x⟩ −

〈
w0
s, x
〉)

, which serves a similar purpose as
Lemma B.13 in networks with smooth activation functions.

Lemma B.30. Assume (x, y) ∼ Dc, x = yµ+ ξ. Fix some t > 0. On a good run, there exist constants c7, C ′ > 0, C ′′ > 0
such that the following holds for all s ∈ [m] and for all τ < t with probability at least 1− 3(d/n)−11 w.r.t. ξ,

asy
(〈

wτ+1
s , x

〉
− ⟨wτs , x⟩

)
≥ c7η√

m

(
∥µ∥2 − C ′ max

i∈[n]
|⟨ξi, ξ⟩| − C ′α

√
d log

(
d

n

))
Ĝrob(Wτ).

Concurrently,

asy
(〈

wts, x
〉
−
〈
w0
s, x
〉)

≥ c7η√
m

(
∥µ∥2 − C ′′

√
d log (dm/n) /n

) t−1∑
τ=0

Ĝrob(Wτ).

Proof of Lemma B.30. Consider xi = yciµ + ξi, x = yµ + ξ, where yci and y are the clean label. Denote x̃ti =
argmaxx̃∈B2(xi,α) ℓ(yif(x̃;Wt)), ϵti = x̃ti − xi. Then we have

asy
(〈

wt+1
s , x

〉
−
〈
wts, x

〉)
54

Benign Overfitting in Adversarial Training of Neural Networks

=
η

n
√
m

n∑
i=1

yiyg̃i(Wt)ϕ′(
〈
wts, x̃

t
i

〉
)
〈
yciµ+ ξi + ϵti, yµ+ ξ

〉
=

η

n
√
m

n∑
i=1

yiyg̃i(Wt)ϕ′(
〈
wts, x̃

t
i

〉
)
(
yci y ∥µ∥

2
+ y

〈
µ, ξi + ϵti

〉
+ yci ⟨µ, ξ⟩+

〈
ϵti + ξi, ξ

〉)
=

η

n
√
m

n∑
i=1

g̃i(Wt)ϕ′(
〈
wts, x̃

t
i

〉
)
(
∥µ∥2 + yci

〈
µ, ξi + ϵti

〉)
︸ ︷︷ ︸

B1(t)

− 2η

n
√
m

∑
i∈N

g̃i(Wt)ϕ′(
〈
wts, x̃

t
i

〉
)
(
∥µ∥2 + yci

〈
µ, ξi + ϵti

〉)
︸ ︷︷ ︸

B2(t)

+
η

n
√
m

n∑
i=1

yiy
c
i yg̃i(W

t)ϕ′(
〈
wts, x̃

t
i

〉
) ⟨µ, ξ⟩︸ ︷︷ ︸

B3(t)

+
η

n
√
m

n∑
i=1

yiyg̃i(Wt)ϕ′(
〈
wts, x̃

t
i

〉
)
〈
ξi + ϵti, ξ

〉
︸ ︷︷ ︸

B4(t)

.

We now bound each of the term separately. Recall from Lemma B.4 and Lemma B.28 that |⟨µ, ξi⟩| ≤ ∥µ∥2

2 and

|⟨µ, ϵti⟩| ≤
∥µ∥2

6 , also lemma B.25 gives us that |As(t)| ≥ |As(0) ∩ Ts| ≥ c0n, together with Lemma B.26 gives us

that
∑
i∈As(t) gi(W

t) ≥ nc0Ĝrob(Wt)
Cr

. Therefore, for B1(t), we have

B1(t) ≥
ηγ

n
√
m

· ∥µ∥
2

3

∑
i∈As(t)

g̃i(Wt) (Lemma B.26)

≥ ηc0γ

Cr
√
m

· ∥µ∥
2

3
Ĝrob(Wt)

For B2(t), we have

|B2(t)| ≤
ηCr√
m

(
1

C
+

√
2

C

)(
3 ∥µ∥2 + 2 ∥µ∥α

)
Ĝrob(Wt)

≤ ηc0γ

4Cr
√
m

· ∥µ∥
2

3
Ĝrob(Wt),

where the last inequality holds for large enough C and α ≤ ∥µ∥.

For B3(t), define event E1 =
{
|⟨µ, ξ⟩| ≤ c6

√
11 log (d/n) ∥µ∥

}
. Apply Proposition B.23 (D1) gives us that P(E1) ≥

1− (d/n)−11. Therefore conditioning on E1 gives us that,

|B3(t)| ≤
ηCr√
m
Ĝrob(Wt) |⟨µ, ξ⟩|

≤ c6ηCr√
m

√
11 log (d/n) ∥µ∥ Ĝrob(Wt)

≤ c6ηCr√
m

√
11 log

(
∥µ∥4 /C4

)
∥µ∥ Ĝrob(Wt) (Assumption (B2))

≤ ηc0γ

4Cr
√
m

· ∥µ∥
2

3
Ĝrob(Wt). (Choose large enough C)

For B4(t), we have

|B4(t)| ≤
η√
m

max
i∈[n]

g̃i(Wt)max
i∈[n]

∣∣〈ξi + ϵti, ξ
〉∣∣ ≤ ηCr√

m
Ĝrob(Wt)

(
max
i∈[n]

|⟨ξi, ξ⟩|+ α ∥ξ∥
)
.

55

Benign Overfitting in Adversarial Training of Neural Networks

Proposition B.23 (D2) gives us that with probability at least 1− (d/n)−11 w.r.t. ξ, ∥ξ∥ ≤ 10
√
d log

(
d
n

)
. Conditioning on

this event gives us that

|B4(t)| ≤
ηCr√
m
Ĝrob(Wt)

(
max
i∈[n]

|⟨ξi, ξ⟩|+ 10α

√
d log

(
d

n

))
.

Combining B1(t), B2(t), B3(t), B4(t) gives us the following:

asy
(〈

wt+1
s , x

〉
−
〈
wts, x

〉)
≥ c7η√

m

(
∥µ∥2 − C ′ max

i∈[n]
|⟨ξi, ξ⟩| − C ′α

√
d log

(
d

n

))
Ĝrob(Wt).

For ⟨wts, x⟩ −
〈
w0
s, x
〉
, we need to consider the cumulative of the four terms. For B4(t) in specific, we have∥∥∥∥∥

n∑
i=1

t−1∑
τ=0

yiyg̃i(Wτ)ϕ′(⟨wτs , x̃
τ
i ⟩)ξi

∥∥∥∥∥
2

≤ 4d

n∑
i=1

(
t−1∑
τ=0

g̃i(Wτ)ϕ′(⟨wτs , x̃
τ
i ⟩)

)2

≤ 4C2
rdn

(
t−1∑
τ=0

Ĝrob(Wτ)

)2

,

where the first inequality comes from applying Lemma B.4 C3, and the second inequality uses the fact that ϕ′(z) ≤ 1

together with g̃i(Wτ) ≤ CrĜrob(Wτ). Thus,∥∥∥∥∥
n∑
i=1

t−1∑
τ=0

yiyg̃i(Wτ)ϕ′(⟨wτs , x̃
τ
i ⟩)(ξi + ϵτi)

∥∥∥∥∥ ≤ 2Cr
√
dn

(
t−1∑
τ=0

Ĝrob(Wτ)

)
+ αn

(
t−1∑
τ=0

Ĝrob(Wτ)

)

≤ 3Cr
√
dn

(
t−1∑
τ=0

Ĝrob(Wτ)

)
.

(α ≤ ∥µ∥, d ≥ Cn∥µ∥2 from Assumption (1) and C large enough)

Therefore,〈
n∑
i=1

t−1∑
τ=0

yiyg̃i(Wτ)ϕ′(⟨wτs , x̃
τ
i ⟩)(ξi + ϵτi), ξ

〉
=

∥∥∥∥∥
n∑
i=1

t−1∑
τ=0

yiyg̃i(Wτ)ϕ′(⟨wτs , x̃
τ
i ⟩)(ξi + ϵτi)

∥∥∥∥∥ 〈ψts, ξ〉 ,
where for simplicity we define ψts =

∑n
i=1

∑t−1
τ=0 yiyg̃i(Wτ)ϕ′(⟨wτs ,x̃

τ
i ⟩)(ξi+ϵ

τ
i)

∥∑n
i=1

∑t−1
τ=0 yiyg̃i(Wτ)ϕ′(⟨wτs ,x̃

τ
i ⟩)(ξi+ϵτi)∥

∈ Rd, which is independent of ξ. This gives

us that ∣∣∣∣∣
t−1∑
τ=0

B4(τ)

∣∣∣∣∣ ≤ 3Crη
√
d√

mn

(
t−1∑
τ=0

Ĝrob(Wτ)

)
max
s∈[m]

∣∣〈ψts, ξ〉∣∣ .
And therefore we have

asy
(〈

wts, x
〉
−
〈
w0
s, x
〉)

=

t−1∑
τ=0

B1(τ) +B2(τ) +B3(τ) +B4(τ)

≥ c7η√
m

(
∥µ∥2 − 3C ′

√
d/n max

s∈[m]

∣∣〈ψts, ξ〉∣∣) t−1∑
τ=0

Ĝrob(Wτ).

56

Benign Overfitting in Adversarial Training of Neural Networks

Define another event E2 =
{
maxs∈[m] |⟨ψts, ξ⟩| ≤ c6

√
11 log (dm/n)

}
. Applying Proposition B.23 (D1) gives us that

P(E2) ≥ 1− (d/n)−11. Conditioning on the above events, we know

asy
(〈

wts, x
〉
−
〈
w0
s, x
〉)

≥ c7η√
m

(
∥µ∥2 − C ′′

√
d log (dm/n) /n

) t−1∑
τ=0

Ĝrob(Wτ).

Applying a union bound, the above holds with probability at least 1− 3(d/n)−11.

Corollary B.31. Assume (x, y) ∼ Dc. Fix some t > 0. On a good run, the following holds for all s ∈ [m] with probability
at least 1− 4(d/n)−11,

asy
〈
wts, x

〉
≥ c7η

4
√
m

∥µ∥2
t−1∑
τ=0

Ĝrob(Wτ),

where c7 and C ′′ come from Lemma B.30.

Proof of Corollary B.31. With proper C, Assumption (B2) gives us that ∥µ∥2 ≥ 2C ′′
√
d log (md/n) /n. Therefore,

Lemma B.30 tells us that with probability at least 1− 3(d/n)−11,

asy
(〈

wts, x
〉
−
〈
w0
s, x
〉)

≥ c7η

2
√
m

∥µ∥2
t−1∑
τ=0

Ĝrob(Wτ).

Using Proposition B.23 as well as Lemma B.3, the following holds with probability at least 1− (d/n)−11,∣∣〈w0
s, x
〉∣∣ = ∣∣〈w0

s, yµ+ ξ
〉∣∣

≤
∥∥w0

s

∥∥ ∥µ∥+ c6
√

11 log (dm/n)
∥∥w0

s

∥∥ (Proposition B.23 (D1))

≤
∥∥w0

s

∥∥ ∥µ∥+ c6

√
11n ∥µ∥4

C4d

∥∥w0
s

∥∥ (Assumption (B2))

≤
∥∥w0

s

∥∥ ∥µ∥+ c6

√
11n ∥µ∥4

C5n ∥µ∥2
∥∥w0

s

∥∥ (Assumption (1))

≤ 2 ∥µ∥
∥∥w0

s

∥∥ (Choose sufficiently large C)

≤ 4ωinit ∥µ∥
√
d (Lemma B.19)

≤ 4η ∥µ∥√
m

(Assumption (3))

=
8η ∥µ∥√

m
Ĝrob(W0) (g̃i(W0) = 0.5)

≤ c7η

4
√
m

∥µ∥2
t−1∑
τ=0

Ĝrob(Wτ), (17)

where the last line holds from ∥µ∥2 ≥ C log (2) by Assumption (B2) and C being large enough.

Therefore we have

asy
〈
wts, x

〉
≥ c7η

4
√
m

∥µ∥2
t−1∑
τ=0

Ĝrob(Wτ).

57

Benign Overfitting in Adversarial Training of Neural Networks

Lemma B.32. For any (x, y) ∼ Dc with x = yµ+ ξ, on a good run, there exists some constant c8 > 0 such that

∣∣〈wts, x〉∣∣ ≤ c8η√
m

(
∥µ∥2 + ∥µ∥ ∥ξ∥+

√
d/n ∥ξ∥+ ∥µ∥α+ ∥ξ∥α

) t−1∑
τ=0

Ĝrob(Wτ),∀s ∈ [m].

Proof of Lemma B.32. Consider ∀s ∈ [m],

〈
wts, x

〉
=
〈
w0
s, x
〉
+

t−1∑
τ=0

(〈
wτ+1
s , x

〉
− ⟨wτs , x⟩

)
.

Decompose
〈
wt+1
s , x

〉
− ⟨wts, x⟩ into B1(t), B2(t), B3(t), B4(t) the same way as in Lemma B.30.

|B1(t)| ≤
ηCr√
m

(
3

2
∥µ∥2 + ∥µ∥α

)
Ĝrob(Wt),

|B2(t)| ≤
ηCr√
m

(
β +

√
2

C

)(
3 ∥µ∥2 + 2 ∥µ∥α

)
Ĝrob(Wt),

|B3(t)| ≤
ηCr√
m
Ĝrob(Wt) |⟨µ, ξ⟩| ≤ ηCr√

m
∥µ∥ ∥ξ∥ Ĝrob(Wt),∣∣∣∣∣

t−1∑
τ=0

B4(τ)

∣∣∣∣∣ ≤ 2Crη
√
d√

mn
∥ξ∥

t−1∑
τ=0

Ĝrob(Wτ) +
ηCr√
m
α ∥ξ∥

t−1∑
τ=0

Ĝrob(Wτ),

∣∣〈w0
s, x
〉∣∣ ≤ ∥∥w0

s

∥∥ · ∥x∥ ≤
∥∥w0

s

∥∥ (∥µ∥+ ∥ξ∥) ≤ 2η√
m
(∥µ∥+ ∥ξ∥) (Assumption (3), Lemma B.19)

≤ 2η√
C log (2)

√
m
(∥µ∥2 + ∥µ∥ ∥ξ∥). (Assumption (B2))

Therefore,

∣∣〈wts, x〉∣∣ ≤ ∣∣〈w0
s, x
〉∣∣+ t−1∑

τ=0

|B1(τ)|+
t−1∑
τ=0

|B2(τ)|+
t−1∑
τ=0

|B3(τ)|+

∣∣∣∣∣
t−1∑
τ=0

B4(τ)

∣∣∣∣∣
≤ c8η√

m

(
∥µ∥2 + ∥µ∥ ∥ξ∥+

√
d/n ∥ξ∥+ ∥µ∥α+ ∥ξ∥α

) t−1∑
τ=0

Ĝrob(Wτ).

We finally demonstrate the lower bound on the normalized expected conditional margin, similar as Lemma B.14.

Lemma B.33. On a good run, there exists some constant c9 > 0 such that

E(x,y)∼Dc [yf(x;Wt)
∣∣y = 1]∥∥Wt

∥∥
2

≥ c9
√
n

16C2

√
d
∥µ∥2 ;

E(x,y)∼Dc [yf(x;Wt)
∣∣y = −1]∥∥Wt

∥∥
2

≥ c9
√
n

16C2

√
d
∥µ∥2 .

Proof of Lemma B.33. Consider the following

yf(x;Wt) =
1√
m

∑
as=y

ϕ(
〈
wts, x

〉
)− 1√

m

∑
as=−y

ϕ(
〈
wts, x

〉
).

58

Benign Overfitting in Adversarial Training of Neural Networks

We first consider y = 1. Denote event E as the conclusion of Corollary B.31 holds, then P(E) ≥ 1 − 4 (d/n)
−11.

Corollary B.31 indicates that

asy
〈
wts, x

〉
≥ c7η

4
√
m

∥µ∥2
t−1∑
τ=0

Ĝrob(Wτ) > 0.

Therefore, on event E we have

yf(x;Wt) =
1√
m

m∑
s=1

ϕ′(
〈
wts, x

〉
)asy

〈
wts, x

〉
≥ 1√

m

m∑
s=1

ϕ′(
〈
wts, x

〉
)
c7η

4
√
m

∥µ∥2
t−1∑
τ=0

Ĝrob(Wτ)

≥ 1√
m

∑
as=y

ϕ′(
〈
wts, x

〉
)
c7η

4
√
m

∥µ∥2
t−1∑
τ=0

Ĝrob(Wτ)

≥ 1√
m

m

2
γ
c7η

4
√
m

∥µ∥2
t−1∑
τ=0

Ĝrob(Wτ)

=
γc7η

8
∥µ∥2

t−1∑
τ=0

Ĝrob(Wτ),

and thus

E(x,y)∼Dc
[
yf(x;Wt)1 (E)

∣∣y = 1
]

≥ P(E)γc7η
8

∥µ∥2
t−1∑
τ=0

Ĝrob(Wτ)

≥ c9
4
η ∥µ∥2

t−1∑
τ=0

Ĝrob(Wτ). (P(E) ≥ 1− 4(d/n)−11 ≥ 3
4 ; choose sufficiently large C)

We now consider on event Ec. Using Lemma B.32 gives us that,∣∣E(x,y)∼Dc
[
yf(x;Wt)1 (Ec)

∣∣y = 1
]∣∣

≤ E(x,y)∼Dc

[
1√
m

m∑
s=1

∣∣〈wts, x〉∣∣1 (Ec) |y = 1

]

≤ c8η
(
∥µ∥2+∥µ∥α

)
P(Ec|y = 1)

t−1∑
τ=0

Ĝrob(Wτ)+c8η

(
∥µ∥+

√
d

n
+α

)
E (∥ξ∥1 (Ec) |y = 1)

t−1∑
τ=0

Ĝrob(Wτ).

Now we denote another event Ẽ =

{
∥ξ∥ ≤ 12

√
d log

(
d
n

)}
, then

E
(
∥ξ∥1 (Ec)1

(
Ẽ
)
|y = 1

)
≤ E

(
12

√
d log

(
d

n

)
1 (Ec) |y = 1

)
≤ 12

√
d log

(
d

n

)
4(
d

n
)−11 ≤ 0.5(

d

n
)−8,

(d ≥ log (2)Cn2 from Assumption (1) with sufficiently large C)

E
(
∥ξ∥1 (Ec)1

(
Ẽc
)
|y = 1

)
≤ E

(
∥ξ∥1

(
Ẽc
)
|y = 1

)
≤ 8(

d

n
)−16

√
d · (2

√
log

(
d

n

)
) ≤ 0.5(

d

n
)−8.

(Proposition B.23 (D2);d ≥ log (2)Cn2 with sufficiently large C)

59

Benign Overfitting in Adversarial Training of Neural Networks

Putting them back gives us that∣∣E(x,y)∼Dc
[
yf(x;Wt)1 (Ec)

∣∣y = 1
]∣∣

≤ c8η
(
∥µ∥2+∥µ∥α

)
P(Ec|y = 1)

t−1∑
τ=0

Ĝrob(Wτ)+c8η
(
∥µ∥+

√
d/n+α

)
E(∥ξ∥1 (Ec) |y = 1)

t−1∑
τ=0

Ĝrob(Wτ)

≤ c8η
(
∥µ∥2+∥µ∥α

)
4(d/n)−11

t−1∑
τ=0

Ĝrob(Wτ)+c8η
(
∥µ∥+

√
d/n+α

)
(d/n)−8

t−1∑
τ=0

Ĝrob(Wτ)

≤ c8η
(
∥µ∥2 + ∥µ∥α+ ∥µ∥+

√
d/n+ α

)
(d/n)−8

t−1∑
τ=0

Ĝrob(Wτ) (Assumption (1); choose sufficiently large C)

≤ c9η

8
∥µ∥2

t−1∑
τ=0

Ĝrob(Wτ). (∥µ∥2 ≥ C log (2) from Assumption (B2);d ≥ log (2)Cn2; choose sufficiently large C)

Therefore, we have

E(x,y)∼Dc
[
yf(x;Wt)|y = 1

]
= E(x,y)∼Dc

[
yf(x;Wt)1 (E) |y = 1

]
+ E(x,y)∼Dc

[
yf(x;Wt)1 (Ec) |y = 1

]
≥ E(x,y)∼Dc

[
yf(x;Wt)1 (E) |y = 1

]
−
∣∣E(x,y)∼Dc

[
yf(x;Wt)1 (Ec) |y = 1

]∣∣
≥ c9η

8
∥µ∥2

t−1∑
τ=0

Ĝrob(Wτ).

Then similar as Lemma B.14, recall that
∥∥W0

∥∥
F
≤ 2ωinit

√
md ≤ 2η ≤ η

√
d/nĜrob(W0). If

∥∥Wt
∥∥
F
≤ 2

∥∥W0
∥∥
F

,

E(x,y)∼Dc
[
yf(x;Wt)|y = 1

]∥∥Wt
∥∥
2

≥ c9η

16
∥∥W0

∥∥
F

∥µ∥2
t−1∑
τ=0

Ĝrob(Wτ)

≥ c9η

16η
√
d/nĜrob(W0)

∥µ∥2
t−1∑
τ=0

Ĝrob(Wτ)

≥ c9
√
n

16
√
d
∥µ∥2 . (

∑t−1
s=0 Ĝrob(Ws) ≥ Ĝrob(W0))

If
∥∥Wt

∥∥
F
> 2

∥∥W0
∥∥
F

, by Lemma B.12, we have

2
∥∥W0

∥∥
F
≤
∥∥Wt

∥∥
F
≤
∥∥W0

∥∥
F
+ C2η

√
d/n

t−1∑
s=0

Ĝrob(Ws).

Thus,

E(x,y)∼Dc
[
yf(x;Wt)|y = 1

]∥∥Wt
∥∥
2

≥ c9

16C2

√
d/n

∑t−1
τ=0 Ĝrob(Wτ)

∥µ∥2
t−1∑
τ=0

Ĝrob(Wτ)

=
c9
√
n

16C2

√
d
∥µ∥2 .

All the above proof holds for expected condition on y = −1.

60

Benign Overfitting in Adversarial Training of Neural Networks

B.3. Missing Proofs in Section 3.4

Theorem 3.2. We consider independent label flip with probability β. Let p(x) be the density function of Dclust. For any given
classifier f(·;W), when α < ∥µ∥, we have L0/1

rob (W) ≥ β+ 1−2β
4

∫
Rd min{p(ξ), p(ξ+ v)}dξ, where v = 2 (1− α/ ∥µ∥)µ.

When α ≥ ∥µ∥, the robust test error satisfies L0/1
rob (W) ≥ 0.5.

Proof of Theorem 3.2.

L
0/1
rob (W) = P(x,y)∼D [∃x̃ ∈ B2(x, α) s.t. yf(x̃;W) ≤ 0]

= (1− β)P(x,yc)∼Dc [∃x̃ ∈ B2(x, α) s.t. ycf(x̃;W) ≤ 0]

+ βP(x,yc)∼Dc [∃x̃ ∈ B2(x, α) s.t. ycf(x̃;W) ≥ 0]

= (1− β)P(x,yc)∼Dc

[
min

x̃∈B2(x,α)
ycf(x̃;W) ≤ 0

]
+ β

(
1− P(x,yc)∼Dc

[
max

x̃∈B2(x,α)
ycf(x̃;W) < 0

])
≥ β + (1− 2β)P(x,yc)∼Dc

[
min

x̃∈B2(x,α)
ycf(x̃;W) ≤ 0

]
.

Recall that x = ycµ+ ξ.

Case 1: Consider the case that α ≥ ∥µ∥. We have

1

(
min

x̃∈B2(µ+ξ,α)
f(x̃;W) ≤ 0

)
+ 1

(
max

x̃∈B2(−µ+ξ,α)
f(x̃;W) ≥ 0

)
≥ 1 (f(ξ;W) ≤ 0) + 1 (f(ξ;W) ≥ 0)

≥ 1,

where the first inequality holds because ξ ∈ B2(µ+ ξ, α) and ξ ∈ B2(−µ+ ξ, α). Therefore we have

P(x,yc)∼Dc

(
min

x̃∈B2(x,α)
ycf(x̃;W) ≤ 0

)
=

1

2
Pξ∼Dclust

(
min

x̃∈B2(µ+ξ,α)
f(x̃;W) ≤ 0

)
+

1

2
Pξ∼Dclust

(
max

x̃∈B2(−µ+ξ,α)
f(x̃;W) ≥ 0

)
= 0.5Eξ∼Dclust

(
1

(
min

x̃∈B2(µ+ξ,α)
f(x̃;W) ≤ 0

)
+ 1

(
max

x̃∈B2(−µ+ξ,α)
f(x̃;W) ≥ 0

))
≥ 0.5.

As a result,

L
0/1
rob (W) ≥ β + 0.5(1− 2β) = 0.5.

Case 2: Consider the case that α < ∥µ∥. Let p(x) denote the density function of Dclust. Define v = (2− 2 α
∥µ∥)µ. We have(

1

(
min

x̃∈B2(µ+ξ,α)
f(x̃;W) ≤ 0

)
+ 1

(
max

x̃∈B2(−µ+ξ,α)
f(x̃;W) ≥ 0

))
+

(
1

(
min

x̃∈B2(ξ+v+µ,α)
f(x̃;W) ≤ 0

)
+ 1

(
max

x̃∈B2(ξ+v−µ,α)
f(x̃;W) ≥ 0

))
≥
(
1
(
f(ξ +

v
2
;W) ≤ 0

)
+ 0
)
+
(
0 + 1

(
f(ξ +

v
2
;W) ≥ 0

))
≥ 1,

where the first inequality holds because ξ + v
2 ∈ B2(µ+ ξ, α) and ξ + v

2 ∈ B2(ξ + v − µ, α). Therefore we have

P(x,yc)∼Dc

(
min

x̃∈B2(x,α)
ycf(x̃;W) ≤ 0

)
61

Benign Overfitting in Adversarial Training of Neural Networks

=

(
1

2
Pξ∼Dclust

(
min

x̃∈B2(µ+ξ,α)
f(x̃;W) ≤ 0

)
+

1

2
Pξ∼Dclust

(
max

x̃∈B2(−µ+ξ,α)
f(x̃;W) ≥ 0

))
=

1

2
Eξ∼Dclust

(
1

(
min

x̃∈B2(µ+ξ,α)
f(x̃;W) ≤ 0

)
+ 1

(
max

x̃∈B2(−µ+ξ,α)
f(x̃;W) ≥ 0

))
=

1

4

∫
Rd

{(
1

(
min

x̃∈B2(µ+ξ,α)
f(x̃;W) ≤ 0

)
+ 1

(
max

x̃∈B2(−µ+ξ,α)
f(x̃;W) ≥ 0

))
p(ξ)

+

(
1

(
min

x̃∈B2(ξ+v+µ,α)
f(x̃;W) ≤ 0

)
+ 1

(
max

x̃∈B2(ξ+v−µ,α)
f(x̃;W) ≥ 0

))
p(ξ + v)

}
dξ

≥ 1

4

∫
Rd

min{p(ξ), p(ξ + v)}dξ.

As a result,

L
0/1
rob (W) ≥ β +

1− 2β

4

∫
Rd

min{p(ξ), p(ξ + v)}dξ.

Consider a special instance where Dclust is a standard Gaussian distribution; i.e., N (0, Id). Then the result can be simplify as

L
0/1
rob (W) ≥ β +

1− 2β

2
Φ(−(∥µ∥ − α)),

where Φ(x) := 1√
2π

∫ x
−∞ exp

(
−t2/2

)
dt is the normal cumulative distribution function.

The following result shows that for certain step sizes and initialization, the neural network weights move far from the
initialization after the first step of adversarial training based on gradient descent.

Proposition B.34. Consider the same setting as in Theorem 3.1. Then, for some constant C > 1 defined in Assumption 1,

with probability at least 1− 2δ over the random initialization and the draw of an i.i.d. sample, we have that
∥W1−W0∥

F

∥W0∥F
≥

γ∥µ∥
10 .

Proof of Proposition B.34. Consider V ∈ Rm×d be the matrix with rows vs = asµ
∥µ∥

√
m

, then we have∥∥W1 − W0
∥∥
F∥∥W0

∥∥
F

≥
〈
W1 − W0,V

〉∥∥W0
∥∥
F

=
η
〈
−∇L̂rob(W0),V

〉
∥∥W0

∥∥
F

≥ γ∥µ∥
4

ηĜrob(W0)∥∥W0
∥∥
F

(Equation (12))

≥ γ∥µ∥
4

ηĜrob(W0)√
3/2mdωinit

(Lemma B.3)

≥ γ∥µ∥
5

Ĝrob(W0) (Assumption (3))

=
γ ∥µ∥
10

. (Equation (9))

62

	Introduction
	Related Work

	Preliminaries
	Problem Setup

	Main Result
	Smooth Activation Function
	Non-smooth activation function
	Theoretical Guarantees
	Discussion

	Proof Sketch
	Properties of Adversarial Training Examples
	Generalization Guarantee
	Convergence Guarantee

	Experiments
	Conclusion
	Additional Experiments
	Missing Proofs
	Missing Proofs in Section 3.1
	Missing Proofs in Section 3.2
	Missing Proofs in Section 3.4

