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Abstract
Generating rich and controllable motion is a piv-
otal challenge in video synthesis. We propose
Boximator, a new approach for fine-grained mo-
tion control. Boximator introduces two constraint
types: hard box and soft box. Users select objects
in the conditional frame using hard boxes and then
use either type of boxes to roughly or rigorously
define the object’s position, shape, or motion path
in future frames. Boximator functions as a plug-in
for existing video diffusion models. Its training
process preserves the base model’s knowledge by
freezing the original weights and training only the
control module. To address training challenges,
we introduce a novel self-tracking technique that
greatly simplifies the learning of box-object cor-
relations. Empirically, Boximator achieves state-
of-the-art video quality (FVD) scores, improving
on two base models, and further enhanced after
incorporating box constraints. Its robust motion
controllability is validated by drastic increases
in the bounding box alignment metric. Human
evaluation also shows that users favor Boximator
generation results over the base model.

1. Introduction
Video synthesis has recently experienced remarkable ad-
vancements (Ho et al., 2022b;a; Singer et al., 2022; Girdhar
et al., 2023; Ge et al., 2023; Kondratyuk et al., 2023). These
models typically utilize either a text prompt or a key frame
to generate videos. Recent research focuses on enhancing
the controllability by incorporating frame-level constraints,
such as sketches, depth maps (Wang et al., 2023c; Guo et al.,
2023), human poses (Xu et al., 2023; Feng et al., 2023;
Wang et al., 2023b), trajectories (Yin et al., 2023; Wang
et al., 2023d), and conditional images (Qing et al., 2023;
Zeng et al., 2023; Chen et al., 2023).
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In this work, we introduce a novel approach utilizing box-
shaped constraints as a universal mechanism for fine-grained
motion control. Our method introduces two types of con-
straints: hard box, which precisely delineates an object’s
bounding box, and soft box, defining a broader region within
which the object must reside. The soft box can be as tight
as the object’s exact bounding box, or as loose as the frame
boundary. We control multiple objects across frames by
associating unique object IDs with these boxes. Our pro-
posed method, named Boximator (combining “box” and
“animator”), offers several benefits:

1. Boximator serves as a flexible motion control tool.
It manages the motion of both foreground and back-
ground objects, as well as modifies the pose of larger
objects (e.g., human) by adjusting smaller components.
Refer to Figure 1 for illustrations.1

2. In scenarios where generation is conditioned on an im-
age, as seen in image-to-video and many state-of-the-
art text-to-video methods (Zeng et al., 2023; Girdhar
et al., 2023), users can easily select objects by draw-
ing hard boxes around them. This visually-grounded
approach is more straightforward compared to the
language-grounded controls (Huang et al., 2023; Ma
et al., 2023), which require verbal descriptions for all
objects.

3. For frames lacking user-defined boxes, Boximator al-
lows approximate motion path control via algorithm-
generated soft boxes. These soft boxes can be con-
structed based on a pair of user-specified boxes, or
based on a hard box combined with a user-specified
motion path. See Figure 1(c)-(e) for examples of user-
specified motion paths.

Boximator functions as a plug-in for existing video diffusion
models. We encode every box constraint by four coordinates,
an object ID, and a hard/soft flag. During training, we
freeze the base model’s text encoder and U-Net, feeding
the box encoding through a new type of self-attention layer.
This design is inspired by GLIGEN (Li et al., 2023), where
bounding boxes are combined with object description texts
to achieve region control for image synthesis. However,

1Check our website for more cases: https://boximator.
github.io/
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Figure 1. Motion control with Boximator: (a) use hard boxes to control the ending shape and position of a jumping cat; (b) force camera
rotating to the left by pushing bed and window to the right; (c) control how a person raises a cup of coffee; (d) control the motion path of a
dog and a ball; (e) Use motion path and hard boxes to control the trajectory and proximity of two balloons. In all figures, dotted boxes
represent first frame constraints; solid-line boxes represent last frame constraints; Arrowed lines represent motion paths. Example videos
are initially generated as 256x256x16, then enhanced to 768x768x16 via a pretrained super-resolution model.

Boximator aims to control object motions without relying on
textual grounding, thus requires the learning of box-object
correlation purely from visual inputs.

Empirically, we find that it is hard for the model to learn
this visual correlation through standard optimization. To
mitigate this challenge, we introduce an novel training tech-
nique termed self-tracking. This technique trains the model
to generate colored bounding boxes as a part of the video. It
simplifies the challenge into two easier tasks: (1) producing
a bounding box for each object with the right color, and
(2) aligning these boxes with the Boximator constraints in
every frame. We observe that video diffusion models can
quickly master these tasks. After that, we train the model
to stop generating visible bounding boxes. Although these
boxes are no longer visually present, their internal represen-

tation persists, enabling the model to continue aligning with
Boximator constraints.

We developed an automatic data annotation pipeline to gen-
erate 1.1M highly dynamic video clips with 2.2M annotated
objects from the WebVid-10M dataset (Bain et al., 2021).
We utilized this dataset to train our Boximator model on two
base models: the PixelDance model (Zeng et al., 2023) and
the open sourced ModelScope model (Wang et al., 2023a).
Extensive experiments show that Boximator retains the orig-
inal video quality of these models while offering robust
motion control in diverse real-world scenarios. On the MSR-
VTT dataset, Boximator improves upon the base models
in FVD score. With box constraints added, video quality
significantly improved further (PixelDance: 237 → 174,
ModelScope: 239 → 216), and the object detector’s aver-
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age precision (AP) score, measuring box-object alignment,
saw a remarkable increase (1.9-3.7x higher on MSR-VTT
and 4.4-8.9x higher on ActivityNet), highlighting effective
motion control. User study also favored our model’s video
quality and motion control over the base model by large
margins (+18% for video quality, +74% for motion con-
trol). Furthermore, ablation studies confirm the necessity
of introducing soft boxes and training with self-tracking for
achieving these results.

2. Related Work
Video diffusion models are natural extensions of image dif-
fusion models. They extend the U-Net architecture from
image models by adding temporal layers (Ho et al., 2022a;
Singer et al., 2022). A widely adopted method for improving
computational efficiency is to denoie in the latent space (He
et al., 2022; Zhou et al., 2022). Text-to-video (T2V) dif-
fusion models are often the foundation for various forms
of conditional generation (Ge et al., 2023; Blattmann et al.,
2023; Wang et al., 2023a). Recent advancements suggest a
two-step approach to T2V: initially creating an image based
on text, followed by producing a video that considers both
the text and the pre-generated image. This approach allows
the video model to concentrate on dynamic aspects by using
a static image as a reference, leading to improved video
quality (Zeng et al., 2023; Girdhar et al., 2023; Wang et al.,
2024). The reference image provides a natural grounding
source for motion control.

There is a surge in research focused on enhancing the con-
trollability of T2V and I2V models. VideoComposer (Wang
et al., 2023c) enables conditions such as sketches, depth
maps, and motion vectors. In producing dance videos, hu-
man poses extracted from reference videos are commonly
used (Xu et al., 2023; Feng et al., 2023; Wang et al., 2023b).
For more precise motion control, users can plot object or
camera trajectories (Yin et al., 2023; Wang et al., 2023d).
However, these methods did not provide a precise way to
define objects, making it challenging to select and control
a larger or composite object from image. Moreover, trajec-
tory does not capture the object’s shape and size, crucial for
depicting pose or proximity changes like arm spreading or
approaching movements.

There are two concurrent research studying the use of bound-
ing boxes for motion control, but it should be noted that
their work differs from ours in key aspects. TrailBlazer (Ma
et al., 2023) is a training-free method that leverages attention
map edits to direct the model in generating a specific object
within a designated area. The object must be described in
the text prompt. FACTOR (Huang et al., 2023) modified
a transformer-based generation model, Phenaki (Villegas
et al., 2022), by adding a box control module. Like Trail-
Blazer, FACTOR requires a text description for each box,
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Figure 2. Overview of the control module: adding a new self-
attention layer to every spatial attention block, between the spatial
self-attention and the spatial cross attention. During training, all
the original model parameters are frozen.

thus does not support visual grounding. Neither of the above
methods supports soft box constraints, nor do they study the
associated challenges in training.

3. Background: Video Diffusion Model
Boximator is built on top of video diffusion models (Ho
et al., 2022b) using the 3D U-Net architecture (Ronneberger
et al., 2015). These models iteratively predict the noise
vector in noisy video inputs, gradually transforming pure
Gaussian noise into high-quality video frames. The U-Net,
denoted by ϵθ, processes a noisy input z (either in pixel
space or latent space), along with a timestamp t and various
conditions c, and predicts the noise in z. Optimization is
achieved through a noise prediction loss:

Lθ = Ez0,c,ϵ,t[∥ϵ− ϵθ(zt, t, c)∥22],

where z0 represents the ground truth video, ϵ is a Gaussian
noise vector, and zt is a noisily transformed version of z0:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ.

Here, ᾱt denotes a predefined constant sequence.

The 3D U-Net is structured with alternating convolution
blocks and attention blocks. Each block comprises two com-
ponents: a spatial component, handling individual video
frames as separate images, and a temporal component, en-
abling information exchange across frames. Within every
attention block, the spatial component typically includes a
self-attention layer, followed by a cross-attention layer, the
latter used for conditioning the generation on a text prompt.
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4. Boximator: Box-guided Motion Control
4.1. Model Architecture

Our objective is to endow existing video diffusion mod-
els with motion control capabilities. Given that foundation
models are pre-trained on extensive collections of web-scale
images and videos, it’s crucial to preserve their acquired
knowledge. To achieve this, we freeze the original model pa-
rameters and solely focus on training the newly incorporated
motion control module.

The architecture of our model is illustrated in Figure 2. In
every spatial attention block of video diffusion models, there
are two stacked attention layers: a spatial self-attention layer
and a spatial cross-attention layer. We augment this stack by
adding a new self-attention layer. Specifically, if v denotes
the visual tokens of a frame, and htext and hbox represent
the embeddings of the text prompt and the box constraints,
respectively, then the modified spatial attention block is
described as follows:

v = v + SelfAttn(v)

v = v +TS(SelfAttn([v,hbox]))

v = v +CrossAttn(v,htext)

where TS(·) is a token selection operation that exclusively
considers visual tokens. The box embeddings hbox is a
sequence of control tokens. Each token represents a box and
is defined by:

tb = MLP(Fourier([bloc, bid, bflag])).

Here, bloc is a 4-dimensional vector encapsulating the top-
left and bottom-right coordinates of the box, normalized to
the range [0,1]. The object ID, used to link boxes across
frames, is represented by bid, which in our experiments is
expressed in RGB space. Each object thus corresponds to
a unique “color” for its boxes, making bid a 3-dimensional
vector normalized to [0,1]. The bflag is a boolean indicator:
it is set to 1 for hard boxes and 0 otherwise. These three
inputs are concatenated and processed via a Fourier em-
bedding (Mildenhall et al., 2021) followed by a multi-layer
perceptron (MLP). Note hbox contains a fixed number of
control tokens (indicated by N ). When the actual number
of boxes is smaller than N , we use a learnable tnull to pad
the empty slots.

4.2. Data Pipeline

In the absence of a publicly available video dataset with ob-
ject tracking annotations, we curated our training set from
the WebVid-10M dataset (Bain et al., 2021). Through em-
pirical analysis, we find that a vast majority of WebVid
videos do not exhibit substantial object or camera move-
ments. Consequently, sampling from this collection would

Figure 3. Training data: all bounding boxes are projected to the
cropped region (white dashed box).

Figure 4. Self-tracking: train the model to track every constrained
object. This figure shows 3 frames where the black horse and the
yellow box surrounding it are generated together.

be inefficient for training our motion control module. To
address this issue, we curated a more dynamic subset from
WebVid. This involved evaluating every clip in the dataset,
comparing their start and end frames, and retaining only
those clips where the two frames are sufficiently different.
Specifically, we use the avg pool layer of ResNet50 (He
et al., 2016) to compute image embeddings and define sim-
ilarity based on the cosine similarity of these embeddings.
This filtration yielded a total of 1.1M video clips.

For every clip in our refined dataset, we took the first frame
to generate an image description using a LLaVA (Liu et al.,
2023a). Then we extract noun chunks from these descrip-
tions using spaCy. These chunks, encompassing terms like
”young man” or ”white shirt,” served as object prompts.
We then feed these prompts to Grounding Dino (Liu et al.,
2023b) and the DEVA object tracker (Cheng et al., 2023)
to generate bounding boxes and populate them across all
frames of the video. This approach successfully yielded
bounding boxes for a total of 2.4M objects.

During training, we take a random crop of the video, con-
forming to the specified target aspect ratio, and subsequently
project all bounding boxes onto this cropped region (Fig-
ure 3). If a bounding box entirely fall outside the cropped
area, then we project it as line segments along the border
of the crop. This allows users to control object movements
both into and out of the frame by drawing line segments on
the frame’s border (See Figure 6(d) for an example).

4



Boximator: Generating Rich and Controllable Motions for Video Synthesis

4.3. Self-Tracking

A significant challenge in video motion control lies in asso-
ciating box coordinates with objects and maintaining tem-
poral consistency across frames, namely making sure that
the same group of boxes always control the same object. In
practice, this proves to be challenging, as diffusion models
often struggle to effectively link discrete control signals, like
coordinates and IDs, with visual elements. This difficulty is
exacerbated when the video contains multiple overlapping
boxes. As Section 5.4 shows, with traditional loss optimiza-
tion, the model failed to align to most box constraints after
110K steps of training.

We propose self-tracking as a simple technique to mitigate
this challenge. We train our model to generate colored
bounding boxes for each constrained object in every frame,
with colors specified in the object’s control token (Figure 4).
In other words, we train the model to perform generation and
object tracking at the same time. This approach simplifies
the problem into two easier tasks: (1) generating a bounding
box for each object with the right color and (2) aligning
these boxes with the Boximator constraints in every frame.
Previous research in image synthesis (Sheynin et al., 2023)
shows that diffusion models can generate bounding boxes.
We further discover that diffusion models can maintain tem-
poral consistency, ensuring that boxes of the same color
consistently track the same object across frames. With this
capability, task (2) becomes straightforward. For hard box
constraints, the model only needs to put boxes at the speci-
fied coordinates, while for soft box constraints, it needs to
put them within a specified region. Intuitively, self-tracked
bounding boxes act as an intermediary representation. The
model follows Boximator constraints to guide the genera-
tion of these boxes, which in turn guide the generation of
objects.

Upon completing the self-tracking training phase, we pro-
ceed to further train the model using the same dataset, but
excluding bounding boxes from the target frames. Remark-
ably, the model quickly learn to cease generating visible
bounding boxes, but its box alignment ability persists. This
indicates that the self-tracking phase assists the model to
develop an appropriate internal representation.

4.4. Multi-Stage Training Procedure

We employ a multi-stage training procedure. Initially, in
Stage 1, the model is trained using all the provided ground
truth bounding boxes as hard box constraints. Since hard
box controls are easier to learn than the soft ones, this stage
serves as a preliminary phase, establishing the model’s ini-
tial understanding of coordinates and IDs. Subsequently,
in Stage 2, we substitute 80% of these hard boxes with

Figure 5. Soft boxes in inference. We interpolate soft boxes and
relax them based on a pair of user-specified boxes (upper row), or
a user-specified box combined with a motion path (lower row).

soft boxes. The soft boxes are generated by randomly and
independently expanding the hard ones in four directions:
left, right, up, and down. The expansion margin for each
direction is determined by a Beta(1, 8) distribution, so that
the average expansion is 1/9 of the frame’s width or height,
while the maximum expansion can extend up to the frame’s
boundary. Both Stage 1 and Stage 2 use the self-tracking
technique outlined in Section 4.3. Finally, in Stage 3, we
continue the Stage 2 training but without self-tracking.

4.5. Inference

During the inference stage, only a select few frames (such
as the first and last) contain user-defined boxes. To achieve
robust control, we insert soft boxes to the other frames.
This is done by first applying linear interpolation of user-
defined boxes to those empty frames, and then relaxing
the interpolated boxes by expanding the box regions (as
described in Section 4.4) and marking them as “soft box”.
This approach ensures that the object roughly follows the
intended trajectory, while simultaneously offering the model
sufficient flexibility to introduce variations. In cases where
a user draws a hard box in a frame and defines a motion
path for it, we let the box to slide along the path to construct
interpolated boxes for each subsequent frame, then relax
them to form soft box constraints. Figure 5 presents a visual
illustration for the construction of soft boxes in both cases.

5. Experiments
5.1. Experiment Settings

Base models We train Boximator on two base models:
PixelDance (Zeng et al., 2023) and ModelScope (Wang
et al., 2023a). Our experiments use text prompts, box con-
straints, and optionally the first video frame as input con-
ditions. PixelDance can directly use the first frame as an
input condition. ModelScope doesn’t support direct image
input, but we can still condition it on an image by replacing
the first frame of the noisy latents z with the ground-truth
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frame’s latents at each denoising step. In both cases, we
freeze the original model weights and only train the control
module. See Appendix A for more training and inference
details.

Datasets We test our models using the MSR-VTT (Xu
et al., 2016), ActivityNet (Caba Heilbron et al., 2015) and
UCF-1012 (Soomro et al., 2012) datasets. MSR-VTT test
set consists of 2,990 samples with 20 prompts per example.
For text constraint, following (Huang et al., 2023; Zeng
et al., 2023), we randomly select one prompt per sample
to generate one video. For box constraint, MSR-VTT does
not include bounding box annotations, so we automatically
create reference (ground-truth) bounding boxes. First, we
identify noun chunks from the text prompt. Then, we use
Grounding DINO (Liu et al., 2023b) to get bounding boxes
on the first frame and DEVA (Cheng et al., 2023) to extend
these boxes to subsequent frames.

Considering that the automatic annotations on MSR-VTT
may be noisy, to increase the credibility of our results, we
manually annotated a portion of the ActivityNet validation
set. Specifically, we chose 796 video clips that include
noticeable object motion. The bounding boxes in the first
frame have already been annotated by the ActivityNet Enti-
ties dataset (Zhou et al., 2019), and we manually extended
the bounding box annotations to all 16 frames.

Evaluation metrics We measure video quality using
Fréchet Video Distance (FVD) (Unterthiner et al., 2018)
and measure text alignment using CLIP similarity score
(CLIPSIM) (Wu et al., 2021). We compute the FVD metrics
using the randomly selected 16 frames of each ground truth
video with an FPS of 4. For evaluating motion control, we
use the average precision (AP) metric. We generate videos
with ground-truth boxes on the first and last frames as con-
straints. After creating a video, we detect bounding boxes
with the aforementioned DINO+DEVA detection system. If
an object is consistently tracked across all frames, we com-
pare its detected bounding box with the ground truth boxes
on the first/last frame. AP is calculated following the MS
COCO protocol (Lin et al., 2014). When the first frame is a
given condition, we only compare boxes on the last frame.
We also report mean average precision (mAP), calculated
as the average AP over 10 Intersection over Union (IoU)
thresholds, from 0.5 to 0.95.

5.2. Quantitative Evaluation

Video Quality Table 1 compares our models with recent
video synthesis models on the MSR-VTT dataset. In text-
to-video synthesis, our Boximator model outperforms the

2The UCF-101 dataset details and results are discussed in Ap-
pendix B

base models, achieving competitive FVD scores of 237 and
239 with PixelDance and ModelScope, respectively. This
improvement, despite using frozen base model weights, is
probably due to the control module’s training on motion
data, enhancing dynamic scene handling.

The results in Table 1 indicates that the FVD score improves
when extra conditions are added to the input. Specifically,
the introduction of box constraints (Box) enhances video
quality (PixelDance: 237 → 174; ModelScope: 239 → 216).
We hypothesize this improvement is due to box constraints
providing a more realistic layout for video generation. How-
ever, when the generation is based on the first frame (F0),
the impact of box constraints on FVD is reduced (Pixel-
Dance: 113 → 102; ModelScope: 142 → 132). This might
be because the layout is already set by F0.

Our models achieve CLIPSIM scores that are on par with
state-of-the-art systems. We noticed a slight drop in CLIP-
SIM scores when additional conditions (like F0 or Box) are
introduced. This occurs because the base model is optimized
for aligning video with the text alone, whereas our model
handles multiple types of alignment at the same time. A sim-
ilar observation was reported in the FACTOR paper (Huang
et al., 2023).

Motion Control Precision Table 1 also presents the re-
sults for motion control precision. In every case, adding
box constraints (Box) significantly improves the average
precision (AP) scores. This indicates that the model ef-
fectively understands and applies the box constraints. The
FACTOR paper (Huang et al., 2023) reported the mAP score
on MSR-VTT too. Although our results aren’t directly com-
parable to theirs due to differences in object annotations,
we’ve included their number (marked with ∗) in Table 1 for
reference.

Table 2 presents the results on ActivityNet. We intentionally
chose test videos from ActivityNet that feature significant
object movements. As a result, the disparity in AP scores
before and after adding box constraints is wider compared
to MSR-VTT. The mAP scores with box constraints are
4.4-8.9x higher than that without box on ActivityNet, in
contrast to 1.9-3.7x higher on MSR-VTT.

It’s important to note that the AP scores in our experiments
are not equal to success rate in motion control. To calcu-
late AP, we compare the reference object boxes with those
generated by the video synthesis model and detected by the
DINO+DEVA system. This detector isn’t flawless; it might
miss objects, detect irrelevant ones, or fail to track an object
consistently across all frames. These potential errors in de-
tection can impact the final AP score. Therefore, it’s more
insightful to focus on the difference in AP scores between
methods, rather than the absolute values.
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Models Extra Input FVD(↓) CLIPSIM(↑) mAP/AP50/AP75(↑)
MagicVideo (Zhou et al., 2022) - 1290 - -
LVDM (He et al., 2022) - 742 0.2381 -
ModelScope (Wang et al., 2023a) - 550 0.2930 -
Show-1 (Zhang et al., 2023) - 538 0.3072 -
PixelDance (Zeng et al., 2023) - 381 0.3125 -
Phenaki (Villegas et al., 2022) - 384 0.2870 -
FACTOR-traj (Huang et al., 2023) Box 317 0.2787 0.290∗/-/-

PixelDance + Boximator

- 237 0.3039 0.094/0.193/0.076
Box 174 0.2947 0.349/0.479/0.359
F0 113 0.2890 0.194/0.330/0.177
F0 + Box 102 0.2874 0.365/0.521/0.384

ModelScope + Boximator

- 239 0.3013 0.096/0.195/0.084
Box 216 0.2948 0.312/0.470/0.309
F0 142 0.2865 0.141/0.260/0.126
F0 + Box 132 0.2852 0.300/0.456/0.299

Table 1. Zero-shot results on MSR-VTT. F0 means given the first frame as condition. Box means box constraints. The results show
that Boximator retains or improves the video quality (FVD) of the base models. In all cases, adding box constraints (Box) significantly
improves the average precision (AP) score of bounding box alignment.

Base Models Extra Input mAP/AP50/AP75(↑)

PixelDance

- 0.050/0.103/0.041
Box 0.445/0.638/0.459
F0 0.079/0.165/0.072
F0 + Box 0.394/0.607/0.409

ModelScope

- 0.054/0.118/0.040
Box 0.361/0.563/0.372
F0 0.069/0.128/0.068
F0 + Box 0.304/0.522/0.291

Table 2. Box alignment results on ActivityNet. In all cases, adding
box constraints significantly improves the AP score.

Criteria Boximator wins Draw Base model wins
Video Quality 35.2% 48.0% 16.8%
Motion Control 76.0% 21.8% 2.2%

Table 3. Human side-by-side blind comparison on 100 samples.

Methods mAP (Box) mAP (F0+Box)
MSR-VTT

PixelDance + Boximator 0.349 0.365
w/o self-tracking 0.118 0.187
w/o soft boxes 0.235 0.274
w/o freezing weights 0.354 0.343

ActivityNet
PixelDance + Boximator 0.445 0.394

w/o self-tracking 0.083 0.085
w/o soft boxes 0.248 0.220
w/o freezing weights 0.404 0.331

Table 4. Ablation study: removing self-tracking and soft boxes
both result in significant drop in the box alignment metric. Training
all model weights doesn’t give extra benefits.

5.3. Human Evaluation

We conducted a user preference study with four human
raters on 100 samples. In each session, they were shown
two videos in a random order: one generated by the base
model (PixelDance), which uses a text prompt and the first
frame as input, and the other by the Boximator model, which
additionally uses box constraints. The raters were asked to
evaluate their preference based on video quality and motion
control. Detailed criteria for evaluation are presented in
Appendix C. As indicated in Table 3, the Boximator model
was preferred by a significant margin. It excelled in motion
controls in 76% of the cases, outperformed by the base
model in only 2.2% of the cases. The Boximator model’s
video quality was also favored (+18.4%), likely due to the
dynamic and vivid content resulting from box constraints.
See Appendix C for some sample videos.

5.4. Ablation Study

We carry out ablation studies to understand the effect of our
design choices. Initially, we exclude self-tracking from our
training process. This means we train the model to predict
the original video without any visible bounding boxes. We
observe that omitting self-tracking greatly challenges the
model’s ability to associate control tokens with the corre-
sponding objects. As shown in Table 4, the average preci-
sion (AP) under box constraints falls drastically, reaching
a level that is only slightly better than the AP without box
constraints.

Next, we examine the role of using soft boxes during infer-
ence. According to the standard inference method described
in Section 4.5, we insert relaxed soft boxes in frames 2-15,
where the user does not specify any box constraints. Table 4
indicates that removing these relaxed soft boxes (by replac-
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Figure 6. Case study: (a) Generation and motion control based on four boxes; (b) A motion that affects significant portion of the frame; (c)
Box defined on a combination of objects (e.g., “a man on a horse”); (d) Adding new objects to the scene.

ing their control tokens with tnull) leads to a significant
decrease in average precision scores. We hypothesize that
the inserted soft boxes act as a rough guide for movement
directions. Without this guide, the model tends to make
more mistakes.

Finally, we examine the impact of freezing the base model
weights. For comparison, we trained a new model in which
all parameters of the U-Net were optimized. We find that
the new model generates videos of roughly the same quality,
resulting in similar FVD scores as the standard model in
Table 1. When it comes to motion control precision, as
shown in Table 4, this new model scored similarly as the
default one on MSR-VTT, and lower on ActivityNet. In
summary, our results suggest that it’s not necessary to train
all the U-Net parameters.

5.5. Case Study

In this section, we highlight the model’s capability of han-
dling complex scenarios. Figure 6(a) demonstrates a gen-
eration task based on four boxes. Boximator successfully
populates each box with the target object (a pig) as specified
in the text prompt. This contrasts with the second row, where
the model without box constraint only produces two pigs.
Indeed, previous research has found that text-conditioned
diffusion models struggle with precise object count control
without box constraints (Yang et al., 2023).

Figure 6(b) illustrates a dynamic scene where a baby is
moved across the entire frame. The box has guided the
model to generate the motion, which appeared to be chal-
lenging to generate without box constraints (see the next
row). Figure 6(c) highlights the generalizability of box-
based visual grounding. Here, a user wants to control an
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object combination: a man on a horse. The model inter-
prets this constraint, moving the composite object towards
the frame’s left edge. Finally, Figure 6(d) showcases the
model’s capability to introduce a new object into a scene.
The user indicates the entry point of a man by drawing a
segment line along the left border. The model successfully
directs a man entering from the left edge, stopping at the
center.

6. Conclusion
We proposed Boximator, a genral approach to controlling
object motion in video synthesis. Boximator utilizes two
types of boxes to allow users to select arbitrary objects and
define their motions without entering extra text. It can be
built on any video diffusion model that supports attention
layers, without modifying the original model weights, thus
its performance can improve with evolving base models.
Additionally, we proposed a self-tracking method that sig-
nificantly simplifies the training for the control module. We
believe that our design choices and training techniques can
be adapted to enable other forms of control, such as condi-
tioning with human poses and key points.

Limitations
This work paper presents work whose goal is to improve
the motion controllability in video generation. We recog-
nize that despite the progress presented in this paper, there
are areas for potential enhancement. Currently, our models
generate 4-second videos with a resolution of 256x256 and
a 1:1 aspect ratio. Extending this to longer videos with a
16:9 aspect ratio could provide greater flexibility for mo-
tion control. Furthermore, the training data is solely from
WebVid. Incorporating more diverse data sources could
significantly improve the model’s generalizability to out-of-
domain videos. Lastly, certain motions, such as rotation, are
easier to control through text rather than boxes. It would be
interesting to explore how Boximator can better integrate
text-based motion control.

Impact Statement
Video generation technologies, especially advanced video
diffusion models, carry potential ethical and social risks.
These include the creation of deepfakes, which can lead
to misinformation and privacy violations; biases in AI-
generated content, potentially leading to unfair or discrimi-
natory outcomes; and impacts on intellectual property and
creative industries, possibly undermining the value of hu-
man creativity. It’s crucial for developers and users of these
technologies to be aware of these risks and ensure their
responsible use.

References
Bain, M., Nagrani, A., Varol, G., and Zisserman, A. Frozen

in time: A joint video and image encoder for end-to-end
retrieval. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1728–1738, 2021.

Blattmann, A., Dockhorn, T., Kulal, S., Mendelevitch, D.,
Kilian, M., Lorenz, D., Levi, Y., English, Z., Voleti, V.,
Letts, A., et al. Stable video diffusion: Scaling latent
video diffusion models to large datasets. arXiv preprint
arXiv:2311.15127, 2023.

Caba Heilbron, F., Escorcia, V., Ghanem, B., and Car-
los Niebles, J. Activitynet: A large-scale video bench-
mark for human activity understanding. In Proceedings
of the ieee conference on computer vision and pattern
recognition, pp. 961–970, 2015.

Chen, X., Wang, Y., Zhang, L., Zhuang, S., Ma, X., Yu, J.,
Wang, Y., Lin, D., Qiao, Y., and Liu, Z. Seine: Short-to-
long video diffusion model for generative transition and
prediction. arXiv preprint arXiv:2310.20700, 2023.

Cheng, H. K., Oh, S. W., Price, B., Schwing, A., and Lee,
J.-Y. Tracking anything with decoupled video segmen-
tation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1316–1326, 2023.

Fei, H., Wu, S., Ji, W., Zhang, H., and Chua, T.-S. Em-
powering dynamics-aware text-to-video diffusion with
large language models. arXiv preprint arXiv:2308.13812,
2023.

Feng, M., Liu, J., Yu, K., Yao, Y., Hui, Z., Guo, X., Lin, X.,
Xue, H., Shi, C., Li, X., et al. Dreamoving: A human
video generation framework based on diffusion models.
arXiv e-prints, pp. arXiv–2312, 2023.

Ge, S., Nah, S., Liu, G., Poon, T., Tao, A., Catanzaro, B., Ja-
cobs, D., Huang, J.-B., Liu, M.-Y., and Balaji, Y. Preserve
your own correlation: A noise prior for video diffusion
models. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 22930–22941, 2023.

Girdhar, R., Singh, M., Brown, A., Duval, Q., Azadi, S.,
Rambhatla, S. S., Shah, A., Yin, X., Parikh, D., and
Misra, I. Emu video: Factorizing text-to-video gener-
ation by explicit image conditioning. arXiv preprint
arXiv:2311.10709, 2023.

Gu, J., Wang, S., Zhao, H., Lu, T., Zhang, X., Wu, Z., Xu,
S., Zhang, W., Jiang, Y.-G., and Xu, H. Reuse and diffuse:
Iterative denoising for text-to-video generation. arXiv
preprint arXiv:2309.03549, 2023.

9



Boximator: Generating Rich and Controllable Motions for Video Synthesis

Guo, Y., Yang, C., Rao, A., Agrawala, M., Lin, D., and
Dai, B. Sparsectrl: Adding sparse controls to text-to-
video diffusion models. arXiv preprint arXiv:2311.16933,
2023.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, Y., Yang, T., Zhang, Y., Shan, Y., and Chen, Q. Latent
video diffusion models for high-fidelity video generation
with arbitrary lengths. arXiv preprint arXiv:2211.13221,
2022.

Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko,
A., Kingma, D. P., Poole, B., Norouzi, M., Fleet, D. J.,
et al. Imagen video: High definition video generation
with diffusion models. arXiv preprint arXiv:2210.02303,
2022a.

Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M.,
and Fleet, D. J. Video diffusion models. In Koyejo, S.,
Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and
Oh, A. (eds.), Advances in Neural Information Processing
Systems, volume 35, pp. 8633–8646. Curran Associates,
Inc., 2022b.

Huang, H.-P., Su, Y.-C., Sun, D., Jiang, L., Jia, X., Zhu, Y.,
and Yang, M.-H. Fine-grained controllable video gener-
ation via object appearance and context. arXiv preprint
arXiv:2312.02919, 2023.

Kondratyuk, D., Yu, L., Gu, X., Lezama, J., Huang, J.,
Hornung, R., Adam, H., Akbari, H., Alon, Y., Birodkar,
V., et al. Videopoet: A large language model for zero-
shot video generation. arXiv preprint arXiv:2312.14125,
2023.

Li, Y., Liu, H., Wu, Q., Mu, F., Yang, J., Gao, J., Li, C.,
and Lee, Y. J. Gligen: Open-set grounded text-to-image
generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 22511–
22521, 2023.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part V 13, pp. 740–
755. Springer, 2014.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction
tuning. arXiv preprint arXiv:2304.08485, 2023a.

Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Li, C.,
Yang, J., Su, H., Zhu, J., et al. Grounding dino: Marry-
ing dino with grounded pre-training for open-set object
detection. arXiv preprint arXiv:2303.05499, 2023b.

Ma, W.-D. K., Lewis, J. P., and Kleijn, W. B. Trailblazer:
Trajectory control for diffusion-based video generation.
2023.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. Communica-
tions of the ACM, 65(1):99–106, 2021.

Qing, Z., Zhang, S., Wang, J., Wang, X., Wei, Y., Zhang,
Y., Gao, C., and Sang, N. Hierarchical spatio-temporal
decoupling for text-to-video generation. arXiv preprint
arXiv:2312.04483, 2023.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Confer-
ence, Munich, Germany, October 5-9, 2015, Proceedings,
Part III 18, pp. 234–241. Springer, 2015.

Sheynin, S., Polyak, A., Singer, U., Kirstain, Y., Zohar, A.,
Ashual, O., Parikh, D., and Taigman, Y. Emu edit: Precise
image editing via recognition and generation tasks. arXiv
preprint arXiv:2311.10089, 2023.

Singer, U., Polyak, A., Hayes, T., Yin, X., An, J., Zhang, S.,
Hu, Q., Yang, H., Ashual, O., Gafni, O., et al. Make-a-
video: Text-to-video generation without text-video data.
arXiv preprint arXiv:2209.14792, 2022.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. arXiv preprint arXiv:2010.02502, 2020.

Soomro, K., Zamir, A. R., and Shah, M. Ucf101: A dataset
of 101 human actions classes from videos in the wild.
arXiv preprint arXiv:1212.0402, 2012.

Unterthiner, T., Van Steenkiste, S., Kurach, K., Marinier, R.,
Michalski, M., and Gelly, S. Towards accurate generative
models of video: A new metric & challenges. arXiv
preprint arXiv:1812.01717, 2018.

Villegas, R., Babaeizadeh, M., Kindermans, P.-J., Moraldo,
H., Zhang, H., Saffar, M. T., Castro, S., Kunze, J., and
Erhan, D. Phenaki: Variable length video generation
from open domain textual description. arXiv preprint
arXiv:2210.02399, 2022.

Wang, J., Yuan, H., Chen, D., Zhang, Y., Wang, X., and
Zhang, S. Modelscope text-to-video technical report.
arXiv preprint arXiv:2308.06571, 2023a.

Wang, T., Li, L., Lin, K., Lin, C.-C., Yang, Z., Zhang, H.,
Liu, Z., and Wang, L. Disco: Disentangled control for
referring human dance generation in real world. arXiv
preprint arXiv:2307.00040, 2023b.

10



Boximator: Generating Rich and Controllable Motions for Video Synthesis

Wang, W., Liu, J., Lin, Z., Yan, J., Chen, S., Low, C.,
Hoang, T., Wu, J., Liew, J. H., Yan, H., et al. Magicvideo-
v2: Multi-stage high-aesthetic video generation. arXiv
preprint arXiv:2401.04468, 2024.

Wang, X., Yuan, H., Zhang, S., Chen, D., Wang, J., Zhang,
Y., Shen, Y., Zhao, D., and Zhou, J. Videocomposer:
Compositional video synthesis with motion controllabil-
ity. arXiv preprint arXiv:2306.02018, 2023c.

Wang, Z., Yuan, Z., Wang, X., Chen, T., Xia, M., Luo,
P., and Shan, Y. Motionctrl: A unified and flexible
motion controller for video generation. arXiv preprint
arXiv:2312.03641, 2023d.

Wu, C., Huang, L., Zhang, Q., Li, B., Ji, L., Yang, F.,
Sapiro, G., and Duan, N. Godiva: Generating open-
domain videos from natural descriptions. arXiv preprint
arXiv:2104.14806, 2021.

Xu, J., Mei, T., Yao, T., and Rui, Y. Msr-vtt: A large video
description dataset for bridging video and language. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 5288–5296, 2016.

Xu, Z., Zhang, J., Liew, J. H., Yan, H., Liu, J.-W., Zhang,
C., Feng, J., and Shou, M. Z. Magicanimate: Temporally
consistent human image animation using diffusion model.
arXiv preprint arXiv:2311.16498, 2023.

Yang, Z., Wang, J., Gan, Z., Li, L., Lin, K., Wu, C., Duan,
N., Liu, Z., Liu, C., Zeng, M., et al. Reco: Region-
controlled text-to-image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14246–14255, 2023.

Yin, S., Wu, C., Liang, J., Shi, J., Li, H., Ming, G., and Duan,
N. Dragnuwa: Fine-grained control in video generation
by integrating text, image, and trajectory. arXiv preprint
arXiv:2308.08089, 2023.

Zeng, Y., Wei, G., Zheng, J., Zou, J., Wei, Y., Zhang, Y.,
and Li, H. Make pixels dance: High-dynamic video
generation. arXiv preprint arXiv:2311.10982, 2023.

Zhang, D. J., Wu, J. Z., Liu, J.-W., Zhao, R., Ran, L., Gu,
Y., Gao, D., and Shou, M. Z. Show-1: Marrying pixel
and latent diffusion models for text-to-video generation.
arXiv preprint arXiv:2309.15818, 2023.

Zhou, D., Wang, W., Yan, H., Lv, W., Zhu, Y., and Feng, J.
Magicvideo: Efficient video generation with latent diffu-
sion models. arXiv preprint arXiv:2211.11018, 2022.

Zhou, L., Kalantidis, Y., Chen, X., Corso, J. J., and
Rohrbach, M. Grounded video description. In CVPR,
2019.

11



Boximator: Generating Rich and Controllable Motions for Video Synthesis

A. More Implementation Details
Control Module We follow NeRF (Mildenhall et al., 2021) to use Fourier embeddings to encode box coordinates, object
ID and the hard/soft flag. We make sure that all input dimensions are scaled between 0 and 1. For any given input x within
this range, its Fourier embedding is defined as:

Fourier(x) = [cos(x · 1000/8), . . . , cos(x · 1007/8), sin(x · 1000/8), . . . , sin(x · 1007/8)].

We combine these Fourier embeddings of each input to form the overall embedding, which has a dimension of 128. As
mentioned in Section 4.1, these embeddings are then processed through a multi-layer perceptron (MLP). This MLP has
three hidden layers, each with a dimension of 512. Finally, the output control token is adjusted to match the dimension of
the visual token, which is 1024.

Training & Inference Details Our models train on 16-frame sequences with a resolution of 256x256 pixels, running at 4
frames per second. We limit the maximum number of objects to N = 8. The training uses the Adam optimizer, with a batch
size of 128 across 16 NVIDIA Tesla A100 GPUs. As outlined in Section 4.4, training occurs in three stages: 50k iterations
for stage 1, 50k iterations for stage 2, and 10k iterations for stage 3. We use 2× 10−4 learning rate for the first stage, and
3× 10−5 for later stages. All stages use linear learning rate scheduler with 7,500 warm-up steps. Since box conditioning is
optional, we use 25% of our training data from videos without any box annotation. Since first frame conditioning is also
optional, we let half of the training samples include the video’s first frame as a condition.

For all experiments, we use the DDIM inference algorithm (Song et al., 2020) with 50 inference steps. To enable classifier-
free guidance, we construct negative conditions by substituting every control token with tnull. We set the classifier-free
guidance scale to be 9.

Analysis of Model Complexity Table 5 shows the increase in model parameters, computational overhead (GFLOPs) and
inference time (one denoising step) when building Boximator based on PixelDance. It indicates that Boximator brings a
mild increase in overhead (less than 20%) compared to the base model.

Model Params (M) GFLOPs Time cost (ms)

PixelDance (base model) 1411.2 4894.7 1615.4
PixelDance + Boximator 1623.3 (+15.0%) 5856.1 (+19.6%) 1922.2 (+18.9%)

Table 5. Analysis of Model Complexity.

B. Results on UCF-101
We follow the experiment settings of PixelDance (Zeng et al., 2023) to evaluate on UCF-101. Specifically, we sampled
2,048 videos from the UCF-101 test set, generating descriptive text prompts for each of them, and then generated 10,240
16-frame videos. We compute the FVD real features from the original 2,048 videos by sampling 16 frames from each video.
Reference bounding boxes were automatically annotated using the same method as for MSR-VTT. Given generated videos,
we employed DINO+DEVA for bounding box detection and computed average precision (AP) scores. It’s noteworthy that
UCF-101’s prompts are more detailed than those for MSR-VTT and ActivityNet. Since the automatic annotation uses the
text prompt to extract object names, the longer prompts lead to more, albeit noisier, boxes per video.

Table 6 presents our UCF-101 results, showing trends consistent with MSR-VTT. The Boximator model roughly maintained
or improves the FVD scores compared to the base model. While using the first frame (F0) as a condition notably boosted
FVD scores, box constraints had minimal impact to FVD, likely due to the noisier nature of UCF-101’s boxes.

In all scenarios, using box constraints significantly increased AP scores, echoing results from MSR-VTT and ActivityNet.
However, the absolute AP values on UCF-101 were lower than on the other datasets, probably due to the lower quality of
box annotations.
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Models Extra Input FVD(↓) mAP/AP50/AP75(↑)
MagicVideo (Zhou et al., 2022) - 699 -
LVDM (He et al., 2022) - 641 -
ModelScope (Wang et al., 2023a) - 410 -
Make-A-Video (Singer et al., 2022) - 367 -
VidRD (Gu et al., 2023) - 363 -
PYOCO (Ge et al., 2023) - 355 -
Dysen-VDM (Fei et al., 2023) - 325 -
PixelDance (Zeng et al., 2023) - 242 -
Stable Video Diffusion (Blattmann et al., 2023) - 242 -

PixelDance + Boximator

- 270 0.060/0.127/0.044
Box 263 0.228/0.354/0.229
F0 132 0.171/0.272/0.163
F0 + Box 142 0.284/0.419/0.279

ModelScope + Boximator

- 310 0.063/0.131/0.047
Box 311 0.192/0.308/0.184
F0 196 0.132/0.223/0.119
F0 + Box 194 0.212/0.343/0.205

Table 6. Zero-shot results on UCF-101.

C. Human Evaluation Details
We selected 100 high-quality videos featuring prominent camera or object movements from WebVid (excluded from training
set) and manually annotated their bounding boxes. Then we generate new videos using both the standard PixelDance model
and PixelDance+Boximator, with the video caption and the first frame taken as inputs. The Boximator model additionally
used bounding boxes from the first and last frames. Four human raters assessed the regenerated videos, marked as “Video 1”
and “Video 2,” presented in a randomized order to obscure the generating model. Raters evaluated the videos for quality and
motion control, choosing between “Video 1 is better,” “Video 2 is better,” or “no preference.”

Video Quality Raters evaluated each video for visual distortions, blurs, or other quality defects, and for temporal
inconsistencies, such as inconsistent object appearances across frames. In cases where both videos were free from these
issues, raters favored the video with richer content. For instance, when comparing two videos where one exhibits interesting
motion and the other remains mostly stationary, raters are expected to favor the more dynamic one.

Motion Control The evaluation focused on whether each video satisfied motion constraints set by the bounding boxes in
the initial and final frames. Preference was given to the video meeting these constraints. If both or neither video met the
constraints, raters are expected to select “no preference.”

Some sample videos and their evaluations results are displayed in Figures 7 to 9.
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Figure 7. Sample videos from human evaluation (Part 1). Each group displays two rows: the first generated by the Boximator model
and the second by the base model. Vote results are denoted as X/Y/Z, indicating raters’ preferences: X for Boximator model, Y for no
preference, and Z for base model.
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Figure 8. Sample videos from human evaluation (Part 2).
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Figure 9. Sample videos from human evaluation (Part 3).
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