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Abstract
Imitation learning has emerged as a promising ap-
proach for addressing sequential decision-making
problems, with the assumption that expert demon-
strations are optimal. However, in real-world sce-
narios, most demonstrations are often imperfect,
leading to challenges in the effectiveness of imita-
tion learning. While existing research has focused
on optimizing with imperfect demonstrations, the
training typically requires a certain proportion of
optimal demonstrations to guarantee performance.
To tackle these problems, we propose to purify
the potential noises in imperfect demonstrations
first, and subsequently conduct imitation learning
from these purified demonstrations. Motivated by
the success of diffusion model, we introduce a
two-step purification via diffusion process. In the
first step, we apply a forward diffusion process
to smooth potential noises in imperfect demon-
strations by introducing additional noise. Subse-
quently, a reverse generative process is utilized
to recover the optimal demonstration from the
diffused ones. We provide theoretical evidence
supporting our approach, demonstrating that the
distance between the purified and optimal demon-
stration can be bounded. Empirical results on
MuJoCo and RoboSuite demonstrate the effec-
tiveness of our method from different aspects.

1. Introduction
Reinforcement Learning (RL) (Sutton & Barto, 2018; Kael-
bling et al., 1996) has achieved significant success in ad-
dressing sequential decision-making problems (Silver et al.,
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2016; Van Hasselt et al., 2016; Zha et al., 2021). The core
tenet of RL lies in the learning of an optimal policy via re-
warding an agent’s actions during its interaction with the en-
vironment. The strategic formulation of reward is essential
to the recovery of the best policy. However, the intricacy of
reward engineering often poses significant challenges in real-
world tasks, leading to the failure of RL algorithms occa-
sionally (Amodei et al., 2016; Dulac-Arnold et al., 2021). In
response to these challenges, an alternative approach to pol-
icy learning is Imitation Learning (IL) (Abbeel & Ng, 2004;
Hussein et al., 2017; Cai et al., 2021), a learning frame-
work that utilizes expert behaviors to guide agent learning.
One fundamental IL approach is Behavioral Cloning (BC)
(Torabi et al., 2018; Sasaki & Yamashina, 2021), in which
the agent observes the action of the expert and learns a
policy by directly minimizing the action probability discrep-
ancy via supervised learning. This offline training manner
has been proven to suffer from compounding error when
the agent executes the policy, leading it to drift to new and
dangerous states (Xu et al., 2020; 2021). In contrast, Gener-
ative Adversarial Imitation Learning (GAIL) (Ho & Ermon,
2016; Fu et al., 2018; Dadashi et al., 2020; Cai et al., 2023;
Wang et al., 2023b) has revealed that imitation learning can
be framed as a problem of matching state-action occupancy
measures, resulting in a more accurate policy. Based on the
framework of Generative Adversarial Nets (GAN) (Goodfel-
low et al., 2014), the discriminator in GAIL is introduced to
distinguish demonstrations from expert policy and agent pol-
icy, yet the agent policy tries its best to generate behaviors
that cheat the judgment of the discriminator.

Current imitation learning approaches have shown promis-
ing results under the premise that expert demonstrations
exhibit high-quality performance. Nonetheless, acquiring
optimal demonstrations can often be costly in practical real-
world applications. In many cases, the demonstrations avail-
able are not optimal, leading to the problem of imperfect
demonstrations in imitation learning. Under such a situa-
tion, imitation learning algorithms are prone to failure when
expert demonstrations are characterized by noise. Hence,
the question of how to effectively learn an optimal policy
from imperfect demonstrations becomes central to bridging
the application gap of imitation learning from simulated
environments to real-world tasks. This issue is critical for
enhancing the adaptability and effectiveness of imitation
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learning methods in various practical scenarios.

Confidence-based methods have been shown to be effec-
tive when addressing the issue of imperfect demonstrations
in imitation learning. In WGAIL (Wang et al., 2021b)
and SAIL (Wang et al., 2021a), confidence estimation for
each demonstration is tied to the discriminator during the
adversarial training phase. BCND (Sasaki & Yamashina,
2021) proposes that the agent’s policy itself can estimate
confidence. Rather than predicting the confidence directly
through either policy or discriminator, CAIL (Zhang et al.,
2021) considers confidence as a learnable parameter and
jointly optimizes it with imitation learning methods. The key
of confidence-based methods lies in how to derive proper
confidence for each expert demonstration. However, most
existing methods integrate confidence estimation into the
training of IL (Beliaev et al., 2022), leading to a bi-level op-
timization problem. This bi-level optimization can become
unstable and hard to converge during the training of imita-
tion learning, resulting in a breakdown of the confidence
estimation. Furthermore, the aforementioned methods are
specifically designed to be compatible with either BC or
GAIL. This specificity limits their flexibility and restricts
their application with other methods.

Rather than integrating the handling of imperfect demon-
strations into IL training, we propose an approach where the
purification of imperfect demonstrations is performed first.
Subsequently, imitation learning is carried out with purified
demonstrations. Based on this idea, we introduce Diffusion
Purified Imitation Learning (DP-IL), which utilizes the for-
ward and reverse diffusion processes to recover the optimal
demonstrations from imperfect ones. By incorporating the
diffusion process into denoising imperfect demonstrations,
we provide theoretical analysis on the effectiveness of noise
elimination during the forward diffusion process as well
as the reduction of the gap between the optimal and pu-
rified distribution. The distance between the purified and
optimal demonstration can also be bounded. We show that
the purified demonstrations can be used in both online and
offline imitation learning methods. Experimental results in
MuJoCo (Todorov et al., 2012) and RoboSuite (Zhu et al.,
2020) demonstrate the effectiveness of our method from
different aspects.

2. Related Work
2.1. Imitation Learning from Imperfect Demonstrations

When dealing with imperfect demonstrations, confidence-
based IL methods estimate the weight for imperfect demon-
strations to address their importance to agent learning.
2IWIL (Wu et al., 2019) and IC-GAIL (Wu et al., 2019)
first investigate the effectiveness of weighting schemes in
imitation learning with imperfect demonstrations. However,

these approaches relied on manually labeled confidence,
which is challenging to obtain in practical scenarios. To re-
lax this requirement, subsequent works have proposed alter-
native methods. For instance, DWBC (Xu et al., 2022) and
DICE-based methods (Kim et al., 2021; Chang et al., 2021;
Ma et al., 2022; Yu et al., 2023; Li et al., 2024) leverage a
small fraction of known optimal demonstrations to infer the
weights for the remaining supplementary demonstrations.
CAIL (Zhang et al., 2021) utilizes partially ranked trajecto-
ries to guide confidence estimation. Recent works also focus
on estimating confidence without exposing too much prior
information. WGAIL (Wang et al., 2021b) and SAIL (Wang
et al., 2021a) connect confidence estimation to the discrimi-
nator during training. BCND (Sasaki & Yamashina, 2021)
use the policy network to indicate confidence. However,
these approaches have two primary limitations. First, the
weight estimation and imitation learning build up a bi-level
optimization problem, which can be challenging to converge.
Secondly, most methods rely on having a certain proportion
of optimal demonstrations, which may not be feasible in
practical settings.

Preference-based methods (Christiano et al., 2017; Ibarz
et al., 2018) have also proven effective for policy learning
from imperfect demonstrations. Using human preference
can avoid complex reward engineering, thus making policy
learning more practical. T-REX (Brown et al., 2019) focuses
on extrapolating a reward function based on ranked trajec-
tories. By effectively capturing the rankings, the learned
reward function provides valuable feedback to guide the
agent’s learning process. T-REX only requires precise rank-
ings of trajectories, yet does not set constraints on data
quality. As a result, T-REX can achieve satisfactory per-
formance even in scenarios where optimal trajectories are
unavailable. D-REX (Brown et al., 2020) introduces relax-
ation to the ranking constraint of T-REX. Initially, it learns
a pre-trained policy through behavioral cloning and subse-
quently generates ranked trajectories by injecting varying
levels of noise into the actions. D-REX uses the same way
to learn the reward as T-REX with ranked trajectories. To
address potential ranking errors, SSRR (Chen et al., 2021)
proposes a novel reward function structure. By mitigating
the adverse effects arising from ranking inaccuracies, SSRR
enhances the reliability of the learning process.

2.2. Diffusion Model in Imitation Learning

Diffusion models have demonstrated significant potential
in generative tasks. Some works have explored the use of
diffusion models either to directly model the policy network
or to serve as the discriminator within Adversarial Imitation
Learning (AIL) frameworks. For example, policy network
in (Chi et al., 2023; Pearce et al., 2022; Reuss et al., 2023)
is defined to be a condition diffusion model that refines a
noise to the action based on the given state. DiffAIL (Wang
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et al., 2024) models the state-action pairs as unconditional
diffusion models and uses diffusion loss as part of the dis-
criminator’s learning objective. Despite achieving SOTA
performance in some benchmark settings, they can not solve
imperfect demonstration issues in imitation learning. In
(Wang et al., 2023a), the diffusion model is trained with
expert demonstrations and used to enhance the generaliza-
tion of policy trained by BC. Despite both (Wang et al.,
2023a) and our method trains a diffusion model on expert
demonstrations first, the diffusion model is used to achieve
different tasks.

3. Preliminary
Before diving into our method, we briefly review the defini-
tion of the Markov Decision Process (MDP) and Imitation
Learning with Distribution Matching.

3.1. Markov Decision Process (MDP)

MDP is popular for formulating reinforcement learning
(RL) (Puterman, 1994) and imitation learning (IL) prob-
lems. An MDP normally consists six basic elements
M = (S,A,P,R, γ, µ0), where S is a set of states, A
is a set of actions, P : S ×A× S → [0, 1] is the stochastic
transition probability from current state s to the next state s′,
R : S×A → R is the obtained reward of agent when taking
action a in a certain state s, γ ∈ [0, 1] is the discounted rate
and µ0 : S → [0, 1] denotes the initial state distribution.
Definition 1. For any policy π(a|s) : S → A, there is an
one-to-one correspondence between π and its occupancy
measure ρπ : S ×A → [0, 1], which is formulated as

ρπ(s, a) = (1− γ)π(a|s)
∞∑
t=0

γtPr(st = s|π), (1)

where Pr(st = s|π) denotes the probability density of state
s at timestep t following policy π.

3.2. Imitation Learning via Distribution Matching

The field of Imitation Learning (IL) is concerned with opti-
mizing an agent’s behavior in a given environment by uti-
lizing expert demonstrations. Given expert demonstrations
De sampled from the expert policy πe, imitation learning
methods aim to let the agent policy πθ replicate the expert
behavior. Distribution Matching (DM) approaches attempt
to match the agent’s state-action distribution ρπθ

with that of
the expert’s ρπe by minimizing the f -divergence (Nowozin
et al., 2016; Ke et al., 2019),

θ∗ = argmin
θ

Df (ρπe
(s, a), ρπθ

(s, a)) (2)

where f : R+ → R is a convex, lower semi-continuous
function and satisfies f(1) = 0. Different choices of f -
divergence can recover different imitation learning methods.

For example, using KL divergence, Jensen-Shannon diver-
gence can recover Behavior Cloning (BC) (Sasaki & Ya-
mashina, 2021), Generative Adversarial Imitation Learning
(GAIL) (Ho & Ermon, 2016), respectively.

4. Methodology
Imitation learning achieves promising results in benchmark
tasks with two non-trivial assumptions: (i) Expert demon-
strations are sampled from an optimal policy, and (ii) Expert
demonstrations are enough to encompass the expert distribu-
tion. While these two assumptions may not always hold in
practice, our setting falls into the problem of imitation learn-
ing with imperfect demonstrations, where we have access
to a small fraction of optimal demonstrations and a large
fraction of supplementary sub-optimal demonstrations. To
tackle this problem, we propose a two-step method named
Diffusion Purified Imitation Learning (DP-IL), in which
sub-optimal demonstrations are purified via a combination
of forward and reverse diffusion process. Furthermore, we
provide theoretical results on the optimal reverse point that
could achieve best performance.

4.1. General Objective

We begin by formalizing the problem of incorporating sup-
plementary sub-optimal demonstrations into imitation learn-
ing. For simplicity, we denote the optimal expert distribu-
tion as ρπo

and sub-optimal expert distribution as ρπs
. In

this setting, we have access to a limited number of opti-
mal demonstrations Do = {si, ai}no

i=1 ∼ ρπo(s, a), and a
large number of supplementary sub-optimal demonstrations
Ds = {si, ai}ns

i=1 ∼ ρπs
(s, a). Our objective is to leverage

both types of demonstrations De = Do∪Ds to learn a good
policy π for the agent. Typically, Do alone is often insuf-
ficient for effective policy learning (Kim et al., 2021; Xu
et al., 2022), and the involvement of Ds could significantly
hurt the optimization of imitation learning algorithms.

To tackle this problem, a potential solution is to purify sup-
plementary sub-optimal demonstrations Ds under the guid-
ance of optimal demonstrations Do. Specifically, assuming
that ρπs

(s, a) can be purified through a distribution transfor-
mation F , the agent policy πθ can subsequently learn from
the purified demonstrations. To summarize, the objective
can be formulated as,

min
θ

Df (F∗(ρπs(s, a)), ρπθ
(s, a)) (3)

s.t. F∗ =argmin
F

H(ρπo
(s, a),F(ρπs

(s, a))), (4)

where H denotes the distance measurement between dis-
tributions. We assume that sub-optimality within supple-
mentary demonstrations mainly come from the potential
perturbations δ during the collections, which form the sub-
optimal expert distribution. Thus, taking F∗ as a denoising
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function can be a potential solution to tackle the gap be-
tween optimal and sub-optimal expert distributions.

Motivated by the success of diffusion models in adversar-
ial purification (Nie et al., 2022), we introduce a Diffusion
Purified Imitation Learning (DP-IL) algorithm, which elim-
inates the potential noises in ρπs through a two-step diffu-
sion process. In the diffusion model, the first step involves
a forward diffusion process, where small timestep noise is
gradually added to the sub-optimal demonstrations. This
results in diffused demonstrations that eliminate potential
perturbation patterns in the sub-optimal expert distribution
ρπs while preserving the original semantic information. In
the second step, a reverse-time diffusion process is applied
to reconstruct the purified demonstrations from the diffused
demonstrations.

4.2. Purification via Diffusion Process

We formulate F∗ as a two-step purification as in the diffu-
sion model, which includes forward and reverse diffusion
processes. For the diffusion model, we adopt widely-used
DDPM (Ho et al., 2020). For simplicity, we use x to repre-
sent the state-action pair (s, a) in the following subsections
since we regard it as a whole during the purification process.

Training Diffusion Model with Optimal Demos. Since
the transformation F is a combination of forward and re-
verse diffusion processes, we train a diffusion model ϵϕ on
optimal demonstrations xo from ρπo first. To simplify the
formulation, we concatenate the state-action pair to con-
struct the latent variable x for the diffusion model ϵϕ(xi, i).
Subsequently, we inject noises ϵ on xo, where i indicates
the number of steps of the Markov procedure in the DDPM
, which can be viewed as a variable of the level of noise.
The goal of the diffusion model is to reverse the diffusion
process (i.e., denoise), yielding the learning objective,

min
ϕ

Exo,ϵ,i[ϵ− ϵϕ(
√
ᾱi · xo +

√
1− ᾱtϵ, t)]

2, (5)

where i is sampled from a uniform distribution, ϵ is the
Gaussian noise sampled from N (0, I), αi is defined to be
αi = 1− βi and βi is the noise schedule which monotoni-
cally increase with i. ᾱi is defined to be ᾱi =

∏i
s=1 αs.

Purifying Sub-optimal Demonstrations. After we ob-
tain the trained diffusion model ϵϕ, we purify sub-optimal
demonstrations xs sample from ρπs

with ϵϕ. Supposing the
inverse point ir ∈ {0, ..., N − 1} is the intermediate step
that is used in the diffusion purification process, its forward
diffusion can be calculated as follows,

x̂ir =
√

ᾱir · xs +
√
1− ᾱirϵ, ϵ ∼ N (0, I). (6)

Then, the reverse diffusion process is used to denoise x̂ir to
x̂o from timestep ir to 0. The reverse diffusion at every step

is defined as

x̂i−1 =
1

√
αi

(
x̂i −

1− αi√
1− ᾱiϵϕ(x̂i, t)

)
+
√
βiz, (7)

where z ∼ N (0, I). Starting from intermediate step x̂ir , we
recover the x̂0 from Eq. 7, which is the purified demonstra-
tion corresponding to xs.

Choice of optimal ir Intuitively, setting a larger ir can
help to smooth the potential noise within sub-optimal
demonstrations in the forward diffusion. When ir = N − 1,
the purified demonstrations can be seen as samples ran-
domly drawn from the diffusion model ϵϕ. However, train-
ing such a diffusion model ϵϕ exclusively with limited opti-
mal demonstrations may result in generated demonstrations
lacking diversity and coverage, encountering similar issues
as imitation learning solely from Do. A properly chosen
ir achieves good trade-off between denoising (Eq. 6) and
maintaining the structure of sub-optimal demonstrations
(Eq. 7), thus can help the agent achieve better performance.

Notice that DDPM is a discretization of VP-SDE (Song
et al., 2021b), and the step i in DDPM is a discrete value
that varies from 0 to N − 1. In the theoretical analysis
below, we extend DDPM to VP-SDE and scale the timestep
to t ∈ [0, 1]. Hence, the problem is to find an optimal t∗r .

4.3. Theoretical Analysis

In the above subsection, we propose to utilize a two-step
purification to tackle supplementary sub-optimal demonstra-
tions in imitation learning. While the choice of optimal t∗r
remains unknown, we further provide a more theoretical
analysis on (i) the impact of t∗r on the purification (Theorem
1 and Theorem 2), and (ii) how different levels of noises
affect the choice of t∗r (Theorem 4).

We first analyze the purification effectiveness with respect
to t during the forward diffusion process. Considering the
optimal expert distribution ρπo and the sub-optimal one ρπs ,
we show that the gap between the diffused distribution ρπo,t

and ρπs,t becomes smaller with increasing timestep t, which
implies that the potential perturbations can be smoothed via
the gradually added noises during the forward process.
Theorem 1. Let {xt}t∈{0,1} be samples in the forward
diffusion process. If we denote ρπo,t(x) and ρπs,t(x) as the
respective distributions of xt when xo,0 ∼ ρπo,t=0(x) and
xs,0 ∼ ρπs,t=0(x), we then have,

ς ≤ −1

2

∫
ρπo,t(x)βt||∇x log ρπo,t(x)−∇x log ρπs,t(x)||

2
2dx,

(8)

where ς =
∂DKL(ρπo,t(x)||ρπs,t(x))

∂t denotes the derivative
of t to the KL divergence between ρπo,t(x) and ρπs,t(x).
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Theorem 1 is derived from DiffPure (Nie et al., 2022). The
difference is that we start from the forward diffusion step in
DDPM and extend discrete steps to continuous steps. The
Fisher divergence Dfisher(p||q) between two data distri-
bution p and q is defined to be

∫
p||∇ log p − ∇ log q||22.

Therefore, we have ς ≤ − 1
2Dfisher(ρπo,t(x)||ρπs,t(x)) ≤

0. The equality is only satisfied when ρπo,t=1(x) =
ρπs,t=1(x). Notice that ς ≤ 0 indicates that the KL di-
vergence between ρπo,t(x) and ρπs,t(x) monotonically de-
creases towards t = 0 to t = 1 during the forward diffusion
step. In other words, with a relatively larger t in the forward
diffusion process, the divergence between diffused optimal
and sub-optimal expert distributions can be minimized.

The monotonic decrease of DKL(ρπo,t(x)||ρπs,t(x)) to-
wards t implies that the diffused optimal expert distribu-
tion and diffused sub-optimal expert distribution become
closer as t increases. Suppose there exists an κ such that the
difference between the diffused optimal expert distribution
and diffused sub-optimal expert distribution becomes neg-
ligible when DKL(ρπo,t(x)||ρπs,t(x)) ≤ κ. We can then
find a minimum tr ∈ [0, 1] to achieve this. Starting from
ρπs,tr (x), we can stochastically recover ρπo

(x) at t = 0
through the reverse diffusion process. We further provide
theoretical evidence that the distance between the purified
demonstration and its optimal version can be bounded via
the two-step purification.
Theorem 2. Supposing the sub-optimal demonstration xs
perturbed by noise δ compared to the optimal demonstration
xo, and x̂o is a purified demonstration of xs, the L2 distance
between xo and x̂o (i.e., ∥xo − x̂o∥) is bounded within the
interval [max{0, λ},Λ] with a probability of at least 1− σ,
where

λ(ζ, tr, δ, σ) = ζ(tr)C̃gd − ∥δ∥ −
√
e2ζ(tr) − 1Cσ,d,

(9)

Λ(ζ, tr, δ, σ) = ζ(tr)Cgd + ∥δ∥+
√
e2ζ(tr) − 1Cσ,d,

(10)

and C̃gd ≤ 2∥∇x log ρt(x)∥ ≤ Cgd, ζ(tr) =
∫ tr
0

1
2βsds,

Cσ,d =

√
2d(1 +

√
8 ln(2/σ)

d ), σ ≥ 2e−d/8.

As shown in Theorem 2, the L2 distance between the opti-
mal demonstration xo and the purified demonstration x̂o can
be bounded by the terms related to the intermediate timestep
tr. According to Theorem 1, tr should be set to a relatively
large value to guarantee that the potential perturbations are
removed in diffused distributions, however, tr cannot be
arbitrarily large.
Proposition 3. λ(ζ, tr, δ, σ) and Λ(ζ, tr, δ, σ) are mono-
tonically increasing with respect to tr.

Proposition 3 suggests that as tr increases, the bound of
∥xo − x̂o∥ increases as well. Thus, a relatively small tr

is required to achieve a smaller lower and upper bound
to satisfy the minimum L2 distance. Together with the
analysis in Theorem 1, there exists a trade-off on tr between
perturbation purification and recovery performance. An
optimal timestep t∗r is expected to meet the requirements
that the potential perturbation can be eliminated in diffused
distribution while the L2 distance with the related optimal
demonstration can also be minimized.
Theorem 4. There exists a inflection point tp that satis-
fies λ′′(tp) = 0, which makes λ(tr) increases smoothly
before tp while increasing rapidly after tp. The optimal t∗r
is around the inflection point tp, or is around solution of the
equation

− (ζ ′(tr))
2

ζ ′′(tr)
(e2ζ(tr) − 1)−3/2 + (e2ζ(tr) − 1)−1/2 =

C̃gd
Cσ,d

.

(11)

With a probability of 1− σ, there is a positive correlation
between δ and t∗r .

As demonstrated in Theorem 4, the lower bound λ(tr) ex-
hibits a smooth increase initially, implying that selecting
a larger tr before the inflection point tp is unlikely to sig-
nificantly impact λ(tr). Combined with the analysis in
Theorem 1 that shows larger tr would better smooth the per-
turbation, we make a conclusion that the optimal t∗r should
be in the vicinity of the inflection point tp.

Furthermore, Theorem 4 establishes a positive correlation
between ∥δ∥ and t∗r , suggesting that for more substantial
perturbations within sub-optimal demonstrations, the opti-
mal t∗r tends to be relatively larger. Empirical results from
the experiments also align with and support this observation.

We further provide sensitive analysis of σ in Theorem 5.
The proofs of all theorems are provided in the appendix.

5. Experiments
In this section, we conduct extensive experiments to ver-
ify the effectiveness of DP-IL in MuJoCo (Todorov et al.,
2012) and Robosuite (Zhu et al., 2020) with different com-
pared methods. The experimental results demonstrate the
advantage of DP-IL from different aspects.

Benchmarking We first conduct experiments on MuJoCo
benchmarks in OpenAI Gym (Brockman et al., 2016). Four
popular tasks (i.e., Ant-v2, HalfCheetah-v2, Walker2d-v2
and Hopper-v2) are used to evaluate DP-IL. The evaluated
performance in MuJoCo benchmark can be measured by the
average cumulative ground-truth rewards (i.e., the higher
the better). We repeat experiments for 5 trials with different
random seeds for common practice. Additionally, to verify
the robustness of DP-IL with real-world human operation
demonstrations, we also conduct experiments on a robot
control task in Robosuite platform.
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Table 1. Performance of DP-BC and compared offline imitation learning methods in four MuJoCo tasks with different sub-optimal
demonstrations. ‘L1’, ‘L2’ and ‘L3’ denotes different levels of perturbations within sub-optimal demonstrations. We also provide the best
inverse step i∗r of diffusion purification, and we have ir = Ntr .

Task Demos BC-opt BC-all BCND DWBC DemoDICE DP-BC i∗r

Ant-v2

D1-L1 29±18 -22±33 28±28 -156±95 -72±8 261±54 100
D1-L2 - 292±88 199±37 132±39 -3±14 803±114 50
D1-L3 - 1500±298 1951±311 1669±244 94±4 2547±118 10
D2-L1 - 1089±237 1539±150 1545±128 262±152 1402±151 30
D2-L2 - 918±232 1514±232 1725±214 480±139 1982±111 10
D2-L3 - 1356±137 2232±324 2484±29 2127±260 3414±40 5

HalfCheetah-v2

D1-L1 -254±103 1262±202 1267±202 618±204 22±106 1365±147 10
D1-L2 - 1264±255 1862±119 1069±264 622±159 2440±274 10
D1-L3 - 859±233 834±249 694±190 768±233 4042±80 10
D2-L1 - 1314±194 1498±246 671±178 -64±105 1530±39 30
D2-L2 - 2789±14 2241±245 2676±20 1771±158 2714±15 30
D2-L3 - 1780±296 1990±408 4722±37 4508±59 4748±40 10

Walker2d-v2

D1-L1 -4±0 21±2 102±10 1039±164 365±39 1697±219 10
D1-L2 - 1551±87 1635±319 1617±152 1560±291 1722±297 10
D1-L3 - 815±277 192±37 2322±369 583±108 3020±466 5
D2-L1 - 500±245 686±301 1656±186 1749±259 2208±160 30
D2-L2 - 578±273 1018±347 2114±21 1818±342 3162±20 5
D2-L3 - 702±244 2574±358 2637±134 1765±528 3076±205 3

Hopper-v2

D1-L1 320±0 743±83 590±10 761±12 995±119 1000±42 10
D1-L2 - 2044±157 2119±206 826±22 2059±4 3145±11 5
D1-L3 - 3090±37 2883±26 1140±27 3207±7 1825±137 1
D2-L1 - 2191±118 2165±181 761±122 2336±3 2408±113 10
D2-L2 - 2266±3 2256±2 826±2 2265±8 2323±2 10
D2-L3 - 2712±6 3093±10 1140±27 3306±2 2265±171 5

Source of Demonstrations In our setting, we have access
to limited number of optimal demonstrations Do and a lot
supplementary sub-optimal demonstrations Ds. To form
Do, an optimal policy πo(a|s) trained by TRPO (Schulman
et al., 2015) to sample optimal demonstrations. As for Ds,
we use two different kinds of ways to generate sub-optimal
behaviors following existing works (Tangkaratt et al., 2020;
Wu et al., 2019):

• D1: We add Gaussian noise to optimal action distribu-
tion a∗ of πo to form πs. The action of πs is modeled
as a ∼ N (a∗, δ) and we choose δ = [0.6, 0.4, 0.25] to
form Ds with varying quality.

• D2: We save checkpoints during the RL training as the
sub-optimal policy πs.

In addition, since we use optimal demonstrations Do to
train the diffusion model, we include Do into the training of
compared methods for a fair comparison.

Compared Methods Purified demonstrations are applied
to both the offline imitation learning method (e.g., BC) and
the online imitation learning method (e.g., GAIL), to ver-
ify the generalization of DP-IL. In the case of offline im-
itation learning, we compare our method against several

state-of-the-art offline methods, including BCND (Sasaki
& Yamashina, 2021), DWBC (Xu et al., 2022) and De-
moDICE (Kim et al., 2021). For online imitation learn-
ing, we compare our method with several confidence-based
methods, including 2IWIL/IC-GAIL (Wu et al., 2019) and
WGAIL (Wang et al., 2021b). Further details (e.g., imple-
mentation of DP-IL and compared methods, data quality,
and more results) can be found in the appendix.

5.1. Evaluations on MuJoCo

We evaluated the effectiveness of DP-BC under the offline IL
setting, and results are presented in Table 1. As have intro-
duced in the experimental setup, we use two different ways
to generate sub-optimal demonstrations (i.e., D1 and D2).
BC-opt means we only use Do to conduct BC training, while
BC-all means we use both Do and Ds to train the policy net-
work. Our findings align with those results reported in (Kim
et al., 2021), showing that using only Do can sometimes
yield worse performance compared to BC-all. This can be
attributed to the insufficient coverage of the entire optimal
demonstration space by a limited number of optimal demon-
strations. BC-all benefits from a larger training dataset
and can outperform BC-opt in certain cases. However, the
challenge of sub-optimal demonstrations still hampers BC’s
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Figure 1. The training curve of DP-GAIL and other online imita-
tion learning methods with D1-L1 demonstrations. The x-axis is
the number of interactions with the environment and the shaded
area indicates the standard error.

ability to achieve optimal performance. BCND outperforms
the baseline at some cases due to its self-weighting strategy.
While this strategy is unstable when dealing with a high
ratio of sub-optimal demonstrations, we can observe that it
sometimes collapses. DWBC and DemoDICE demonstrate
great performance with D2 demonstrations with relatively
smaller perturbations (e.g., L3), however, we find it is more
likely to fail when dealing with sub-optimal demonstrations
with strong perturbations. In contrast, our method purifies
sub-optimal demonstrations before conducting BC, which
consistently improves the subsequent performance of behav-
ior cloning across all different types of sub-optimal demon-
strations compared to other methods. This demonstrates the
efficacy of our approach in enhancing the performance of
BC. Furthermore, the optimal reverse point i∗r is provided in
the table, and the results of DP-BC is related to this i∗r . As
‘L1’, ‘L2’ and ‘L3’ represent sub-optimal demonstrations
with progressively less perturbation, Theorem 4 predicts
a corresponding decrease in the optimal reverse point, i∗r .
This pattern is generally observed, illustrating the theorem’s
validity. The impact of optimal i∗r will be discussed in the
following ablation study in Sec 5.2.

Besides offline imitation learning, we also utilize diffusion-
purified demonstrations for GAIL training and compare
DP-GAIL with other state-of-the-art online imitation learn-
ing methods that also address the imperfect demonstration
issue. The training curves of DP-GAIL and other compared
methods are depicted in Figure 1. The curve unequivocally
demonstrates the superiority of DP-GAIL over other com-
pared methods. This shows the efficacy of noise purification
in improving the performance of online imitation learning
methods.

5.2. Ablation Study

Different Types of Noises In D1, sub-optimal demonstra-
tions are formed by adding Gaussian noise into the optimal
action. It would be interesting to further explore more noises.

Table 2. The performance of DP-BC with demonstrations in differ-
ent noises.

Task Demons BC BCND DP-BC

Ant Uni-L1 209±138 66±17 343±16
Uni-L2 396±42 333±60 480±15
Uni-L3 704±97 1472±229 1925±227

HalfCheetah Uni-L1 704±71 692±37 733±8
Uni-L2 922±207 705±179 1248±54
Uni-L3 1805±15 1933±21 2268±11

Ant S&P-L1 209±138 686±45 744±17
S&P-L2 396±42 477±62 508±12
S&P-L3 704±97 755±143 689±37

HalfCheetah S&P-L1 2143±10 2042±113 2731±18
S&P-L2 1964±195 1873±270 3550±18
S&P-L3 579±280 1160±295 2820±383

Table 3. The performance of DP-BC on Ant-v2 task when defining
different F∗ in Eq. 3. ‘G-Filter’, ‘M-Filter’ and ‘Med-Filter’
denote using Gaussian, Mean and Median Filter as F∗ to denoise
sub-optimal demonstrations.

Demons BC DP-BC G-Filter M-Filter Med-Filter
D1-L1 -22 261 242 182 138
D1-L2 292 803 729 736 437
D1-L3 1500 2547 771 1786 455

We consider adding uniform noise and salt-and-pepper noise.
Similar to D1, we set δ = [0.25, 0.4, 0.6] to form L1 to L3
demonstrations. From the Table 2, we can observe that
DP-BC performs best in most cases. This suggests the ro-
bustness of DP-BC when dealing with different kinds of
noises. Intuitively, the noises added to the current data are
overwhelmed by the accumulating Gaussian noise during
the diffusion forward process, ultimately making the noise
less prominent.

Compared with Other Purified Methods The transfor-
mation F(·) is defined as a combination of the forward and
reverse diffusion processes to denoise sub-optimal demon-
strations. Apart from the diffusion model, there are various
denoising methods that can be employed as the transforma-
tion F∗. Since filters are commonly used to smooth noisy
data, we utilize three different filters (mean, median, and
Gaussian) as F∗ to denoise the imperfect demonstrations.
The results are presented in Table 3. It is evident from the
table that our method outperforms other filter-based meth-
ods in all types of sub-optimal demonstrations (e.g., D1-
L1, D1-L2 and D1-L3). Among the filter-based methods,
the ’Mean Filter’ achieves the best performance. Another
notable finding is that when the noise level is high in sub-
optimal demonstrations (e.g., L1), filter-based methods tend
to maintain a greater advantage over the baseline.

Multiple Demonstrators In addition to collecting sub-
optimal demonstrations from a single demonstrator, we also
investigate the performance of DP-BC when confronted with
sub-optimal demonstrations that are sampled from multiple
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Figure 2. Impact of diffusion time tr with demonstrations of different optimality.

Table 4. The performance of DP-BC with mixed demonstrations
(i.e., D1-L1, D1-L2, and D1-L3).

Task BC BCND DWBC DemoDICE DP-BC
Ant 193 411 339 -53 601
HalfCheetah 1255 921 265 344 3146
Walker2d 169 441 290 488 1390
Hopper 587 564 541 605 655

demonstrators. The results are presented in Table 4, where
the mixed demonstrations denote a combination of L1, L2,
and L3 demonstrations. As shown in the table, DP-BC
with demonstrations sampled from a mixture of dataset also
consistently outperforms the baseline and other compared
methods by a substantial margin.

Impact of optimal ir As discussed in Section 4.3, ir is an
important hyper-parameter to achieve the trade-off between
smoothing the noise and keeping semantic information. To
investigate how the choice of ir affects the effectiveness
of noise purification, we conducted experiments on demon-
strations with different levels of optimality. Our empirical
results confirmed the theoretical findings of Theorem 1,
suggesting that demonstrations with less optimality require
a relatively larger timestep tr to smooth the noise. For
example, in Ant-v2 task, the optimal tr is 100 for D1-L1
demonstrations while the optimal tr is 10 for D1-L3 demon-
strations. As the quality of demonstrations improved (e.g.,
from L1 to L3), we observed a gradual decrease in the opti-
mal value of ir. This could lead to a smaller value bound
since ζ(ir) exhibits a monotonic increase with respect to tr.
Hence, diffusion purified imitation learning should perform
better when using a smaller ir under such a case, which is
consistent with the results in Figure 2.

5.3. Evaluations on RoboSuite Platform

We also evaluate the robustness of DP-BC on the RoboSuite
platform (Zhu et al., 2020) with real-world demonstrations.
We consider a reaching task within the “Nut Assembly” in
Saywer. In this task, the goal for the robot is to move a
nut close to the peg. It earns a higher reward if the nut is
closer to the peg. During the reaching phase, the Sawyer

Table 5. Successful rate of DP-BC in RoboSuite platform with
human demonstrations.

Method BC BCND DWBC DP-BC (Ours)
Success Rate 0.76 0.56 0.82 0.86

ir 1 3 5 10
DP-BC 0.78 0.86 0.74 0.60

Figure 3. Visualization of SaywerNutAssembly task in RoboSuite
platform and the quality of human demonstrations.

robot’s arm operates with the gripper in a fully open state,
not actively attempting to grasp any objects. Its role is
merely to move the nut across the plane. As such, the grasp
command is not engaged and prevents the robot’s arm from
inserting the nut into the peg. Hence, an episode in the
reaching task completes only when the timestep matches
the horizon length.

We use real-world demonstrations by human operators from
RoboTurk (Mandlekar et al., 2018). The demonstrations
contain 10 trajectories with approaching length (around 500
state-action pairs). Based on the accumulative reward of
trajectories in Figure 3, we regard two trajectories that have
the larger reward (e.g., >300) as optimal demonstrations
and the remaining trajectories are regarded as supplementary
sub-optimal demonstrations. In this reaching task, we report
sucess rate rather than reward to assess learned policy. We
set the termination condition of the episode to be when
the distance between the nut and the peg is less than 0.1.
Based on this criterion, we can provide the success rates of
different methods, which are calculated over 50 sampled
trajectories. The results are shown in Table 5, and we can
observe that the proposed method has higher success rate
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than compared methods like BCND and DWBC. We also
conduct an ablation study on the timestep ir in this task and
we find that setting ir = 3 leads to the best performance.

The results presented in Table 8 also support our theorem
about there exists a trade-off in finding an optimal ir. To
further evaluate the relationship between i∗r and different
levels of sub-optimal demonstrations, we divided the sub-
optimal demonstrations into two groups and evaluate their
performance in the appendix (Table 8).

6. Conclusion
In this paper, we propose to tackle the imperfect demonstra-
tions issue by conducting a two-step purification process
to eliminate the potential noises based on the diffusion pro-
cess. The distance gap between optimal and sub-optimal
expert distributions can be minimized after forward diffu-
sion. The purified demonstrations can then be recovered
from diffused one via reverse diffusion. Additionally, we
provide sufficient theoretical analysis to indicate the im-
pact of the reverse point on the purification. The proposed
method can be easily adopted in existing imitation learning
frameworks, such as GAIL and BC, to alleviate the effect
of sub-optimal expert demonstrations. We conduct exten-
sive experiments on MuJoCo and RoboSuite with different
types of sub-optimal demonstrations to evaluate the effec-
tiveness of diffusion purification. The comparison results
demonstrate the superiority of DP-IL over other baselines.

Impact Statement
Our work enables agents to learn from a broader range of
imperfect data. There are many potential societal conse-
quences of our work, and the safety of learning from such
purified data remains an area worthy of further investigation.
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A. Proof
A.1. Proof of Theorem 1

Theorem 1. Let {xt}t∈{0,1} be the forward diffusion process in Eq. 6. If we denote ρπo,t(x) and ρπs,t(x) as the respective
distributions of xt when x0 ∼ ρπo,t=0(x) and x0 ∼ ρπs,t=0(x), we then have,

ς ≤ −1

2

∫
ρπo,t(x)βt||∇x log ρπo,t(x)−∇x log ρπs,t(x)||

2
2dx ≤ 0. (12)

where ς =
∂DKL(ρπo,t(x)||ρπs,t(x))

∂t denotes the derivative of t to the KL divergence between ρπo,t(x) and ρπs,t(x).

Proof. Following the proof in (Song et al., 2021a), we first make two assumptions on ρπo,t(x) and ρπs,t(x). Supposing
both ρπo,t(x) and ρπs,t(x) are smooth and fast decaying functions, we have

lim
x→∞

ρπo,t(x)
∂

∂x
log ρπo,t(x) = 0 (13)

lim
x→∞

ρπs,t(x)
∂

∂x
log ρπs,t(x) = 0 (14)

The forward diffusion process in Eq. 6 is a discrete Markov chain, which can be written as

xi =
√
1− βi · xi−1 +

√
βi · ϵi, i = 1, ..., N, (15)

where ϵi ∼ N (0, I). To obtain a process of continuous transformation in time, we can rewrite Eq. 15 as

x(i+1)/N =

√
1−

β̄ i+1
N

N
xi/N +

√
β̄ i+1

N

N
ϵ(i+1)/N , i = 0, ..., N − 1, (16)

where {β̄i/N = Nβi}N−1
i=0 . In the limit of N −→ ∞, {β̄i/N = Nβi}N−1

i=0 and {Xi/N}N−1
i=0 become sequences of function

{βt}1t=0 and {xt}1t=0. Let ∆t = 1
N , t = i

N , we can rewrite Eq. 16 as

xt+△t =
√
1− βt+△t · △t · xt +

√
βt+△t · △t · ϵt (17)

= (1− 1

2
βt+△t · △t) · xt +

√
βt+△t△t · ϵt + o(βt · △t) (18)

In the limit of △t → 0, we have

xt+∆t − xt = −1

2
βt∆txt +

√
βt∆t · ϵt (19)

In other words, we can transform Eq. 6 to the following VP-SDE,

dx = −1

2
βtxdt+

√
βtdw, (20)

where w is a standard Wiener process. The Fokker–Planck equation for the VP-SDE above describes the time-evolution of
the stochastic process’s associated probability density function, and is given by

∂ρπo,t(x)

∂t
= −∇x ·

(1
2
βtρπo,t(x)∇x log ρπo,t(x) +

1

2
βtxρπo,t(x)

)
(21)

= −∇x ·
(
ho(x, t)ρπo,t(x)

)
, (22)

where ho(x, t) is defined as ho(x, t) = 1
2βt∇x log ρπo,t(x) +

1
2βtx. Then, we denote ς =

∂DKL(ρπo,t(x)||ρπs,t(x))
∂t and ς

12



Imitation Learning from Purified Demonstrations

can be re-written as follows,

ς =
∂

∂t

∫
ρπo,t(x) log

ρπo,t(x)

ρπs,t(x)
dx (23)

=

∫
∂ρπo,t(x)

∂t
log

ρπo,t(x)

ρπs,t(x)
dx+

∫
∂ρπo,t(x)

∂t
dx−

∫
ρπo,t(x)

ρπs,t(x)

∂ρπs,t(x)

∂t
dx (24)

(i)
=

∫
∇x ·

(
− ho(x, t)ρπo,t(x)

)
log

ρπo,t(x)

ρπs,t(x)
dx−

∫
ρπo,t(x)

ρπs,t(x)
∇x ·

(
− hs(x, t)ρπs,t(x)

)
(25)

(ii)
= −

∫
ρπo,t(x)[h

T
o (x, t)− hTs (x, t)][∇x log ρπo,t(x)−∇x log ρπs,t(x)] (26)

=− 1

2

∫
ρπo,t(x)βt|∇x log ρπo,t(x)−∇x log ρπs,t(x)|22dx (27)

=− βt
2
Ex∼ρπo,t(x)(|∇x log ρπo,t(x)−∇x log ρπs,t(x)|22) (28)

≤ 0 (29)

where (i) can be obtained by Eq. 13 and Eq. 14, (ii) can be obtained by integration by parts.

A.2. Proof of Theorem 2

Theorem 2. Supposing the sub-optimal demonstration xs perturbed by noise δ compared to the optimal demonstration xo,
and x̂o is a purified demonstration of xs, the L2 distance between xo and x̂o (i.e., ∥xo − x̂o∥) is bounded within the interval
[max{0, λ},Λ] with a probability of at least 1− σ, where

λ(ζ, tr, δ, σ) = ζ(tr)C̃gd − ∥δ∥ −
√
e2ζ(tr) − 1Cσ,d, (30)

Λ(ζ, tr, δ, σ) = ζ(tr)Cgd + ∥δ∥+
√
e2ζ(tr) − 1Cσ,d, (31)

and C̃gd ≤ 2∥∇x log ρt(x)∥ ≤ Cgd, ζ(tr) =
∫ tr
0

1
2βsds, Cσ,d =

√
2d(1 +

√
8 ln 2

σ

d ), σ ≥ 2e−d/8.

Proof. Following the proof in (Nie et al., 2022), we extend the distance bound to both upper and lower bounds. The
sub-optimal demonstration xs can be conceptualized as a perturbation of the optimal demonstration xo, with a small
disturbance δ applied to each state-action pair. Furthermore, let xt denote the demonstration obtained after subjecting xs to
a forward diffusion process satisfies

xt =
√
γ(t)xs +

√
1− γ(t)ϵ1, (32)

where γ(t) = exp(−
∫ t
0
βsds) and ϵ1 ∈ N (0, Id), the L2 distance between the purified demonstrations x̂o and its related

optimal demonstration xo can be upper bounded as

∥x̂o − xo∥ = ∥xt + (x̂o − xt)− xo∥ (33)

= ∥xt +
∫ 0

t

−1

2
βt[x+ 2∇x log ρt(x)]dt+

∫ 0

t

√
βtdw − xo∥ (34)

≤ ∥xt +
∫ 0

t

−1

2
βtxdt+

∫ 0

t

√
βtdw − x∥+ ∥

∫ 0

t

−βt∇x log ρt(x)dt∥, (35)

where Eq. 34 follows with the definition of reverse-time diffusion and Eq. 35 can be obtained via triangle inequality.
Similarly, it can be lower bounded as

∥x̂o − xo∥ ≥∥
∫ 0

t

βt∇x log ρt(x)dt∥ − ∥xt +
∫ 0

t

−1

2
βtxdt+

∫ 0

t

√
βtdw − x∥ (36)

The sum of the first 3 terms in Eq. 34 is a time-varying Ornstein-Uhlenbeck process with a negative time increment that
starts from t = t to t = 0 with the initial value set to xt. Denote by x′

0 its solution, from (Särkkä & Solin, 2019) we know

13
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x′
0 follows a Gaussian distribution, where its mean µ(0) and covariance matrix Σ(0) are the solutions of the following two

differential equations, respectively,

dµ

dt
= −1

2
βtµ,

dΣ

dt
= −βtΣ+ βtId, (37)

with the initial conditions µ(t) = xt and Σ(t) = 0. By solving these two differential equations, we have that conditioned on
xt, x′

0 ∼ N (eζ(tr)xt, (e
2ζ(tr) − 1)Id), where ζ(tr) =

∫ t
0

1
2βsds.

Note that,

xt =
√
γ(t)xs +

√
1− γ(t)ϵ1 (38)

=e−ζ(tr)(xo + δ) +
√

1− e−2ζ(tr)ϵ1 (39)

Using the reparameterization trick, we have,

x′
0 − xo = eζ(tr)xt +

√
e2ζ(tr) − 1ϵ2 − xo (40)

= eζ(tr)
(
e−ζ(tr)(xo + δ) +

√
1− e−2ζ(tr)ϵ1

)
+
√
e2ζ(tr) − 1ϵ2 − xo (41)

=
√
e2ζ(tr) − 1(ϵ1 + ϵ2) + δ (42)

=
√
2(e2ζ(tr) − 1)ϵ+ δ (43)

Since ϵ1 and ϵ2 are independent and taken from the distribution N (0, Id), ϵ = ϵ1+ϵ2√
2

∼ N (0, Id). Assuming that

C̃gd ≤ 2∥∇x log ρt(x)∥ ≤ Cgd, we have,

∥x̂o − xo∥ ≤∥x′
0 − xo∥+ ∥

∫ 0

tr

−βt∇ log ρt(x))dt∥ (44)

=
∥∥∥√2(e2ζ(tr) − 1)ϵ+ δ

∥∥∥+ ζ(tr)Cgd (45)

≤
∥∥∥√2(e2ζ(tr) − 1)ϵ

∥∥∥+ ∥δ∥+ ζ(tr)Cgd (46)

Similarly, we also have,

∥x̂o − x∥ ≥∥
∫ 0

tr

−βt∇ log ρt(x)dt∥ − ∥x′
0 − x∥ (47)

≥ζ(tr)C̃gd −
∥∥∥√2(e2ζ(tr) − 1)ϵ+ δ

∥∥∥ (48)

≥ζ(tr)C̃gd −
∥∥∥√2(e2ζ(tr) − 1)ϵ

∥∥∥− ∥δ∥ (49)

Since ∥ϵ∥2 = Z2
1 +Z2

2 + · · ·+Z2
d ∼ X 2(d), where Z2

i ∼ N (0, 1). It can be regarded as a sub-exponential random variable
with parameters (ν, α) = (2

√
d, 4), we have

Pr
(
|1
d

d∑
n=1

Z2
n − 1| ≥ t

)
≤ 2e−dt

2/8, for all t ∈ (0, 1) (50)

Let σ = 2e−dt
2/8, we have

Pr

(√
d(1−

√
8ln(2/σ)

d
) ≤ ∥ϵ∥ ≤

√
d(1 +

√
8ln(2/σ)

d
)

)
≥ 1− σ (51)

By integrating the results above, we can derive Eqs. 30, 31. These two equations present the lower and upper bounds of the
L2 distance between x̂o and xo with the probability of at least 1− σ, where σ ≥ 2e−d/8.
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A.3. Proof of Proposition 3

Proposition 3. λ(ζ, tr, δ, σ) and Λ(ζ, tr, δ, σ) are monotonically increasing with respect to tr.

Proof. The derivative of λ(tr) with respect to tr can be written as

λ′(tr) = −ζ ′(tr)(e
2ζ(tr) − 1)−1/2Cσ,d + ζ ′(tr)C̃gd (52)

With the assumption that the lower bound is non-negative, we have

C̃gd ≥
1

ζ(tr)
(∥δ∥+

√
e2ζ(tr) − 1Cσ,d) (53)

By substituting Eq. 53 into Eq. 52, we have,

λ′(tr) ≥
ζ ′(tr)

ζ(tr)
(e2ζ(tr) − 1)−1/2[Cσ,d(e

2ζ(tr) − ζ(tr)− 1) +
√
e2ζ(tr) − 1∥δ∥] (54)

Given that ζ(tr) ≥ 0, ζ ′(tr) = βtr ≥ 0 and e2ζ(tr) − ζ(tr) − 1 ≥ 0, it follows that λ′(tr) ≥ 0. Considering the upper
bound Λ(tr) = ζ(tr)Cgd + ∥δ∥+

√
e2ζ(tr) − 1Cσ,d, and noting that Λ(tr) increases monotonically as a function of ζ(tr),

and since ζ(tr) itself increases monotonically with tr, it can be deduced that Λ(tr) is also a monotonically increasing
function of tr.

A.4. Proof of Theorem 4

Theorem 4. There exists a inflection point tp that satisfies λ′′(tp) = 0, which makes λ(tr) increases smoothly before tp
while increasing rapidly after tp. The optimal t∗r is around the inflection point tp, or is around the solution of the equation

− (ζ ′(tr))
2

ζ ′′(tr)
(e2ζ(tr) − 1)−3/2 + (e2ζ(tr) − 1)−1/2 =

C̃gd
Cσ,d

. (55)

With a probability of 1− σ, there is a positive correlation between ∥δ∥ and t∗r .

Proof. We aim to identify a critical point tp where the rate of growth of the function experiences a significant increase. In
mathematical words, λ(tr) should satisfies λ′(tr) ≥ 0, λ′′(tp) = 0 and λ′′(tr) < 0 for tr < tp, λ′′(tr) > 0 for tr > tp.
The second derivative of λ(tr) can be expressed as:

λ′′(tr) =
[
−ζ ′′(tr) + (ζ ′(tr))

2(e2ζ(tr) − 1)
]
(e2ζ(tr) − 1)−1/2Cσ,d + ζ ′′(tr)C̃gd (56)

Therefore, λ′′(tr) = 0 if and only if Eq. 55 holds.

Now, we can analyze the correlation between ∥δ∥ and t∗r . Note that C̃gd is the lower bound of 2∥∇x log ρt(x)∥. With the
increase of disturbance ∥δ∥, C̃gd will subsequently increase, causing the right-hand side of Eq. 55 to increase.

In our setting, ζ(tr) = 1
4kt

2
r . Therefore, Eq. 55 can be rewritten as:

−1

2
kt2r(e

1
2kt

2
r − 1)−3/2 + (e

1
2kt

2
r − 1)−1/2 = −2ζ(tr)(e

2ζ(tr) − 1)−3/2 + (e2ζ(tr) − 1)−1/2 =
C̃gd
Cσ,d

(57)

The left-hand side of Eq. 55 is monotonically increasing with respect to ζ(tr) in the interval [0, 1]. Since ζ(tr) is also
a monotonically increasing function with respect to tr, within a certain range, the left-hand side of the equation is a
monotonically increasing function with respect to tr. In other words, an increase in ∥δ∥ will lead to an increase in t∗r ,
indicating a positive correlation between ∥δ∥ and t∗r .

A.5. Sensitive Analysis of σ
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Figure 4. The corresponding curve of the elasticity
Eσ,Cσ,d with respect to σ.

The lower bound of ∥xo − x̂o∥ can be regarded as a function with four
parameters: tr, σ, d, and δ. However, once the optimal demonstration xo
and the corresponding sub-optimal demonstration xs are provided, δ and
d are fixed. Furthermore, considering that different demonstrations ex-
hibit varying tolerances for sub-optimal behavior, the magnitude of σ can
be set according to actual scenarios. In most cases, σ ∈ [0.05, 0.0001].
Therefore, λ is indeed an increasing function with respect to tr when
a pair of demonstrations and a confidence level 1 − σ are specified.
However, it can be observed that among these four parameters, only σ
is subjectively determined by humans. We hope that for the same pair of
optimal and sub-optimal demonstrations, the different subjective choices
of each individual have little impact on the final calculated value of tr.
We provide a new theorem below to show that different confidence level
σ has little impact on the choice of tr.

Theorem 5. The selection of t∗r exhibits low sensitivity to the magnitude of σ, indicating that, for a purified demonstration,
configuring different confidence levels has minimal impact on t∗r . Additionally, as the dimension of the demonstration d
increases, the sensitivity of t∗r to σ will also decrease.

Proof. First of all, we will introduce elasticity, which is an indicator that can be used to measure the extent to which a
change in one variable will affect other variables. Define elasticity Ex,y of variables x and y as follows,

Ex,y =
d(lny)

d(lnx)
. (58)

We have already known that Cσ,d =

√
2d(1 +

√
8ln(2/σ)

d ), then

Eσ,Cσ,d
= − 1√

2dln(2/σ) + 4ln(2/σ)
. (59)

Since 1− σ represents the confidence level, in most cases, the value range of σ is 0.05 to 0.0001. Note that the higher the
accuracy requirement for the demonstration, the smaller the corresponding selected σ. In our experiment, the dimension of
data is 14, 23 and 119, and the corresponding curve of the elasticity Eσ,Cσ,d

is in Figure 4.

From the figure, we can find that ∥Eσ,Cσ,d
∥ < 0.0113 for every d, which reflects that Cσ,d is not sensitive to the change of

σ , when the value range of σ is 0.05 to 0.0001. In light of the analysis derived from Eq. 59, it is evident that with increasing
complexity in the demonstration, as indicated by the augmentation of the data dimension d, the sensitivity of parameter
Eσ,Cσ,d

to variations in parameter σ exhibits a notable decrement. This observation implies that in scenarios involving
more intricate demonstrations, particularly when the value of σ lies within the range of 0.05 to 0.0001, the selection of σ
becomes substantially less consequential. This diminishing relevance of σ selection is a critical consideration in the context
of increasingly complex data dimensions, as it underscores when dealing with a high-dimensional real-world data, the
choice of different σ has a negligible impact on the optimal t∗r .

B. Experimental Details
Our source code and training data will be available at https://github.com/yunke-wang/dp-il.

B.1. Implementation Details of Diffusion Model

The architecture of diffusion model ϵϕ is five linear layers with a 0.2 dropout ratio, batch normalization, and ReLU nonlinear
activation, and the size of the hidden dimension is 1024. We implement the above two algorithms based on this repo (https:
//github.com/abarankab/DDPM). The training epoch is set to be 10000 and the learning rate of ϵϕ is set to 1e-4. We
set N = 1000 for all experiments and set the forward process variances to constants increasing linearly from β1 = 1e− 4 to
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βN = 0.02. The pseudo code of diffusion model’s training and purification is available in Algorithm 1 and Algorithm 2.

Algorithm 1 Diffusion Model Training
1: repeat
2: Sample optimal demonstrations xo ∼ Do
3: i ∼ Uniform({0, ..., N − 1})
4: ϵ ∼ N (0, I)
5: Optimize diffusion model ϵϕ by taking gradient de-

scent step on
6: ∇ϕ[ϵ− ϵϕ(

√
ᾱi · xo +

√
1− ᾱi · ϵ, i)]2

7: until converged

Algorithm 2 Diffusion Purification
1: Sample sub-optimal demonstrations xs ∼ Ds;
2: Calculate xs,i∗ via forward diffusion:
3: xs,i∗ =

√
ᾱi · xs +

√
1− ᾱi · ϵ, ϵ ∼ N (0, I).

4: for i = i∗, ..., 1 do
5: Calculate xi−1 via reverse diffusion:
6: xs,i−1 = 1√

αi

(
xs,i − 1−αi√

1−ᾱiϵϕ(xs,i,t)

)
+
√
βiz,

7: end for
8: Return x̂s,0

B.2. Implementation Details of Imitation Learning

We use a deep neural network that has two 100 × 100 fully connected layers and uses Tanh as the activation layer to
parameterize policy. To output continuous action, agent policy adopts a Gaussian strategy, hence the policy network outputs
the mean and standard deviation of action. The continuous action is sampled from the normal distribution formulated with
the action’s mean and standard deviation. For online imitation learning methods, the discriminator and value function are
using the same architecture as the policy network.

In offline imitation learning, the policy is trained with batch size 256, and the total epoch is set to be 1000. For online
imitation learning, the learning rate of the discriminator Dψ and the critic rψ is set to 3 × 10−4. Five updates on the
discriminator follow with one update on the policy network in one iteration. For the value function, the learning rate is set to
3× 10−4 and three training updates are used in one iteration. We conduct the on-policy method TRPO (Schulman et al.,
2015) as RL step in online imitation learning, the learning rate is set to 3× 10−4 with batch size 5000. The discount rate γ
of the sampled trajectory is set to 0.995. The τ (GAE parameter) is set to 0.97.

B.3. Data Collection

We provide six supplementary sub-optimal demonstration datasets to evaluate the performance of DP-IL on 4 MuJoCo tasks.
After we train an optimal policy πo by TRPO, we use two different kinds of ways to collect sub-optimal demonstration data
in our experiments. The quality of sub-optimal demonstrations is provided in Table 6.

The first way to collect sub-optimal demonstrations is to add different Gaussian noise ξ to the action distribution a∗ of πs to
form sub-optimal policy πs. The action of πs is modeled as a ∼ N (a∗, ξ2) and we choose ξ = [0.6, 0.4, 0.25] to generate
sub-optimal demonstrations datasets (e.g., D1-L1, D1-L2 and D1-L3). This way of collecting sub-optimal demonstration
has been used in several works (Sasaki & Yamashina, 2021; Tangkaratt et al., 2020).

The second way to collect sub-optimal demonstrations is to save checkpoints during the RL training of πs(a|s). In our
experiment, the RL training is conducted with 5M interactions with the environment. We save 3 checkpoints at 1M, 1.5M
and 3M interactions to sample D2-L1, D2-L2 and D2-L3 datasets. While the agent converges fast This way of collecting
sub-optimal demonstration has been investigated in (Wang et al., 2021b; Wu et al., 2019).

Table 6. The quality of demonstrations in 4 MuJoCo tasks, which is measured by the average cumulative reward of trajectories.

Task S A D1-L1 D1-L2 D1-L3 D2-L1 D2-L2 D2-L3 Expert
Ant-v2 R111 R8 -73 227 3514 1062 1560 2649 4349
HalfCheetah-v2 R17 R6 567 1090 1853 1491 2217 3263 4624
Walker2d-v2 R17 R6 523 467 4362 1699 2717 4152 4963
Hopper-v2 R11 R3 699 1037 3229 734 3362 2597 3594
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B.4. Compared Methods

We compare DP-IL with several state-of-the-art imitation learning with imperfect demonstration methods. Specifically,
several offline imitation learning methods (i.e., BCND (Sasaki & Yamashina, 2021), DWBC (Xu et al., 2022) and De-
moDICE (Kim et al., 2021)) and online imitation learning methods (i.e., 2IWIL (Wu et al., 2019), IC-GAIL (Wu et al.,
2019) and WGAIL (Wang et al., 2021b)) are compared. We briefly review the details of methods compared against DP-IL in
our experiments below.

BCND, DWBC and DemoDICE We follow the instruction in BCND’s paper to implement BCND. Notice that for a fair
comparison with other offline imitation learning methods, we do not use ensemble policies for BCND. As for DWBC, we
adapt their released code1 to conduct experiments. As for DemoDICE, we adapt the implementation in SmoDICE repo2 to
conduct experiments.

2IWIL and IC-GAIL We re-implement 2IWIL/IC-GAIL based on the official implementation3. In 2IWIL and IC-GAIL,
a fraction of imperfect expert demonstrations are labeled with confidence (i.e., Dl = {(si, ai), ri}nl

i ), while the remaining
demonstrations are unlabeled (i.e., Du = {(si, ai)}nu

i ). Since we have no access to the confidence score of the state-action
pair in our setting, we use the normalized reward of the demonstrator as the confidence score for their related demonstrations.
In the experiment, we choose 20% labeled demonstrations to train a semi-supervised classifier and then predict confidence
for other 80% unlabeled demonstrations.

WGAIL WGAIL is proposed to estimate confidence in GAIL framework without auxiliary information. The confidence
w(s, a) of each demonstration is calculated by [(1/D∗

w(s, a)−1)πθ(a|s)]
1

β+1 . The confidence estimation and GAIL training
interact during the training. Followed with the official implementation4, β is set to be 1.

B.5. Additional Experimental Results

B.5.1. IMPACT OF REVERSE POINT ir IN ROBOSUITE

We also include Robosuite results to offer a more complete understanding of how i∗r impacts demonstrations of varying
quality. In Robosuite, we utilized 10 trajectories as expert demonstrations, as shown in Table 7. Among these, two high-
reward trajectories (ID 6 and 10) were considered optimal demonstrations, while the rest were designated as sub-optimal
demonstrations. To assess the impact of different demonstration qualities, we divided the sub-optimal demonstrations into
two groups, Robo-L1 and Robo-L2.

Table 7. The length and quality of 10 trajectories in RoboSuite.

Traj ID 1 2 3 4 5 6 7 8 9 10

Length 500 502 502 505 506 507 507 509 511 511
Reward 276 120 203 102 253 312 103 81 180 318

For Robo L1, we selected four trajectories with rewards below 150 (ID 2, 4, 7, and 8) as sub-optimal demonstrations. For
Robo-L2, we chose four trajectories with rewards ranging from 150 to 300 (ID 1, 3, 5, and 9) as sub-optimal demonstrations.
Clearly, Robo-L2 demonstrates higher quality compared to Robo-D1. We assessed the influence of timestep i∗r on both
Robo-L1 and Robo-L2. The results, as shown in Table 8, exhibit similar trends to those observed in the MuJoCo tasks.

Table 8. Impact of ir in RoboSuite platform with human demonstrations.

ir 1 3 5 10 30

DP-BC (Robo-L1) 0.60 0.74 0.80 0.64 0.48
DP-BC (Robo-L2) 0.82 0.78 0.76 0.76 0.52

1https://github.com/ryanxhr/DWBC
2https://github.com/JasonMa2016/SMODICE/tree/main
3https://github.com/kristery/Imitation-Learning-from-Imperfect-Demonstration
4https://github.com/yunke-wang/WGAIL
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B.6. Impact of reverse point ir in MuJoCo

We have provided the ablation study on ir with D1 demonstrations in Figure 2, and we provide full results of ir with both
D1 and D2 demonstrations in Table 9. From the table, we can observe that in most cases (19 out of 24 cases), setting
ir within the 5-10 range consistently leads to optimal or near-optimal performance. These cases are across various tasks
and demonstration qualities, which indicates that an ir value in this range can serve as a robust default choice that yields
satisfactory results in most situations.

Table 9. Performance of DP-BC when setting different ir , which is measured by the average cumulative reward of 10 trajectories. The
results are related to Figure 2.

Task ir D1-L1 D1-L2 D1-L3 D2-L1 D2-L2 D2-L3

Ant-v2

100 261±54 380±62 486±76 199±66 342±14 328±88
50 202±51 803±114 1073±172 339±27 720±139 1776±123
30 47±16 719±51 1890±156 1572±160 1833±30 3064±34
10 -100±51 499±77 2547±118 1402±151 1982±111 3260±34
5 -133±55 490±125 2331±248 1105±263 1984±103 3414±40

HalfCheetah-v2

100 556±102 640±108 1115±181 1123±41 1791±13 1393±175
50 797±185 1896±222 2733±113 1468±82 2421±5 3126±306
30 895±73 1880±326 2899±257 1530±39 2714±15 4434±240
10 1365±147 2440±274 4042±80 1394±103 2749±15 4748±40
5 708±255 2061±373 3758±351 1469±253 2469±253 4660±14

Walker2d-v2

100 260±2 241±12 311±9 259±1 258±1 273±19
50 463±40 259±11 553±89 549±196 360±14 1085±251
30 415±56 978±96 1398±333 2208±160 1742±253 2512±212
10 1697±219 1267±145 1474±265 1764±143 1915±384 1984±365
5 1467±253 1722±297 3020±466 1917±151 3162±20 3076±205

Hopper-v2

100 98±2 461±11 420±1 215±1 151±3 355±25
50 516±0 815±16 379±0 1283±109 631±4 342±29
30 688±33 649±43 517±1 2075±159 904±6 1353±128
10 1000±42 2752±38 678±56 2308±113 2323±2 1740±175
5 580±60 3145±11 1508±272 1835±216 2297±34 2265±171

While in most cases, an ir setting within the range of 5-10 yields optimal performance, we can also observe the selection of
ir has a connection to the task. In the 4 MuJoCo tasks used in the experiment, Ant-v2 is the most challenging task, followed
by HalfCheetah-v2 and Walker2d-v2, with Hopper-v2 being the easiest. We can observe that the average optimal ir is
relatively higher (for instance, around 100 for D1-L1) for Ant-v2 and smaller for Hopper-v2, where an optimal ir is as low
as 5 for all datasets. This suggests that setting a relatively higher ir for more difficult tasks is reasonable. Following the
results presented in Table 9, an empirical way is to set ir from 5 to 10 for simple tasks like Hopper-v2, and set ir from 10 to
50 for challenging tasks like Ant-v2.
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