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Abstract

Maximal ancestral graph (MAG) is a prevalent
graphical model to characterize causal relations
in the presence of latent variables including la-
tent confounders and selection variables. Given
observational data, only a Markov equivalence
class (MEC) of MAGs is identifiable if without
some additional assumptions. Due to this fact,
MAG listing, listing all the MAGs in the MEC,
is usually demanded in many downstream tasks.
To the best of our knowledge, there are no rele-
vant methods for MAG listing other than brute
force in the literature. In this paper, we propose
the first brute-force-free MAG listing method, by
determining the local structures of each vertex
recursively. We provide the graphical character-
ization for each valid local transformation of a
vertex, and present sound and complete rules to
incorporate the valid local transformation in the
presence of latent confounders and selection vari-
ables. Based on these components, our method
can efficiently output all the MAGs in the MEC
with no redundance, that is, every intermediate
graph in the recursive process is necessary for the
MAG listing task. The empirical analysis demon-
strates the superiority of our proposed method on
efficiency and effectiveness.

1. Introduction
Causality is a vital research topic in artificial intelligence.
Under Pearl’s causality framework (Pearl, 2009), a key com-
ponent is a graphical model to characterize the causal rela-
tions among variables. In the graphical model, each vertex
denotes a variable and each edge denotes a causal relation.
Directed acyclic graph (DAG) is one of the most widespread
graphical models. Extensive studies based on DAGs are
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Figure 1: Fig. 1(a): L is a latent confounder if we cannot
observe L. Fig. 1(b): S is a selection variable if we cannot
observe S and the collected data relies on the value of S.
Fig. 1(c): a DAG D where L is a latent confounder and S is
a selection variable. Fig. 1(d): A MAG characterizing the
causal relations over the observable vertices in D.

conducted, leading to the establishment of many solid re-
sults (Meek, 1995; Wienöbst et al., 2023).

In real tasks, some variables relevant to the tasks are usually
latent, in which case DAG is not sufficient to character-
ize the causal relations. Specifically, latent variables are
generally classified into latent confounders and selection
variables. The existence of latent variables could take ad-
ditional dependence to the observable variables. See Fig. 1
for an illustration. As shown by Fig 1(a), latent confounder
influences more than one observable variable. For example,
economic policy influences both income and consumption,
but it is hardly to be evaluated and thus a latent confounder.
And as shown by Fig.1(b), selection variable is influenced
by more than one observable variable. In the presence of se-
lection variables, the collected data relies on the value of the
selection variables and thus jeopardizes the representative-
ness of the data for the underlying population (Hünermund
& Bareinboim, 2023). For example, when investigating the
relationship between student talent and effort, if the student
data is collected from top-tier universities, the dependence
between talent and effort could be overestimated, as both
talent and effort influence whether a student can enter a
top-tier university.

To accommodate the presence of latent confounders and
selection variables, maximal ancestral graph (MAG) is pro-
posed (Richardson et al., 2002). A MAG characterizes
the causal relations among the observable variables regard-
less of whether latent variables exist and where they are.
Roughly speaking, a MAG can be seen as a projection graph
on the observable variables of an underlying DAG contain-
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ing all relevant variables. In addition to directed edges, there
could also be bi-directed and undirected edges in a MAG,
which imply the presence of latent confounders and selec-
tion variables, respectively. For example, for an underlying
DAG in Fig. 1(c), where S is a selection variable and L is a
latent confounder, the associated MAG is as Fig. 1(d).

A DAG or MAG is generally necessary for exploiting causal-
ity in real tasks, however, they are usually not pre-known.
Hence, learning the causal graph from data is a prerequisite
step. Given observational data, the existing theoretical re-
sults imply that only a part of causal relations is identifiable
without some additional assumptions (Spirtes et al., 2000).
Specifically, we can only identify a Markov equivalence
class (MEC) of causal graphs (DAGs or MAGs) with obser-
vational data. In the absence of latent variables, a completed
partially directed acyclic graph (CPDAG) can be learned,
representing the MEC of DAGs; and in the presence of latent
variables, a partial ancestral graph (PAG) can be learned,
representing the MEC of MAGs.

In light of the identifiability of only a MEC given obser-
vational data, listing all the graphs in the MEC is a step-
ping stone for many downstream applications such as in-
tervention variable selection (He & Geng, 2008; Hauser &
Bühlmann, 2014; Wang et al., 2023b), set determination of
causal effects given a MEC (Maathuis et al., 2009; Malinsky
& Spirtes, 2016), and graph check (Kocaoglu, 2023)[Sec.
D.4]. There have been many mature algorithms for DAG list-
ing, i.e., listing all the DAGs given a CPDAG (Chickering,
1995; Chen et al., 2016; Wienöbst et al., 2023). These algo-
rithms have been implemented in causality software package
such as pcalg (Kalisch et al., 2012) and causaldag (Chandler
Squires, 2018). However, to the best of our knowledge,
there are no methods for MAG listing in the literature, i.e.,
listing all the MAGs given a PAG. There are only two rel-
evant studies with additional requirement of no selection
variables (Malinsky & Spirtes, 2016; Wang et al., 2023b).

A primary barrier to the development of relevant methods is
the absence of theoretical results supporting MAG listing. If
we revisit the methods for DAG listing, there are principally
two solutions. One is based on Meek rules (Meek, 1995),
which provide sound and complete rules to incorporate ad-
ditional causal structural knowledge into a graph. Given a
CPDAG, we can recursively enumerate each unidentified
edge and update the graph with the rules until all the edges
are determined. The other is based on DAG transforma-
tion (Chickering, 1995), which relies on the fact that two
Markov equivalent DAGs can be converted to each other
through some single-edge transformations. However, the
two solutions are not directly applicable for MAG listing
tasks. For the first kind of method, it remains an open prob-
lem for many years that which set of rules are sound and
complete to incorporate causal knowledge into an ancestral

graph (Zhang, 2008); for the second kind of method, two
Markov equivalent MAGs cannot necessarily be converted
to each other through one-edge transformations (Zhang &
Spirtes, 2005; Tian, 2005).

In this paper, we establish the first theoretical results that
accommodate MAG listing in the presence of both latent
confounders and selection variables, through which we pro-
pose a MAG listing method by recursively performing local
transformations of each vertex. A local transformation of a
vertex means determining the local structures of the vertex.
At each iteration, our method selects a vertex, and evalu-
ate the validity of each possible local transformation. This
evaluation determines whether the local transformation can
lead to a MAG in the MEC in subsequent transformations.
By directly pruning invalid local transformations, we ef-
fectively avoid the unnecessary computational efforts on
intermediate graphs that cannot yield a MAG in the MEC.
Furthermore, we present sound and complete orientation
rules to incorporate the structure knowledge of local trans-
formation, which can be used to uncover the maximal infor-
mative graphical models under each local transformation,
thereby eliminating the possibility of considering structures
that are non-contributive. Our contributions are threefolds.

(1) We establish the graphical condition for determining
the validity of a local transformation, through which
we can prune the local transformation that cannot yield
a MAG in the MEC in the subsequent transformation.

(2) We present sound and complete rules to incorporate
local transformation in the presence of latent variables,
through which we can uncover the maximal informa-
tive graphical models given the local transformation.

(3) We propose the algorithm to list all the MAGs in the
Markov equivalence class represented by a given PAG,
and validate the tremendous superiority on efficiency
compared to brute-force via experiments.

2. Preliminary
In this paper, we refer to a variable/vertex with a capital
letter (e.g., X) and a set of variables/vertices with boldface
font (e.g., X). LetG denote a graph and V(G)/E(G) denote
the set of vertices/edges inG. GivenG, for any V′ ⊆ V(G),
the subgraph of G induced by V′ consists of the vertices in
V′ and the edges connecting the vertices in V′ in G.

A mixed graph is a graph which contains undirected, di-
rected, and bi-directed edges. The two ends of an edge
are called marks. A partial mixed graph (PMG) is a graph
with three kinds of marks: arrowheads, tails, and circles(◦).
◦ means that the mark here can be either arrowhead or
tail but is uncertain to us. An edge Vi ◦−◦ Vj is called a
circle edge. For two vertices Vi and Vj in G, Vi is a par-

2



An Efficient Maximal Ancestral Graph Listing Algorithm

ent/child of Vj if there is Vi → Vj /Vi ← Vj in G. For a
path p = 〈V1, V2, · · · , Vd〉 in G, p is a directed path from
V1 to Vd if there is Vi → Vi+1,∀1 ≤ i ≤ d − 1; p is a
possible directed path from V1 to Vd if for each edge be-
tween Vi and Vi+1, 1 ≤ i ≤ d − 1, there is no arrowhead
at Vi or tail at Vi+1; p is uncovered if for any consecutive
triple 〈Vi−1, Vi, Vi+1〉, 2 ≤ i ≤ d− 1, Vi−1 is not adjacent
to Vi+1; p is minimal if any two non-consecutive vertices
are not adjacent. Vi is an ancestor/descendant of Vj in G
if Vi = Vj or there is a directed path from Vi/Vj to Vj /Vi.
Vi is a possible descendant of Vj in G if Vi = Vj or there
is a possible directed path from Vj to Vi. Denote the set of
parents/ancestors/descendants/possible descendants of Vi
in G by Pa(Vi, G)/Anc(Vi, G)/De(Vi, G)/PossDe(Vi, G).
If there is a directed path from V1 to Vd and an edge
Vd → V1/Vd ↔ V1, we say they form a directed cy-
cle/almost directed cycle. p is a minimal possible directed
path if it is minimal and a possible directed path.

In a graph G, ∗ denotes a wildcard, which means that the
mark here can be any one. If there is Vi∗→ Vj ←∗Vk, then
they form a collider (at Vj); if Vi is not adjacent to Vk as
well, it is called an unshielded collider (at Vj) or v-structure
(at Vj). The circle component of a graph G is the subgraph
of G that only remains all the vertices and all the circle
edges. A graph is chordal if any cycle with more than four
vertices has a chord that connects two vertices.

For a mixed graph G, if there is not a directed cycle or
almost directed cycle, and not an edge into an undirected
edge with an arrowhead, then G is ancestral. An ancestral
graph is maximal if for any non-adjacent vertices, there is
a set of vertices that m-separates them (Richardson et al.,
2002). If a mixed graph is ancestral and maximal, then it is a
maximal ancestral graph (MAG), denoted byM. A partial
ancestral graph (PAG) represents a Markov equivalence
class (MEC) of MAGs, denoted by P . PAG has the same
skeleton with the MAGs, and each mark in the PAG is an
arrowhead/tail if the mark is an arrowhead/tail in all the
Markov equivalent MAGs, but is a circle in the PAG if there
are both arrowheads and tails in all the Markov equivalent
MAGs. For a PMG M obtained from P , a MAG M is
consistent with M ifM has all the non-circle marks in M
and is a MAG in the MEC represented by P .

3. The Proposed Method
In this section, we present the method to list all the MAGs
consistent with a PAG P . The PAG can be learned from
observational data (Spirtes et al., 2000; Zhang, 2008). De-
note V(P) = {V1, · · · , Vd}. In the following, we provide
an overview of our method in Sec. 3.1 and propose two im-
portant components of our method in Sec. 3.2 and Sec. 3.3.
The detailed algorithm is shown in Sec. 3.4.

3.1. An Overview of Our Method

For MAG listing, a direct method is to enumerate all the
graphs obtained by transforming all the circles. For each
generated graph, we evaluate whether it is a MAG consistent
with P and output it if so. A comprehensive algorithm is
detailed in Appendix B. However, such a brute-force method
is very inefficient, since most of the enumerated graphs are
not MAGs consistent with P . In fact, when a graph is with
some specific structures, we have been able to ascertain
that there is not a MAG consistent with P containing these
structures. For example, consider the PAG P on the first
line of Fig. 2. There is an unshielded triple D ◦−◦A ◦−◦B in
P . If we introduce a new unshielded collider D∗→ A←∗B,
additional conditional independences are introduced and
thus any enumerated graphs with this unshielded collider
cannot be a MAG consistent with P , for this reason, we can
prune the step of transforming other circles. Likewise, if
there is an edge into an undirected edge with an arrowhead,
it violates the ancestral property, precluding the existence
of a MAG with this structure. In summary, in the process
of transforming all circles, if any such invalid sub-structure
emerges, further transformation of the remaining circles
becomes redundant.

Building upon the insights above, we propose a MAG listing
method based on local transformation. That is, given a PAG
P , we recursively select one vertex X with circles and
introduce the local transformations of the circles at X . A
local transformation of X is valid if there are some MAGs
consistent with P that have the same marks at X as those
indicated by the transformation. Then, we only consider the
subsequent local transformations of other vertices for the
valid local transformations of X . See P on the first line of
Fig. 2 for an example. We first consider what the circles at
A could be. There are six valid local transformations of A,
which are shown on the second line. As discussed above,
the local transformation D∗→ A ←∗B is not valid, thus
we never consider the subsequent transformation of other
vertices based on this local transformation. By recursively
introducing the valid local transformations of each vertex,
we can find all the MAGs consistent with P .

The idea above takes three main challenges. The first chal-
lenge is how to determine the validity of each local trans-
formation. The validity means that there exists some MAG
consistent with the PAG and the local transformation, but
it is evidently impractical to determine it by firstly enumer-
ating all the MAGs consistent with the PAG and the local
transformation. In fact, it is unknown whether we can deter-
mine the validity of a local transformation based on only a
PAG. Previous results have shown that it is achievable in the
absence of latent variables (Maathuis et al., 2009). Fortu-
nately, it is achievable in the presence of latent variables as
well. We establish the graphical characterization for valid
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Figure 2: A realization process of MAGLIST. The graph in the root node denotes a PAGP . The graphs in the first/second/third
round are obtained from the previous round by introducing the local transformation of A/B/C. There are two parts in a
round: introduce the local transformation and update the graph using the proposed orientation rules. Due to the space limit,
we only show the two parts separately for the first round. The shaded graphs denote the MAGs that are output by MAGLIST.

local transformation, which can be evaluated in polynomial
time with respect to to the number of vertices.

The second challenge lies in the fact that given a valid local
transformation of a vertex X , we can identify more causal
relations relative to the transformed marks at X , however,
we do not know what these relations are or whether we can
identify all of them. See the second graph on the second line
of Fig. 2 as an example. When a valid local transformation
of B◦→ A/A −◦D/A −◦C is introduced, A −◦C/A −◦D
can be transformed to A → C/A → D, for otherwise
there is B∗→ A − C(D), which violates the ancestral
property. And we can also identify B◦→ C → D based
on the ancestral property and the fact that there cannot be
an additional unshielded collider. Hence, we can obtain
the updated graph in the second graph on the third line
of Fig. 2. However, it is still an open problem that what
causal relations are identifiable in the presence of latent
variables with additional causal knowledge (Zhang, 2008).
Identifying the complete causal relations under each local
transformation is necessary for our method, for otherwise it
not only could take some invalid subsequent transformations
which is costly, but also possibly affects the correctness of
the graphical characterization for the validity of subsequent
transformations.

The third challenge is that, as we recursively determine the
valid local transformations and update the graph accordingly,
our theoretical result needs to hold for not only a PAG, but

also all the intermediate graphs in the recursive process.
Hence, it is crucial to identify the common properties of
all the possible graphs in this process, and utilize these
properties to establish the graphical characterization for the
valid local transformation and present the theoretical result
for the complete causal identification.

Following the discussions above, in Sec. 3.2, we propose the
graphical characterization for the valid local transformation
of any vertex. In Sec. 3.3, we present sound and complete
orientation rules to incorporate the causal knowledge taken
by the local transformations. The two results above hold for
all the graphs in the recursive process. Combining these two
parts, we propose our algorithm in Sec. 3.4. All the proofs
are presented in Appendix.

3.2. Valid Local Transformation

In this section, we provide the graphical characterization
for valid local transformation. Given a partial mixed graph
(PMG) M, consider we want to transform the circles at ver-
tex X . To denote each possible local transformation of X ,
we introduce the notation C(X), which is a subset of {V ∈
V(M)|V ∗−◦X in M}. It implies that given M, we transform
V ∗−◦X to V ∗→ X if V ∈ C(X) and transform V ∗−◦X
to V ∗−X if V ∈ {V ∈ V(M)|V ∗−◦X in M}\C(X). It
is direct that C(X) uniquely determines a local transforma-
tion of X , and all subsets of {V ∈ V(M)|V ∗−◦X in M}
can represent all the local transformations of X . As X is
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specified in this section, we use C to represent C(X) for
brevity. At first, we provide Def. 1 to characterize the com-
mon properties of the graphs in the process where local
transformation is introduced recursively. PAG is evidently a
PMG compatible with local transformation (Zhang, 2008).

Definition 1. For a partial mixed graph M, it is called a
PMG compatible with local transformation if it satisfies the
four following conditions:

(Chordal) The circle component in M is chordal.

(Balanced) For any three vertices A,B,C in M, if A∗→
B ◦−∗ C, then there is an edge between A and C with
an arrowhead at C, namely, A∗→ C. Furthermore, if
the edge between A and B is A → B, then the edge
between A and C is either A→ C or A◦→ C (i.e., it is
notA↔ C). And ifA−◦B ◦−∗C, thenA is adjacent to C.
Forthermore, ifA−◦B ◦−◦C, thenA−◦C; ifA−◦B◦→ C,
then A→ C or A◦→ C.

(Complete) For each circle at A on A ◦−∗B in M, there
exist MAGsM1 andM2 consistent with M withA←∗B
∈ E(M1) and A−∗B ∈ E(M2).

(Constructive) We can always obtain a MAG consistent
with M by transforming −◦ /◦→ to→ and transforming
the circle component into a DAG without new unshielded
colliders.

Remark 1. Recall the third challenge discussed in Sec. 3.1,
it is necessary to establish theoretical results for all the
graphs in the recursive process with local transformation
introduced. We will show in Sec. 3.3 that the four condi-
tions in Def. 1 are fulfilled for each graph M that is obtained
from valid local transformations and updated with the pro-
posed rules in the process. Hence we establish the graphical
characterization of valid local transformation for the PMGs
compatible with local transformation in the following.

Then, we introduce the concept bridged in Def. 2. It plays
an important role in the following results.

Definition 2 (Bridged relative to V′ in H , Wang
et al. 2023b). Let H be a partial mixed graph. Let G denote
a subgraph of H induced by a set of vertices V. Given a
set of vertices V′ in H that is disjoint of V, two vertices
A and B in the circle component of G are bridged relative
to V′ if in each minimal circle path from A to B in G as
V0(= A) ◦−◦ V1 ◦−◦ · · · ◦−◦ Vn(= B), there exists one
vertex Vs, 0 ≤ s ≤ n, such that Fi ⊆ Fi+1, 0 ≤ i ≤ s− 1
and Fi+1 ⊆ Fi, s ≤ i ≤ n − 1, where Fi = {V ∈ V′ |
V ∗−◦ Vi in H}. Evidently, both case A = B and case that
A and B are not connected in the circle component are the
trivial cases that A and B in G are bridged relative to V′.
Further, G is bridged relative to V′ in H if any two vertices
in the circle component of G are bridged relative to V′.

C1 C2 (!= C1)

Vi Vi+1

* *

(a)

C1 C2* *

V0 Vn
· · ·V1

(b)

Figure 3: Two unbridged cases. In (a), C1 is not adjacent
to Vi+1 and C2 is not adjacenct to Vi. In (b), C2 could be
C1, n ≥ 2, C1 is not adjacent to V1, · · · , Vn and C2 is not
adjacent to V0, · · · , Vn−1.

Remark 2. Def. 2 is somewhat complicated. Intuitively,
it implies a structure that we can transform all the edges
C ∗−◦ V to C∗→ V for any C ∈ V′ and V ∈ V(G)
without generating new unshielded colliders or violating
ancestral property. Fig. 3 shows two unbridged cases where
V′ = {C1, C2}. If we transform C1∗→ Vi and C2∗→ Vi+1

in case (a), no matter how we transform the circle edge
Vi ◦−◦ Vi+1, there will be a new unshielded collider or an
arrowhead into an undirected edge, hence the transforma-
tion is not valid. Similarly, there will be a new unshielded
collider or an arrowhead into an undirected edge if we orient
C1∗→ V0 and C2∗→ Vn in case (b).

Then we provide the graphical characterization for validity
of a local transformation represented by C in Thm. 1.

Theorem 1. Suppose M a PMG compatible with local trans-
formation. Given a set of vertices C ⊆ {V |X ◦−∗ V in M},
let Z = {V ∈ V(M)|V = X , or there is V −◦ · · · −◦
V ′ −◦X in M and V ′ 6∈ C}. There exists a MAGM con-
sistent with M with X ←∗V for ∀V ∈ C and X −∗V for
∀V ∈ {V | X ◦−∗ V in M}\C if and only if

(1) PossDe(Z,M[−C]) ∩ Pa(C,M) = ∅;

(2) the subgraph M[C] of M induced by C is a complete
graph;

(3) M[PossDe(Z,M[−C])\Z] is bridged relative to C∪Z
in M;

(4) Either Z\{X} or {V ∈ V(M)|V ∗→ X in M or V ∈
C} is empty.

For a given C, the complexity of evaluating conditions (1),
(2), (4) of Thm. 1 is O(d3), where d denotes the number
of vertices. To evaluate condition (3), we propose Alg. 1,
with soundness guarantee in Prop 1. The complexity of
implementing Alg. 1 is also O(d3). Hence we can evaluate
the validity of a local transformation by Thm. 1 in O(d3).

Proposition 1. Suppose a PMG M compatible with local
transformation. Given a set of vertices C ⊆ {V |X ◦−∗
V in M}, let Z = {V ∈ V(M)|V = X , or there is V −◦
· · ·−◦V ′−◦X in M and V ′ 6∈ C}. Alg. 1 is valid to evaluate
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Algorithm 1 Evaluating the third condition of Thm. 1

Require: A PMG M, local transformation C
1: Z ← {V ∈ V(M)|V = X , or there is V −◦ · · · −◦
V ′ −◦X in M and V ′ 6∈ C};

2: For circle component in M[PossDe(Z,M[−C])\Z],
transform as follows until no feasible updates: for
any two vertices Vl and Vj such that Vl ◦−∗ Vj , ori-
ent it as Vl −∗Vj if (i) Fl\Fj 6= ∅ or (ii) Fl = Fj as
well as there is a vertex Vm ∈ PossDe(Z,M[−C])\Z
not adjacent to Vj such that Vm −∗Vl ◦−∗ Vj , where
Fi = {V ∈ C ∪ Z | V ∗−◦ Vi in M}, i = j, l,m;

3: if in M[PossDe(Z,M[−C])\Z] there is an undirected
edge then

4: Return(Bridged = False)
5: else
6: Return(Bridged = True)
7: end if

whether M[PossDe(Z,M[−C])\Z] is bridged relative to
C ∪ Z in M.

3.3. Sound and Complete Rules

In this part, we provide sound and complete rules to incorpo-
rate valid local transformations to a PMG compatible with
local transformation, through which we can reveal all the
causal relations that are identifiable given the information
of local transformations. Suppose we incorporate the local
transformations of V1, V2, · · · , Vk to P .

We start by presenting sound and complete orientation rules,
which include existing rules and a newly proposed rule. Ali
et al. (2005); Zhang (2008) provided ten rulesR1 −R10 to
identify a PAG with observational data. Wang et al. (2023b)
proposed a replacement ruleR′4 ofR4 when incorporating
local causal knowledge in the absence of selection variable.
Due to space limit, we show them in Appendix A. To ac-
commodate the presence of selection variable, we introduce
an additional rule R11. We present Prop. 2 to imply the
soundness of R11. In the following, when we say the pro-
posed rules, they refer to R1 − R3,R′4,R5 − R11. The
soundness of these rules directly follows Zhang (2008) and
Prop. 2.

R11: If A∗→ B −◦R, then orient B −◦R as B → R.

Proposition 2. R11 is sound to orient a PMG when incor-
porating the additional causal knowledge.

The remaining part of this section is to prove the complete-
ness of the proposed rules. The whole proof consists of two
parts. In the first part, we present an algorithm to incorpo-
rate the causal knowledge of local transformations into a
PAG and prove that the algorithm is sound and complete. In
the second part, we prove that the proposed rules can orient

Algorithm 2 Updating a PMG with a valid local transfor-
mation of X represented by C

Require: A PMG Mi, valid local transformation C of X
1: Z ← {V ∈ V(Mi)|V = X , or there is V −◦ · · · −◦
V ′ −◦X in Mi and V ′ 6∈ C};

2: For any K ∈ PossDe(Z,Mi[−C]) and any T ∈ C
such that K ◦−∗ T in Mi, orient K ←∗T (the mark
at T remains); for any edges between Z1, Z2 ∈ Z
with circles, orient the circles into tails; for all K ∈
PossDe(Z,Mi[−C])\Z and Z ∈ Z such that Z ◦−∗K,
orient Z −∗K;

3: For circle component in Mi[PossDe(Z,Mi[−C])\Z],
transform as follows until no feasible updates: for any
two vertices Vl and Vj such that Vl ◦−∗ Vj , orient it as
Vl−∗Vj if (i)Fl\Fj 6= ∅ or (ii)Fl = Fj as well as there
is a vertex Vm ∈ PossDe(Z,Mi[−C])\Z not adjacent
to Vj such that Vm −∗Vl ◦−∗ Vj ;

4: Apply the proposed rules until the graph is closed under
the proposed rules.

Ensure: Updated graph Mi+1

the identical graph with the algorithm in the first part, thus
the proposed rules are sound and complete.

We first present the sound and complete algorithm as follows.
It is a recursive algorithm starting from the PMG M0(= P),
and in the i-th round, i = 1, 2, · · · , k, we incorporate the
local transformation of Vi and obtain an updated graph Mi

based on Mi−1 by Alg. 2. To distinguish the vertex under
local transformation and the other vertices, denote Vi in
the i-th round by X . We say a PMG is closed under the
proposed rules if no rules can be triggered to further orient
the PMG. Next, we give a vital induction result in Thm. 2.

Theorem 2. Suppose Mi, 0 ≤ i < k is a PMG compatible
with local transformations. When we incorporate a valid
local transformation of X = Vi+1 represented by C into
Mi by Alg. 2 and obtain Mi+1, (1) the arrowheads and tails
in Mi+1 are invariant in all the MAGs consistent with Mi

and the local transformation of X represented by C, and (2)
Mi+1 is also a PMG compatible with local transformation.

On one hand, Thm. 2 implies the soundness of Alg. 2 to
incorporate any valid local transformations. More impor-
tantly, Thm. 2 provides an induction result that the property
of compatibility with local transformation remains in the
process of recursively incorporating valid local transforma-
tions by Alg. 2, which includes the complete property as
shown in Def. 1. As M0 is a PMG compatible with local
transformation, we conclude the desired result in Cor. 1.

Corollary 1. The recursive k-step algorithm based on
Alg. 2 is sound and complete to incorporate the local trans-
formation of V1, · · · , Vk into a PAG. And Mi,∀0 ≤ i ≤ k
is a PMG compatible with local transformation.
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Now we are ready to present Thm. 3, which implies that the
proposed rules are sound and complete to incorporate local
transformations of V1, · · · , Vk. We prove it by showing that
the proposed orientation rules can transform the same marks
as the complete k-step recursive algorithm. Hence, under
each valid local transformation, we can reveal all the causal
relations that are identifiable by using the proposed rules.

Theorem 3. The orientation rules are sound and com-
plete to transform a PAG with the local transformation of
V1, . . . , Vk.

Remark 3. The proposed orientation rules are not only ef-
fective in the MAG listing task, but also applicable when
we incorporate local background knowledge into a PAG.
In causality literature, background knowledge (BK) refers
to additional structural information. BK can be obtained
from human expertise or interventional data. The sound
and complete rules to incorporate BK into a CPDAG have
been established for a long time (Meek, 1995). But it is
still an open problem for the cases in the presence of latent
variables. The local BK is proposed by Wang et al. (2023b),
which is a special kind of BK that can imply all the structural
knowledge at some vertex X if it implies some additional
structural knowledge at X . The structural knowledge taken
by the local transformation is evidently local BK since the
local transformation implies all the marks at some specific
vertices. Wang et al. (2023b) presented the sound and com-
plete rules to incorporate local BK with the assumption of
no selection variable. Another related study is by Andrews
et al. (2020), which assumed no selection variable as well
and showed that the ten rules of Zhang (2008) are complete
when the BK is tiered, which means that the BK can di-
vide the vertices into several disjoint parts where the causal
order between the different parts is clear but the structure
knowledge in each part is unknown according to the BK.

3.4. MAG Listing Algorithm

Combining the two parts above, we present MAGLIST algo-
rithm in Alg. 3. It is a recursive algorithm. In each round,
we select a vertex X with circles (on Line 7). For each
possible local transformation of X (on line 8), we evaluate
whether it is valid by Thm. 1, and further update the PMG
under each valid local transformation with the sound and
complete proposed rules (on Line 10). If we obtain a PMG
without circles in the process above, it is a MAG in the MEC
represented by P (on Line 4).

An implementation example in the format of a search tree
is shown in Fig. 2. The graph in the root node denotes a
PAG P and we aim to list all the MAGs consistent with
P . In the first round, we consider the local transformation
of A. According to Thm. 1, we can determine that there
are six valid local transformations of A, and thus obtain six
PMGs on the second line according to the marks implied

Algorithm 3 MAGLIST

Require: A PAG P
1: S = ∅ . Record all the MAGs consistent with P
2: ORIENTGRAPH(P,S)
3: function ORIENTGRAPH(M,S)
4: if there are no circles in M then
5: S ← S ∪ {M}
6: else
7: Select a variable X where there are circles in M
8: for each C ⊆ {V ∈ V(M) | X ◦−∗V in M} do
9: if the four conditions in Thm. 1 hold then

10: Update M with the local transformation
represented by C and apply the proposed rules

11: ORIENTGRAPH(M,S)
12: end if
13: end for
14: end if
15: end function
Ensure: S

by the local transformations of A. Then we update these
six graphs using the proposed rules and obtain the graphs
on the third line. After the local transformation and the
updates with rules, the implementation in the first round
completes. In the second round, we further consider the
local transformation of B, and based on the valid local
transformation of B, we update the graph with the proposed
rules. Due to the space limit, we no longer separately depict
the stages of local transformation and update with rules, and
directly show the graphs after the second round on the fourth
line. There are some PMGs without any circles, which are
MAGs consistent with P . We shade these graphs with green
color. For the unshaded graphs, they are updated in the third
round by considering the transformation of C. We omit
some branches (those unshaded but unexpanded) for brevity.
The algorithm stops until there are no new unshaded leafs.

Finally, we present Cor. 2 to imply that Alg. 3 can output
all and only the MAGs in the MEC represented by the PAG
P . One main limitation in the current is that, there lacks
of a theoretical analysis of the time complexity of Alg. 3.
It is closely related to the number of MAGs in a MEC
represented by the PAG, but it remains an open problem in
the literature to determine how many MAGs there are in
a MEC. Many solid results have been established for the
cases absence of latent variables (He et al., 2015; Wienöbst
et al., 2021; Ganian et al., 2022), but the results for the cases
with latent variables need to be further studied. Instead, we
conduct an empirical analysis in Sec. 5.

Corollary 2. Algorithm 3 is valid to list all the MAGs
consistent with P .
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Figure 4: The running time and number of listed MAGs within 1800 seconds for MAGLIST and BRUTEFORCE in 100
simulations for each combination of the number of vertice d ∈ {6, 8, 10, 12, 14, 16} including 3 latent variables and the
probability of an edge between two vertices ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. The vertical line represents the 95% confidence
interval generated by bootstrap sampling. It is determined by the 2.5th and 97.5th percentiles of 1000 estimates from the
random sample of equal size with replacement from the original sample.

4. Related Works
How to deal with latent variables is a crucial problem in
many causality tasks. Causal discovery is one of these
tasks. Numerous studies focus on causal discovery using
observational data (Ali et al., 2005; Zhang, 2008). Without
some further assumptions (Zhang et al., 2017; Cai et al.,
2018), some causal relations are unidentifiable. To further
uncover these relations, some studies additionally utilize
interventional data (Yu et al., 2019; Wang et al., 2020; Jaber
et al., 2020; Wang & Zhou, 2021).

The existence of latent variables takes a challenge to causal
effect estimation task as well. There are many efforts on
causal effect identifiability (Tian & Pearl, 2002; Shpitser
& Pearl, 2006; Perkovic et al., 2017; Lee & Bareinboim,
2020), studying whether the causal effect is identifiable
given a causal graph. With observational data, only a PAG
is identifiable, which generally fails to identify the causal
effect. To obtain the information of causal effect in this
case, a series of studies are conducted to determine a set of
possible causal effects via covariate adjustment (Malinsky
& Spirtes, 2016; Wang et al., 2023a). However, for these
methods, it is possible that the true causal effect cannot
be included in the determined set, because adjustment set
is not sufficient for identifying causal effects in the pres-
ence of latent variables. In contrast to these methods, Li &
Pearl (2022) provided a method to determine an accurate
causal effect bound for some cases. Further, Jiang et al.
(2023) proposed an efficient method to approximate causal
effect bounds, given the entropy of latent confounder as the
available side information of latent confounder. Another

kind of method for dealing with latent variables in causal
effect estimation tasks is using instrumental/proximal vari-
ables (Baiocchi et al., 2014; Sverdrup & Cui, 2023). Li et al.
(2024) studied how to perform nonparametric IV regression
and model selection without a minimax oracle.

Recently, the integration of causality into traditional ma-
chine learning tasks attracted tremendous attention. Wang
et al. (2022) provides thoughtful insights on the link between
causality and robust prediction, showcasing how causal anal-
ysis can substantially enhance the performance of state-of-
the-art machine learning algorithms. There are also some
efforts on applying causality in decision-making (Ruan et al.,
2023). Compared to traditional MDP-based methods (Sut-
ton & Barto, 2018; Chen et al., 2021; Zhao et al., 2022;
Chen et al., 2023; Jia et al., 2024) or treatment effect meth-
ods (Qin et al., 2021; Kallus, 2023), causality provides struc-
tural information. Recently, Zhou (2022; 2023) proposed
the viewpoint that influence relation, which is a relation
among correlation and causation, is more suitable for a
large amount of decision problems in practice, which offers
a fresh view for the study of decision methods. Following
this viewpoint, Qin et al. (2023) presented a graphical model
that characterizes influence relations, along with a Bayesian
method for decision-making based on the graphical model.

5. Experiments
In this part, we present the empirical analysis for MAG
listing tasks. We evaluate the effectiveness and efficiency of
the proposed MAGLIST algorithm.
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We generate simulated PAGs and record the running time
for listing all the MAGs in the MEC represented by each
PAG. There are two parameters here: the number of vertices
d ∈ {6, 8, 10, 12, 14, 16} and the probability of an edge
between any two vertices p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. For
each parameter combination, we generate 100 Erdös-Rényi
graph as the true DAGs. In each DAG, we randomly select
three vertices as latent variables and then obtain the true
MAG with d − 3 vertices based on the DAG. See Zhang
(2008) for the algorithm of obtaining a MAG based on
a DAG. Since the focus of this paper is not on the PAG
learning, we directly use the true PAG obtained from the
true MAG as the input of MAGLIST. We record the number
of listed MAGs and the time spent for each PAG.

In the literature, there are no MAG listing methods. Hence
we compare MAGLIST with the baseline BRUTEFORCE
method, which is detailed in Appendix B. Note that BRUTE-
FORCE spends extremely large amount of time in most of
cases. Hence, we set the maximal running time for MAG list-
ing given each PAG by 1800 seconds. For both MAGLIST
and BRUTEFORCE, when the running time exceeds this
limit, the implementation will stop immediately and they
output the MAGs that have been listed. The experimental
results are shown in Fig. 4. When d and ρ are not large,
the two methods can find the same number of MAGs. It
verifies the effectiveness of MAGLIST. When d and ρ are
relatively large, the number of MAGs output by MAGLIST
is far more than that by BRUTEFORCE. Note it is a normal
phenomenon that for BRUTEFORCE, the number of listed
MAGs could become less as the graph density increases.
The reason is, as d and ρ increase, the possibility of an enu-
merated mixed graph not being a MAG consistent with the
PAG P increases as well. Hence, for BRUTEFORCE, most
of the enumerated graph are not MAGs consistent with P ,
resulting in the small number of MAGs output.

6. Conclusion
In this paper, we propose the first brute-force-free MAG
listing algorithm in the presence of both latent confounders
and selection variables. Our approach hinges on providing
a graphical characterization for valid local transformation,
and establishing sound and complete orientation rules to
incorporate the structural knowledge implied by local trans-
formation. The rules can also be applied when we introduce
local BK attained from human expertise to a PAG. The ex-
periments demonstrate the effectiveness and efficiency of
the MAG listing method.

For future study, an important problem to be addressed is on
the theoretical analysis of the number of MAGs in a given
MEC. We believe such an analysis is vital for the further
development of the relevant MAG listing methods. And
another important theoretical problem is the establishment

of the sound and complete orientation rules to incorporate
causal background knowledge into a PAG in general. For
our method, in each round, we need to consider the possi-
ble local transformations of a vertex, which takes a O(2p)
complexity, where p denotes the number of circles at this
vertex. The establishment of the sound and complete rules
for incorporating causal knowledge may further help reduce
the complexity of this part, which could possibly inspire a
more efficient MAG listing algorithm as the DAG listing
method proposed by Wienöbst et al. (2023).
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A. Orientation Rules with Observational Data
In this section, we show the complete orientation rules proposed by Zhang (2008) for causal discovery with observational
data in the presence of latent confounders and selection variables. There are eleven rules (R0 − R10). R0 is triggered
according to the conditional independence relationship at the beginning of learning a PAG and is not triggered beyond this
phase, hence we do not show it.

R1: If A∗→ B ◦−∗R, and A and R are not adjacent, then orient the triple as A∗→ B → R.

R2: If A→ B∗→ R or A∗→ B → R, and A ∗−◦R, then orient A ∗−◦R as A∗→ R.

R3: If A∗→ B ←∗R, A ∗−◦D ◦−∗R, A and R are not adjacent, and D ∗−◦B, then orient D ∗−◦B as D∗→ B.

R4: If 〈K, . . . , A,B,R〉 is a discriminating path between K and R for B, and B ◦−∗ R; then if B ∈ Sepset(K,R),
orient B ◦−∗R as B → R; otherwise orient the triple 〈A,B,R〉 as A↔ B ↔ R.

R5: For every (remaining) A ◦−◦ R, if there is an uncovered circle path p = 〈A,B, · · · , D,R〉 between A and R s.t.
A,D are not adjacent and B,R are not adjacent, then orient A ◦−◦R and every edge on p as undirected edges.

R6: If A−B ◦−∗R (A and R may or may not be adjacent), then orient B ◦−∗R as B −∗R.

R7: If A−◦B ◦−∗R, and A,R are not adjacent, then orient B ◦−∗R as B −∗R.

R8: If A→ B → R, and A◦→ R, orient A◦→ R as A→ R.

R9: If A◦→ R, and p = 〈A,B,D, . . . , R〉 is an uncovered possible directed path from A to R such that R and B are
not adjacent, then orient A◦→ R as A→ R.

R10: Suppose A◦→ R, B → R← D, p1 is an uncovered possible directed path from A to B, and p2 is an uncovered
possible directed path from A to D. Let U be the vertex adjacent to A on p1 (U could be B), and W be the vertex
adjacent to A on p2 (W could be D). If U and W are distinct, and are not adjacent, then orient A◦→ R as A→ R.

Recently, Wang et al. (2023b) proposed that when we have identified a PAG and we incorporate the local background
knowledge,R4 is replaced byR′4. And the ten rulesR1 −R3,R′4,R5 −R10 are sound and complete to incorporate the
local background knowledge.

R′4: If 〈K, · · · , A,B,R〉 is a discriminating path between K and R for B, and B ◦−∗R, then orient B ◦−∗R as B → R.

B. Brute-force MAG Listing
In this section, we present Alg. 4, a brute force MAG listing method, as a baseline. According to Thm. 2 of Zhang (2008),
we can obtain a MAGM consistent with P on Line 2. On Line 3, we record the position of every circle. On Line 4, we
enumerate all the mixed graphs by transforming all the circles. On Line 6, we determine whether the enumerated graph is a
ancestral graph. A path p from X to Y in an ancestral graph G is an inducing path if every non-endpoint vertex on p is a
collider and meanwhile an ancestor of either X or Y (Spirtes et al., 2000). It has been shown that an ancestral graph is
maximal if and only if there is not an inducing path between any two non-adjacent vertices (Richardson et al., 2002). Hence,
by evaluating the existence of inducing paths on Line 9, we can determine whether the enumerated graph is maximal. On
Line 12, we evaluate whether the enumerated graph is a graph in the Markov equivalence class represented by the PAG P .

C. Proofs
C.1. Proof of Theorem 1

In the proof of Thm. 1, given a PMG compatible with local transformation M, when the four conditions are fulfilled for
a local transformation represented by C, we need to present a procedure to obtain a MAG H consistent with M and the
local transformation represented by C. Since some supporting results relevant to this procedure are needed, we present the
procedure at first. We henceforth use the procedure to refer to the procedure of obtainingH based on M and C.
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Algorithm 4 BRUTEFORCE

Require: A PAG P
1: S = ∅ . Record all the MAGs consistent with P
2: Obtain a MAGM from P by transforming the circle component into a DAG without unshielded colliders and the edges
◦→/−◦ into→

3: Cset = {(i, j) | there is Vi ∗−◦ Vj in P} . Record the indexes of all the circles in P
4: for each set I ⊆ Cset do
5: Obtain a graph G by transforming the circles in I to arrowheads and others (in Cset\I) to tails
6: if there is a directed or almost directed cycle or edges into an undirected edge in G then
7: continue . It violates the ancestral property
8: end if
9: if there is an inducing path in G then

10: continue . It violates the maximal property
11: end if
12: if G is Markov equivalent toM by Thm. 3.7 of Ali et al. (2009) or Thm. 3.2 of Hu & Evans (2020) then
13: S ← S ∪ {G} . It is consistent with P
14: end if
15: end for
Ensure: S

(Step 0) Z← {V ∈ V(M)|V = X , or there is V −◦ · · · −◦V ′ −◦X in M and V ′ 6∈ C};

(Step 1) for anyK ∈ PossDe(Z,M[−C]) and any T ∈ C such thatK◦−∗T in M, orientK ←∗T (the mark at T remains);
for any edges between Z1, Z2 ∈ Z with circles, orient the circles into tails; for all K ∈ PossDe(Z,M[−C])\Z
and Z ∈ Z such that Z ◦−∗K, orient Z −∗K;

(Step 2) For circle component in M[PossDe(Z,M[−C])\Z], transform as follows until no feasible updates: for any two
vertices Vl and Vj such that Vl ◦−∗ Vj , orient it as Vl −∗Vj if (i) Fl\Fj 6= ∅ or (ii) Fl = Fj as well as there is a
vertex Vm ∈ PossDe(Z,M[−C])\Z not adjacent to Vj such that Vm −∗Vl ◦−∗ Vj , where Fi = {V ∈ C ∪ Z |
V ∗−◦ Vi in M}, i = j, k, l;

(Step 3) for the circle component in subgraph M[PossDe(Z,M[−C])\Z], orient it into a DAG without new unshielded
colliders;

(Step 4) for the circle component in subgraph M[−PossDe(Z,M[−C])], orient it into a DAG without new unshielded
colliders;

(Step 5) transform edges ◦→/−◦ to→.

Lemma 1. Consider the PMG M compatible with local transformation. If there is A∗→ B in M, then there is an edge as
A∗→ V for any V in a connected circle component with B in M, and A and B are not connected in a circle component.

Proof. The proof of this part can directly refer to that of Lemma 3 of Wang et al. (2023b).

Lemma 2. Consider a PMG M compatible with local transformation. If there is an uncovered circle path p =
〈F1, F2, · · · , Fm〉,m ≥ 3 in M, then it is minimal.

Proof. Suppose it is not minimal, then there exists a sub-structure Fj ◦−◦ Fj+1 ◦−◦ · · · ◦−◦ Fk, k > j + 2 where any
non-consecutive vertices are not adjacent except for an edge between Fj and Fk. We consider the edge between Fj and
Fk. It is not a circle edge, for otherwise the chordal property of M is not fulfilled. It is not an edge with an arrowhead, for
otherwise Lemma 1 is violated. It is not an edge Fj −◦Fk or Fj − Fk, for otherwise the complete property of M is not
fulfilled due toR6,R7 and the circle edge Fk ◦−◦ Fk−1. Hence any edge between Fj and Fk is invalid. The uncovered path
is minimal.

Lemma 3. Consider a PMG M compatible with local transformation. If there is a possible directed path from A to B in M,
then there is a minimal possible directed path from A to B in M.
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Proof. Suppose the possible directed path p = 〈V0(= A), V1, . . . , Vm(= B)〉. If p is minimal, the result trivially holds. If
not, we can always find a subpath 〈Vi, Vi+1, . . . , Vj〉, j − i ≥ 2 such that any non-consecutive vertices are not adjacent
except for an edge between Vi and Vj . We will show the impossibility of both Vi ←∗Vj and Vi ◦−Vj in M. The impossibility
of Vi ←∗Vj has been proved by Lemma 2 of Wang et al. (2023b). We only consider Vi ◦−Vj . If j − i = 2, we consider the
local structure comprised of Vi, Vi+1, Vj . As p is possibly directed, for the edge between Vi and Vi+1, the mart at Vi is either
circle or tail, and the mark at Vi+1 is not tail. If it is a circle at Vi on the edge between Vi and Vi+1, there is Vj −◦Vi ◦−∗Vi+1.
According to the balanced property of M and the fact that there is not a tail at Vi+1 on the edge between Vi and Vi+1, there
is either Vj −◦Vi+1 ◦−◦ Vi or Vj∗→ Vi+1 ←◦Vi, both of which contradicts with the fact that p is a possible directed path. If
it is a tail at Vi on the edge between Vi and Vi+1, there must be Vi −◦Vi+1 −◦Vj −◦Vi, for otherwise the balanced property is
not fulfilled. However, in this case the circle can only be tail, for otherwise the ancestral property cannot be fulfilled, which
contradicts with the complete property of M. Hence, for the edge between Vi and Vj , there cannot be an arrowhead at Vi or
a tail at Vj , we thus find a shorter possible directed path 〈V0, V1, . . . , Vi, Vj , Vj+1, . . . , Vm〉 in M. Repeat this process until
obtaining a possible directed path such that there is not a proper sub-structure where any non-consecutive vertices are not
adjacent except for an edge between endpoints. This path is a minimal possible directed path.

Lemma 4. Consider a PMG M compatible with local transformation. Suppose a MAGM consistent with M and the local
transformation of X represented by C which satisfies the fourth condition in Thm. 1. If C is not an empty set or there is
some edge into X in M, then V ∈ PossDe(Z,M[−C]) if and only if V ∈ De(Z,M).

Proof. When C is not an empty set or there is some edge into X in M, there is Z = {X} according to the fourth condition.
Hence we will prove V ∈ PossDe(X,M[−C]) if and only if V ∈ De(X,M) in the following.

We first prove the “only if” statement. If V ∈ PossDe(X,M[−C]), there is a minimal possible directed path p =
〈X,F1, . . . , Fm(= V )〉 by Lemma 3. According to the condition, there is an edge A∗→ X . Due to F1 6∈ C, there is
X → V1 or X −◦V1 inM. For the latter case, as A∗→ X , the edge between X and V1 cannot be undirected in all the MAG
consistent with M and the local transformation of X represented by C due to the ancestral property. Hence there is always
X → V1. Hence p can only be directed inM, otherwise there will be an edge into an undirected edge, which contradicts
with the ancestral property; or there is an unshielded collider Fi−1∗→ Fi ←∗Fi+1 inM, which has been identified in M
and thus contradicts with the fact that p is a minimal possible directed path from X to Fm in M[−C].

We then prove the “if” statement. According to the ancestral property, there must be a minimal directed path X → F1 · · · →
Fm−1, Fm(= V ) inM, where X is not adjacent to F2, . . . , Fm. The corresponding path in M of this path is a minimal
possible directed path from X to V . If V 6∈ PossDe(X,M[−C]), there can only be F1 ∈ C due to F2, F3, . . . , Fm 6∈ C as
they are not adjacent to X . In this case X ←∗F1 should be represented by C, which contradicts X → F1 inM. The proof
completes.

Lemma 5. Consider a PMG M compatible with local transformation and a local transformation of X represented
by C which satisfies the fourth condition in Thm. 1. Denote FV = {T ∈ C ∪ {X} | T ∗−◦ V in M} for ∀V ∈
PossDe(Z,M[−C])\Z. If for a circle edge A ◦−◦ B in M[PossDe(Z,M[−C])\Z] such that T ∈ FA\FB , then T is not
adjacent to B in M.

Proof. Suppose T is adjacent to B. Consider the edge between B and T in M. (1) The edge cannot be T ← B,
for otherwise the ancestral property can never be fulfilled as T is a descendant of X but there is an edge T∗→ X ,
which contradicts with the constructive property of M. (2) Suppose an edge T − B. If C is not an empty set, then
PossDe(Z,M[−C])\Z = PossDe(X,M[−C])\{X} and B ∈ De(X,M) according to Lemma 4. There is thus an edge
into T − B, such that there cannot be a MAG consistent with M, contradicting with the constructive property of M. If
C = ∅, then T = X , thus there is X − B in M, in which case there is not an edge A ◦−◦ B in M. (3) Suppose an edge
T ◦−B. If T = X , then there is X ◦−B ◦−◦ A ◦−∗X , in which case the balanced property cannot hold no matter what
the edge between A and X is. If T 6= X , then PossDe(Z,M[−C])\Z = PossDe(X,M[−C])\{X} and B ∈ De(X,M)
according to Lemma 4. Hence the edge between B and T can only be T ← B, which leads to the same contradiction with
(1) above. (4) The edge cannot be T∗→ B, for otherwise there is T∗→ A in M due to the balanced property of M, which
contradicts with T ∈ FA. (5) The edge cannot be T ∗−◦ B, for otherwise T ∈ FB , which contradicts with T ∈ FA\FB .
Combining the parts above, T is not adjacent to B.
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Lemma 6. Consider a PMG M compatible with local transformation. Denote Z = {V ∈ V(M)|V = X , or there is V −
◦ · · · −◦V ′ −◦X in M and V ′ 6∈ C}. For any local transformation of vertex X in M represented by C (it is not necessarily
valid), there cannot be a unshielded structure A ◦−◦B ◦−◦ C where A,C ∈ Z and B 6∈ Z.

Proof. According to the definition of Z and the balanced property of M, there must be a minimal circle-tail path A −
◦Fn−1 −◦ · · · −◦F0(= X) in M. B cannot be adjacent to Fn−1, for otherwise the edge can only be B −◦Fn−1 due to
the balanced property of M, which implies that B ∈ Z, contradiction. Hence, Fn−2 cannot be adjacent to B as well, for
otherwise the edge between A,B, Fn−2, Fn−1 in P can only be undirected, which contradicts with A ◦−◦B in M. Similarly,
we can conclude that Fn−3, · · · , X are not adjacent to B. Since C ∈ Z, we can find another minimal circle-tail path
C −◦Sm−1 −◦ · · · −◦X such that each vertex except for C are not adjacent to B. Hence there is a sub-structure comprised
of X, · · · , Sm−1, C,B,A, Fn−1, · · · , X , where B is not adjacent to any vertices except for A,C. Hence there must be a
cycle containing more than four vertices including A,B,C. In this case, the edge between A,B,C should be undirected in
P according toR5, contradicting with A ◦−◦B.

Lemma 7. Consider a PMG M compatible with local transformation and a local transformation of X represented
by C which satisfies the fourth condition in Thm. 1. Denote FV = {T ∈ C ∪ {X} | T ∗−◦ V in M} for ∀V ∈
PossDe(Z,M[−C])\Z. If for an edge A ◦−◦B,A,B ∈ PossDe(Z,M[−C])\Z in M, there is FA\FB 6= ∅, then FA ⊃ FB .

Proof. Suppose there is a vertex C ∈ FB\FA. According to the condition, there is a vertex D ∈ FA\FB . In this case,
as C,D ∈ C ∪ {X}, there must be some vertex belonging to C. Hence Z = {X} according to the fourth condition of
Thm. 1 and thus PossDe(Z,M[−C])\Z = PossDe(X,M[−C])\{X}. Hence according to Lemma 4, A,B ∈ De(X,M).
In addition, according to Lemma 5, there is an uncovered path 〈D,A,B,C〉. Note there must be an edge D∗→ A in any
MAGM consistent with M, for otherwise the ancestral property is violated. Similarly, there is C∗→ B. Since inM, there
cannot be new unshielded colliders relative to M, the edge between A and B can only be A−B. However, the sub-structure
D∗→ A−B violates the ancestral property. The proof completes.

Lemma 8. Consider a PMG M compatible with local transformation and a local transformation of X represented by C
which satisfies the four conditions in Thm. 1. DenoteFV = {T ∈ C∪{X} | T ∗−◦V in M} for ∀V ∈ PossDe(Z,M[−C])\Z.
For an edge A ◦−◦ B in M[PossDe(Z,M[−C])\Z], if it is oriented as A −◦B in Step 2 of the procedure, then there is
a minimal circle path in a form Fm ◦−◦ . . . ◦−◦ F1(= A) ◦−◦ F0(= B),m ≥ 1 in M[PossDe(Z,M[−C])\Z] such that
FFm

⊃ FFm−1
= · · · = FF0

.

Proof. In Step 2 of the procedure at the beginning of Appendix C.1, there are only two possible cases for the transformation
of A ◦−◦ B to A −◦B. One is that FA\FB 6= ∅. The other is that FA\FB = ∅ as well as there is a vertex C ∈
PossDe(Z,M[−C])\Z not adjacent to B such that C −◦A ◦−◦ B. We consider these two cases. We will prove that
we can find a desired path Fm ◦−◦ . . . ◦−◦ F1(= A) ◦−◦ F0(= B),m ≥ 1 in M[PossDe(Z,M[−C])\Z] such that
FFm ⊃ FFm−1 = · · · = FF0 .

If FA\FB 6= ∅, there is FA ⊃ FB according to Lemma 7. In this case, A ◦−◦ B is the desired path where m = 1. If
FA\FB = ∅, in this case there is a structure C −◦A ◦−◦B where C is not adjacent to B. There cannot be C −◦A in M, for
otherwise there cannot be an edge A ◦−◦B in M due toR7 and the complete property of M. There are no edges between
PossDe(Z,M[−C])\Z transformed in Step 0 - Step 1 of the procedure. Hence there is F2 ◦−◦ A in M and F2 −◦A is
obtained in Step 2 of the procedure. We consider whether FF2

\FA = ∅. If not empty, then we can find a desired path where
m = 2. If empty, we can find another vertice F3 not adjacent to A with an edge F3 ◦−◦ F2 in M. Repeat the process above,
we can always find an uncovered path Fm ◦−◦ . . . ◦−◦ F1(= A) ◦−◦ F0(= B),m ≥ 1 in M[PossDe(Z,M[−C])\Z] where
FFm

⊃ FFm−1
= · · · = FF0

. According to Lemma 2, the circle path is also minimal. We get the desired result.

Lemma 9. Consider a PMG M compatible with local transformation and a local transformation of X represented by C
which satisfies the four conditions in Thm. 1. In Step 2 of the procedure, there is not an edge oriented as J −K.

Proof. For simplicity, denote M[PossDe(Z,M[−C])\Z] by M1. According to the third condition of Thm. 1, there is
FJ ⊆ FK or FK ⊆ FJ . We only present the proof for the case FJ = FK . The proof for the case FJ 6= FK is similar by
deriving a contradiction through finding a minimal circle path such that the two endpoints are not bridged, thus we leave
them for readers.
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According to Step 2 of the procedure, if we tnansform a circle edge J ◦−◦K to an undirected edge J −K, then we can
orient both J −◦K and J ◦−K in Step 2 of the procedure. According to Lemma 8, if we orient J −◦K in Step 2, there
is a minimal circle path V0 ◦−◦ V1 ◦−◦ · · ·Vm−1(= J) ◦−◦ Vm(= K) where FV0 ⊃ FV1 = · · · = FVm . If we also orient
J ◦−K in Step 2, there is another minimal circle path Vm−1(= J) ◦−◦ Vm(= K) ◦−◦ · · · ◦−◦ Vn, n > m in M1 where
FVm−1

= FVm
= · · · = FVn−1

⊂ Fn. Note Vm+1 is adjacent to Vm but not adjacent to Vm−1, while Vm−2 is adjacent
to Vm−1 but not adjacent to Vm, hence Vm−2, Vm−1, Vm, Vm+1 are distinct vertices. Due to the balanced property of M,
there cannot be non-circle edge between the variables in the circle path. Also note no circle edges in M1 are oriented in the
first two steps. Hence the circle component in M1 after the first two steps is still chordal. And V0 ◦−◦ V1 ◦−◦ · · · ◦−◦ Vn
is also a minimal circle path, otherwise there is a circle cycle whose length is larger than 3 without a chord because this
cycle must contain Vm−2, Vm−1, Vm, Vm+1 where Vm−2 is not adjacent to Vm and Vm−1 is not adjacent to Vm+1. Since
V0, · · · , Vn ∈ PossDe(Z,M[−C])\Z, V0 and Vn are not bridged relative to C ∪ Z, contradicting with the third condition
of Thm. 1.

Lemma 10. Consider a PMG M compatible with local transformation and a local transformation of X represented by C
which satisfies the four conditions in Thm. 1. In Step 2 of the procedure, there are only circle edges transformed to −◦.

Proof. It directly follows from Lemma 9 and Step 2 of the procedure.

Lemma 11. Consider a PMG M compatible with local transformation and a local transformation of X represented by C
which satisfies the four conditions in Thm. 1. There is not a new unshielded collider introduced by the procedure.

Proof. Suppose a new unshielded collider A∗→ B ←∗C is introduced by the procedure above. There is A ∗−◦B ◦−∗ C and
is not A−◦B or B ◦−C in M due to the complete property of M. Note there are no new arrowheads introduced in Step 2 of
the procedure above. (A.) If A∗→ B and B ←∗C are introduced in Step 1 of the procedure above, there must be A,C ∈ C.
Due to the second condition of Thm. 1, A must be adjacent to C, contradiction. (B.) If one arrowhead at B is introduced
in Step 1 and the other is introduced in Step 3 - Step 5, without loss of generality, suppose A∗→ B is introduced in Step
1 and B ←∗C is introduced in Step 3 - Step 5. There cannot be B ◦−◦ C in M, for otherwise there is B −◦C obtained in
Step 2 of the procedure above as A ∈ FB\FC . Since there is not B ◦−C in M as well, there can only be B◦→ C in M.
However, according to the procedure above, the edges in the format of B◦→ C is never transformed to bi-directed edges in
Step 3 - Step 5, contradiction. C. If both the arrowheads at B on A∗→ B ←∗C are introduced in Step 5 of the procedure
above, there must be A −◦B ◦−C before Step 3. (C.1) At first, there cannot be A,B ∈ Z due to Lemma 6. (C.2) If one
vertex belongs to Z and the other does not, without loss of generality, suppose A ∈ Z and B 6∈ Z. In this case, B ◦−C can
only be obtained in Step 2 of the procedure above. In addition, since A ∈ FB\FC , B −◦C can be oriented in Step 2 of the
procedure above, thus there are B − C transformed in Step 2 of the procedure above, which has been proven impossible by
Lemma 9. (C.3) If A,B 6∈ Z, the only possible case is that both A−◦B and B ◦−C are obtained in Step 2 of the procedure
above. In this case, A−B −C will be further obtained in Step 2 of the procedure, which contradicts with Lemma 9. Hence
we have considered all the cases that possibly introduce a new unshielded collider and prove the impossibility of all these
cases. Hence there is not a new unshielded collider introduced by the procedure.

Lemma 12. Suppose G be a MAG with a directed edge A→ B. Let G′ be the graph identical to G except that the edge
between A and B is A↔ B. G′ is a MAG Markov equivalent to G if

(1) there is no directed path from A to B other than A→ B in G;

(2) For any edge C → A in G, C → B is also in G; and for any D ↔ A in G, either D → B or D ↔ B is in G;

(3) there is no discriminating path for A on which B is the endpoint adjacent to A in G;

(4) there is not an undirected edge of A.

Proof. The proof completely follows the proof of Lemma 1 of Zhang & Spirtes (2005), except for the additional condition
(4) which avoids that the edge B ↔ A is into an undirected edge and thus violates the ancestral property.

Proof of Theorem 1. We first prove the “if” statement.
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We first introduce a new notation. DenoteM(M) the set of graphs that can be obtained from M by transforming all edges
◦→/−◦ to→ and orient the circle component into a DAG without new unshielded colliders. According to the constructive
property of M, all the graphs inM(M) are MAGs consistent with M.

Denote H the obtained graph by the procedure at the beginning of Appendix C.1. We obtain a graph H0 based on H by
transforming all the bi-directed edges K ↔ T to K → T which are K◦→ T in M, transforming all the undirected edges
J − L to J → L which are J −◦L in M, and transforming the subgraph comprised of all the undirected edges − which are
◦−◦ in M into a DAG with no unshielded colliders.

The following proof is comprised of two parts: (A) we proveH0 ∈M(M). (B) We prove ifH0 is a MAG consistent with
M, thenH is a MAG consistent with M and local transformation of X represented by C. We thus get the desired result.

(A)H0 ∈M(M). At first, we show that the procedure to obtainH0 fromH is valid. It suffices to show that the subgraph
comprised of all the undirected edges in H which are ◦−◦ in M is chordal, thus we can transform this part into a DAG
without new unshielded colliders by a perfect elimination order. It follows directly from the chordal property of M and the
fact that the subgraph of any chordal graph is also chordal. When provingH0 ∈M(M), we only need to prove that for the
graphH0, the circle component in M is transformed to a DAG without new unshielded colliders relative to M. We divide
the circle component in M into M[PossDe(Z,M[−C])\Z], denoted by CC1, and M[−(PossDe(Z,M[−C])\Z)], denoted
by CC2. Note M[−(PossDe(Z,M[−C])\Z)] here denotes the subgraph of M induced by V(M)\(PossDe(Z,M[−C])\Z).

The edges in CC1 totally follow those of H, which is transformed by Step 2 or 3 of the procedure above. With the same
proof idea as Lemma 16.1 of Wang et al. (2023b), we can prove that there are no new unshielded colliders or directed cycles
comprised of these edges based on Lemma 11.

For the circle edge in M connecting a vertex K ∈ PossDe(Z,M[−C])\Z and another vertex T ∈
V(M)\(PossDe(Z,M[−C])\Z). In this case, there must be T ∈ C ∪ Z, for otherwise T ∈ PossDe(Z,M[−C])\Z
due to the edge K ◦−◦ T in M and K ∈ PossDe(Z,M[−C])\Z. If C 6= ∅, then Z = {X} according to the fourth condition
of Thm. 1. In this case, according to the procedure above, there is K ← T inH, thus there is K ← T inH0. In this case,
there will not be a directed cycle comprised of the edge between CC1 and CC2 since all the edges between them are directed
towards CC1. And any two edges between CC1 and CC2 will not introduce a new unshielded colliders since M[C] is a
complete graph according to the second condition of Thm. 1. If C = ∅, there is T ∈ Z and K ∈ PossDe(Z,M[−C])\Z.
According to the procedure, there is K ← T inH andH0. There will not be a directed cycle comprised of more than one
edge between CC1 and CC2 since all the edges between them are directed towards CC1. And any two edges between CC1

and CC2 will not introduce a new unshielded colliders due to Lemma 6. Thus we can prove that there are no new unshielded
colliders or directed cycles comprised of the edge connecting both CC1 and CC2.

The edges in CC2 follow those inH except for that some additional undirected edges inH relative to M are directed inH0,
which are in the form of J − L such that J −◦L or J ◦−◦ L in M. According to the procedure of obtaining H0 based on
H, for the edges J − L which are J −◦L in M, we transform them to directed edges; for the subgraph G1 comprised of
undirected edges which are circle edges in M, we transform them to a DAG without new unshielded colliders. As there are
no edges into these undirected edges inH, all the directed edges inH which are circle edges in M can be always obtained
by a perfect elimination order where the vertices in G1 are in the last of the order, that is, for any vertex V not in G1 and any
vertex V ′ in G1, V is ahead of V ′ in the perfect elimination order. Hence, in this part there are no new unshielded colliders
or directed cycles.

Combining the parts above, we concludeH0 ∈M(M).

(B) IfH0 is a MAG consistent with M and local transformation represented by C, thenH is a MAG consistent with
M. SupposeH0 is a MAG consistent with M and local transformation represented by C. SinceH has the non-circle marks
represented by C, it suffices to prove thatH is a MAG Markov equivalent toH0.

At first, we construct an auxiliary graphH′0, such that only and all the differences betweenH′0 andH0 is that for the edges
K → T,K ∈ PossDe(Z,M[−C]), T ∈ C inH0 such that there is K◦→ T in M, the edges are K ↔ T inH′0. Denote the
set of different edges betweenH′0 andH0 inH0(= H0

0) by Edge(H0
0) = {K → T inH0

0|K ∈ PossDe(Z,M[−C]), T ∈
C,K◦→ T inH0

0}. We obtainH′0 fromH0
0 by transforming these edges to bi-directed edges. We transform one edge one

time. At first, we select the edge K → T in Edge(H0
0) according to the selection criterion that (1) we select K that is not

an ancestor of any other V1 such that there is an edge V1 → V2 in Edge(H0
0); and (2) given K selected in the first step,

we select T that is not a descendant of any other V2 such that there is an edge K → V2 in Edge(H0
0). Then we obtain
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Edge(H1
0) by deleting K → T from Edge(H0

0). By such operation, we obtain a new graphH1
0 and Edge(H1

0). Repeat the
process above and we could obtain a series of graphsH0

0(= H0),H1
0, · · · ,Hm

0 ,Hm+1
0 (= H′0). We prove the desired result

by induction, that is, for anyHj
0 andHj+1

0 , where 0 ≤ j ≤ m, ifHj
0 is a MAG, thenHj+1

0 is a MAG Markov equivalent to
Hj

0 using Lemma 12. Suppose there is K → T inHj
0 but K ↔ T inHj+1

0 . The first three conditions can be proved with the
similar process as Lemma 16.1 of Wang et al. (2023b). We only present the proof of the fourth condition. Suppose there is
an undirected edge D −K. Note T ∈ C. According to the fourth condition of Thm. 1, Z\{X} is an empty set. In this case,
according to the procedure above, we do not generate any new undirected edges inH relative to M. Hence there is D −K
in M. In this case, there cannot be K◦→ T in M, as the mark at K in the edge between K and T can only be a tail due to
the ancestral property, the complete property of M is violated. Hence there cannot be an undirected edge D −K inHj

0. We
thus conclude thatH′0 is a MAG Markov equivalent toH0. Next we will showH is a MAG Markov equivalent toH′0.

Note that only and all the differences between H and H′0 is that for the undirected edges J − L in H such that there is
J −◦L or J ◦−◦ L in M, the edges are J → L in H′0. Evidently H′0 and H have the same adjacencies. Note H has less
arrowheads thanH′0, and there are no new unshielded colliders or discriminating path for a vertex as a collider introduced in
the process of obtainingH, thusH′0 andH have the same unshielded colliders, and if a path π forms a discriminating path
for b in H′0 and H, then b is a collider on π in H′0 if and only if it is a collider on π in H. It suffices to prove that H is a
MAG. SinceH has less arrowheads thanH′0,H satisfies the maximal property and there is no directed or almost directed
cycles inH due to the ancestral and maximal property ofH′0. Hence it suffices to show that for each undirected edge inH,
there is not an arrowhead into this edge.

Suppose there is a structure A∗→ B − C in H. We discuss the edge between A and B. (a) Consider there is A∗→ B in
M. There cannot be B −◦C or B ◦−C in M due to the complete property of M. Hence if there is B − C in H, there is
B ◦−◦C in M. According to the balanced property of M, there is also A∗→ C in M. If there is B −C inH but B ◦−◦C in
M, there is either B ∈ Z or C ∈ Z. Without loss of generality, suppose B ∈ Z. In this case there is A∗→ B −◦ · · · −◦X
in M, which is impossible since the structure ∗→ −◦ makes the complete property fail. (b) Consider there is A ∗−◦ B in
M. At first, we note that B 6∈ Z. Suppose B ∈ Z, if there is A−◦B, then A ∈ Z thus there is A−B inH, contradicting
with A∗→ B; if there is A ◦−◦B or A←◦B, then there is A ∗−B inH, contradicting with A∗→ B as well. In this case, if
there is undirected edge B − C in H, there must be C ∈ Z. Then we discuss the edge between B and C. (b.1) If there
is B −◦C in M, then there is B ∈ Z, contradiction. (b.2) If there is B ◦−C in M, according to the procedure above, we
never transform a circle at a vertex B on edge B ◦−C to a tail if B 6∈ Z, hence in this case there will not be an undirected
edge B − C inH, contradiction. (b.3) If there is B ◦−◦ C in M, we will transform this edge to an undirected edge only if
B,C ∈ Z, contradiction. (b.4) If there is B − C in M, then there cannot be A ∗−◦B in M due to the complete property of
M, contradiction.

Combining the parts above, it is impossible that there is a structure A∗→ B − C inH. The ancestral property holds inH.
The proof completes.

Then we prove the “only if” statement. We prove it by reduction to absurdity. Suppose a MAGM consistent with M
has the non-circle marks of X represented by the local transformation C.

If M[C] is not complete, there are new unshielded colliders inM relative to M. It is evident thatM is not consistent with
M, contradiction.

If both Z\{X} and {V ∈ V(M)|V ∗→ X in M or V ∈ C} are not empty, there must be C∗→ X and X − T in any MAG
consistent with M and local transformation of X represented by C. However, the ancestral property is not fulfilled here due
to C∗→ X − T , contradiction.

Hence, the fourth condition of Thm. 1 is satisfied if there is a MAG consistent with M and local transformation represented
by C. With this result, we can conclude the other results further.

If PossDe(Z,M[−C]) ∩ Pa(C,M) 6= ∅, suppose V → T where V ∈ PossDe(Z,M[−C]) and T ∈ C. In this case, C is
not empty. By Lemma 4, V ∈ De(X,M), thus T ∈ De(X,M). According to the definition of C, there is X ←∗T , a
directed or almost directed cycle forms, contradiction.

Suppose two vertices J,K in M[PossDe(Z,M[−C])\Z] are not bridged relative to C ∪ Z due to the minimal circle path
J(= V0) ◦−◦ V1 · · ·Vn ◦−◦K(= Vn+1) in M[PossDe(Z,M[−C])\Z]. Without loss of generality, suppose for any sub-path
of this path except for this path itself, the sub-path is bridged relative to C. There are two possible cases. One is n = 0, the
other is n > 0. For the first case, suppose there are two vertices T1, T2 ∈ C such that T1 ∈ FV0\FV1 and T2 ∈ FV1\FV0 .
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According to Lemma 7, T1 is not adjacent to V1 and T2 is not adjacent to V0. Since T1, T2 ∈ C ∪ {X} and either Z\{X}
or {V ∈ V(M)|V ∗→ X in M or V ∈ C} is empty, C is not empty and Z = {X}. According to Lemma 4, V0, V1 are
descendants of X . As there is also T1∗→ X and T2∗→ X according to the local transformation, there must be T1∗→ V0
and T2∗→ V1 inM due to the ancestral property. However, no matter how we transform to circle edge V0 ◦−◦ V1, there will
be either a new unshilded collider or an edge into an undirected edge in T1∗→ V0 ◦−◦ V1 ←∗T2, which implies that there
cannot be MAGs consistent with M and local transformation represented by C.

For the second case, suppose a vertex T1 ∈ FV0
\FV1

and a vertex T2 ∈ FVn+1
\FVn

. If T1 6= T2, we can get the
contradiction with the same process above. If T1 = T2, there is a sub-structure comprised of T1, V0, V1, · · · , Vn+1, T1,
where each two non-consecutive vertices are not adjacenct. For this structure in P , it holds that either all the edges are
undirected byR5 or the edges V0 → T1 ← V1 byR9. The former case contradicts with V0 ◦−◦ V1 in M. For the latter case,
since there is an edge into T1, T1 cannot belong to Z. If T1 = X , then V0 is not in M[PossDe(Z,M[−C])\Z], contradiction;
if T1 ∈ C, according to Lemma 4, there V0 ∈ De(X,M). And since V0 → T1, T1 ∈ De(X,M). And according to the
definition of C, there is T1∗→ X , thus ancestral property is violated. Hence there is always a contradiction.

Combining the results above, we conclude that there does not exist a MAG consistent with M with the local structure of X
represented by C when the four conditions are violated.

C.2. Proof of Proposition 1

Proof. If M[PossDe(Z,M[−C])\Z] is not bridged relative to C ∪ Z in M, according to Def. 2, it is not hard to prove that
there is a path V0 ◦−◦ · · · ◦−◦ Vn such that F0\F1 6= ∅ and Fn\Fn−1 6= ∅. In the second step of Alg. 1, there will be an
undirected edge oriented. Hence “unbridged” is returned. According to the proof of Lemma 9, if M[PossDe(Z,M[−C])\Z]
is bridged relative to C ∪ Z in M, there is not an undirected edge formed in Alg. 1. Hence “bridged” is returned.

C.3. Proof of Proposition 2

Proof. If the mark at R on the edge between B and R is a tail, then there is an edge A∗→ B into an undirected edge, which
contradicts with the ancestral property, impossibility. Hence there must be B → R.

C.4. Proof of Theorem 2

To prove Thm. 2, we first present some supporting results. Note the first three steps are totally same as the first three steps in
the procedure at the beginning of Appendix C.1. For a valid local transformation represented by C, it evidently fulfills the
four conditions in Thm. 1. Hence some results can be directly used here.

Lemma 13. The PMG Mi+1 in Thm. 2 satisfies the closed property.

Proof. It follows from the fourth step of Alg. 2.

Lemma 14. Suppose Mi in Thm. 2 is a PMG compatible with local transformation, there must exist a MAG consistent with
Mi.

Proof. It follows from the complete property of Mi.

Lemma 15. Suppose there is an unshielded triple 〈A,B,C〉 in a PAG P where B is not a collider. Then there cannot be an
edge A−∗B ←∗C in any MAG consistent with P .

Proof. It directly follows from the ancestral property and Markov equivalence property.

Lemma 16. Suppose Mi in Thm. 2 is a PMG compatible with local transformation., for any edge A−◦B or A−B in Mi,
there cannot be an edge into A or B in Mi.

Proof. According to Lemma 14, there exists some MAGs consistent with Mi. Hence, there cannot be an edge into an
undirected edge A − B in Mi due to the ancestral property. It is suffices to show that there is not an edge into an edge
A−◦B.
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Suppose there is an edge into A, that is, there is C∗→ A−◦B in Mi. According to the closed property and R11, there is
A→ B in Mi, contradiction. Suppose there is an edge into B, that is, there is A−◦B ←∗D in Mi. According to Lemma 15,
A must be adjacent to D. According to the balanced property of Mi, there is D∗→ A in Mi, the impossibility of this case
has been proved. Hence, there is not an edge into A−◦B in Mi.

Lemma 17. Suppose Mi in Thm. 2 is a PMG compatible with local transformation. If there is a valid local transformation
of X represented by C, either C or Z\{X} is an empty set.

Proof. It is directly derived from Thm. 1.

Lemma 18. The PMG Mi+1 in Thm. 2 satisfies the invariant property, i.e., the arrowheads and tails in Mi+1 are invariant
in all the MAGs consistent with Mi and the local transformation of X represented by C.

Proof. When C 6= ∅, Z = {X} according to Lemma 17. In this case, the non-circle marks introduced in the second step
of Alg. 2 are invariant in all the MAGs consistent with Mi and the local transformation of X represented by C according
to Lemma 7 of Wang et al. (2023b), thus we do not show the details here. When C = ∅ and Z\{X} 6= ∅, for any vertex
Z1 ∈ Z, there is a path Z1 −◦ · · ·Zk −◦X in Mi. According to the local transformation represented by C, there is Zk −X
in any MAGs consistent with Mi and local transformation of X . Hence the path can only be Z1 − · · ·Zk −X due to the
ancestral property. In this case, for any vertex V with an edge V ∗−◦ Z1, the edge can only be V ∗−Z1 due to the ancestral
property. Hence the tails introduced in the second step are invariant. Thus, the non-circle marks introduced in the second
step of Alg. 2 are invariant.

In the fourth step, we only update the graph with the orientation rules. Since all the rules are sound, hence the non-circle
marks introduced in the fourth step are also invariant. Hence it suffices to show the tail introduced in the third step is
invariant.

The third step only introduces tails. Suppose the first transformed edge which introduces a tail that is not invariant is A−◦B.
Due to the fact that the tail is not invariant, there is a MAGM consistent with Mi and C with an edge A←∗B. According
to the third step of Alg. 2, there are two possible cases for the transformation of A−◦B. If FA = FB and there is another
vertex T not adjacent to B such that T −◦A ◦−◦ B which leads to A −◦B, there is T −∗A ←∗B inM as the tail at T is
invariant. According to Lemma 15, it is impossible. If FA\FB 6= ∅, then there is some variable T ∈ FA\FB . T is not
adjacent to B due to Lemma 5. If C 6= ∅, then PossDe(Z,Mi[−C])\Z = PossDe(X,Mi[−C])\Z and B ∈ De(X,M)
according to Lemma 4. According to the second step of Alg. 2, there is T∗→ A inM. Hence, there is an additional
unshielded collider T∗→ A ←∗B inM, which contradicts with the fact thatM is consistent with P . If C = ∅, there is
T = X , in which case there is unshielded triple X −∗A←∗B inM, which contradicts with Lemma 15. We conclude the
impossibility of A←∗B inM.

Hence Mi+1 satisfies the invariant property.

Lemma 19. Consider Mi+1 in Thm. 2. The subgraph Mi+1[C] is a complete graph.

Proof. It is directly derived from Thm. 1.

Lemma 20. Suppose Mi in Thm. 2 is a PMG compatible with local transformation. Given a valid local transformation of
X represented by C, there is PossDe(Z,Mi[−C]) ∩ Pa(C,Mi) = ∅.

Proof. It is directly derived from Thm. 1.

Lemma 21. Suppose Mi in Thm. 2 is a PMG compatible with local transformation. Given a valid local transformation of X
represented by C, there is not a new unshielded collider introduced in Alg. 2 when we incorporate the local transformation
of X(= Vi+1) into Mi.

Proof. According to Lemma 18, if there are new unshielded colliders introduced in Alg. 2, then for any MAGM consistent
with Mi and the valid local transformation of Vi+1, there are new unshielded colliders inM relative to P , contradicting
with Thm. 1.
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Lemma 22. Suppose Mi in Thm. 2 is a PMG compatible with local transformation. Given a valid local transformation of
X represented by C, in the fourth step of Alg. 2 to obtain Mi+1 based on Mi and the local transformation of X represented
by C, there are only edges as A◦→ B transformed to A→ B or edges as A−◦B transformed to A→ B.

Proof. We can prove that when we transform a circle to an arrowhead, the edge can only be as −◦, with the similar process
of Lemma 13 of Wang et al. (2023b) based on Lemma 9. Hence we will not show the proof of this part. Here, we will only
prove that if we transform a circle to a tail, then the edge can only be as A◦→ B. We denote the graph obtained after the
first three steps of Alg. 2 by M̄i+1.

It suffices to show that when we transform a circle to a tail, the edge cannot be as A ◦−◦B or A−◦B. Suppose there are
some edges as A ◦−◦B or A−◦B where a circle is transformed to a tail in the third step of Alg. 2. In the following, we will
prove the impossibility of both that (i) the first aforementioned edge is A ◦−◦ B and (ii) the first aforementioned edge is
A−◦B, which could imply that there are not edges as A ◦−◦B or A−◦B where a circle is transformed to a tail.

(i) Suppose the first aforementioned edge is as A ◦−◦B. According to the proposed rules, onlyR1,R′4,R5,R6,R7 can be
triggered to transform ◦−◦ to −◦. If the transformation is triggered byR1 orR′4, then there is also a circle transformed to an
arrowhead, which means that there are new arrowheads introduced in the fourth step. We have shown that in the fourth step
there are no new arrowheads introduced, thus conclude the impossibility of triggeringR1 orR′4. R5 is triggered in only the
process of obtaining a PAG. It suffices to consider thatR6 orR7 is triggered. Note we do not orient any edges in the first
step of Alg. 2.

(i.1) IfR6 is triggered, suppose there is C −B ◦−◦A such thatR6 is triggered. There cannot be C −B in Mi, for otherwise
the complete property of Mi is contradicted due to B ◦−◦A. Hence C −B is introduced in the first three steps of Alg. 2.
Note in the third step of Alg. 2, only circle edges are transformed to edges in the format of −◦. Hence C −B is introduced
in the second step. If B ∈ Z, then there is either A ∈ Z or A ∈ PossDe(Z,Mi[−C])\Z, either of which leads to B −∗A in
the second step of Alg. 2, contradiction. If B 6∈ Z, there must be C ◦−B in Mi where C ∈ Z. In this case there is B ∈ Z
according to the definition of Z, contradiction.

(i.2) IfR7 is triggered, suppose there is C −◦B ◦−◦A where C is not adjacent to A, such thatR7 is triggered. There cannot
be C −◦B in Mi, for otherwise the complete property of Mi is contradicted. If C −◦B is introduced in the second step of
Alg. 2, then there is C ∈ Z and B 6∈ Z. There is also A 6∈ Z, for otherwise there is B ◦−A oriented in the second step of
Alg. 2, contradicting with B ◦−◦A. As there is C ◦−◦B ◦−◦A in Mi, there is A,B ∈ PossDe(Z,Mi[−C])\Z. In this case
B −◦A is oriented in the third step of Alg. 2, contradicting with B ◦−◦A. If C −◦B is introduced in the third step of Alg. 2,
with the similar proof process as above, B −◦A is oriented in the third step, contradiction. HenceR7 cannot be triggered as
well.

(ii) Then we suppose the first aforementioned edge is A−◦B. OnlyR6 orR7 could possibly trigger the transformation of
A−◦B to A−B. Hence it suffices to consider (ii.1)R7 and (ii.2)R6.

(ii.1) IfR7 is triggered, suppose there is C −◦B ◦−A where C is not adjacent to A such thatR7 is triggered. It is evident
that there is not C −◦B or B ◦−A in Mi due to the complete property of Mi. If C −◦B is introduced in the second step of
Alg. 2, there is C ∈ Z and B 6∈ Z. There is A 6∈ Z due to Lemma 6. Hence C −◦B is introduced in the third step of Alg. 2.
Similarly, it is only possible that B ◦−A is introduced in the third step. In this case, according to the third step, as C is not
adjacent to A, B −A can also be introduced in the third step of Alg. 2, contradicting with Lemma 9.

(ii.2) IfR6 is triggered, suppose there is C −B ◦−A such thatR6 is triggered. We consider the case that C is adjacent to A,
for otherwiseR7 can also be triggered, the impossibility of which has been proven. It is evident that there is not C −B in
Mi due to the complete property of Mi. In the following, we first prove that there cannot be B ◦−A in Mi. Suppose B ◦−A
in Mi, there must be B 6∈ Z, for otherwise there is A ∈ Z according to the definition of Z, in which case there is B −A
oriented in the second step of Alg. 2. There is thus B 6∈ Z. (A) If C −B is oriented in the second step of Alg. 2, there must
be C ∈ Z and C ◦−B in Mi, in which case there is also B,A ∈ Z due to C ◦−B ◦−A in Mi, contradiction. (B) C −B is
not obtained in the third step of Alg. 2 due to Lemma 9. (C) In the forth step, as B ◦−A is the first edge which is not as ◦→
and the circle is transformed to a tail, hence C −B is not obtained in the forth step of Alg. 2. Hence, there is never B ◦−A
in Mi. Hence there is B ◦−◦A in Mi. If B ◦−A is obtained in the second step of Alg. 2, there is A ∈ Z and B 6∈ Z. Note
that C −B can only be obtained in the second step of Alg. 2 due to Lemma 9. Hence there can only be C ◦−B in Mi and
C ∈ Z. In this case, there is also B ∈ Z according to the definition of Z, contradiction. If B ◦−A is obtained in the third
step of Alg. 2, there is B 6∈ Z. With the similar process as above, we can conclude that there is C ◦−B in Mi and B,C ∈ Z,
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contradiction. Hence there is always a contradiction.

Combining the parts above, we conclude that if there is an edge except for ◦→ where the circle is transformed to a tail, then
the first aforementioned edge can be neither ◦−◦ nor −◦. Hence all the edges where a circle is transformed to a tail can only
be as ◦→.

Lemma 23. The PMG Mi+1 in Thm. 2 satisfies the chordal property.

Proof. Denote the graph obtained from Mi and the local transformation represented by C after the first three steps of Alg. 2
by M̄i+1. According to Lemma 22, no circle edges are oriented in the fourth step of Alg. 2. Hence, it suffices to prove that
the circle component in M̄i+1 is chordal.

According to Lemma 17, when C is not empty, the set Z only contains one element X . Hence, when C 6= ∅, we can prove
the result by the similar proof idea with Lemma 14 of Wang et al. (2023b) based on Lemma 9. We do not show the details. It
suffices to consider the case that C = ∅. If there is a subgraph of Mi such that any vertex in this subgraph is not connected
to Z by a path, then it is evident that no edges in this subgraph are transformed by Alg. 2, thus this subgraph must be chordal.
Hence without loss of generality, we suppose that all the variables are connected to Z by some paths.

In the first three steps of Alg. 2, we never transform the circles at the vertices in V(Mi)\PossDe(Z,Mi[−C]). Hence
it suffices to show that M̄i+1[PossDe(Z,Mi[−C])] is chordal. It is evident that there is not a circle edge connecting
V ′ ∈ PossDe(Z,Mi[−C]) and V ′′ ∈ V(M)\PossDe(Z,Mi[−C]), for otherwise there is V ′′ ∈ PossDe(Z,Mi[−C]).

The proof of that M̄i+1[PossDe(Z,Mi[−C])] is chordal is comprised of three parts. We will show that (a) the sub-
graph M̄i+1[Z] is chordal; (b) there is not a circle edge connecting Z and PossDe(Z,Mi[−C])\Z; (c) the subgraph
M̄i+1[PossDe(Z,Mi[−C])\Z] is chordal. The proof of part (c) directly refers to that of Lemma 14 of Wang et al. (2023b),
we do not show the details.

(a) We will prove that M̄i+1[Z] is an undirected graph. According to Alg. 2, the only possible case such that M̄i+1[Z] is not
an undirected graph is there is an arrowhead in Mi[Z]. We will prove the impossibility. Suppose there is Z1∗→ Z2 in Mi

where Z1, Z2 ∈ Z. At first Z2 6= X , for otherwise there cannot be an edge as V −◦Z2 in Mi, for otherwise the complete
property of Mi is violated since the edge can only be V − Z2 as Z1∗→ Z2 in Mi, contradiction. If Z2 6= X , it implies
that there is a path Z2 −◦Z ′ · · · −◦X in Mi, in this case the complete property of Mi is violated since the edge can only be
Z2 − Z ′ as Z∗→ Z2 in Mi, contradiction. Hence M̄i+1[Z] is an undirected graph. M̄i+1[Z] is chordal.

(b) If there is a circle edge connecting Z and PossDe(Z,Mi[−C])\Z in Mi, it will be transformed to a non-circle edge in
the second step of Alg. 2, hence there cannot be a circle edge connecting Z and PossDe(Z,Mi[−C])\Z in M̄i+1.

Lemma 24. The PMG Mi+1 in Thm. 2 satisfies the balanced property.

Proof. If there is Vi∗→ Vj ◦−∗ Vk or Vi −◦Vj ◦−∗ Vk, Vi must be adjacent to Vk, for otherwise the circle at Vj on the edge
between Vj and Vk will be transformed in the fourth step of of Alg. 2, which contradicts with Lemma 22. Denote the graph
obtained from Mi and the local transformation represented by C after the first three steps of Alg. 2 by M̄i+1.

Similar to the proof process of Lemma 15 of Wang et al. (2023b), we can conclude that if there is Vi∗→ Vj ◦−∗ Vk in Mi+1,
then there must be Vi∗→ Vk in Mi+1.

Then, we first prove that if there is Vi −◦Vj ◦−◦ Vk in Mi+1, then there is Vi −◦Vk in Mi+1. (A.) If there is Vi −◦Vj in
Mi, then there is Vi −◦Vk in Mi according to the balanced property of Mi. Next we will prove that the edge Vi −◦Vk
cannot be transformed to Vi → Vk or Vi − Vk by Alg. 2. If Vi −◦Vk is transformed to Vi → Vk, it can be triggered in
the second or the fourth step of Alg. 2. If it is triggered in the second step, if Vk = X , then there cannot be Vj ◦−◦ X;
if Vk ∈ PossDe(Z,Mi[−C])\Z and Vi ∈ C, then Vi −◦Vj is also transformed to Vi → Vj , impossibility. If Vi −◦Vk is
transformed to Vi → Vk in the fourth step, in this case there must be an edge Vm → Vi, which can also lead to Vi → Vj
in Mi+1, contradiction. If Vi −◦Vk is transformed to Vi − Vk, there is Vk ∈ Z, in which case there should be Vj ◦−Vk in
Mi+1, contradiction. Hence there is Vi −◦Vk in Mi+1. (B.) If there is not Vi −◦Vj in Mi, according to Alg. 2, the edge
can only be Vi ◦−◦ Vj in Mi. Since there is Vi ◦−◦ Vj ◦−◦ Vk in Mi, according to the balanced property of Mi, there is
Vi ◦−◦ Vk in Mi. According to Lemma 22, Vi −◦Vj is obtained in either the second or the third step of Alg. 2. If Vi −◦Vj is
obtained by the second step of Alg. 2, there is Vi ∈ Z and Vj 6∈ Z. As there is Vj ◦−◦ Vk in Mi+1, Vk 6∈ Z. In this case,
there is Vi −◦Vk obtained in the second step of Alg. 2. The result holds. If Vi −◦Vj is obtained in the third step of Alg. 2,
according to Lemma 8, there must be a minimal circle path Fm ◦−◦ · · · ◦−◦ F1(= Vi) ◦−◦ F0(= Vj),m ≥ 1 in Mi where
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FFm
⊃ FFm−1

= · · · = FF0
. Note if there is any edge connecting Fs, 0 ≤ s ≤ m and Vk, the edge can only be circle

edge in Mi due to the balanced property of Mi. In this case, at first, Fm is not adjacent to Vk, for otherwise the edge is
as Fm −◦Vk due to FFm ⊃ FVj = FVk

. And Fm cannot be adjacent to Vj , for otherwise the edge between Vk and Vj is
transformed to Vj −◦Vk in the third step of Alg. 2, contradiction. Similarly, we can prove that Fm−1, · · · , F2 is not adjacent
to Vk. In this case, as there is F2 −◦F1(= Vi) transformed in the third step of Alg. 2, there is also Vi −◦Vk obtained. The
result holds.

Finally, we will prove that if there is Vi −◦Vj◦→ Vk in Mi+1, then there is Vi → Vk or Vi◦→ Vk in Mi+1.

(i) We first consider that there is Vi −◦Vj in Mi. We discuss the situations that there is and not Vj◦→ Vk in Mi, respectively.

(i.1) If there is also Vj◦→ Vk in Mi, then there is Vi → Vk or Vi◦→ Vk in Mi according to the balanced property.
According to Alg. 2, the case such that there is not an edge Vi → Vk or Vi◦→ Vk in Mi+1 is either Vi = X , or
Vi ∈ PossDe(Z,Mi[−C])\Z and Vk ∈ C, which orients Vi ↔ Vk in the second step. For the former case, there cannot be
Vi(= X)−◦Vj in Mi+1, contradiction. For the latter case, since there is Vi−◦Vj , if Vj 6∈ C, then Vj ∈ PossDe(Z,Mi[−C]),
thus Vj ↔ Vk is oriented in the second step; if Vj ∈ C, then according to Lemma 4, Vi ∈ De(X,M) and there is
Vi −∗Vj∗→ X , the ancestral property is violated, contradiction. Hence, the case that there is not an edge Vi → Vk or
Vi◦→ Vk in Mi+1 is impossible.

(i.2) If there is not Vj◦→ Vk in Mi, there is Vj ◦−◦ Vk in Mi. According to the balanced property of Mi, there is Vi −◦Vk in
Mi. Vi−◦Vk cannot be transformed to Vi−Vk by Alg. 2, for otherwise Vk ∈ Z and thus there is also Vj ◦−Vk, contradicting
with the edge Vj◦→ Vk. Hence there must be Vi → Vk or Vi −◦Vk in Mi+1.

(ii) Next we consider that there is not Vi −◦Vj in Mi. In this case, there is Vi ◦−◦ Vj in Mi. We discuss the situations that
there is and not Vj◦→ Vk in Mi, respectively.

(ii.1) If there is Vj◦→ Vk in Mi, according to the balanced property of Mi, there is Vi → Vk or Vi◦→ Vk in Mi. The case such
that there is not an edge Vi → Vk or Vi◦→ Vk in Mi+1 is Vk ∈ C and either (a) Vi = X or (b) Vi ∈ PossDe(Z,Mi[−C])\Z.
Case (a) is impossible for otherwise there cannot be Vi(= X)−◦Vj in Mi+1. For case (b), if Vj 6∈ C, then there is Vj ←∗Vk
oriented in the second step of Alg. 2; if Vj ∈ C, there is a structure Vj∗→ X → · · · → Vi −∗Vj , which always violates the
ancestral property. Hence the case Vi ↔ Vk is impossible.

(ii.2) If there is not Vj◦→ Vk in Mi, there is Vi ◦−◦ Vj ◦−◦ Vk ◦−◦ Vi in Mi. In this case, there is either (a) Vk = X or (b)
Vk ∈ C and Vj ∈ PossDe(Z,Mi[−C])\Z. Case (a) is impossible for otherwise there cannot form an edge Vi−◦Vj in Mi+1.
For case (b), there must be Vi ∈ C, for otherwise there is Vi ←◦Vj oriented in the second step of Alg. 2, contradicting with
Vi −◦Vj . Hence there is Vi◦→ Vk oriented in the second step of Alg. 2. And since we never add an arrowhead at the vertex
from C, there can only be Vi → Vk or Vi◦→ Vk in Mi+1. We get the desired result.

Combining the results above, balanced property holds in Mi+1.

Lemma 25 (Spirtes & Richardson (1996)). Two MAGsM1 andM2 are Markov equivalent if and only if

(1) M1 andM2 have the same adjacencies;

(2) M1 andM2 have the same unshielded colliders; and

(3) if a path π forms a discriminating path for b inM1 andM2, then b is a collider on π inM1 if and only if it is a
collider on π inM2.

Lemma 26. For the PMG Mi+1 in Thm. 2, if there is A−◦B, then there is no edge into A or B.

Proof. If there is an edge C◦→ A in Mi+1, C◦→ A−◦B is not closed underR11, contradiction. If there is an edge D◦→ B
in Mi+1, according to the balenced property of Mi+1, there is also D∗→ A, contradiction. Hence there cannot be an edge
into A or B.

Lemma 27. For the PMG Mi+1 in Thm. 2, there is not a tail-circle cycle as A−◦B −◦ · · · −◦A.

Proof. According to Lemma A.5 of Zhang (2008), there cannot be a tail-circle cycle in P . Suppose there is a tail-circle
cycle in Mi+1. At first, we show that there must be such a cycle with three edges, that is, there is A−◦B −◦C −◦A. This
part totally follows that of Lemma A.5 of Zhang (2008). Suppose the minimal tail-circle cycle is V0 −◦ · · · −◦Vn, n ≥ 3.
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This cycle cannot be uncovered, for otherwise all the edges are transformed to undirected edges byR6 andR7. Suppose V0
and V2 are adjacent. According to the balanced property of Mi+1, there is not a contradiction only if the edge between V0
and V2 is V0 −◦V2 or V0 ◦−V2. However, either of the two cases will lead to a shorter tail-circle cycle, contradiction. Hence
there must be a tail-circle cycle with three edges. Suppose A−◦B −◦C −◦A in Mi+1.

(A) If there isA−◦B in P , according to Lemma A.3 of Zhang (2008), there must be an uncovered path F0−F1−◦ · · ·−◦Fn(=
A)−◦B in P . The path must be minimal, for otherwise the edges can be transformed to undirected edges according toR6

andR7. Note C must be adjacent to Fn−1, for otherwise there is A−∗C in P byR7, contradicting with A ◦−C in Mi+1.
As there is A ◦−C in Mi+1, there is either A ◦−◦ C or A ◦−C in P . If it is A ◦−◦ C, there is Fn−1 −◦C in P according
to the balanced property, in which case there is C −∗B in P by R7, contradicting with B −◦C in Mi+1. Hence it is only
possible that there is A ◦−C in P . Note that Fn−1 is not adjacent to B, hence there cannot be Fn−1 −∗C, for otherwise
there is C −∗B in P , contradicting with C ◦−B in Mi+1. Hence there can only be Fn−1 ◦−◦ C or Fn−1 ◦−C in P . Repeat
the process above, we can conclude that there is F1 ◦−◦C or F1 ◦−C in P . Neither is possible due toR7 and the undirected
edge F0 − F1.

(B) Next we consider A−◦B is obtained when we introduce the local transformation of Vj+1 into Mj , where 0 ≤ j ≤ i.
According to Alg. 2 and Lemma 22, the tail is introduced in either Step 2 or Step 3. If it is introduced in Step 2, there is
A ∈ Z. If there is C −◦A in Mj , then there is C ∈ Z and thus C −A is obtained in Step 2; if there is C ◦−◦A in Mj , then
there is C ◦−A obtained in Step 2. Neither cannot result in an edge A ◦−C in Mi+1. If the tail is introduced in Step 3, since
Mj fulfills the balanced property, and there is a tail-circle cycle A−◦B −◦C −◦A in Mj+1, the edges among A,B,C can
only be circle edges in Mj . In this case, according to the third step of Alg. 2, the edges between A,B,C will be transformed
to undirected edges, which contradicts with Lemma 9.

Lemma 28. The PMG Mi+1 in Thm. 2 satisfies the complete property.

In Mi+1, there are three types of edges with circles: A◦−◦B, C◦→ D, E−◦F . By Lemma 28.1, we show that we can always
obtain a MAG consistent with P and local transformation of V1, · · · , Vi+1 by transforming −◦/◦→ to→, transforming the
circle component into a DAG without new unshielded colliders. Due to the chordal property of Mi+1, each circle edge can
be transformed to both→ and←. This part implies that the circle edges in Mi+1 are unidentifiable given the PAG and the
local transformation of V1, · · · , Vi+1.

Denote the set of all the edges in the form of −◦ in Mi+1 by TC. By Lemma 28.2, we show that for any graph obtained by
the process above, we can construct a MAG consistent with P and local transformation of V1, · · · , Vi+1 with the edges in
TC being undirected. The two parts above imply that the edges −◦ in Mi+1 are unidentifiable given the PAG and the local
transformation of V1, · · · , Vi+1.

Finally, by Lemma 28.3, we show that for each edge ◦→ in Mi+1, it can be ↔ in some MAG consistent with P and
local transformation of V1, · · · , Vi+1. The proof of this part totally follows that of Thm. 3 of Zhang (2008). Combining
Lemma 28.1 and Lemma 28.3, the edges ◦→ in Mi+1 are unidentifiable given the PAG and the local transformation of
V1, · · · , Vi+1.

Combining the three parts above, we can conclude that Mi+1 in Thm. 2 satisfies the complete property.

Lemma 28.1. Consider Mi+1 in Thm. 2. We obtain a graph Hi+1 from Mi+1 by transforming ◦→/−◦ to → and the
circle component in Mi+1 into a DAG without unshielded colliders. Then Hi+1 is a MAG consistent with Mi and local
transformation of X .

Proof. It follows directly from the proof of Thm. 1.

Lemma 28.2. Denote a MAG H obtained by the process in Lemma 28.1. Denote K = {V ∈ V(Mi+1)|V ◦− or
V −◦ in Mi+1}. Obtain a new graph H′ based on H by transforming all the edges connecting two variables in K to
undirected edges. ThenH′ is also a MAG consistent with Mi and local transformation of X .

Proof. The whole proof is comprised of two parts: A. H′ has the non-circle marks in Mi+1;B. H′ is a MAG Markov
equivalent toH.

A.H′ has the non-circle marks in Mi+1. According to the process of obtainingH′, the only possibility thatH′ does not
have the non-circle marks in Mi+1 is that when we transform an edge between K1,K2 ∈ K to an undirected edge, an
arrowhead in Mi+1 is transformed to a tail. Without loss of generality, suppose there is K1∗→ K2 in Mi+1. According to
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the definition of K, there is an edge A1 −◦K2 or A1 ◦−K2 in Mi+1, which contradicts with Lemma 26. HenceH′ has the
non-circle marks in Mi+1.

B. H′ is a MAG Markov equivalent to H. Note all and only differences between H′ and H is that some directed edges
K1 → K2 inH are undirected inH′, and there is K1,K2 ∈ K. SinceH is a MAG, it is direct thatH′ fulfills the maximal
property and does not have directed or almost directed cycles, and H and H′ have the same adjacencies, and if a path π
forms a discriminating path for b inH andH′, then b is a collider on π inH′ if and only if it is a collider on π inH. It is
evident that an unshielded collider inH′ is also an unshielded collider inH. If there is an unshielded collider A∗→ B ←∗C
in H but it is not in H′, without loss of generality, suppose there is not A∗→ B in H′, then we conclude (1) there is
A∗→ B ←∗C in P and Mi+1; (2) A,B ∈ K. In this case, there is an edge C∗→ B into a vertex B on an edge −◦ or ◦− in
Mi+1, contradicting with Lemma 26. HenceH′ andH have the same unshielded colliders. It suffices to prove that there is
not a structure A∗→ B − C inH′.
Suppose there is A∗→ B − C in H′, where B,C ∈ K. There cannot be A∗→ B in Mi+1 due to Lemma 26. And there
cannot be A−◦B in Mi+1, for otherwise A,B ∈ K and thus there will be A−B inH′, contradicting with A∗→ B. And in
the process of obtainingH′, we never transform an edge ◦→ to↔, thus there is not A←◦B in Mi+1. Hence it suffices to
prove the impossibility of A ◦−◦B in Mi+1.

Suppose A ◦−◦ B in Mi+1. Since B ∈ K, there is some vertex D with an edge D −◦B or D ◦−B in Mi+1. If there is
D −◦B, then there is D −◦A in Mi+1 according to the balanced property of Mi+1, in this case there is A ∈ K and thus
there is A−B inH′, contradiction. Hence there can only be D ◦−B in Mi+1. In this case, if D is adjacent to A, then there
must be D ◦−A in Mi+1 according to the balanced and closed property (R6) of Mi+1, in which case there is A ∈ K as well.
Hence D cannot be adjacent to A. Next we consider when the edge D ◦−B is obtained from D ◦−◦B.

(A) If there is D ◦−B in P , according to Lemma A.3 of Zhang (2008), there must be an undirected edge F −B or F −◦B
in P where F is not adjacent to D. Note there is also A ◦−◦B in P . F −B is impossible due toR6. If there is F −◦B in P ,
there is F −◦A in P according to the balanced property of P . Hence there is F → A, F −◦A, or F −A in Mi+1. Note that
there is A ◦−◦B in Mi+1. (A.1) If there is F → A in Mi+1, there is F∗→ B according to the balanced property of Mi+1,
in which case B → D is obtained byR11, contradicting with B −◦D in Mi+1. (A.2) If there is A−◦B in Mi+1, there is
A ∈ K thus there is A − B in H′, contradiction. (A.3) If there is F − A in Mi+1, there cannot be A ◦−◦ B in Mi+1 as
Mi+1 is closed underR6. Hence there cannot be D ◦−B in P .

(B) Next we consider D ◦−B is obtained when we introduce the local transformation of Vj+1 into Mj , where 0 ≤ j ≤ i.
According to Alg. 2 and Lemma 22, the tail is introduced in Step 2 or Step 3. If it is introduced in Step 2, there is B ∈ Z.
As there is an edge A ◦−◦B in Mj , an edge A ◦−B or A−B is also introduced by Step 2, hence there must be A ∗−B in
Mi+1, in which case there cannot be an edge A→ B inH′. If it is introduced in Step 3, since there is B −◦D oriented in
the process of obtaining Mj+1 based on Mi by Alg. 2, there cannot be vertices with an edge into Vj+1. Thus, there must be
an edge Vj+1 −◦ · · · −◦B in Mj+1. In this case, since there is A ◦−◦B, there must be a tail-circle path Vj+1 −◦ · · ·Fn −◦A
in Mj+1. Then we discuss the edge between Fn and A in Mi+1. If it is an undirected edge, then there cannot be an edge
A ◦−◦ B in Mi+1, for otherwise R6 is triggered. If it is Fn → A, due to the balanced property of Mi+1, there is also
Fn∗→ B in Mi+1, in which case there cannot be an edge B −◦D in Mi+1. If the edge between Fn and A is Fn −◦A, then
A ∈ K, contradiction. Hence we can always get a contradiction. D ◦−B in Mi+1 is impossible. There cannot be a structure
A∗→ B − C in H′. We conclude that H′ is a MAG Markov equivalent to H. And since H′ has the non-circle marks in
Mi+1,H′ is a MAG consistent with P and local transformation of V1, · · · , Vi+1.

Lemma 28.3. Suppose there is A◦→ B in the PMG Mi+1 in Thm. 2. There is a MAG H′′ consistent with Mi and local
transformation of X with the edge A↔ B.

Proof. This part totally follows Thm. 3 of Zhang (2008) with the results we have proved before. Hence we only show the
sketch. We take Mi+1 as the PAFCI of Zhang (2008). P1 and P3 are proved by Lemma 24. P2 and P4 are proved by
Lemma 26 and Lemma 27. Hence Lemma B.1-Lemma B.18 of Zhang (2008) hold, which are sufficient to prove Thm. 3
of Zhang (2008). By Lemma 28.1, we have proven that when we transform the ◦→/−◦ edges to→, and orient the circle
component into a DAG without new unshielded colliders based on Mi+1, we can always obtain a MAGHi+1 consistent
with P and local transformation of V1, · · · , Vi+1. It is similar to Thm. 2 of Zhang (2008). We can construct a graph H′′
with A ↔ B by the same procedure of Thm. 3 of Zhang (2008) and prove H′′ is a MAG that is Markov equivalent to a
MAGHi+1. HenceH′′ is a MAG in the MEC represented by P . And sinceH′′ has the non-circle edges in Mi+1,H is a
MAG consistent with P and local transformation of V1, · · · , Vi+1.
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Proof of Theorem 2. We can conclude that the arrowheads and tails in Mi+1 are invariant in all the MAGs consistent with
Mi and the local transformation of X represented by C by Lemma 18. The chordal, balanced, complete properties of Mi+1

are proved by Lemma 23, 24, 28. The constructive property of Mi+1 is proved by Thm. 1.

C.5. Proof of Theorem 3

Proof. Due to the soundness of the proposed rules, it suffices to prove the result by showing that the proposed rules can
transform the same marks as those by the k-step algorithm based on Alg. 2. Further, it suffices to show that when we
incorporate the local transformation of X = (Vi+1) into Mi by Alg. 2, all the marks can also be transforemd by the proposed
rules.

Revisit Alg. 2, the transformation in the third step followsR7, and the transformation in the fourth step directly follows the
rules. Hence it suffices to prove that the transformation in the second step can also follow the proposed rules or directly
follow the local transformation.

There are three parts in the second step of Alg. 2. (A) For any K ∈ PossDe(Z,Mi[−C]) and any T ∈ C such that K ◦−∗ T
in Mi, orient K ←∗T (the mark at T remains). (B) For any edges with circle between Z1, Z2 ∈ Z, orient the circle into a
tail. (C) For all K ∈ PossDe(Z,Mi[−C])\Z and Z ∈ Z such that Z ◦−∗K, orient Z −∗K. We consider them one by one in
the following.

For (A), when K = X , the transformation of K ← T directly follows the local transformation of C. When K 6= X , there
exists a minimal possible directed path from X to K as 〈F0(= X), F1, · · · , Fn−1, Fn(= T ) according to Lemma 3. In this
case, F0 −∗F1 can be transformed according to the local transformation of C. And since C 6= ∅, there is always F0 → F1

which can be transformed by R11. And by R1, there is F0 → · · · → Fn. Due to T∗→ X and X → F1, there is always
T∗→ F1 which could be transformed byR2. Similarly, there is always T∗→ F2, F3, · · · , Fn which could be transformed
byR2. Hence K ←∗T can be transformed by the proposed rules.

For (B), according to the definition of Z, there is a path Z1 −◦ · · ·F1 −◦X . Hence there is F1 −X according to the local
transformation represented by C. Hence there is always an undirected path Z1 − · · · − F1 −X which could be transformed
byR6. Similarly, there is always an undirected path from Z2 to X which could be transformed byR6. In this case, as there
is an edge between Z1 and Z2, there is always an edge Z1 − Z2 which could be transformed byR6.

For (C), with the similar process of the case for (B), we can conclude that there is always an undirected path from Z to X
which could be transformed byR6. In this case, if there is an edge Z ◦−∗K, there is always an edge Z −∗K which could be
transformed byR6.

The proof completes.
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