
Learning to Compile Programs to Neural Networks

Logan Weber 1 Jesse Michel 1 Alex Renda 1 Michael Carbin 1

Abstract
A neural surrogate is a neural network that mim-
ics the behavior of a program. Neural surrogates
of programs have been used to automatically
tune program inputs, adapt programs to new
settings, and accelerate computations. Neural
surrogates have traditionally been developed by
training on input-output examples for a single
program. Language models present another
approach wherein a model is trained on a single,
large dataset then directly consumes program
text, to act as a neural surrogate of the program.
Having the language model as both the neural
surrogate generator and the neural surrogate,
however, poses a tradeoff of limited accuracy
or excessive resource consumption. We present
neural surrogate compilation, a technique
for producing neural surrogates directly from
program text without coupling neural surrogate
generation and execution. We implement neural
surrogate compilers using hypernetworks trained
on a dataset of C programs and find they produce
neural surrogates that are 1.91-9.50× as data-
efficient and train in 4.31-7.28× fewer epochs
than neural surrogates trained from scratch.

1. Introduction
A neural surrogate is a neural network that models a subset
of the observable behavior of a program (Renda et al., 2021).
Neural surrogates have been used to automatically configure
image signal processing units and CPU simulators (Tseng
et al., 2019; Renda et al., 2020), improve the accuracy
of manufacturing and physics simulations (Tercan et al.,
2018; Kustowski et al., 2020), accelerate the computer
architecture design process (Ïpek et al., 2006), and
accelerate computations in signal processing, robotics,
3D games, compression, machine learning, and image
processing (Esmaeilzadeh et al., 2012a).

1MIT CSAIL, Cambridge, MA. Correspondence to: Logan
Weber <loganweb@mit.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Neural Surrogate Training. The research community
has developed a variety of techniques to train neural surro-
gates. The traditional approach is to train a neural surrogate
for a single program by collecting and curating a dataset of
input-output pairs and then training a neural network to pre-
dict the program’s output given an input (Renda et al., 2021).

Another point in the spectrum is to amortize the cost of
training neural surrogates by training a universal neural
surrogate: a neural network that directly consumes the text
of a program and predicts the program’s output for a given
input (Zaremba & Sutskever, 2015; Nye et al., 2021; Gu
et al., 2024). A key benefit of universal neural surrogates,
compared to standard neural surrogates is that creating
this dataset need only be done once, thereby enabling
the creation of a neural surrogate for a given program
without the need to curate a dataset of program-specific,
input-output pairs.

However, universal neural surrogates necessarily use the
same model to process the program text as is used to predict
the program output, and accurate prediction may require
multiple forward passes (e.g., chain-of-thought reason-
ing) (Nye et al., 2021; Wei et al., 2022). These limitations
pose challenges for successfully using such a model as a
neural surrogate because small models may not be able to
emulate complex programs (Zaremba & Sutskever, 2015)
and large models (OpenAI et al., 2023) may not be able to
execute in the resource-constrained environments where
neural surrogates have been used (Esmaeilzadeh et al.,
2012a; Mendis, 2020; Munk et al., 2022).

Our Approach: Neural Surrogate Compilation. To
maintain the benefits of universal neural surrogates while
bypassing the above limitations, we propose a neural
surrogate compiler. A neural surrogate compiler is a
system that is specialized to a family of neural surrogate
architectures to accept a program’s text as input and produce
an initial neural surrogate of the program. This initial
neural surrogate can vary in behavioral quality, ranging
from closely matching the behavior of the input program
to only approximating the behavior of the program on a
few inputs. Similarly to a traditional compiler, a neural
surrogate compiler requires a significant upfront cost that
is amortized over the generation of initializations for many
neural surrogates. We demonstrate in this work that when

1

Learning to Compile Programs to Neural Networks

Compilation

Create Initialization From
Program Text

Train Until Desired Error
Is Achieved

A
Training

Use Neural Surrogate in
Place of Original Program

Deployment

Collect Training
Data

B C D

Standard Neural Surrogate Development

Figure 1: Neural surrogate development with neural surrogate compilation

compared to the traditional approach of training a neural
surrogate from a random initialization, neural surrogates
produced by neural surrogate compilers can be finetuned
to closely mimic the behavior of the program at a lower
cost—as measured in both data efficiency and training time.

Contributions. To implement a neural surrogate com-
piler, we adapt the BERT architecture (Turc et al., 2019)
into a hypernetwork. A hypernetwork is a neural network
that produces the parameters of another neural network (Ha
et al., 2017). We name the resulting architecture COMPNET.

To train neural surrogate compilers, we develop EXESTACK,
a dataset of 69,083 executable C programs collected from
The Stack (Kocetkov et al., 2022), a large corpus of source
code. To train COMPNETs, we refine EXESTACK into
EXESTACKCPN, a dataset of 37,772 programs that is
compatible with our chosen hypernetwork architecture. We
then evaluate neural surrogates initialized via COMPNET
on EXESTACKCPN and PARROTBENCHSHORT, the latter
being a set of benchmarks from prior work in approximate
computing (Esmaeilzadeh et al., 2012a).

Surrogates trained from COMPNET initializations achieve
1.91-9.50× lower error than neural surrogates trained from
scratch, with the same amount of data; on a color quanti-
zation task, they produce images that are 1.02-1.32× more
similar to images produced by an exact implementation than
images produced by surrogates trained from random ini-
tialization; and they achieve a target error with 4.31-7.28×
fewer epochs than neural surrogates trained from scratch.

2. Neural Surrogate Compilation
A neural surrogate compiler is a system that is specialized
to a family of neural surrogate architectures to accept
a program’s text as input and produce an initial neural
surrogate of the program. The typical strategy to train a
neural surrogate is through supervised learning of a neural
network with curated dataset of input-output pairs of the
program (Renda et al., 2021).

In this section, we formalize the problem of efficiently
training a neural surrogate and introduce a new approach
to solving this problem using a neural surrogate compiler.

2.1. The Efficient Surrogate Training Problem

We first formalize the problem of training a neural surrogate.
We assume we are given a program text p : P that denotes
a function JpK : Ip → Op,1 where Ip is the type of values
p accepts as input and Op is the type of values p produces
as output. We also assume a target neural surrogate
architecture description a : A, where A = Rd → Ip → Op
is the space of neural network architectures, which takes a
set of parameters θ : Rd and produces a surrogate function
from Ip to Op. The goal is to find a set of parameters
θ : Rd such that the neural surrogate f : Ip → Op defined
by f(i) = a(θ)(i) has low approximation error:

∀i : Ip. f(i) ≈ JpK(i)

To measure the quality of a surrogate we use a loss function
` : Op ×Op → R≥ that measures the difference between
the output of the program and the output of the surrogate.
We measure the expected loss over a distribution of inputs:

L(f, p) = Ei∼Ip [`(f(i), JpK(i))] (1)

As with most learning problems, a challenge in training
neural surrogates is that the error of a surrogate depends
on the budget dedicated to collecting training data (input-
output pairs of the program) and the number of epochs
used to train the surrogate. We formalize these costs by
defining a training procedure ta : P × R≥ × N≥ → Rd
for a given surrogate architecture a as a random function
that takes program text p, a training data budget b : R≥,
and training time budget n : R≥ and produces a set of
parameters θ : Rd for the surrogate.

We then define the efficient surrogate training problem
as, for a given program p, architecture a, sample budget
b, training time budget n, and loss function `, finding a
training procedure ta that minimizes the expected loss of
the resulting surrogate:

argmin
ta

Eθ∼ta(p,b,n)[L(a(θ), p)],

where L denotes the expected loss in Equation 1. The
standard approach to training a neural surrogate is to

1 J·K : P → (Ip → Op) is notation used in programming
language theory to refer to the function a program implements.

2

Learning to Compile Programs to Neural Networks

randomly initialize the parameters of the surrogate and then
use a gradient-based optimization algorithm to minimize
the loss against a dataset of input-output pairs of the
program (Renda et al., 2021).

2.2. Neural Surrogate Compilation

A neural surrogate compiler is a system φ : (p : P)→ Rdp
that accepts program text p and produces neural network
parameters θ ∈ Rdp for an architecture description ap
depending on the program p.

We use a neural surrogate compiler to solve the efficient
surrogate training problem. Figure 1 presents the neural
surrogate compilation workflow alongside the traditional
workflow for developing a neural surrogate. In a traditional
neural surrogate development workflow, one collects
training data (B), trains the neural surrogate until its error
meets the desired threshold (C), and then uses it in place
of the original program (D). Neural surrogate compilation
(A) introduces a new, initial step in the neural surrogate
compilation workflow in which a neural surrogate compiler
maps the program text to a neural network initialization for
use in the training of the neural surrogate.

We formalize the development of a neural surrogate
compiler as an optimization problem. The goal is to
develop a φ such that for every program p, the surrogate
f = ap(φ(p)) can be trained efficiently. Optimizing for
a system that generates surrogates that can be trained
efficiently is challenging. As a simple proxy, we optimize
for a system that generates surrogates that achieve low loss:

argmin
φ∈P→Rd

Ep∼P [L(ap(φ(p)), p)].

3. COMPNET

A COMPNET is an implementation of a neural surrogate
compiler using hypernetworks. We explain the COMPNET
architecture, how to train them, then how to extract neural
surrogates from their outputs.

3.1. Architecture

Figure 2 presents the design of a COMPNET. A COMPNET
accepts program text as input and produces parameters
for a neural surrogate architecture a : Rd → I → O with
as many inputs as the largest architecture one wishes to
compile to (e.g., an architecture with 9 inputs can be used
to compile functions with at most 9 inputs) and a single
output. We call this architecture a covering architecture.

A First, COMPNET tokenizes an input program (1), re-
sulting in a sequence of tokens (2) including the distin-
guished BERT classification token [CLS].

B COMPNET then uses a BERT encoder (Devlin et al.,
2019) to embed the sequence of tokens, resulting in an em-
bedding per token. The output of this step is the embedding
of the classification token (3); COMPNET discards the
embeddings of the other tokens.

C Next, COMPNET uses a linear layer to map the classi-
fication token embedding to a neural surrogate parameter
vector (4).

D Then, COMPNET interprets the vector of neural surro-
gate parameters as the weights and biases of the covering
architecture. The output of this step is a neural surrogate of
the input program.

E Finally, COMPNET executes the neural surrogate with
the interpreted parameters on a program input (5) to pro-
duce a prediction of the program output (6).

3.2. Training

Training a COMPNET requires a dataset of programs and
input-output pairs for each program. Note that this dataset
is not considered as part of the budget in the efficient
surrogate training problem, since it is amortized over all
programs the COMPNET is used to compile.

Each step of training proceeds by selecting a batch of
programs and input-output pairs for those programs,
generating neural surrogate parameters for each program,
interpreting the neural surrogate parameters as parameters
for the covering architecture, executing each neural
surrogate with the batch of inputs, then calculating the
loss between the neural surrogates’ predicted outputs and
the true outputs. To match the signature of the covering
architecture, the batch of inputs is padded out to match
the number of inputs for the covering architecture. For
padding, we use inputs drawn from the same distribution
as the program inputs (see Appendix N for details).

Backpropagation proceeds as usual, except that one does
not update the parameters of the neural surrogates, since
each generated neural surrogate is ephemeral. Instead, back-
propgation only updates the parameters of the COMPNET.
Appendix G presents additional training details.

3.3. Surrogate Extraction

The output of a COMPNET is parameters for the covering
architecture, which might not match the number of inputs
and outputs of the program being compiled. To adapt the
covering architecture to the target number of inputs, one
finetunes the resulting architecture on data where the excess
inputs are set to zero, allowing one to then remove the
weights in the input layer corresponding to the excess inputs
(see Appendix N for details on this choice). To adapt the
covering architecture to the target number of outputs, one

3

Learning to Compile Programs to Neural Networks

[CLS]

Input Program1

BERT
Encoder

Parameter
Head

RegressingEmbedding

void

…

…

W1

W2

W3

b1

b2

b3

void fft(float x) {
 return sin(-2*PI*x);
}

A Tokenizing B C ParameterizingD

Surrogate

0.59

Linear
Layer

σ

Linear
Layer

σ

Linear
Layer

0.52

ExecutingE

Tokens2 Embedding3 Surrogate
Parameters4

Program Input5

Program Output6

fft

(

Figure 2: System diagram describing the COMPNET architecture, comprising five phases: (A) tokenizing an input program,
(B) embedding the program using a BERT, (C) regressing the embeddings to a parameter weight vector using a parameter
head, (D) parameterizing a neural network using the parameter weight vector, and (E) executing the neural network surrogate.

clones the weights for the single output in the output layer
for each new output that is needed (see Appendix O for
details on this choice). When neither the number of inputs
nor the number of outputs matches the target, both of the
above modifications are applied in the same finetuning run.

4. EXESTACK

The strategy we presented in Section 3 for learning a neural
surogate compiler requires a dataset of programs and input-
output examples describing the behavior of each program.
To fulfill this requirement, we developed EXESTACK, a
dataset of numerical, executable, deterministic C programs
and corresponding input-output examples. EXESTACK
is based on The Stack, a dataset of 3 TB of permissively
licensed source code written in various programming
languages scraped from GitHub (Kocetkov et al., 2022).

Figure 3 summarizes the process by which we produced
a dataset of 69,083 pointer-free, numerical, executable,
deterministic C programs, along with a set of input-output
examples for each program. We provide a detailed
description of each step of the process in Appendix B. We
note that the restriction to pointer-free functions simplifies
the EXESTACK generation methodology. However, a model
trained on EXESTACK could still handle programs using
statically-sized data structures containing numeric data
(e.g., arrays), as they can be transformed into functions with
a fixed number of arguments.

5. Evaluation
To evaluate the claim that neural surrogate compilation
lowers the development cost of neural surrogates, we
answer the following research questions.

RQ 1: Does a neural surrogate initialized by a COMPNET
converge to a lower test loss than a neural surrogate
initialized randomly, for a fixed training set size?

RQ 2: Does a neural surrogate initialized by a COMPNET
produce better perceptual results in an end-to-end applica-
tion than a neural surrogate initialized randomly, for a fixed
training set size?

RQ 3: Does a neural surrogate initialized by a COMPNET
converge to a target test loss in fewer epochs than a neural
surrogate initialized randomly?

Our results demonstrate that COMPNETs lead to improve-
ments in data efficiency (Section 5.2), perceptual quality
(Section 5.3), and training time (Appendix L).

5.1. Methodology

To develop and evaluate COMPNETs, we use a BERT
architecture for the neural surrogate compiler and a
multilayer perceptron for the surrogate, produce datasets
COMPNETs can be trained and evaluated on, introduce
alternative initialization methods to compare against, and
finetune surrogates produced by initialization methods.

5.1.1. COMPNET ARCHITECTURE AND TRAINING

We use the BERT-Tiny architecture (Turc et al., 2019) for
the neural surrogate compiler. As our compilation target,
we adapt a neural surrogate architecture from Esmaeilzadeh
et al. (2012a) into a covering architecture. The architecture
in Esmaeilzadeh et al. (2012a) is a multilayer perceptron
consisting of a single input, a hidden layer of 4 neurons,
another hidden layer of 4 neurons, and 2 outputs, and it
uses a sigmoid activation function. Esmaeilzadeh et al.
(2012a) demonstrate that their techniques achieve a 3.6×
speedup on their fast Fourier transform benchmark (2012a)

4

Learning to Compile Programs to Neural Networks

1 2

#define SQUARE(x) ((x)*(x))

double f(double t) {
return 123 * SQUARE(t);
}

float add(
float x, float y) {
return x + y;
}

double head(double* xs) {
return *xs;
}

int cast(float x) {
return (int) x;
}

float call_g(float t) {
return g(sin(t));
}

double uniform() {
return rand() / RAND_MAX;
}

float add(
float x, float y
){ return x+y; }

functions.c

int cast(float x) {
return (int) x;
}

double uniform() {
return rand() / 21…47;
}

float call_g(float t) {
return g(sin(t));
}

float add(
float x, float y
){ return x+y; }

float add(
float x, float y) {
return x + y;
}

double f(double t) {
return 123 * ((t)*(t));
}

double head(double* xs) {
return *xs;
}

❌

3 4 5 6

double f(double t) {
return 123 * ((t)*(t));
}

float add(
float x, float y) {
return x + y;
}

double head(double* xs) {
return *xs;
}

int cast(float x) {
return (int) x;
}

float call_g(float t) {
return g(sin(t));
}

double uniform() {
return rand() / 21…47;
}

float add(
float x, float y
){ return x+y; }

❌

❌

❌

✓
✓

❌

Figure 3: The EXESTACK generation pipeline. Starting with C source files from The Stack, we apply a sequence of maps
followed by a sequence of filters. The steps are 1 run the C preprocessor, 2 extract functions from the source file, 3
remove functions with pointers in their type signature and nonnumeric functions, 4 remove nonexecutable functions and
collect input-output pairs, 5 remove nondeterministic functions, and 6 remove any duplicate programs. Red “X”s denote
that a function does not pass a filter and green checkmarks denote that a function passes all filters.

Benchmark Description Train Inputs Test Inputs #Inputs #Outputs

fft Radix-2 Cooley-Tukey
fast Fourier transform

32,768 random floating point
numbers

2,048 random float-
ing point numbers

1 2

invk2j Inverse kinematics for
2-joint arm

10,000 random (x, y)
coordinates

10,000 random (x, y)
coordinates

2 2

kmeans k-means clustering 50,000 random (r, g, b) values 220x200 color image 6 1

sobel Sobel edge detector One 512x512 color image 220x200 color image 9 1

Table 1: The programs from PARROTBENCH we include in PARROTBENCHSHORT (Esmaeilzadeh et al., 2012a).

relative to the original program when using this architecture.
This architecture therefore places a floor on the system
speedup that motivates our investigation of Parrot in that
the architectures that Esmaeilzadeh et al. (2012a) use for
all other programs in PARROTBENCHSHORT at least as
computational expensive as the one we choose.

We adapt this architecture to take in 9 inputs and produce
1 output so it can be used to compile programs with up
to 9 inputs. We additionally develop a methodology to
build surrogates for programs using up to 9 inputs and
arbitrarily many outputs during finetuning (see Section 3
and Appendices N and O for more details).

5.1.2. DATASETS

EXESTACKCPN is a variant of EXESTACK that we use
to train COMPNETs for a chosen hypernet architecture.
We evaluate the effectiveness of COMPNETs on programs
from the test set of EXESTACKCPN and programs from
PARROTBENCHSHORT, a subset of the suite of benchmarks
introduced by Esmaeilzadeh et al. (2012a) (Table 1).

EXESTACKCPN. EXESTACKCPN contains 37,772
programs, each with 2,048 input-output examples. See
Appendix E for details on EXESTACKCPN generation.

From the full set of programs, we created a train, validation,
and test set using an 80/10/10 split. Each program
has input-output examples, so we additionally create

5

Learning to Compile Programs to Neural Networks

Statistic CPN MAML PTS

0th 6.36 · 10−8× 4.68 · 10−6× 1.35 · 10−4×
25th 1.23× 0.87× 0.76×
50th 5.84× 1.17× 1.28×
75th 54.36× 1.71× 2.66×
100th 4.43 · 107× 8.52 · 103× 7.14 · 104×
MPI 21st 35th 37th

GM 9.50× 1.09× 1.08×

Dataset Size CPN MAML PTS

0% 84.40× 1.42× 2.63×
0.1% 10.43× 0.91× 0.87×
1% 2.90× 0.51× 0.90×
10% 4.12× 1.54× 0.88×
100% 6.67× 1.53× 0.76×

Figure 4: Geometric mean test-input loss improvement over random initialization on 1, 000 EXESTACKCPN test programs,
taken over all programs and dataset sizes (left), and grouped by dataset sizes (right). The table on the left reports
improvements at a sample of percentiles from 0th (performance that is the worst compared to random initialization) to
100th (performance that is the best compared to random initialization), the minimum percentile at which an initialization
method improves over random initialization (MPI), and overall geometric mean improvements (GM).

Stat. CPN MAML PTS

0th 0.22× 0.28× 0.23×
25th 0.88× 0.82× 0.75×
50th 1.23× 0.97× 0.97×
75th 2.96× 1.14× 1.26×
100th 106.91× 1.99× 38.18×
MPI 36th 54th 54th

GM 1.91× 0.93× 1.05×

Program CPN MAML PTS

fft 1.47× 0.98× 0.61×
invk2j 1.01× 1.07× 1.05×
kmeans 7.85× 0.68× 2.24×
sobel 1.14× 1.06× 0.85×

% Data CPN MAML PTS

0% 1.81× 0.90× 1.56×
0.1% 1.98× 0.94× 0.98×
1% 1.77× 0.93× 0.79×
10% 2.38× 1.11× 1.23×
100% 1.68× 0.81× 0.86×

Figure 5: Geometric mean test-input loss improvement over random initialization on PARROTBENCHSHORT, taken over all
programs and dataset sizes (top), grouped by programs (bottom left), and grouped by dataset sizes (bottom right). The top
table reports improvements at a sample of percentiles from 0th to 100th, the minimum percentile at which an initialization
method improves over random initialization (MPI), and overall geometric mean improvements (GM).

a train and test set for these examples using a 50/50
split. In Sections 5.2 and L, we evaluate performance on
EXESTACKCPN using 1,000 programs from the test set.

Parrot Benchmarks. We adapt PARROTBENCHSHORT
from the original benchmark suite of Esmaeilzadeh et
al., which we refer to as PARROTBENCH (2012a). PAR-
ROTBENCHSHORT programs come from a diverse set of
application domains, they are all written in C, each consists
of a single function, and they are numeric in nature, making
them suitable for evaluating COMPNETs. Table 1 shows the
programs in PARROTBENCHSHORT, including descriptions
of the computations and datasets. In Appendix F provide
more detail on these benchmark programs.

5.1.3. ALTERNATIVE INITIALIZATION METHODS

We compare COMPNETs to two alternative techniques, nei-
ther of which conditions on program text: model-agnostic
meta learning (MAML) (Finn et al., 2017) and pretrained ini-
tializations. Both techniques result in constant initializations
that one uses for every program. In Appendix A, we survey
related work in this area in detail. We train 3 instances of
each initialization method on EXESTACKCPN training pro-
grams using the same covering architecture as COMPNETs.

Model-Agnostic Meta Learning. MAML is a meta-
learning technique for producing neural network
initializations that can be quickly finetuned to achieve low
error on any task sampled from some space of tasks. See
Appendices H, N , and O for details on training, input
padding, and variable-output support, respectively.

Pretrained Neural Surrogates. A simpler alternative to
MAML is to train a single neural surrogate on all input-
output examples of EXESTACK, ignoring program text.
We call initializations trained in this way pretrained neural
surrogates (PTS). See Appendices I, N , and O for details.

Distinguishing Initialization Methods. For brevity, we
use shorthand names for each initialization method in
figures. We refer to COMPNETs as “CPN”, MAML as
“MAML”, pretrained surrogates as “PTS”, and random
initialization as “RND”.

5.1.4. FINETUNING SURROGATES

Here we collect methodology and discussion relevant to
all surrogates we finetune in this evaluation, including opti-
mization methods, hyperparameters, random seed behavior,
and a discussion of how we measure the improvements
achieved by these surrogates.

6

Learning to Compile Programs to Neural Networks

For all surrogates produced by the initialization methods
we consider, we use the following methodology. We use the
Adam optimizer with no weight decay, a learning rate of
0.01, and mean squared error as the loss function. The only
difference between our methodology and the methodology
of Esmaeilzadeh et al. (2012a) is that we use the Adam
optimizer instead of stochastic gradient descent and we use
the He initialization method (He et al., 2015)—they do not
specify how they initialize their neural surrogates.

We use 9 trials with different random seeds for every
configuration in the experiments that follow. Note that,
for COMPNET, MAML, and PTS initializations, changing
random seeds only changes the training data order, since
the initialization is deterministic.

We primarily consider geometric mean improvements over
test loss and training time in our evaluation. These are
only relative measures, so in Appendix M, we the trained
neural surrogates achieve sufficiently low absolute error for
downstream applications.

5.2. Data Efficiency Improvements

To assess whether COMPNETs improve data efficiency, we
use COMPNETs to initialize neural surrogates, finetune on
subsets of training data of various sizes, and then compare
the results to those of other initialization methods. We detail
the methodology of this experiment then present results.

5.2.1. METHODOLOGY

We now describe the configurations we sweep over and the
methodology we use to finetune surrogates.

Experiment Configurations. In this experiment, we
sweep over configurations consisting of a program, a dataset
size, and an initialization method (e.g., a COMPNET). Each
dataset size specifies the percentage of the training data to
train neural surrogates on. We sweep over the following
percentages: {0%, 0.1%, 1%, 10%, 100%}.

Dataset Selection. Given a configuration consisting of
a program, dataset size percentage c, and an initialization
method, we select a random subset Dsub of the training
data Dtrain of size c|Dtrain|. We use an 80/20 split to divide
Dsub into train and validation sets Dsub train and Dsub val. We
sample 9 different subsets of this size and use a different
training seed for each subset, yielding 9 trials total.

Finetuning. For each trial, we initialize a neural surrogate
according to the initialization method. We then train on
Dsub train for 5,000 epochs. The final test loss we report for
a trial is the test loss at the epoch closest to the epoch with

the lowest validation error.2 When the dataset size is 0%,
we use the test loss at the final epoch.

Quantifying Improvements. We define the improvement
for a given configuration (consisting of an initialization
method, program, and dataset size) as the ratio of the test
loss achieved by random initialization on that configuration
and the test loss achieved by that configuration. All test
losses are averaged over trials (using arithmetic mean) prior
to computing ratios. For each initialization method, we
report the geometric mean of the improvements grouped
by program, grouped by dataset size, and overall. For
some programs and initialization methods, the resulting
surrogates achieve losses of 0. We discard these results
before computing the geometric mean.

These are only relative measures, so in Appendix M, we
demonstrate that the neural surrogates we train achieve
sufficiently low absolute error for downstream applications.

5.2.2. RESULTS

Figures 4 and 5 show finetuning results for a sample of 1,000
EXESTACKCPN test programs and PARROTBENCHSHORT,
respectively. See Appendix J for details.

EXESTACKCPN Test Programs. COMPNETs achieve
the best results on average, with a 9.50× improvement
over random initialization, whereas MAML and pretrained
surrogates achieve only a 1.09× and 1.08× improvement
on average. COMPNETs improve over random initialization
in as low as the 21st percentile of configurations, whereas
MAML and pretrained surrogates improve over random ini-
tialization after the 35th and 37th percentiles, respectively.

COMPNETs improve on EXESTACKCPN test programs
most prominently in the zero-shot regime, where the
improvement is 84.40× over random initialization, whereas
MAML and pretrained surrogates achieve improvements
of 1.42× and 2.63×, respectively. The zero-shot regime
is also the only regime where pretrained surrogates show an
improvement. The worst performance for both COMPNETs
and MAML is in the middle of the dataset sizes we
evaluated, at a dataset size of 1%, where they achieved
2.90× and 0.51×, respectively. The worst performance for
pretrained surrogates, however, is at a dataset size of 100%.

PARROTBENCHSHORT Programs. COMPNETs
achieve the best results on average, achieving a 1.91×
improvement over random initialization, whereas MAML
worsened performance (0.93×) and pretrained surrogates
slightly improved performance (1.05×). COMPNETs
improve over random initialization in as low as the 36th

2We only compute test loss before training, after every 3
epochs of training, and after training.

7

Learning to Compile Programs to Neural Networks

Original True CPN MAML PTS RND

Color Quantization (Dataset Size: 0%)

Original True CPN MAML PTS RND

Color Quantization (Dataset Size: 0.1%)

Figure 6: Color quantization results for a ground-truth implementation (“True”) vs. approximate implementations. The
original image of a baboon is on the left, followed by images transformed to adhere to a palette of 5 colors.

percentile of configurations, whereas MAML and pretrained
surrogates both improve over random initialization after the
54th percentile, respectively.

COMPNETs improve or do not worsen data efficiency on
each PARROTBENCHSHORT program, with the smallest
improvement on invk2j (1.01×) and the largest improve-
ment on kmeans (7.85×). MAML shows the largest
improvement on invk2j (1.07×) but worsens perfor-
mance on fft and kmeans, achieving 0.98× and 0.68×,
respectively. Pretrained surrogates show the largest improve-
ment on kmeans (2.24×), but they worsen performance on
fft and sobel, achieving 0.61× and 0.85×, respectively.

Unlike the results for EXESTACKCPN, the improvement
due to COMPNETs is most pronounced near the middle
of the dataset sizes we evaluated over. The greatest
improvement of 2.38× occurs at 10%, and the smallest
improvement of 1.68× occurs at 100%. MAML worsens
performance at most dataset sizes, except at 10%, where
it achieves a 1.11× improvement over random initialization.
Pretrained surrogates worsen performance at most dataset
sizes except 0% and 10%, where they achieve 1.56× and
1.23×, respectively.

Since COMPNETs improve data efficiency over random
initialization on both EXESTACKCPN and PARROT-
BENCHSHORT, we answer yes to RQ 1.

5.3. Neural Surrogates for Color Quantization

To assess whether a COMPNET can improve the quality of
results in an end-to-end application, we use a COMPNET
to initialize a neural surrogate used for color quantization

and compare it to other initialization methods (Kanungo
et al., 2002). Color quantization is the process of reducing
the number of distinct colors in an image.

5.3.1. METHODOLOGY

We present the methodology for an end-to-end evaluation
of neural surrogates on color quantization. We follow the
methodology of Kanungo et al. (2002) who apply k-means
clustering to the (R, G, B) vectors representing the colors
of pixels of an image and select the cluster centroids as
the colors in the palette. We run k-means clustering for 40
iterations or until the distance between the old centroids
and new centroids is less than 1 · 10−5. Each pixel color
is then remapped to the closest color in the palette.

We use the Euclidean distance function to compute the
distance between two RGB vectors. We consider both a
standard implementation and approximate implementations
given by neural surrogates of the kmeans kernel in
PARROTBENCHSHORT. We use the surrogates from the
data efficiency evaluation of Section 5.2.

5.3.2. RESULTS

Figure 6 depicts the result of applying color quantization
to an image of a baboon. The original image is on the left,
followed by images quantized to a palette of 5 colors. The
“True” quantization uses a standard implementation of the
Euclidean distance function and the subsequent images use
the different surrogate initialization methods: CPN, MAML,
PTS, and RND. The surrogate models used to produce these
images are from the data efficiency evaluation (Section 5.2)

8

Learning to Compile Programs to Neural Networks

Dataset Size CPN MAML PTS RND

0% 2.67 · 103 ± 541. 2.79 · 103 ± 347. 3.04 · 103 ± 63.0 3.05 · 103 ± 0.00
0.1% 984.0± 733. 1.79 · 103 ± 554. 1.73 · 103 ± 725. 1.43 · 103 ± 544.
1% 528.± 219. 782.± 300. 760.± 256. 619.± 249.
10% 452.± 222. 717.± 212. 690.± 195. 782.± 307.
100% 504.± 220. 766.± 189. 699.± 171. 655.± 121.

Dataset Size CPN MAML PTS RND

0% 0.33± 0.11 0.26± 0.03 0.25± 0.02 0.25± 0.0
0.1% 0.61± 0.15 0.45± 0.12 0.47± 0.16 0.53± 0.09
1% 0.72± 0.12 0.64± 0.11 0.65± 0.10 0.70± 0.11
10% 0.76± 0.12 0.64± 0.09 0.64± 0.08 0.63± 0.08
100% 0.73± 0.13 0.62± 0.08 0.64± 0.05 0.65± 0.06

Figure 7: Quantitative comparison of end-to-end results produced by various initialization methods on color quantization
with a palette size of 5 colors. (Top) The average mean squared error (MSE) of the image produced by each initialization
method compared to the image produced by a ground-truth implementation of the kmeans kernel (lower is better).
(Bottom) The average structural similarity index measure (SSIM) of the image produced by each initialization method
compared to the image produced by a ground-truth implementation of the kmeans kernel (higher is better).

with dataset sizes of 0% and 0.1%. For each initialization
method, there are many surrogates to choose from. For the
surrogates trained on a dataset size of 0%, we use the full
train set from PARROTBENCHSHORT as a validation set
and choose the surrogate with the lowest validation loss.
For the surrogates trained on a dataset size of 0.1%, we use
the dataset it was trained on, as in Section 5.2.

Figure 7 shows quantitative results comparing initialization
methods on 5-color color quantization at various dataset
sizes. See Appendix K for more color palette sizes. We
use all surrogates from the data efficiency evaluation. Each
entry shows the average and standard deviation of a metric
over all trials and instances of an initialization method.

The first table depicts the mean squared error (MSE) that
sweeps across dataset sizes for each initialization method.
Among the initialization methods, CPN has the lowest (best)
mean MSE across runs for every dataset size. The results
for MAML, PTS, and RND with no clear best method
among them. The variance is similar across all initialization
methods, and is high enough that there is overlap among
methods. For example, at 0% dataset size a result that is
one standard deviation below the mean for MAML is lower
than the mean for CPN. However, for all other dataset sizes
the mean MSE for CPN is lower than the mean MSE for
MAML even after subtracting a single standard deviation.

The second table depicts the structural similarity index mea-
sure (SSIM), which provides a quantitative model for the
percieved similarity of images (Wang et al., 2004). Among
the initialization methods, CPN has the highest (best) mean
SSIM across runs for every dataset size. The results for
MAML, PTS, and RND are similar to the MSE results, but

RND is performs slightly better than either MAML or PTS
at most dataset sizes. At smaller dataset sizes, the variance
is high enough that there is overlap among methods, but
at larger dataset sizes the results are more clearly separated
with CPN having the highest mean SSIM even when we
consider adding a single standard deviation to the mean
SSIM for each of the other initialization methods.

6. Conclusion
In this paper, we presented the concept of a neural surrogate
compiler and demonstrated how a neural surrogate
compiler can be implemented with COMPNETs. We
provided a dataset, EXESTACK, that one can use to
learn neural surrogate compilers. We demonstrated the
effectiveness of COMPNETs on EXESTACK programs and
PARROTBENCHSHORT, a suite of numerical benchmarks.
Specifically, we showed COMPNET-initialized surrogates
achieve losses 1.91-9.50× lower than randomly initialized
surrogates, produce color-quantized images that are
1.02-1.32× more similar to images produced by an exact
implementation than images produced by randomly
initialized surrogates, and train in 4.31-7.28× fewer epochs
than randomly initialized surrogates.

The key insight of our work is a programming language
can condition the space of neural network initializations.
In the limit, a neural surrogate compiler could produce ini-
tializations requiring no training to achieve low error. More
broadly, neural surrogate compilers could be used to encode
programmatically specified behaviors in neural networks,
potentially accelerating training for more general tasks.

9

Learning to Compile Programs to Neural Networks

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgements
We would like to thank Ellie Cheng, Charles Yuan, and
the anonymous reviewers for their helpful comments
and suggestions. This work was supported in-part by
the National Science Foundation (CCF-1918839 and
CCF-2217064) and an Intel Research Fellowship.

References
An, S., Fowler, C., Zheng, B., Shalaginov, M. Y., Tang,

H., Li, H., Zhou, L., Ding, J., Agarwal, A. M., Rivero-
Baleine, C., Richardson, K. A., Gu, T., Hu, J., and
Zhang, H. A deep learning approach for objective-driven
all-dielectric metasurface design. ACS Photonics, 2019.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., and
Sutton, C. Program synthesis with large language models.
arXiv preprint 2108.07732, 2021.

Baek, W. and Chilimbi, T. M. Green: A framework
for supporting energy-conscious programming using
controlled approximation. In Programming Language
Design and Implementation, 2010.

Bieber, D., Sutton, C., Larochelle, H., and Tarlow, D. Learn-
ing to execute programs with instruction pointer attention
graph neural networks. In International Conference on
Neural Information Processing Systems, 2020.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y., Lund-
berg, S., Nori, H., Palangi, H., Ribeiro, M. T., and Zhang,
Y. Sparks of artificial general intelligence: Early exper-
iments with gpt-4. arXiv preprint 2303.12712, 2023.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
Bert: Pre-training of deep bidirectional transformers for
language understanding. In North American Chapter of
the Association for Computational Linguistics, 2019.

Esmaeilzadeh, H., Sampson, A., Ceze, L., and Burger, D.
Neural acceleration for general-purpose approximate pro-
grams. In International Symposium on Microarchitecture,
2012a.

Esmaeilzadeh, H., Sampson, A., Ceze, L., and Burger, D.
Architecture support for disciplined approximate pro-
gramming. In International Conference on Architectural

Support for Programming Languages and Operating
Systems, 2012b.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic
meta-learning for fast adaptation of deep networks. In
International Conference on Machine Learning, 2017.

Gu, A., Rozière, B., Leather, H., Solar-Lezama, A.,
Synnaeve, G., and Wang, S. I. Cruxeval: A benchmark
for code reasoning, understanding and execution. arXiv
preprint 2401.03065, 2024.

Ha, D., Dai, A. M., and Le, Q. V. Hypernetworks. In Inter-
national Conference on Learning Representations, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance
on imagenet classification. In IEEE International
Conference on Computer Vision, 2015.

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey,
A. Meta-learning in neural networks: A survey. 44(09),
2022.

Ïpek, E., McKee, S. A., Caruana, R., de Supinski, B. R.,
and Schulz, M. Efficiently exploring architectural
design spaces via predictive modeling. In International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2006.

Jin, T., Liu, Z., Yan, S., Eichenberger, A., and Morency, L.-P.
Language to network: Conditional parameter adaptation
with natural language descriptions. In Annual Meeting
of the Association for Computational Linguistics, 2020.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D.,
Silverman, R., and Wu, A. Y. An efficient k-means clus-
tering algorithm: Analysis and implementation. 24, 2002.

Kaya, M. and Hajimirza, S. Using a novel transfer learning
method for designing thin film solar cells with enhanced
quantum efficiencies. Scientific Reports, 2019.

Kocetkov, D., Li, R., Ben Allal, L., Li, J., Mou, C.,
Muñoz Ferrandis, C., Jernite, Y., Mitchell, M., Hughes,
S., Wolf, T., Bahdanau, D., von Werra, L., and de Vries,
H. The stack: 3 tb of permissively licensed source code.
arXiv preprint 2211.15533, 2022.

Kustowski, B., Gaffney, J. A., Spears, B. K., Anderson,
G. J., Thiagarajan, J. J., and Anirudh, R. Transfer learn-
ing as a tool for reducing simulation bias: Application
to inertial confinement fusion. Transactions on Plasma
Science, 2020.

Kwon, J. and Carloni, L. P. Transfer learning for design-
space exploration with high-level synthesis. In Workshop
on Machine Learning for CAD, 2020.

10

Learning to Compile Programs to Neural Networks

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., Liu, Q.,
Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene, O.,
Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko,
O., Gontier, N., Meade, N., Zebaze, A., Yee, M.-H., Uma-
pathi, L. K., Zhu, J., Lipkin, B., Oblokulov, M., Wang, Z.,
Murthy, R., Stillerman, J., Patel, S. S., Abulkhanov, D.,
Zocca, M., Dey, M., Zhang, Z., Fahmy, N., Bhattacharyya,
U., Yu, W., Singh, S., Luccioni, S., Villegas, P., Kunakov,
M., Zhdanov, F., Romero, M., Lee, T., Timor, N., Ding, J.,
Schlesinger, C., Schoelkopf, H., Ebert, J., Dao, T., Mishra,
M., Gu, A., Robinson, J., Anderson, C. J., Dolan-Gavitt,
B., Contractor, D., Reddy, S., Fried, D., Bahdanau, D., Jer-
nite, Y., Ferrandis, C. M., Hughes, S., Wolf, T., Guha, A.,
von Werra, L., and de Vries, H. Starcoder: may the source
be with you! arXiv preprint arXiv:2305.06161, 2022.

Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy-Poirier,
J., Tazi, N., Tang, A., Pykhtar, D., Liu, J., Wei, Y., Liu, T.,
Tian, M., Kocetkov, D., Zucker, A., Belkada, Y., Wang,
Z., Liu, Q., Abulkhanov, D., Paul, I., Li, Z., Li, W.-D.,
Risdal, M., Li, J., Zhu, J., Zhuo, T. Y., Zheltonozhskii, E.,
Dade, N. O. O., Yu, W., Krauß, L., Jain, N., Su, Y., He, X.,
Dey, M., Abati, E., Chai, Y., Muennighoff, N., Tang, X.,
Oblokulov, M., Akiki, C., Marone, M., Mou, C., Mishra,
M., Gu, A., Hui, B., Dao, T., Zebaze, A., Dehaene, O.,
Patry, N., Xu, C., McAuley, J., Hu, H., Scholak, T.,
Paquet, S., Robinson, J., Anderson, C. J., Chapados, N.,
Patwary, M., Tajbakhsh, N., Jernite, Y., Ferrandis, C. M.,
Zhang, L., Hughes, S., Wolf, T., Guha, A., von Werra,
L., and de Vries, H. Starcoder 2 and the stack v2: The
next generation. arXiv preprint 2402.19173, 2024.

Mendis, C. Towards Automated Construction of Compiler
Optimizations. Ph.d. thesis, Massachusetts Institute of
Technology, Cambridge, MA, 2020.

Misailovic, S., Sidiroglou, S., Hoffmann, H., and Rinard, M.
Quality of service profiling. In International Conference
on Software Engineering, 2010.

Munk, A., Zwartsenberg, B., Scibior, A., Baydin, A. G.,
Stewart, A. L., Fernlund, G., Poursartip, A., and Wood,
F. Probabilistic surrogate networks for simulators with
unbounded randomness. In Uncertainty in Artificial
Intelligence, 2022.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski,
H., Austin, J., Bieber, D., Dohan, D., Lewkowycz, A.,
Bosma, M., Luan, D., Sutton, C., and Odena, A. Show
your work: Scratchpads for intermediate computation
with language models. arXiv preprint 2112.00114, 2021.

OpenAI, :, Achiam, J., Adler, S., Agarwal, S., Ahmad, L.,
Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J.,
Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Bal-
aji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M.,

Belgum, J., Bello, I., Berdine, J., Bernadett-Shapiro, G.,
Berner, C., Bogdonoff, L., Boiko, O., Boyd, M., Brakman,
A.-L., Brockman, G., Brooks, T., Brundage, M., Button,
K., Cai, T., Campbell, R., Cann, A., Carey, B., Carlson,
C., Carmichael, R., Chan, B., Chang, C., Chantzis, F.,
Chen, D., Chen, S., Chen, R., Chen, J., Chen, M., Chess,
B., Cho, C., Chu, C., Chung, H. W., Cummings, D., Cur-
rier, J., Dai, Y., Decareaux, C., Degry, T., Deutsch, N.,
Deville, D., Dhar, A., Dohan, D., Dowling, S., Dunning,
S., Ecoffet, A., Eleti, A., Eloundou, T., Farhi, D., Fedus,
L., Felix, N., Fishman, S. P., Forte, J., Fulford, I., Gao, L.,
Georges, E., Gibson, C., Goel, V., Gogineni, T., Goh, G.,
Gontijo-Lopes, R., Gordon, J., Grafstein, M., Gray, S.,
Greene, R., Gross, J., Gu, S. S., Guo, Y., Hallacy, C., Han,
J., Harris, J., He, Y., Heaton, M., Heidecke, J., Hesse,
C., Hickey, A., Hickey, W., Hoeschele, P., Houghton, B.,
Hsu, K., Hu, S., Hu, X., Huizinga, J., Jain, S., Jain, S.,
Jang, J., Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto, S.,
Jonn, B., Jun, H., Kaftan, T., Łukasz Kaiser, Kamali, A.,
Kanitscheider, I., Keskar, N. S., Khan, T., Kilpatrick, L.,
Kim, J. W., Kim, C., Kim, Y., Kirchner, H., Kiros, J.,
Knight, M., Kokotajlo, D., Łukasz Kondraciuk, Kondrich,
A., Konstantinidis, A., Kosic, K., Krueger, G., Kuo, V.,
Lampe, M., Lan, I., Lee, T., Leike, J., Leung, J., Levy, D.,
Li, C. M., Lim, R., Lin, M., Lin, S., Litwin, M., Lopez, T.,
Lowe, R., Lue, P., Makanju, A., Malfacini, K., Manning,
S., Markov, T., Markovski, Y., Martin, B., Mayer, K.,
Mayne, A., McGrew, B., McKinney, S. M., McLeavey, C.,
McMillan, P., McNeil, J., Medina, D., Mehta, A., Menick,
J., Metz, L., Mishchenko, A., Mishkin, P., Monaco, V.,
Morikawa, E., Mossing, D., Mu, T., Murati, M., Murk, O.,
Mély, D., Nair, A., Nakano, R., Nayak, R., Neelakantan,
A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki,
J., Paino, A., Palermo, J., Pantuliano, A., Parascandolo,
G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng,
A., Perelman, A., de Avila Belbute Peres, F., Petrov, M.,
de Oliveira Pinto, H. P., Michael, Pokorny, Pokrass, M.,
Pong, V., Powell, T., Power, A., Power, B., Proehl, E.,
Puri, R., Radford, A., Rae, J., Ramesh, A., Raymond, C.,
Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez, H.,
Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S., Sastry,
G., Schmidt, H., Schnurr, D., Schulman, J., Selsam, D.,
Sheppard, K., Sherbakov, T., Shieh, J., Shoker, S., Shyam,
P., Sidor, S., Sigler, E., Simens, M., Sitkin, J., Slama, K.,
Sohl, I., Sokolowsky, B., Song, Y., Staudacher, N., Such,
F. P., Summers, N., Sutskever, I., Tang, J., Tezak, N.,
Thompson, M., Tillet, P., Tootoonchian, A., Tseng, E.,
Tuggle, P., Turley, N., Tworek, J., Uribe, J. F. C., Vallone,
A., Vijayvergiya, A., Voss, C., Wainwright, C., Wang,
J. J., Wang, A., Wang, B., Ward, J., Wei, J., Weinmann,
C., Welihinda, A., Welinder, P., Weng, J., Weng, L., Wi-
ethoff, M., Willner, D., Winter, C., Wolrich, S., Wong,
H., Workman, L., Wu, S., Wu, J., Wu, M., Xiao, K., Xu,
T., Yoo, S., Yu, K., Yuan, Q., Zaremba, W., Zellers, R.,

11

Learning to Compile Programs to Neural Networks

Zhang, C., Zhang, M., Zhao, S., Zheng, T., Zhuang, J.,
Zhuk, W., and Zoph, B. Gpt-4 technical report. 2023.

Park, J., Amaro, E., Mahajan, D., Thwaites, B., and Es-
maeilzadeh, H. Axgames: Towards crowdsourcing qual-
ity target determination in approximate computing. 2016.

Pestourie, R., Mroueh, Y., Nguyen, T. V., Das, P., and
Johnson, S. G. Active learning of deep surrogates
for pdes: application to metasurface design. npj
Computational Materials, 2020.

Renda, A., Chen, Y., Mendis, C., and Carbin, M. Difftune:
Optimizing cpu simulator parameters with learned
differentiable surrogates. In International Symposium
on Microarchitecture, 2020.

Renda, A., Ding, Y., and Carbin, M. Programming with
neural surrogates of programs. In Symposium on New
Ideas, New Paradigms, and Reflections on Programming
and Software, 2021.

Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D.,
Ceze, L., and Grossman, D. Enerj: approximate data
types for safe and general low-power computation. In Pro-
gramming Language Design and Implementation, 2011.

Shirobokov, S., Belavin, V., Kagan, M., Ustyuzhanin, A.,
and Baydin, A. G. Black-box optimization with local
generative surrogates. In Advances in Neural Information
Processing Systems, 2020.

Tercan, H., Guajardo, A., Heinisch, J., Thiele, T., Hopmann,
C., and Meisen, T. Transfer-learning: Bridging the gap
between real and simulation data for machine learning
in injection molding. Procedia CIRP, 2018.

Tseng, E., Yu, F., Yang, Y., Mannan, F., Arnaud, K. S.,
Nowrouzezahrai, D., Lalonde, J.-F., and Heide, F.
Hyperparameter optimization in black-box image
processing using differentiable proxies. Transactions on
Graphics, 2019.

Turc, I., Chang, M., Lee, K., and Toutanova, K. Well-read
students learn better: The impact of student initialization
on knowledge distillation. arXiv preprint 1908.08962,
2019.

Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. Image
quality assessment: from error visibility to structural sim-
ilarity. IEEE Transactions on Image Processing, 2004.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., brian ichter,
Xia, F., Chi, E. H., Le, Q. V., and Zhou, D. Chain of
thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing
Systems, 2022.

Zaremba, W. and Sutskever, I. Learning to execute. arXiv
preprint 1410.4615, 2015.

Zhmoginov, A., Sandler, M., and Vladymyrov, M. Hy-
pertransformer: Model generation for supervised and
semi-supervised few-shot learning. In International
Conference on Machine Learning, 2022.

12

Learning to Compile Programs to Neural Networks

A. Related Work
Our design of neural surrogate compilers for numerical
programs draws from the literature on neural surrogates of
programs and meta-learning.

A.1. Neural Surrogates of Programs

A common approach to developing neural surrogates of
programs is to train a program-specific neural surrogate3

on a dataset of input-output examples (Renda et al., 2021),
or more recently, to train a universal neural surrogate on a
dataset that includes many programs (Zaremba & Sutskever,
2015; Nye et al., 2021). Our work presents an alternative
method for training neural surrogates of numerical pro-
grams that maintains the speed of program-specific neural
surrogates but incorporates the data efficiency benefits of
universal neural surrogates. Our technique does not provide
any guarantees on the suitability of the neural surrogates
it produces for downstream tasks; we discuss this issue at
the end of this section.

Program-Specific Neural Surrogates. Researchers
across scientific disciplines have used neural surrogates of
numerical programs to accelerate computations, adapt to
new settings, and enable gradient-based optimization. Es-
maeilzadeh et al. (2012a) demonstrate that neural surrogates
of numerical programs can improve performance for compu-
tations in signal processing, robotics, 3D games, compres-
sion, machine learning, and image processing. To accelerate
optical metasurface design, An et al. (2019) use neural surro-
gates of numerical simulators and Pestourie et al. (2020) use
neural surrogates of partial differential equations. Tercan
et al. (2018) and Kustowski et al. (2020) use neural surro-
gates of numerical simulators for plastic injection molding
and inertial confinement fusion, respectively, to facilitate
data-efficient finetuning on real physical data. Kaya &
Hajimirza (2019) accelerate numerical simulations for solar
cells using neural surrogates, and they use transfer learning
to quickly adapt neural surrogates when simulator configura-
tions change. Shirobokov et al. (2020) use neural surrogates
of non-differentiable, numerical physical simulators, to
enable gradient-based optimization of simulator parameters.

Researchers have used nonnumerical surrogates to opti-
mize and explore discrete configuration spaces. Tseng et al.
(2019) and Renda et al. (2020) develop neural surrogates of a
black-box image signal processing unit and a cycle-accurate
CPU simulator, respectively; both techniques enable
gradient-based optimization of program inputs, to match
some desired input-output behavior. Kwon & Carloni (2020)
develop a neural surrogate of a high-level synthesis pipeline
for hardware. Using this surrogate, they lower the cost of

3 In this section, we emphasize when neural surrogates are
program-specific, to contrast with universal neural surrogates.

predicting the performance and cost of hardware configu-
rations, and they use transfer learning to lower the cost of
developing neural surrogates for new configuration spaces.

Universal Neural Surrogates. Researchers have de-
veloped universal neural surrogates using a variety of
architectures. Early work in this area uses long short-term
memory networks to predict the results of executing simple,
synthetic Python programs (Zaremba & Sutskever, 2015).
Later work uses graph neural networks that model program
structure in a similar evaluation setup (Bieber et al., 2020).
More recently, researchers have trained Transformer-based
models on synthetic datasets of programs or large datasets
that include programs (Austin et al., 2021; Nye et al., 2021;
OpenAI et al., 2023; Bubeck et al., 2023; Gu et al., 2024).

Assessing Quality. To be useful for a given task, a neural
surrogate must achieve a sufficiently low approximation
error, and the threshold for this approximation error depends
on the task. Our work uses the methodology from Es-
maeilzadeh et al. (2012a) to determine what is an acceptable
approximation error for PARROTBENCHSHORT programs.
AXGAMES is a framework for grounding approximation er-
ror in terms of user satisfaction that is agnostic to the choice
of approximation technique (Park et al., 2016). Thus, in
more general spaces of programs, one could use AXGAMES
to determine what is an acceptable approximation error.

A.2. Meta-Learning

Meta-learning can improve data efficiency and transfer
learning when there is task-agnostic knowledge that can be
extracted from a family of tasks (Hospedales et al., 2022).
For example, in the setting we consider, the knowledge of
how to execute programs is not specific to any one program
but is useful for compiling each program. We describe the
technique we employ, hypernetworks (Ha et al., 2017), as
well as another meta-learning technique, MAML (model-
agnostic meta-learning) (Finn et al., 2017). The most
noteworthy difference between the two is that, in the former,
the parameter space of the meta-learner and the learners
differ, whereas, in the latter, these spaces are the same.

Hypernetworks. Hypernetworks were first proposed by
Ha et al. and achieve state-of-the-art results on sequence
modeling tasks (Ha et al., 2017). More recent work by
Jin et al. proposes a system, N3, that adapts Transformers
to function as hypernetworks that condition on text for
few-shot learning on image classification tasks (2020).

Model-Agnostic Meta-Learning. MAML is a frame-
work for developing neural network initializations that
can be finetuned to new tasks with a small amount of data
and a few iterations of SGD (Finn et al., 2017). Some

13

Learning to Compile Programs to Neural Networks

authors have noted, however, that MAML couples the
task space complexity to the complexity of the individual
tasks (Zhmoginov et al., 2022), making the parameter space
a bottleneck as the task space grows. Our technique does
not suffer from this issue because the hypernetwork can be
larger than the generated neural surrogate.

B. EXESTACK Data Curation and Filtering
1 Preprocessing. We pull the functions in EXESTACK

from files that may contain preprocessor directives, which
may affect the ability for these functions to be executed in
isolation, if left unexpanded. We run the C preprocessor
on source files until no more lines begin with “#”, or we
have run it twice, or an invocation fails.

2 Extracting Functions. Extract any functions from
each source file.

3 Filtering for Pointer-Free Numeric Functions. To
filter for numeric functions in C programs, we only include
C functions that use exclusively float and double data
types in the function signature. Due to the possibility of
dynamically sized inputs in the presence of pointers and
the ambiguity of whether a pointer represents an input or
output, we do not allow pointer types. Consequently, we
also do not allow void as an output type. If checking a
file for the above conditions takes longer than 8 seconds,
we discard it. Note that these filters still allow integral and
pointer data types to be used within the function.

4 Filtering for Executable Functions and Collecting
Outputs. To simultaneously check for executability and
collect outputs from a function, we first generate 2048
sets of inputs by sampling from the uniform distribution
U(−1, 1) and use the same sets of inputs for all programs.
We embed these inputs in a C program that includes
the function source, as well as an execution harness for
collecting outputs. The harness is compiled with the C
standard math library included, since many numerical
functions in C make use of this library. If there are any
errors during compilation or execution of a function,
we discard the function. We provide an example of the
execution harness instantiated for a function in Appendix C.

To target a fixed neural surrogate architecture, a method-
ology is required for interpreting functions of varying
type signatures as a single, fixed type signature. For a
neural surrogate architecture with m inputs and n outputs,
we distinguish the first m arguments of a function as the
input for the neural surrogate, and we initialize all other
arguments to the constant 1.0. When a function has more
than n outputs, we only collect the first n outputs. When
a function has fewer than n outputs, we pad the function
outputs with the constant 0.0.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

float inputs[1024][1] = {
{0.10740153873327762},
...

};

float fftSin(float x) {
return sin(-2 * 3.1415 * x);

}

int main() {
for (int i = 0; i < 1024; i++) {

float arg0 = inputs[i][0];
float out = fftSin(arg0);
printf("%f,", out);
printf("\n");

}
return 0;

}

Figure 8: Source code template used for checking ex-
ecutability and collecting outputs, instantiated with the
source of fftSin.

5 Filtering for Deterministic Functions. Since a neu-
ral surrogate is often a deterministic function of its inputs
and weights, we filter nondeterministic functions from our
dataset. We check for determinism by running a function
5 times on the same inputs, all sampled from U(−1, 1), and
observing whether the output differs on any execution.

6 Deduplication. We use a whitespace-invariant
tokenizer to remove duplicate tokenized programs.

C. EXESTACK Execution Harness
Figure 8 shows an example of the execution harness we use
to collect outputs from functions for EXESTACK.

D. EXESTACKCPN Generation
To produce EXESTACKCPN, we apply the following
additional filters to EXESTACK:

• Filtering Long Programs. Since BERT-Tiny has a
maximum context length of 512 tokens, we remove
functions with more than 512 tokens. We first strip
comments from all programs to allow more programs to
fit within the context.

• Filtering Large Outputs. Large or NaN outputs can
lead to training instability for neural networks, so we

14

Learning to Compile Programs to Neural Networks

#define SQUARE(x) ((x)*(x))

float squared_sum(
 float x, float y) {
 // TODO inline
 return SQR(x)+SQR(y);
}

float long_func(float a) {
 float b = a*a + a;
 …
 return z;
}

float many_args(
 float a, …, float z) {
 …
}

double head(double* xs) {
 return *xs;
}

int cast(float x) {
 return (int) x;
}

float call_g(float t) {
 return g(sin(t));
}

double uniform() {
 return rand() / RAND_MAX;
}

double scaled_exp(x) {
 return exp(100 * x);
}

float add(
 float x, float y
){ return x+y; }

float cos_aux(float x) {
 return cos(x * 2 * M_PI);
}

functions.c

int cast(float x) {
return (int) x;

}

double uniform() {
return rand() / 21…47;

}

float long_func(float a) {
float b = a*a + a;
…
return z;

}

float call_g(float t) {
return g(sin(t));

}

double scaled_exp(x) {
return exp(100 * x);

}

float add(
float x, float y
){ return x+y; }

float squared_sum(
 float x, float y) {
 return ((x)*(x))+
((y)*(y));
}

double head(double* xs) {
return *xs;

}

❌

1 2 3 4 5 6 7 8 9 10

float squared_sum(
 float x, float y) {
 // TODO inline
 return ((x)*(x))+((y)*(y));
}

float long_func(float a) {
 float b = a*a + a;
 …
 return z;
}

float many_args(
 float a, …, float z) {
 …
}

double head(double* xs) {
 return *xs;
}

int cast(float x) {
 return (int) x;
}

float call_g(float t) {
 return g(sin(t));
}

double uniform() {
 return rand() / 21…47;
}

double scaled_exp(x) {
 return exp(100 * x);
}

float add(
 float x, float y
){ return x+y; }

float cos_aux(float x) {
 return cos(x * 2 * 3.14…);
}

float squared_sum(
 float x, float y) {
 return ((x)*(x))+((y)*(y));
}

float long_func(float a) {
 float b = a*a + a;
 …
 return z;
}

float many_args(
 float a, …, float z) {
 …
}

double head(double* xs) {
 return *xs;
}

int cast(float x) {
 return (int) x;
}

float call_g(float t) {
 return g(sin(t));
}

double uniform() {
 return rand() / 21…47;
}

double scaled_exp(x) {
 return exp(100 * x);
}

float add(
 float x, float y
){ return x+y; }

float cos_aux(float x) {
 return cos(x * 2 * 3.14…);
}

float many_args(
float a, …, float z) {

…
}

❌

❌

❌

❌

❌

❌

❌

✓

float cos_aux(float x) {
 return cos(x * 2 * 3.14…);
} ❌

11

Figure 9: The EXESTACKCPN generation pipeline (i.e., EXESTACK tailored to COMPNETs). Starting with C source files
from The Stack, we apply a sequence of maps followed by a sequence of filters. The steps are 1 run the C preprocessor,
2 remove comments, 3 extract functions from the source file, 4 remove functions with more tokens than a user-specified

threshold (e.g., the maximum context length), 5 remove functions with more inputs than the target topology, 6 remove
functions with pointers in their type signature and nonnumeric functions, 7 remove nonexecutable functions and collect
input-output pairs, 8 remove nondeterministic functions, 9 remove functions with any outputs larger than a user-specified
threshold, when run on the set of input-output pairs, 10 remove any duplicate programs, and 11 remove any programs
syntactically similar to programs in PARROTBENCHSHORT. Red “X”s denote that a function does not pass a filter and
green checkmarks denote that a function passes all filters.

additionally remove functions with any outputs with an
absolute magnitude of 10 or larger or a NaN value.

• Decontaminating Against PARROTBENCHSHORT. It
is possible that EXESTACK contains similar programs
to those in PARROTBENCHSHORT. If we trained a
COMPNET on these programs, improvements over
random initialization could be due to memorization. To
address this problem, we remove any programs from
EXESTACK that are syntactically similar to programs in
PARROTBENCHSHORT.

E. EXESTACKCPN Generation (Extended)
In this appendix, we present an example showing the entire
pipeline for generating EXESTACKCPN (Figure 9), a
summary of EXESTACKCPN characteristics (Figure 10),
a histogram showing the distribution of arity among
ExeStackCPN programs (Figure 11), and we detail the
decontamination step (Section E.1).

E.1. EXESTACKCPN Decontamination

To ensure the improvements observed in Section 5 are not
due to memorization, the final step of EXESTACKCPN gen-
eration is decontamination against PARROTBENCHSHORT
programs. A prevailing decontamination methodology
in the literature is to remove any syntactic matches up

Characteristic Value

Max Program Length (In Tokens) 512
Tokenizer Vocab Size 30,522
Programs in Dataset 37,772
Tokens in Dataset 1,728,304
I/O Pairs Per Program 2,048

Figure 10: Summary of EXESTACKCPN characteristics.

to whitespace (Li et al., 2022; Lozhkov et al., 2024).
Though EXESTACK is not contaminated with PARROT-
BENCHSHORT programs according to this methodology,
we strengthen our methodology to additionally remove
syntactically similar programs. This decontamination
consists of bespoke syntactic analyses—one for each
PARROTBENCHSHORT program. For the remainder of this
section, we present each of these syntactic analyses and
a sample of the programs they mark for removal. In total,
decontamination removes 375 functions.

E.1.1. FFT (OUTPUT 0)

Recall, the source for the fft (0) kernel in PARROT-
BENCHSHORT is

15

Learning to Compile Programs to Neural Networks

0 1 2 3 4 5 6 7 8
Number of Inputs

0

2500

5000

7500

10000

12500

15000

17500

F
re

qu
en

cy

ExeStackCPN Input Distribution

Figure 11: Distribution of the number of program inputs
for programs in EXESTACKCPN.

float fftSin_Output0(float x) {
return sin(-2 * 3.1415 * x);

}

To decontaminate EXESTACKCPN against this program,
we search for programs satisfying all conditions below:

• Contains “sin”

• Contains either “3.14” or “M_PI”

• Is at most 5 (non-empty) lines long

• Has one input

This methodology surfaces 29 matches. Below, we include
a sample of 5 of these matches:

float seno(float x) {
return sin(x * M_PI / 180);

}

float exponential(float value) {
return sin(value * 3.14f / 2);

}

float easeOutSine(float time) {
return sin(time * M_PI / 2);

}

double sine(double t) {
return sin(2 * M_PI * t);

}

double cosine(double t) {
return cos(2 * M_PI * t);

}

E.1.2. FFT (OUTPUT 1)

Recall, the source for the fft (1) kernel in PARROT-
BENCHSHORT is

float fftSin_Output1(float x) {
return cos(-2 * 3.1415 * x);

}

To decontaminate EXESTACKCPN against this program,
we search for programs satisfying all conditions below:

• Contains “cos”

• Contains either “3.14” or “M_PI”

• Is at most 5 (non-empty) lines long

• Has one input

This methodology surfaces 20 matches. Below, we include
a sample of 5 of these matches:

float coss(float x) {
return cos(x * M_PI / 180);

}

double cosine(double t) {
return cos(2 * M_PI * t);

}

float hamming(float x) {
return 0.54-0.46*cos(2*M_PI*x);

}

float easeInSine(float time) {
return 1 - cos(time * M_PI / 2);

}

float easeInOutSine(float time) {
return 0.5 * (1 - cos(M_PI * time));

}

E.2. InverseK2J (Output 0)

Recall, the source for the invk2j (0) kernel in
PARROTBENCHSHORT is

float inversek2j_Output0(
float x, float y) {

float l1 = 0.5 ;
float l2 = 0.5 ;
float theta2 = (float) acos(

((x * x) + (y * y) -
(l1 * l1) -

16

Learning to Compile Programs to Neural Networks

(l2 * l2)) /
(2 * l1 * l2)

);
return (float) asin(

(y * (l1 + l2 * cos(theta2)) -
x * l2 * sin(theta2)) /

(x * x + y * y)
);

}

To decontaminate EXESTACKCPN against this program,
we search for programs satisfying all conditions below:

• Contains “asin”, “acos”, “sin”, and “cos”

• Contains either “.5” or (“/” and “2”)

• Is at most 7 (non-empty) lines long

• Has two inputs

This methodology surfaces 0 matches.

E.3. InvK2J (Output 1)

Recall, the source for the invk2j (1) kernel in
PARROTBENCHSHORT is

float inversek2j_Output1(
float x, float y) {

float l1 = 0.5 ;
float l2 = 0.5 ;
return (float) acos(

((x * x) + (y * y) -
(l1 * l1) - (l2 * l2)) /

(2 * l1 * l2)
);

}

To decontaminate EXESTACKCPN against this program,
we search for programs satisfying all conditions below:

• Contains “acos”

• Contains either “.5” or (“/” and “2”)

• Is at most 6 (non-empty) lines long

• Has two inputs

This methodology surfaces 0 matches.

E.3.1. KMEANS

Recall, the source for the kmeans kernel in PARROT-
BENCHSHORT is

float euclideanDistance(
float p_0, float p_1, float p_2,
float c1_0, float c1_1, float c1_2) {

float r;

r = 0;
r += (p_0 - c1_0) * (p_0 - c1_0);
r += (p_1 - c1_1) * (p_1 - c1_1);
r += (p_2 - c1_2) * (p_2 - c1_2);

return sqrt(r);
}

To decontaminate EXESTACKCPN against this program,
we search for programs satisfying all conditions below:

• Contains “sqrt”, “*”, “+”, and “-”

• Has 6 inputs

This methodology surfaces 10 matches. Below, we include
a sample of 5 of these matches:

float len(
float x0, float y0, float z0,
float x1, float y1, float z1){

return sqrt(
(x1-x0)*(x1-x0) +
(y1-y0)*(y1-y0) +
(z1-z0)*(z1-z0)

);
}

float dist(
float x1, float y1,float z1,
float x2,float y2,float z2) {

return sqrt(
(x1-x2)*(x1-x2) +
(y1-y2)*(y1-y2) +
(z1-z2)*(z1-z2)

);
}

float calc_dist(
float x0, float y0, float z0,
float x1, float y1, float z1) {

float dx = (x1 - x0);
float dy = (y1 - y0);
float dz = (z1 - z0);
float dist = sqrtf(
(dx * dx) +
(dy * dy) +
(dz * dz)

);

17

Learning to Compile Programs to Neural Networks

return dist;
}

double dist(
double x0, double y0, double z0,
double x1, double y1, double z1) {

return sqrt(
(x1 - x0) * (x1 - x0) +
(y1 - y0) * (y1 - y0) +
(z1 - z0) * (z1 - z0)

);
}

double dist(
double ax, double ay, double az,
double bx, double by, double bz) {

return sqrt(
(ax - bx)*(ax - bx) +
(ay - by)*(ay - by) +
(az - bz)*(az - bz)

);
}

E.3.2. SOBEL

Recall, the source for the sobel kernel in PARROT-
BENCHSHORT is

float sobel(
float w00, float w01, float w02,
float w10, float w11, float w12,
float w20, float w21, float w22) {

float sx = 0.0;
sx += w00 * -1;
sx += w10 * 0;
sx += w20 * 1;
sx += w01 * -2;
sx += w11 * 0;
sx += w21 * 2;
sx += w02 * -1;
sx += w12 * 0;
sx += w22 * 1;

float sy = 0.0;
sy += w00 * -1;
sy += w10 * -2;
sy += w20 * -1;
sy += w01 * 0;
sy += w11 * 0;
sy += w21 * 0;
sy += w02 * 1;
sy += w12 * 2;
sy += w22 * 1;

float s = sqrt(

sx * sx + sy * sy);
if (s >= (256 / sqrt(

256 * 256 + 256 * 256)))
s = 255 / sqrt(
256 * 256 + 256 * 256);

return s;
}

To decontaminate EXESTACKCPN against this program,
we search for programs satisfying all conditions below:

• Contains “sqrt”, “+”, “*”, and “/”

• Has 9 inputs

This methodology surfaces 0 matches.

F. Parrot Dataset Details
Due to methodological choices in EXESTACK and
architectural choices for COMPNETs, we omit some
PARROTBENCH benchmarks from PARROTBENCHSHORT
and modify others. We omit the jmeint and jpeg bench-
marks in PARROTBENCH because they are significantly
longer than the 512-token context length of a BERT-Tiny
(1,192 and 1,250 tokens, respectively). We modify the fft
and invk2j benchmarks because they both use pointer
arguments to store outputs, and our COMPNETS were not
trained to support pointer arguments. To make each function
pointer-free, we split it into two functions, each function
computing one of the outputs4. Additionally, the sobel
benchmark uses pointer inputs, so we rewrite it to only use
scalar inputs. Finally, the kmeans benchmark uses custom
structs to pass arguments, so we rewrite the benchmark to
desugar these structs into their scalar components.

We list the modified code for each benchmark in Ap-
pendix F.1, and we describe how we generate inputs for
these programs in Appendix F.2.

F.1. PARROTBENCHSHORT Code

We present the code used for PARROTBENCHSHORT
in our evaluation (Section 5), which we adapted from
PARROTBENCH to be pointer-free. The code for the
benchmarks is shown in Figures 12, 13, 14, and 15.

F.2. ParrotBenchShort Input Generation

Here, we detail how we generated inputs for PARROT-
BENCHSHORT programs. We attempt to exactly replicate
the dataset used by Esmaeilzadeh et al. (2012a) for the
subset of benchmarks we consider from PARROTBENCH.

4 As described in Section 3, we use the first output of each
function to produce an initialization for the original function.

18

Learning to Compile Programs to Neural Networks

float fftSin_Output0(float x) {
return sin(-2 * 3.1415 * x);

}

float fftSin_Output1(float x) {
return cos(-2 * 3.1415 * x);

}

Figure 12: Code for the fft benchmark in PARROTBENCHSHORT.

float invk2j_Output0(float x, float y) {
float l1 = 0.5 ;
float l2 = 0.5 ;
float theta2 = (float)acos(

((x * x) + (y * y) - (l1 * l1) - (l2 * l2)) /
(2 * l1 * l2)) ;

return (float)asin(
(y * (l1 + l2 * cos(theta2)) - x * l2 * sin(theta2)) /
(x * x + y * y)) ;

}

float invk2j_Output1(float x, float y) {
float l1 = 0.5 ;
float l2 = 0.5 ;
return (float)acos(

((x * x) + (y * y) - (l1 * l1) - (l2 * l2)) /
(2 * l1 * l2)) ;

}

Figure 13: Code for the invk2j benchmark in PARROTBENCHSHORT.

float euclideanDistance(
float p_0, float p_1, float p_2,
float c1_0, float c1_1, float c1_2) {
float r;

r = 0;
r += (p_0 - c1_0) * (p_0 - c1_0);
r += (p_1 - c1_1) * (p_1 - c1_1);
r += (p_2 - c1_2) * (p_2 - c1_2);

return sqrt(r);
}

Figure 14: Code for the kmeans benchmark in PARROTBENCHSHORT.

19

Learning to Compile Programs to Neural Networks

float sobel(
float w00, float w01, float w02,
float w10, float w11, float w12,
float w20, float w21, float w22)

{
float sx = 0.0;
sx += w00 * -1;
sx += w10 * 0;
sx += w20 * 1;
sx += w01 * -2;
sx += w11 * 0;
sx += w21 * 2;
sx += w02 * -1;
sx += w12 * 0;
sx += w22 * 1;

float sy = 0.0;
sy += w00 * -1;
sy += w10 * -2;
sy += w20 * -1;
sy += w01 * 0;
sy += w11 * 0;
sy += w21 * 0;
sy += w02 * 1;
sy += w12 * 2;
sy += w22 * 1;

float s = sqrt(sx * sx + sy * sy) ;
if (s >= (256 / sqrt(256 * 256 + 256 * 256)))
s = 255 / sqrt(256 * 256 + 256 * 256);

return s ;
}

Figure 15: Code for the sobel benchmark in PARROTBENCHSHORT.

20

Learning to Compile Programs to Neural Networks

Figure 16: Image used to generate testing data for kmeans.

F.2.1. FFT

To generate train inputs for fft, we generate 32,768 inputs
uniformly at random from [0, 1/2]. To generate test inputs
for fft, we generate 2,048 inputs uniformly at random
from [0, 1/2], resampling as necessary whenever an input
is generated that exists in the train set.

F.2.2. INVERSEK2J

To generate train inputs for invk2j, we generate 10,000
inputs uniformly at random from [−1/2, 1] × [0, 1]. To
generate test inputs for invk2j, we generate 10,000 inputs
uniformly at random from [−1/2, 1] × [0, 1], resampling
as necessary whenever an input is generated that exists in
the train set.

F.2.3. KMEANS

To generate train inputs for kmeans, we generate 50,000
inputs uniformly at random from [0, 1]6.

To generate test inputs for kmeans, we use an image of
peppers for RGB inputs (see Figure 16) and we generate
6 centroids with uniformly random coordinates in [0, 1], the
number of centroids used by Esmaeilzadeh et al. (source).
For each RGB input, we then choose a random centroid to
compute the kmeans kernel on, and we add the resulting
I/O sample to the test set. This procedure results in 48,400
inputs.

F.2.4. SOBEL

To generate train and test inputs for sobel, we read from
files on the official repo of Esmaeilzadeh et al. (2012a)
(here and here, respectively). These files contain 18,725
and 17,976 input-output pairs, respectively.

G. COMPNET Training Details
COMPNETs are controlled by the following hyperparam-
eters: program batch size, input batch size, learning rate,
number of training epochs, dataset program split, dataset in-

put split, and the surrogate topology. We swept over learning
rates and chose fixed values for all other hyperparameters.
We selected the learning rate that achieved the best final loss
on test programs, and we used all 3 trials of the winning
configuration as initialization methods. We summarize the
training configuration for pretrained surrogates in Figure 17.

H. MAML Training Details
MAML is controlled by the following hyperparameters: the
meta batch size (number of tasks per batch), the input batch
size (number of inputs per task), the number of epochs, the
inner gradient update step size (α), the outer gradient update
step size (β), and the number of inner gradient update steps.

We chose the meta batch size and the input batch size
to align with how we trained COMPNETs (Appendix G).
We decided to use the maximum number of epochs Finn
et al. (2017) use in their applications (70, 000), and we
observed that in all applications, β is fixed at 0.001. For the
remaining parameters, α and the number of inner update
steps, we performed a hyperparameter sweep, backing each
configuration with 3 trials. We chose the extents of each
hyperparameter in the sweep as the minimum and maximum
of hyperparameter settings observed in applications, and
we added some points between these extents. However, we
limited the hyperparameter settings for α to a maximum
of 0.2, as previous experiments (not reported in this paper)
showed training instability at higher values.

After each configuration finished training, we finetuned
it for 20 epochs for each of a sample of 5 programs
from the EXESTACKCPN validation set. We chose the
hyperparameters with the lowest loss on the validation
inputs at the end of finetuning, averaged over the sample
of programs and trials. We used all 3 trials of the winning
configuration as initialization methods.

We summarize the training configuration for MAML in
Figure 18.

I. Pretrained
Neural Surrogate Training Details

Similarly to COMPNETs, pretrained surrogates are con-
trolled by the following hyperparameters: program batch
size, input batch size, learning rate, number of training
epochs, dataset program split, dataset input split, and the
surrogate topology. We swept over the same set of learning
rates as we did for COMPNETs, and we use the same values
for other hyperparameters that we did for COMPNETs. We
selected the learning rate that achieved the best final loss
on test programs, and we used all 3 trials of the winning
configuration as initialization methods. We summarize the
training configuration for pretrained surrogates in Figure 19.

21

https://github.com/he-actlab/AxBench_old/blob/1c3421004a84160fc4345b2fab254eb2f22bc032/apps/kmeans/src/kmeans.c#L72
https://github.com/he-actlab/AxBench_old/blob/1c3421004a84160fc4345b2fab254eb2f22bc032/apps/sobel/data/sobel_train.data
https://github.com/he-actlab/AxBench_old/blob/1c3421004a84160fc4345b2fab254eb2f22bc032/apps/sobel/data/sobel_test.data

Learning to Compile Programs to Neural Networks

Setting Value

Architecture BERT-Tiny
Program Batch Size 32
Input Batch Size 1024
Learning Rate ∈

{
1 · 10−5, 2 · 10−5, 5 · 10−5, 5 · 10−4, 8 · 10−4

}
Epochs 1, 500
Dataset Program Split 80/0/20
Dataset Input Split 50/0/50
Surrogate Topology 9→ 4→ 4→ 1
GPU NVIDIA Tesla T4 16GB
Trials 3

Figure 17: Training configuration for COMPNETs. We represent any values we sweep over as a set, and we bold the values
that obtain the best final loss on test programs.

Setting Value

Meta Batch Size 32
Input Batch Size 1024
Epochs 70, 000
α ∈ {0.01, 0.05, 0.1,0.2}
β 0.001
Inner Update Steps ∈ {1, 2,3, 4, 5}
Finetuning Epochs 20
Trials 3
Dataset Program Split 80/10/10
Dataset Input Split 50/20/30
Surrogate Topology 9→ 4→ 4→ 1
GPU NVIDIA Tesla T4 16GB

Figure 18: Training configuration for MAML. We represent
any values we sweep over as a set, and we bold the values
that obtain the best finetuning loss on validation programs.

J. Data Efficiency Improvements (Extended)
The improvements in the data efficiency evaluation are com-
puted as a ratio of the test loss achieved by random initializa-
tion over the test loss achieved by an initialization method.
Here, we present the test losses used to compute these ratios.

Figure 20 contains histograms showing, for a sample
of 1,000 EXESTACKCPN test programs, the test loss
each initialization method achieves at the epoch with the
lowest validation loss. Figure 21 contains similar plots for
PARROTBENCHSHORT programs.

K. Neural Surrogates
for Color Quantization (Extended)

In this section, we present quantitative results for a 10- and
15-color palette (Figures 22 and 23).

L. Training Time Improvements
To assess whether COMPNETs improve training time of
neural surrogates, we use COMPNETs to initialize neural
surrogates, finetune on training data until they reach a
target test loss, then compare the results to those of other
initialization methods. We first detail the methodology of
this experiment, then present results.

L.0.1. METHODOLOGY

We now describe the methodology for setting a target
test loss to use as a stopping condition and for selecting
configurations to sweep over.

Setting a Target Test Loss. We set a target test loss for
each program by training 9 randomly initialized surrogates
for 5,000 epochs. The average final test loss is the target
test loss for all initialization methods.

Experiment Configurations. In this experiment, we
sweep over configurations consisting of a program and an
initialization method. Given a program and initialization
method, we produce a neural surrogate initialization. We
then train the initialized neural surrogate on the training
input set until it reaches the target test loss or until it reaches
15,000 epochs. We call whichever epoch comes first the
finish epoch for the trial.

Quantifying Improvements. We define the improvement
for a given configuration (consisting of a program and initial-
ization method) as the ratio of the finish epoch for random
initialization and the finish epoch by the configuration’s
initialization method. All finish epochs are averaged over
trials (using arithmetic mean) prior to computing ratios. For
each initialization method, we report the geometric mean of
the improvements grouped by program, grouped by dataset
size, and overall. For some programs and initialization
methods, the resulting surrogates achieve losses of 0. We

22

Learning to Compile Programs to Neural Networks

Setting Value

Program Batch Size 32
Input Batch Size 1024
Learning Rate ∈

{
1 · 10−5, 2 · 10−5, 5 · 10−5, 5 · 10−4, 8 · 10−4

}
Epochs 1, 500
Dataset Program Split 80/0/20
Dataset Input Split 50/0/50
Surrogate Topology 9→ 4→ 4→ 1
GPU NVIDIA Tesla T4 16GB
Trials 3

Figure 19: Training configuration for pretrained surrogates. We represent any values we sweep over as a set, and we bold
the values that obtain the best final loss on test programs.

10−12 10−10 10−8 10−6 10−4 10−2 100 102

Test Loss

100

101

102

103

104

F
re

qu
en

cy

Dataset Size: 0%

CPN

MAML

PTS

RND

10−12 10−10 10−8 10−6 10−4 10−2 100 102

Test Loss

100

101

102

103

104

F
re

qu
en

cy

Dataset Size: 0.1%

CPN

MAML

PTS

RND

10−12 10−10 10−8 10−6 10−4 10−2 100 102

Test Loss

101

102

103

F
re

qu
en

cy

Dataset Size: 1%

CPN

MAML

PTS

RND

10−12 10−10 10−8 10−6 10−4 10−2 100 102

Test Loss

100

101

102

103

F
re

qu
en

cy

Dataset Size: 10%

CPN

MAML

PTS

RND

10−12 10−10 10−8 10−6 10−4 10−2 100 102

Test Loss

100

101

102

103

F
re

qu
en

cy

Dataset Size: 100%

CPN

MAML

PTS

RND

Figure 20: Histograms showing test losses of each initialization method at the epoch with the lowest validation loss for
EXESTACKCPN test programs.

23

Learning to Compile Programs to Neural Networks

Dataset Size 0%

Program CPN MAML PTS RND

fft 1.3± 1.2 0.6± 0.2 0.8± 0.1 0.6± 0.3
invk2j 1.8± 0.6 2.0± 0.6 2.1± 0.5 2.4± 0.8
kmeans 0.1± 6.7 · 10−3 0.7± 0.4 0.1± 7.4 · 10−4 0.2± 0.2
sobel 0.1± 3.0 · 10−2 0.2± 0.2 0.2± 3.5 · 10−3 0.4± 0.3

Dataset Size 0.1%

Program CPN MAML PTS RND

fft 7.8 · 10−5 ± 1.1 · 10−4 1.9 · 10−4 ± 2.4 · 10−4 2.3 · 10−4 ± 4.6 · 10−4 1.6 · 10−4 ± 1.1 · 10−4
invk2j 0.2± 0.2 0.2± 0.2 0.2± 0.2 0.3± 0.3
kmeans 1.3 · 10−2 ± 1.5 · 10−2 0.1± 2.9 · 10−2 3.3 · 10−2 ± 1.6 · 10−2 3.9 · 10−2 ± 2.1 · 10−2
sobel 0.1± 2.0 · 10−2 4.7 · 10−2 ± 2.1 · 10−2 0.1± 2.3 · 10−2 0.1± 1.9 · 10−2

Dataset Size 1%

Program CPN MAML PTS RND

fft 3.6 · 10−5 ± 2.7 · 10−5 4.6 · 10−5 ± 2.2 · 10−5 1.0 · 10−4 ± 1.4 · 10−4 4.9 · 10−5 ± 2.8 · 10−5
invk2j 1.5 · 10−2 ± 4.7 · 10−3 1.2 · 10−2 ± 3.7 · 10−3 1.3 · 10−2 ± 3.8 · 10−3 1.2 · 10−2 ± 3.9 · 10−3
kmeans 4.7 · 10−3 ± 5.9 · 10−3 1.5 · 10−2 ± 1.1 · 10−2 1.3 · 10−2 ± 9.3 · 10−3 1.3 · 10−2 ± 1.3 · 10−2
sobel 8.3 · 10−3 ± 4.9 · 10−3 8.1 · 10−3 ± 2.8 · 10−3 9.1 · 10−3 ± 3.2 · 10−3 6.0 · 10−3 ± 3.2 · 10−3

Dataset Size 10%

Program CPN MAML PTS RND

fft 6.4 · 10−6 ± 9.0 · 10−6 1.2 · 10−5 ± 1.2 · 10−5 1.4 · 10−5 ± 1.5 · 10−5 1.3 · 10−5 ± 1.6 · 10−5
invk2j 8.1 · 10−3 ± 1.4 · 10−3 6.5 · 10−3 ± 1.7 · 10−3 7.2 · 10−3 ± 1.3 · 10−3 7.3 · 10−3 ± 1.4 · 10−3
kmeans 3.9 · 10−3 ± 5.0 · 10−3 1.3 · 10−2 ± 7.9 · 10−3 7.8 · 10−3 ± 7.0 · 10−3 1.3 · 10−2 ± 1.1 · 10−2
sobel 1.7 · 10−3 ± 1.7 · 10−3 1.6 · 10−3 ± 1.4 · 10−3 2.6 · 10−3 ± 1.9 · 10−3 1.8 · 10−3 ± 1.6 · 10−3

Dataset Size 100%

Program CPN MAML PTS RND

fft 2.2 · 10−6 ± 5.4 · 10−6 1.7 · 10−6 ± 3.1 · 10−6 4.2 · 10−6 ± 5.6 · 10−6 1.1 · 10−6 ± 1.1 · 10−6
invk2j 3.3 · 10−3 ± 1.5 · 10−4 3.3 · 10−3 ± 6.5 · 10−4 3.4 · 10−3 ± 7.2 · 10−4 3.0 · 10−3 ± 4.8 · 10−4
kmeans 3.4 · 10−3 ± 4.7 · 10−3 1.4 · 10−2 ± 9.5 · 10−3 5.2 · 10−3 ± 4.8 · 10−3 8.1 · 10−3 ± 4.3 · 10−3
sobel 5.3 · 10−4 ± 7.9 · 10−5 4.6 · 10−4 ± 1.1 · 10−4 6.3 · 10−4 ± 8.5 · 10−5 4.1 · 10−4 ± 8.1 · 10−5

Figure 21: Average test loss achieved by each initialization method on the epoch with the best validation loss for
PARROTBENCHSHORT programs. We include a table for each dataset size we evaluated on.

24

Learning to Compile Programs to Neural Networks

Dataset Size CPN MAML PTS RND

0% 2.87e+ 03± 615.51 3.03e+ 03± 394.17 3.28e+ 03± 129.80 3.30e+ 03± 0.00e+ 00
0.1% 979.89± 853.36 1.90e+ 03± 594.49 1.72e+ 03± 793.42 1.46e+ 03± 583.15
1% 410.61± 194.59 677.16± 267.41 631.44± 226.17 615.89± 298.99
10% 401.29± 181.23 639.63± 169.99 576.00± 252.33 631.13± 317.59
100% 395.45± 184.18 627.57± 237.83 498.93± 229.30 510.32± 154.20

Dataset Size CPN MAML PTS RND

0% 0.28± 0.13 0.20± 0.04 0.19± 0.03 0.19± 0.00e+ 00
0.1% 0.60± 0.16 0.42± 0.12 0.45± 0.16 0.49± 0.09
1% 0.73± 0.10 0.63± 0.11 0.64± 0.09 0.66± 0.12
10% 0.74± 0.10 0.62± 0.07 0.66± 0.12 0.65± 0.14
100% 0.74± 0.10 0.63± 0.11 0.69± 0.12 0.68± 0.09

Figure 22: Quantitative comparison of end-to-end results produced by various initialization methods on color quantization
with a palette size of 10 colors. (Top) The average mean squared error (MSE) of the image produced by each initialization
method compared to the image produced by a ground-truth implementation of the kmeans kernel (lower is better).
(Bottom) The average structural similarity index measure (SSIM) of the image produced by each initialization method
compared to the image produced by a ground-truth implementation of the kmeans kernel (higher is better).

Dataset Size CPN MAML PTS RND

0% 2.74e+ 03± 506.25 3.12e+ 03± 386.19 3.39e+ 03± 81.07 3.40e+ 03± 0.00e+ 00
0.1% 906.06± 782.02 1.84e+ 03± 633.11 1.74e+ 03± 801.02 1.53e+ 03± 783.51
1% 417.60± 166.99 647.58± 250.87 588.70± 206.50 588.65± 250.23
10% 404.50± 163.29 578.44± 155.51 545.88± 207.29 577.39± 279.99
100% 392.68± 150.13 588.08± 204.18 477.86± 177.34 484.74± 100.42

Dataset Size CPN MAML PTS RND

0% 0.31± 0.11 0.18± 0.04 0.16± 0.02 0.16± 0.00e+ 00
0.1% 0.61± 0.15 0.42± 0.12 0.44± 0.16 0.48± 0.12
1% 0.71± 0.07 0.63± 0.09 0.65± 0.08 0.66± 0.08
10% 0.72± 0.08 0.64± 0.06 0.66± 0.08 0.66± 0.11
100% 0.73± 0.07 0.64± 0.08 0.69± 0.07 0.68± 0.05

Figure 23: Quantitative comparison of end-to-end results produced by various initialization methods on color quantization
with a palette size of 15 colors. (Top) The average mean squared error (MSE) of the image produced by each initialization
method compared to the image produced by a ground-truth implementation of the kmeans kernel (lower is better).
(Bottom) The average structural similarity index measure (SSIM) of the image produced by each initialization method
compared to the image produced by a ground-truth implementation of the kmeans kernel (higher is better).

25

Learning to Compile Programs to Neural Networks

Statistic CPN MAML PTS

0th 0.03× 0.06× 0.03×
25th 1.16× 0.85× 0.61×
50th 3.43× 1.19× 1.03×
75th 23.96× 1.68× 1.56×
100th 8.27 · 103× 26.54× 49.39×
MPI 18th 36th 48th

GM 7.28× 1.16× 0.93×

Figure 24: Geometric mean and percentile improvements
to training time over random initialization on a sample of
1,000 EXESTACKCPN test programs. MPI is the minimum
percentile at which an initialization method improves over
random initialization.

0 2000 4000 6000 8000 10000 12000 14000
Epoch

0

20

40

60

80

100

C
u

m
u

la
ti

ve
%

of
F

in
is

h
ed

P
ro

gr
am

s

ExeStackCPN Training Time

CPN

MAML

PTS

RND

Figure 25: Epoch vs. percentage of EXESTACKCPN pro-
grams that each initialization method finished at that epoch.

discard these results before computing the geometric mean.

There are a few subtleties in this methodology. First, note
that random initialization does not always have a finish
epoch of 5,000, because the target error set after 5,000
epochs of training may have already been achieved earlier
in training. Also, since the timeout epoch (15,000) is 3×
the baseline finish epoch (5,000), the worst case slowdown
for each initialization method is 1

3×.

Visualizing Results. Since we evaluate on many pro-
grams in EXESTACKCPN, we plot the number of finished
programs as a function of the number of epochs for each
initialization method. For each program and initialization
method, we calculate the finish epoch for that program
as the average finish epoch over all instances of the
initialization method and all trials for that instance.

L.0.2. RESULTS

The results are summarized in Figures 24and 25 for the
sample of EXESTACKCPN test programs and Figures 26
and 27 for ParrotBenchShort.

EXESTACKCPN Test Programs. COMPNETs achieve
the best results on average, with a 7.28× improvement over

Statistic CPN MAML PTS

0th 0.39× 0.38× 0.42×
25th 0.54× 0.63× 0.57×
50th 1.01× 0.96× 0.83×
75th 108.21× 1.07× 7.91×
100th 849.78× 25.66× 278.11×
MPI 50th 54th 60th

GM 4.31× 1.07× 2.35×

Figure 26: Geometric mean (GM) training time improve-
ments over random initialization (MPI) on PARROT-
BENCHSHORT. The percentiles from 0th to 100th are
the minimum percentile at which an initialization method
improves over random initialization.

Program CPN MAML PTS

fft 1.43× 0.83× 0.80×
invk2j 0.49× 0.65× 0.56×
kmeans 674.47× 2.15× 86.87×
sobel 0.74× 1.14× 0.79×

Figure 27: Geometric mean training time improvements
over random initialization take over all of PARROT-
BENCHSHORT.

random initialization, whereas MAML and pretrained surro-
gates achieve 1.16× and 0.93× improvements, respectively.
COMPNETs improve over random initialization in as low
as the 18th perecentile, whereas MAML and pretrained
surrogates improve over random initialization after the 36th
and 48th percentile, respectively.

Until the ≈ 5,000th epoch, COMPNETs finish training on
strictly more programs than all other initialization methods.
At the 5,000th epoch, COMPNETs finish training for≈ 90%
of programs. For the remaining 10% of programs, random
initialization and MAML begin to overtake COMPNETs,
at epochs ≈ 6,250 and ≈ 9,000, respectively.

PARROTBENCHSHORT Programs. COMPNETs
achieve the best results on average, with a 4.31× improve-
ment over random initialization, whereas MAML and
pretrained surrogates achieve 1.07× and 2.35× improve-
ments, respectively. COMPNETs improve over random
initialization after the 50th perecentile, MAML improves
over random initialization after the 54th percentile, and
pretrained surrogates improve over random initialization
after the 48th percentile.

COMPNETs range between improvements of 0.49× on
invk2j to 674× on kmeans. The variance between
other techniques is less pronounced, with MAML varying

26

Learning to Compile Programs to Neural Networks

between 0.65× on invk2j and 2.15× on kmeans, and
pretrained surrogates varying between 0.56× on invk2j
and 87× on kmeans. Since all results present slowdowns
on invk2j and speedups on kmeans, it is possible
ExeStackCPN does not include similar computations to
invk2j but does include similar computations to kmeans.
We use an extensive decontamination methodology (see
Appendix E.1), so we conclude these similarities are
abstract in nature.

Since COMPNETs improve training time over random
initialization on both EXESTACKCPN and PARROT-
BENCHSHORT, we answer yes to RQ 2.

Additional Data. We present the initial train losses,
initial test lossses, and target test losses for both EXESTACK-
CPN (Figure 28) and PARROTBENCHSHORT (Figures 29,
30, and 31). We also present the average finish epoch
(Figure 32) for each initialization method and the number of
timeouts (Figure 33) on PARROTBENCHSHORT programs.

M. Acceptable Surrogate Error
In this section, we show that, in the context of our evaluation,
the error incurred from using neural surrogates is satisfac-
tory for downstream applications. We first show that the
surrogates of Esmaeilzadeh et al. (2012a) achieve acceptable
end-to-end error on PARROTBENCHSHORT and that our
surrogates achieve commensurate error with their surrogates.
Then, we explain that the error incurred from datatype
mismatches alone is negligible for PARROTBENCHSHORT.

M.1. End-to-End Error

Esmaeilzadeh et al. calculate end-to-end error for the
benchmarks we consider from PARROTBENCH as follows:

• fft. Apply the fast Fourier transform to a sequence
of 2,048 values, where the value at the ith index is
i, and measure the average relative error between the
output of the original fft implementation and the
approximate fft implementation.

• invk2j. Generate 1,000 pairs of joint angles (θ1, θ2),
with both angles sampled uniformly at random from
[0, π/2]. Run forward kinematics on these angles, to
obtain (x, y) coordinates for the tip of the joint arm.
Run inverse kinematics on these (x, y) coordinates,
to obtain joint angles (θ̃1, θ̃2) that place the tip of
the joint arm at (x, y). Measure the average relative
error between the joint angles recovered by the
original invk2j implementation and the approximate
invk2j implementation.

• kmeans. Apply one iteration of k-means clustering
to each pixel of the image in Figure 16, then set each

pixel’s color to the color of the closest centroid. Mea-
sure the average root mean squared error between the
image produced by the original kmeans implemen-
tation and the approximate kmeans implementation.

• sobel. Convert the image in Figure 16 to grayscale
using a weighted average of 30% red, 59% green, and
11% blue. Apply the sobel filter to the first row of
the image, the first column, and the last row. Measure
the average root mean squared error between the image
produced by the original sobel implementation and
the approximate sobel implementation.

The end-to-end error of the neural-surrogate-based imple-
mentation of each benchmark reported by Esmaeilzadeh et
al. is ≤ 7.5% on the subset of PARROTBENCH benchmarks
we draw from (see Figure 34). An end-to end quality loss
of 10% or more is common in the approximate computing
literature (Esmaeilzadeh et al., 2012a;b; Sampson et al.,
2011; Baek & Chilimbi, 2010; Misailovic et al., 2010). For
example, Park et al. develop neural surrogates of programs
for image processing, audio processing, and speech
processing, and they collect user feedback on the perceptual
quality of the approximate programs (Park et al., 2016).
Their results show that, on a majority of the benchmarks
they consider, a quality loss of≥ 10% is deemed acceptable
by ≥ 80% of users. The neural surrogates we train achieve
commensurate and often lower test error than the surrogates
of Esmaeilzadeh et al. (2012a). Thus, the neural surrogates
we train achieve an acceptable level of approximation.

M.2. Datatype Mismatch Error

The neural surrogates we compile to and finetune use
single-precision data types, but 59% of EXESTACKCPN
programs use at least one double-precision datatype
and 56% of EXESTACKCPN programs use exclusively
double-precision datatypes.

We generate two versions of each PARROTBENCHSHORT
program: one using only float and one using only
double. We then generate random double-precision inputs
according to the methodology in Section F.2 and execute
each version of each program. We report the mean squared
error (MSE) between the outputs of the single- and double-
precision versions of each program in Figure 34 (Bottom).

Between the float and double implementations, the
largest mean squared error (MSE) we observe is 5.3 · 10−4
for invk2j (0). The neural surrogate approximation error
is 5.6 · 10−3, an order of magnitude larger. The discrepancy
is even larger for every other benchmark.

27

Learning to Compile Programs to Neural Networks

10−7 10−5 10−3 10−1 101

Initial Train Loss

100

101

102

103

F
re

qu
en

cy

ExeStackCPN Initial Train Loss Histogram

CPN

MAML

PTS

RND

10−7 10−5 10−3 10−1 101

Initial Test Loss

100

101

102

103

F
re

qu
en

cy

ExeStackCPN Initial Test Loss Histogram

CPN

MAML

PTS

RND

10−17 10−14 10−11 10−8 10−5 10−2

Target Test Loss

101

102

103

F
re

qu
en

cy

ExeStackCPN Target Test Loss Histogram

RND

Figure 28: Histogram of initial train losses (top) and initial test losses (bottom) for surrogats produced by each initialization
method in the training time evaluation, as well as a histogram of the target test losses set by random initialization after
training for 5,000 epochs. Losses are not averaged across instances of initialization methods and trials. Note that both
the x and y axes are log-scale.

28

Learning to Compile Programs to Neural Networks

Program CPN (0) CPN (1) CPN (2) CPN

fft 0.48± 1.81 · 10−6 0.43± 8.51 · 10−6 2.94± 6.80 · 10−5 1.28± 1.20
invk2j 1.14± 5.67 · 10−4 1.90± 8.89 · 10−4 2.54± 1.52 · 10−3 1.86± 0.58
kmeans 0.12± 1.44 · 10−5 0.09± 1.33 · 10−5 0.08± 1.20 · 10−5 0.10± 0.02
sobel 0.09± 3.62 · 10−4 0.13± 4.21 · 10−4 0.17± 3.72 · 10−4 0.13± 0.03

Program MAML (0) MAML (1) MAML (2) MAML

fft 0.57± 0.18 0.59± 0.19 0.53± 0.14 0.56± 0.16
invk2j 2.08± 0.64 2.07± 0.59 2.02± 0.56 2.06± 0.58
kmeans 0.76± 0.46 0.64± 0.38 0.79± 0.52 0.73± 0.44
sobel 0.24± 0.16 0.18± 0.12 0.25± 0.22 0.22± 0.17

Program PTS (0) PTS (1) PTS (2) PTS

fft 0.83± 0.07 0.84± 0.07 0.84± 0.07 0.84± 0.07
invk2j 2.11± 0.57 2.10± 0.56 2.12± 0.59 2.11± 0.55
kmeans 0.10± 1.92 · 10−5 0.10± 1.88 · 10−5 0.10± 1.87 · 10−5 0.10± 1.34 · 10−3
sobel 0.18± 4.37 · 10−4 0.19± 4.40 · 10−4 0.19± 4.43 · 10−4 0.19± 3.55 · 10−3

Program RND

fft 0.64± 0.35
invk2j 2.37± 0.80
kmeans 0.24± 0.25
sobel 0.36± 0.34

Figure 29: Average initial train loss on PARROTBENCHSHORT for surrogates produced by each initialization method. We
include a column for each instance of an initialization method (e.g., “CPN (0)” is only one of the COMPNETs we trained)
as well as a column that averages over each instance (e.g., “CPN” is an average over all COMPNETs we trained).

29

Learning to Compile Programs to Neural Networks

Program CPN (0) CPN (1) CPN (2) CPN

fft 0.48± 0.00 0.42± 0.00 2.92± 0.00 1.27± 1.18
invk2j 1.14± 0.00 1.89± 0.00 2.51± 0.00 1.84± 0.57
kmeans 0.06± 0.00 0.06± 0.00 0.05± 0.00 0.06± 0.01
sobel 0.09± 0.00 0.13± 0.00 0.17± 0.00 0.13± 0.03

Program MAML (0) MAML (1) MAML (2) MAML

fft 0.57± 0.18 0.59± 0.19 0.53± 0.14 0.56± 0.17
invk2j 2.07± 0.63 2.06± 0.59 2.01± 0.56 2.05± 0.57
kmeans 0.71± 0.43 0.60± 0.37 0.74± 0.50 0.68± 0.42
sobel 0.24± 0.16 0.18± 0.12 0.25± 0.22 0.22± 0.17

Program PTS (0) PTS (1) PTS (2) PTS

fft 0.83± 0.07 0.84± 0.07 0.85± 0.07 0.84± 0.07
invk2j 2.09± 0.57 2.09± 0.56 2.11± 0.58 2.10± 0.55
kmeans 0.06± 0.00 0.06± 0.00 0.06± 0.00 0.06± 7.58 · 10−4
sobel 0.18± 0.00 0.19± 0.00 0.19± 0.00 0.19± 3.52 · 10−3

Program RND

fft 0.64± 0.36
invk2j 2.36± 0.80
kmeans 0.21± 0.23
sobel 0.36± 0.34

Figure 30: Average initial test loss on PARROTBENCHSHORT for surrogates produced by each initialization method. We
include a column for each instance of an initialization method (e.g., “CPN (0)” is only one of the COMPNETs we trained)
as well as a column that averages over each instance (e.g., “CPN” is an average over all COMPNETs we trained).

Program RND

fft 3.96 · 10−6
invk2j 2.83 · 10−3
kmeans 0.01
sobel 4.16 · 10−4

Figure 31: Target test loss for each PARROTBENCHSHORT program, set by training randomly initialized surrogates for
5,000 epochs over 9 trials and using the average final test loss.

30

Learning to Compile Programs to Neural Networks

Program CPN-R Z/Z (Clone) (0) CPN-R Z/Z (Clone) (1) CPN-R Z/Z (Clone) (2) CPN-R Z/Z (Clone)

fft 379.7± 31.5 262.0± 15.9 1140.7± 40.3 594.1± 398.0
invk2j 15000.0± 0.0 9200.7± 885.0 12581.3± 1956.4 12260.7± 2700.6
kmeans 12.0± 1.5 6.0± 0.0 6.0± 0.0 8.0± 3.0
sobel 11316.7± 2774.9 10637.0± 2332.6 4232.3± 2168.6 8728.7± 4008.5

Program MAML-Z Z/Z (Reinit) (0) MAML-Z Z/Z (Reinit) (1) MAML-Z Z/Z (Reinit) (2) MAML-Z Z/Z (Reinit)

fft 649.3± 469.7 824.0± 527.4 1069.0± 1047.5 847.4± 722.4
invk2j 9837.3± 5124.5 5327.7± 4358.9 13949.0± 3153.0 9704.7± 5464.3
kmeans 198.7± 192.1 13338.7± 4984.0 5018.0± 7486.5 6185.1± 7449.2
sobel 5695.7± 3764.1 6572.7± 5221.4 3668.3± 2193.8 5312.2± 3970.6

Program PTS (0) PTS (1) PTS (2) PTS

fft 459.3± 241.2 1384.7± 1098.1 1024.3± 1087.0 956.1± 950.3
invk2j 13794.3± 3345.0 12470.3± 5072.0 6632.7± 5282.7 10965.8± 5477.0
kmeans 188.0± 36.3 58.7± 42.3 18.3± 1.0 88.3± 80.0
sobel 9964.0± 4035.9 5436.7± 120.1 7555.7± 485.2 7652.1± 2939.6

Program RND

fft 693.0± 689.0
invk2j 5835.7± 5133.0
kmeans 5098.7± 7429.2
sobel 5881.0± 3900.7

Figure 32: Average epoch at which each initialization method achieves the target test loss for the training time evaluation
on PARROTBENCHSHORT. We include a column for each instance of an initialization method (e.g., “CPN (0)” is only
one of the COMPNETs we trained) as well as a column that averages over each instance (e.g., “CPN” is an average over
all COMPNETs we trained).

31

Learning to Compile Programs to Neural Networks

Program CPN (0) CPN (1) CPN (2) CPN

fft 0/9 0/9 0/9 0/27
invk2j 9/9 0/9 3/9 12/27
kmeans 0/9 0/9 0/9 0/27
sobel 0/9 0/9 0/9 0/27

Program MAML (0) MAML (1) MAML (2) MAML

fft 0/9 0/9 0/9 0/27
invk2j 4/9 1/9 8/9 13/27
kmeans 0/9 8/9 3/9 11/27
sobel 1/9 2/9 0/9 3/27

Program PTS (0) PTS (1) PTS (2) PTS

fft 0/9 0/9 0/9 0/27
invk2j 7/9 7/9 1/9 15/27
kmeans 0/9 0/9 0/9 0/27
sobel 3/9 0/9 0/9 3/27

Program RND

fft 0/9
invk2j 0/9
kmeans 3/9
sobel 1/9

Figure 33: Number of trials where each initialization method does not achieve the target test loss after training for 15,000
epochs during the training time evaluation on PARROTBENCHSHORT. We include a column for each instance of an
initialization method (e.g., “CPN (0)” is only one of the COMPNETs we trained) as well as a column that sums over each
instance (e.g., “CPN” is a sum over all COMPNETs we trained).

Benchmark CPN MAML PTS RND PRT E2E Error

fft 4.3 · 10−6 3.1 · 10−6 5.3 · 10−6 3.2 · 10−6 2 · 10−5 7.22%
invk2j 3.3 · 10−3 3.3 · 10−3 3.4 · 10−3 3.1 · 10−3 5.6 · 10−3 7.50%
kmeans 3.4 · 10−3 1.3 · 10−2 5.2 · 10−3 8.3 · 10−3 1.7 · 10−3 6.18%
sobel 5.4 · 10−4 4.5 · 10−4 6.3 · 10−4 4.2 · 10−4 2.3 · 10−3 3.44%

Benchmark float vs. double MSE

fft (0) 1.2 · 10−14
fft (1) 1.1 · 10−14
invk2j (0) 5.3 · 10−4
invk2j (1) 7.6 · 10−12
kmeans 0.0
sobel 6.51 · 10−8

Figure 34: (Top) Mean squared error (MSE) on PARROTBENCHSHORT test set for each initialization method in our
evaluation, MSE of the neural surrogates Esmaeilzadeh et al. (2012a) train, and the end-to-end error achieved by the
surrogates of Esmaeilzadeh et al (PRT). (Bottom) MSE between PARROTBENCHSHORT implementations that solely use the
float datatype and implementations that solely use the double datatype. To calculate MSE, each program is evaluated
on all inputs from the train and test set of PARROTBENCHSHORT, and MSE is computed using the programs’ outputs.

32

Learning to Compile Programs to Neural Networks

N. Padding
Inputs For Variable-Input Support

As explained in Section 3, the COMPNET architecture out-
puts a fixed-size weight vector. To develop a variable-input
neural surrogate compiler, we chose a vector size with as
many parameters as the architecture with the largest number
of inputs we wish to support. However, when one compiles
a program with fewer inputs than the target architecture,
one must supply values to the excess inputs or remove these
neurons from the architecture. Supplying zeroes for the
excess inputs is mathematically equivalent to removing the
neurons, so we characterize each strategy purely in terms of
data. Furthermore, there are three phases in which data is
supplied to the system: neural surrogate compiler training,
compiled surrogate finetuning, and compiled surrogate eval-
uation. Thus, we categorize the strategies we consider by the
type of data the neural surrogate compiler is trained on, the
type of data the compiled surrogates are finetuned on, and
the type of data the compiled surrogates are evaluated on.

Methodology. There are two types of data we considered:
random padding and zero padding. With random padding,
any excess inputs are supplied with values from the same
distribution as the primary inputs. With zero padding, any
excess inputs are supplied with zeroes. We considered
most permutations of random and zero padding for the
three phases of training described in the previous paragraph.
Notably, however, we did not consider the family of
strategies where one finetunes on zero-padded inputs and
evaluates on random-padded inputs because it seemed
unlikely that adding a new source of noise at inference time
would lead to any improvement.

To decide which strategy to use for each initialization
method, we performed the PARROTBENCHSHORT data
efficiency evaluation of Section 5.2 with a set of padding
strategies applied to each initialization method. For each
initialization method, we chose the strategy that achieved
the greatest overall test loss improvement over random
initialization. Note that these experiments were performed
prior to adding variable-output support, so we split the fft
and invk2j benchmarks in PARROTBENCHSHORT into
multiple programs—one for each output.

Results. We present the results in separate figures for
random initialization (Figure 35), pretrained surrogates
trained on random-padded and zero-padded inputs
(Figures 36 and 37), MAML initializations trained on
random-padded and zero-padded inputs (Figures 38 and
39), and COMPNETS trained on random-padded and
zero-padded inputs (Figures 40 and 41).

Random initialization sees performance degradation
with every padding strategy. One explanation for this

degradation is that the baseline is random initialization
with an architecture that has exactly as many inputs as
needed, whereas each of the padding strategies operates on
the largest encompassing architecture. Since the magnitude
of weights in the He initialization is inversely proportional
to the fan-in and fan-out of a neuron (He et al., 2015), the
magnitude of weights in the first layer of the network will
be smaller, potentially slowing convergence.

Surrogates that are pretrained on random-padded inputs
perform approximately as well as surrogates pretrained on
zero-padded inputs for all finetuning and evaluation variants.
Among the finetuning and evaluation variants, finetuning
and evaluating on zero-padded inputs performs the best.
The best configuration by a small margin is pretraining on
random-padded inputs and finetuning and evaluating on
zero-padded inputs; this configuration achieves a geometric
mean test loss improvement of 1.13×.

Across all finetuning and evaluation modes, MAML
initializations trained on zero-padded inputs outperform
MAML initializations trained on random-padded inputs.
When MAML initializations are trained on zero-padded
inputs, finetuning and evaluating on zero-padded inputs
leads to the greatest geometric mean test loss improvement
of 1.29× over random initialization.

Across all finetuning and evaluation modes, COMPNET
initializations trained on random-padded inputs outperform
COMPNET initializations trained on zero-padded inputs.
When COMPNET initializations are trained on random-
padded inputs, finetuning and evaluating on zero-padded
inputs leads to the greatest geometric mean test loss
improvement of 1.96× over random initialization.

Conclusion. In light of these results, we make the follow-
ing decisions. We choose standard random initialization
over any of the padded variants; we choose pretrained sur-
rogates that are pretrained on random-padded inputs and
finetuned and evaluated on zero-padded inputs; we choose
MAML initializations that are trained, finetuned, and evalu-
ated on zero-padded inputs; and we choose COMPNETS that
are trained on random-padded inputs and the surrogates they
produce are finetuned and evaluated on zero-padded inputs.

The reason why some initialization methods perform better
when training on random-padded inputs and others perform
better when training on zero-padded inputs is unclear and
deserves further study.

O. Strategies
for Variable-Output Program Support

Recall, all programs in EXESTACK have a single output
(Section 4). However, the fft and invk2j benchmarks
in PARROTBENCHSHORT have multiple outputs. In this

33

Learning to Compile Programs to Neural Networks

Program RND RND FT-R EV-R RND FT-R EV-Z RND FT-Z EV-Z

fft (0) 1.00× 0.02× 0.02× 0.19×
fft (1) 1.00× 0.18× 0.23× 1.06×
invk2j (0) 1.00× 0.45× 0.53× 1.00×
invk2j (1) 1.00× 0.31× 0.32× 0.82×
kmeans 1.00× 0.64× 0.65× 0.83×
sobel 1.00× 1.00× 1.00× 1.00×

Dataset Size RND RND FT-R EV-R RND FT-R EV-Z RND FT-Z EV-Z

0% 1.00× 0.80× 0.80× 0.80×
0.1% 1.00× 0.05× 0.08× 0.51×
1% 1.00× 0.10× 0.10× 0.39×
10% 1.00× 0.22× 0.23× 1.01×
100% 1.00× 1.22× 1.29× 1.18×

Statistic RND RND FT-R EV-R RND FT-R EV-Z RND FT-Z EV-Z

0th 1.00× 4.46 · 10−4× 6.03 · 10−4× 0.01×
25th 1.00× 0.27× 0.30× 0.92×
50th 1.00× 0.83× 0.86× 1.00×
75th 1.00× 1.00× 1.00× 1.09×
100th 1.00× 5.64× 6.48× 1.66×
MPI 0th 68th 63rd 50th

GM 1.00× 0.26× 0.28× 0.72×

Figure 35: Data efficiency results for PARROTBENCHSHORT programs using variants of random initialization. FT-R and
FT-Z mean the surrogate initialization was finetuned using random-padded and zero-padded inputs, respectively. EV-R
and EV-Z mean the surrogate initialization was evaluated using random-padded and zero-padded inputs, respectively.

34

Learning to Compile Programs to Neural Networks

Program PTS-R FT-R EV-R PTS-R FT-R EV-Z PTS-R FT-Z EV-Z

fft (0) 0.06× 0.06× 1.53×
fft (1) 0.17× 0.19× 0.76×
invk2j (0) 0.50× 0.59× 1.18×
invk2j (1) 0.28× 0.29× 0.77×
kmeans 1.77× 1.80× 2.28×
sobel 0.85× 0.85× 0.85×

Dataset Size PTS-R FT-R EV-R PTS-R FT-R EV-Z PTS-R FT-Z EV-Z

0% 1.38× 1.38× 1.38×
0.1% 0.05× 0.06× 1.26×
1% 0.11× 0.12× 1.03×
10% 0.60× 0.62× 0.94×
100% 1.33× 1.45× 1.07×

Statistic PTS-R FT-R EV-R PTS-R FT-R EV-Z PTS-R FT-Z EV-Z

0th 3.50 · 10−4× 4.76 · 10−4× 0.15×
25th 0.26× 0.35× 0.75×
50th 0.73× 0.77× 1.07×
75th 1.38× 1.39× 1.65×
100th 28.05× 28.24× 28.03×
MPI 66th 65th 47th

GM 0.36× 0.39× 1.13×

Figure 36: Data efficiency results for PARROTBENCHSHORT programs using pretrained surrogates trained with
random-padded inputs. FT-R and FT-Z mean the surrogate initialization was finetuned using random-padded and
zero-padded inputs, respectively. EV-R and EV-Z mean the surrogate initialization was evaluated using random-padded
and zero-padded inputs, respectively.

35

Learning to Compile Programs to Neural Networks

Program PTS-Z FT-R EV-R PTS-Z FT-R EV-Z PTS-Z FT-Z EV-Z

fft (0) 0.06× 0.06× 0.95×
fft (1) 0.24× 0.33× 1.04×
invk2j (0) 0.53× 0.62× 1.25×
invk2j (1) 0.35× 0.37× 1.08×
kmeans 0.95× 0.93× 1.31×
sobel 1.07× 1.07× 1.07×

Dataset Size PTS-Z FT-R EV-R PTS-Z FT-R EV-Z PTS-Z FT-Z EV-Z

0% 1.58× 1.58× 1.58×
0.1% 0.06× 0.09× 1.17×
1% 0.10× 0.10× 1.09×
10% 0.80× 0.84× 1.12×
100% 0.91× 0.96× 0.74×

Statistic PTS-Z FT-R EV-R PTS-Z FT-R EV-Z PTS-Z FT-Z EV-Z

0th 5.52 · 10−4× 6.16 · 10−4× 0.07×
25th 0.37× 0.47× 0.87×
50th 0.84× 0.84× 1.10×
75th 1.13× 1.19× 1.41×
100th 10.94× 12.86× 7.41×
MPI 66th 65th 41st

GM 0.37× 0.41× 1.11×

Figure 37: Data efficiency results for PARROTBENCHSHORT programs using pretrained surrogates trained with zero-padded
inputs. FT-R and FT-Z mean the surrogate initialization was finetuned using random-padded and zero-padded inputs,
respectively. EV-R and EV-Z mean the surrogate initialization was evaluated using random-padded and zero-padded inputs,
respectively.

36

Learning to Compile Programs to Neural Networks

Program MAML-R FT-R EV-R MAML-R FT-R EV-Z MAML-R FT-Z EV-Z

fft (0) 0.06× 0.07× 1.30×
fft (1) 0.32× 0.45× 1.11×
invk2j (0) 0.39× 0.48× 0.82×
invk2j (1) 0.64× 0.75× 1.13×
kmeans 0.63× 0.65× 0.65×
sobel 0.44× 0.44× 0.44×

Dataset Size MAML-R FT-R EV-R MAML-R FT-R EV-Z MAML-R FT-Z EV-Z

0% 0.97× 0.97× 0.97×
0.1% 0.06× 0.08× 1.12×
1% 0.12× 0.15× 0.82×
10% 0.51× 0.54× 0.56×
100% 1.11× 1.33× 0.90×

Statistic MAML-R FT-R EV-R MAML-R FT-R EV-Z MAML-R FT-Z EV-Z

0th 7.16 · 10−4× 7.54 · 10−4× 0.07×
25th 0.27× 0.32× 0.52×
50th 0.54× 0.58× 0.87×
75th 0.95× 0.99× 1.39×
100th 12.03× 16.94× 15.18×
MPI 79th 76th 65th

GM 0.33× 0.39× 0.85×

Figure 38: Data efficiency results for PARROTBENCHSHORT programs using MAML initializations trained with
random-padded inputs. FT-R and FT-Z mean the surrogate initialization was finetuned using random-padded and
zero-padded inputs, respectively. EV-R and EV-Z mean the surrogate initialization was evaluated using random-padded
and zero-padded inputs, respectively.

37

Learning to Compile Programs to Neural Networks

Program MAML-Z FT-R EV-R MAML-Z FT-R EV-Z MAML-Z FT-Z EV-Z

fft (0) 0.18× 0.21× 2.85×
fft (1) 0.54× 0.69× 1.16×
invk2j (0) 0.62× 0.77× 1.35×
invk2j (1) 0.50× 0.56× 1.11×
kmeans 0.88× 0.91× 1.04×
sobel 0.89× 0.89× 0.89×

Dataset Size MAML-Z FT-R EV-R MAML-Z FT-R EV-Z MAML-Z FT-Z EV-Z

0% 1.35× 1.34× 1.34×
0.1% 0.06× 0.08× 1.40×
1% 0.14× 0.17× 1.38×
10% 1.34× 1.44× 1.16×
100% 2.60× 2.89× 1.19×

Statistic MAML-Z FT-R EV-R MAML-Z FT-R EV-Z MAML-Z FT-Z EV-Z

0th 7.14 · 10−4× 1.08 · 10−3× 0.29×
25th 0.41× 0.46× 0.86×
50th 0.88× 0.91× 1.10×
75th 1.42× 1.43× 1.50×
100th 57.67× 76.44× 13.85×
MPI 56th 55th 39th

GM 0.53× 0.61× 1.29×

Figure 39: Data efficiency results for PARROTBENCHSHORT programs using MAML initializations trained with
zero-padded inputs. FT-R and FT-Z mean the surrogate initialization was finetuned using random-padded and zero-padded
inputs, respectively. EV-R and EV-Z mean the surrogate initialization was evaluated using random-padded and zero-padded
inputs, respectively.

38

Learning to Compile Programs to Neural Networks

Program CPN-R FT-R EV-R CPN-R FT-R EV-Z CPN-R FT-Z EV-Z

fft (0) 0.88× 0.99× 7.18×
fft (1) 0.48× 0.73× 1.17×
invk2j (0) 0.56× 0.73× 1.09×
invk2j (1) 0.55× 0.62× 1.04×
kmeans 4.12× 4.26× 5.22×
sobel 1.14× 1.14× 1.14×

Dataset Size CPN-R FT-R EV-R CPN-R FT-R EV-Z CPN-R FT-Z EV-Z

0% 1.42× 1.42× 1.42×
0.1% 0.09× 0.14× 2.33×
1% 1.11× 1.44× 2.56×
10% 1.89× 1.99× 2.18×
100% 2.42× 2.57× 1.57×

Statistic CPN-R FT-R EV-R CPN-R FT-R EV-Z CPN-R FT-Z EV-Z

0th 1.18 · 10−3× 1.47 · 10−3× 0.19×
25th 0.49× 0.60× 0.86×
50th 0.99× 1.01× 1.22×
75th 2.17× 2.20× 2.31×
100th 171.49× 191.02× 1478.96×
MPI 51st 48th 35th

GM 0.92× 1.08× 1.96×

Figure 40: Data efficiency results for PARROTBENCHSHORT programs using COMPNETs trained on random-padded inputs.
FT-R and FT-Z mean the surrogate initialization was finetuned using random-padded and zero-padded inputs, respectively.
EV-R and EV-Z mean the surrogate initialization was evaluated using random-padded and zero-padded inputs, respectively.

39

Learning to Compile Programs to Neural Networks

Program CPN-Z FT-R EV-R CPN-Z FT-R EV-Z CPN-Z FT-Z EV-Z

fft (0) 0.02× 0.02× 0.58×
fft (1) 0.24× 0.28× 1.06×
invk2j (0) 0.47× 0.61× 1.07×
invk2j (1) 0.60× 0.67× 1.62×
kmeans 1.45× 1.51× 1.78×
sobel 0.91× 0.91× 0.91×

Dataset Size CPN-Z FT-R EV-R CPN-Z FT-R EV-Z CPN-Z FT-Z EV-Z

0% 1.50× 1.51× 1.51×
0.1% 0.05× 0.07× 0.88×
1% 0.10× 0.12× 1.33×
10% 0.40× 0.45× 0.66×
100% 1.65× 1.75× 1.36×

Statistic CPN-Z FT-R EV-R CPN-Z FT-R EV-Z CPN-Z FT-Z EV-Z

0th 3.05 · 10−4× 5.88 · 10−4× 1.52 · 10−4×
25th 0.39× 0.42× 0.77×
50th 0.79× 0.82× 1.14×
75th 1.31× 1.37× 1.60×
100th 70.29× 70.97× 69.18×
MPI 63rd 59th 38th

GM 0.35× 0.39× 1.10×

Figure 41: Data efficiency results for PARROTBENCHSHORT programs using COMPNETs trained on zero-padded inputs.
FT-R and FT-Z mean the surrogate initialization was finetuned using random-padded and zero-padded inputs, respectively.
EV-R and EV-Z mean the surrogate initialization was evaluated using random-padded and zero-padded inputs, respectively.

40

Learning to Compile Programs to Neural Networks

appendix, we propose and evaluate a set of strategies to
adapt initialization methods trained on EXESTACK to
support variable-output programs.

Methodology. For each initialization method, we produce
a neural surrogate initialization, then apply one of the
following strategies:

• Grow: Use the initialization produced by the initializa-
tion method and extend the final layer with randomly
initialized weights to reach the target number of
outputs.

• Reinitialize: Use the initialization produced by the
initialization method but randomly initialize the final
layer, sized to match the target number of outputs.

• Clone: Use the initialization produced by the initial-
ization method but duplicate the weights for the one
active output in the final layer of the initialization, to
generate weights for the target number of outputs.

To decide which strategy to use for each initialization
method, we performed the PARROTBENCHSHORT data
efficiency evaluation of Section 5.2, and we swept over a set
of variable-output strategies applied to each initialization
method. We used initialization methods that support
variable-input programs, using the best strategies from
Appendix N. For each initialization method, we choose
the strategy that achieves the greatest overall test loss
improvement over random initialization.

Results. We present the results for COMPNETs, MAML,
and pretrained surrogates in Figures 42, 43, and 44,
respectively.

The best-performing strategy for COMPNETs is cloning,
with a geometric mean test loss improvement of 1.91×,
the best-performing strategy for MAML is reinitialization,
with a geometric mean test loss improvement of 0.93×,
and the best-performing strategy for pretrained surrogates
is growing, with a geometric mean test loss improvement
of 1.05×. Note that the fft and invk2j benchmarks are
the only programs where the variable-output strategies are
necessary, but we perform each strategy indiscriminately.
This indiscriminate application harms performance for
the reinitialization strategy on kmeans and sobel
when using COMPNETs and pretrained surrogates. For
COMPNETs in particular, if we only applied each strategy
where necessary, reinitialization would have outperformed
cloning by a small margin.

Conclusion. In light of these results, we make the
following decisions. We choose the cloning strategy for
COMPNETs, the reinitialization strategy for MAML, and
the growing strategy for pretrained surrogates.

41

Learning to Compile Programs to Neural Networks

Program CPN-R Z/Z (Grow) CPN-R Z/Z (Reinit) CPN-R Z/Z (Clone)

fft 0.95× 1.49× 1.47×
invk2j 0.86× 1.01× 1.01×
kmeans 7.85× 1.77× 7.85×
sobel 1.14× 1.12× 1.14×

Dataset Size CPN-R Z/Z (Grow) CPN-R Z/Z (Reinit) CPN-R Z/Z (Clone)

0% 1.86× 0.95× 1.81×
0.1% 1.61× 1.46× 1.98×
1% 1.49× 1.40× 1.77×
10% 2.13× 1.93× 2.38×
100% 1.26× 1.05× 1.68×

Statistic CPN-R Z/Z (Grow) CPN-R Z/Z (Reinit) CPN-R Z/Z (Clone)

0th 0.17× 0.33× 0.22×
25th 0.79× 0.85× 0.88×
50th 1.05× 1.13× 1.23×
75th 1.96× 1.76× 2.96×
100th 106.91× 31.55× 106.91×
MPI 42nd 33rd 36th

GM 1.64× 1.31× 1.91×

Figure 42: Data efficiency results for PARROTBENCHSHORT programs using COMPNETs trained on various variable-output
strategies. CPN-R means we train the COMPNETs on random-padded inputs. Z/Z means we finetune and evaluate
COMPNET-initialized surrogates on zero-padded inputs (see Appendix N).

42

Learning to Compile Programs to Neural Networks

Program MAML-Z Z/Z (Grow) MAML-Z Z/Z (Reinit) MAML-Z Z/Z (Clone)

fft 0.65× 0.98× 0.63×
invk2j 1.06× 1.07× 0.88×
kmeans 0.94× 0.68× 0.94×
sobel 0.89× 1.06× 0.89×

Dataset Size MAML-Z Z/Z (Grow) MAML-Z Z/Z (Reinit) MAML-Z Z/Z (Clone)

0% 1.42× 0.90× 1.42×
0.1% 0.92× 0.94× 0.73×
1% 0.73× 0.93× 0.51×
10% 0.88× 1.11× 0.94×
100% 0.60× 0.81× 0.75×

Statistic MAML-Z Z/Z (Grow) MAML-Z Z/Z (Reinit) MAML-Z Z/Z (Clone)

0th 0.15× 0.28× 0.05×
25th 0.64× 0.82× 0.64×
50th 0.92× 0.97× 0.85×
75th 1.14× 1.14× 1.16×
100th 4.01× 1.99× 8.00×
MPI 58th 54th 66th

GM 0.87× 0.93× 0.82×

Figure 43: Data efficiency results for PARROTBENCHSHORT programs using MAML initializations trained on various
variable-output strategies. MAML-Z means we train the MAML initializations on zero-padded inputs. Z/Z means we
finetune and evaluate MAML-initialized surrogates on zero-padded inputs (see Appendix N).

43

Learning to Compile Programs to Neural Networks

Program PTS-R Z/Z (Grow) PTS-R Z/Z (Reinit) PTS-R Z/Z (Clone)

fft 0.61× 0.88× 0.46×
invk2j 1.05× 0.95× 1.12×
kmeans 2.24× 0.65× 2.24×
sobel 0.85× 0.92× 0.85×

Dataset Size PTS-R Z/Z (Grow) PTS-R Z/Z (Reinit) PTS-R Z/Z (Clone)

0% 1.56× 0.79× 1.65×
0.1% 0.98× 0.93× 0.81×
1% 0.79× 0.87× 0.75×
10% 1.23× 1.00× 1.00×
100% 0.86× 0.67× 0.98×

Statistic PTS-R Z/Z (Grow) PTS-R Z/Z (Reinit) PTS-R Z/Z (Clone)

0th 0.23× 0.22× 0.21×
25th 0.75× 0.77× 0.65×
50th 0.97× 0.93× 0.85×
75th 1.26× 1.04× 1.40×
100th 38.18× 1.86× 38.18×
MPI 54th 69th 63rd

GM 1.05× 0.84× 1.00×

Figure 44: Data efficiency results for PARROTBENCHSHORT programs using pretrained initializations trained on various
variable-output strategies. PTS-R means we train the pretrained initializations on random-padded inputs. Z/Z means we
finetune and evaluate pretrain-initialized surrogates on zero-padded inputs (see Appendix N).

44

	Introduction
	Neural Surrogate Compilation
	The Efficient Surrogate Training Problem
	Neural Surrogate Compilation

	CompNet
	Architecture
	Training
	Surrogate Extraction

	ExeStack
	Evaluation
	Methodology
	CompNet Architecture and Training
	Datasets
	Alternative Initialization Methods
	Finetuning Surrogates

	Data Efficiency Improvements
	Methodology
	Results

	Neural Surrogates for Color Quantization
	Methodology
	Results

	Conclusion
	Related Work
	Neural Surrogates of Programs
	Meta-Learning

	ExeStack Data Curation and Filtering
	ExeStack Execution Harness
	ExeStackCPN Generation
	ExeStackCPN Generation (Extended)
	ExeStackCPN Decontamination
	FFT (Output 0)
	FFT (Output 1)

	InverseK2J (Output 0)
	InvK2J (Output 1)
	KMeans
	Sobel

	Parrot Dataset Details
	ParrotBenchShort Code
	ParrotBenchShort Input Generation
	FFT
	InverseK2J
	KMeans
	Sobel

	CompNet Training Details
	MAML Training Details
	Pretrained Neural Surrogate Training Details
	Data Efficiency Improvements (Extended)
	Neural Surrogates for Color Quantization (Extended)
	Training Time Improvements
	Methodology
	Results

	Acceptable Surrogate Error
	End-to-End Error
	Datatype Mismatch Error

	Padding Inputs For Variable-Input Support
	Strategies for Variable-Output Program Support

