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Abstract
Multimodal learning methods with targeted uni-
modal learning objectives have exhibited their
superior efficacy in alleviating the imbalanced
multimodal learning problem. However, in this
paper, we identify the previously ignored gradi-
ent conflict between multimodal and unimodal
learning objectives, potentially misleading the uni-
modal encoder optimization. To well diminish
these conflicts, we observe the discrepancy be-
tween multimodal loss and unimodal loss, where
both gradient magnitude and covariance of the
easier-to-learn multimodal loss are smaller than
the unimodal one. With this property, we ana-
lyze Pareto integration under our multimodal sce-
nario and propose MMPareto algorithm, which
could ensure a final gradient with direction that is
common to all learning objectives and enhanced
magnitude to improve generalization, providing
innocent unimodal assistance. Finally, experi-
ments across multiple types of modalities and
frameworks with dense cross-modal interaction
indicate our superior and extendable method per-
formance. Our method is also expected to fa-
cilitate multi-task cases with a clear discrepancy
in task difficulty, demonstrating its ideal scala-
bility. The source code and dataset are avail-
able at https://github.com/GeWu-Lab/
MMPareto_ICML2024.

1. Introduction
People are immersed in a variety of sensors, encompass-
ing sight, sound, and touch, which has sparked multimodal
learning (Baltrušaitis et al., 2018; Lin et al., 2023), and
audio-visual learning (Wei et al., 2022). Although many
multimodal methods have revealed effectiveness, Peng et al.
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(2022) pointed out the imbalanced multimodal learning
problem, where most multimodal models cannot jointly
utilize all modalities well and the utilization of each modal-
ity is imbalanced. This problem has raised widely attention
recently (Zhang et al., 2024). Several methods have been
proposed to improve the training of worse learnt modality
with additional module (Wang et al., 2020) or modality-
specific training strategy (Peng et al., 2022; Wu et al., 2022;
Wei et al., 2024). These methods often have one common
sense that targetedly improves unimodal training. Among
them, multitask-like methods that directly add unimodal
learning objectives besides the multimodal joint learning
objective, exhibit their superior effectiveness for alleviating
this imbalanced multimodal learning problem (Wang et al.,
2020; Du et al., 2023; Fan et al., 2023).

However, behind the effective performance, we observe a
previously ignored risk in model optimization under this
widely used multitask-like scenario, potentially limiting
model ability. Every coin has two sides. Unimodal learning
objectives undeniably effectively enhance the learning of
corresponding modalities. Meanwhile, the optimization of
parameters in unimodal encoder is influenced by both multi-
modal joint learning objective and its own unimodal learning
objective. This entails the need to minimize two learning
objectives concurrently, but usually, there does not exist a
set of parameters that could satisfy this goal. Consequently,
these multimodal and unimodal learning objectives could
have conflict during optimization. In Figure 1a, we take an
example of the video encoder on the widely used Kinetics
Sounds dataset. As the results, negative cosine similarity
indicates that multimodal and unimodal gradients indeed
have conflicts in direction during optimization. Especially,
these conflicts at the early training stage could substantially
harm the model ability (Liu et al., 2020). Hence the primary
multimodal learning is potentially disturbed.

To avoid optimization conflicts, it is essential to integrate
both gradients well, making the unimodal gradient not affect
the primary multimodal training but assist it. This necessity
naturally accords with the idea of Pareto method (Sener &
Koltun, 2018), which aims to find a steep gradient direc-
tion that benefits all objectives and finally converges to a
trade-off state of them. As Figure 1b, on one of the repre-
sentative multi-task cases, semantic segmentation and depth
estimation tasks on Cityscapes (Cordts et al., 2016) dataset,
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(a) Kinetics Sounds. (b) Cityscapes. (c) Kinetics Sounds. (d) Kinetics Sounds.

Figure 1. (a). Cosine similarity between multimodal and unimodal gradients in the video encoder of Kinetics Sounds dataset (Arandjelovic
& Zisserman, 2017). (b). Methods performance on the multi-task dataset, Cityscapes (Cordts et al., 2016). Results are from (Sener &
Koltun, 2018) (c). Methods performance of multimodal and unimodal prediction in the video encoder of Kinetics Sounds. Single loss is
the result of the individually trained model with one corresponding learning objective. (d). The gradient magnitude distribution for a fixed
video encoder of Kinetics Sounds dataset. Each count is a mini-batch of SGD optimization. Uniform baseline is a basic way where all
losses are equally summed without special integration.

Pareto method has achieved ideal advancement in balanc-
ing the learning objective of these two tasks. Therefore, it
is expected to keep superiority in solving conflicts in this
multitask-like multimodal learning framework. However,
the fact is contrary to the expectation. As Figure 1c, the
conventional Pareto method (Sener & Koltun, 2018) sur-
prisingly loses its efficacy, even is worse than the uniform
baseline, where all gradients are equally summed.

To explore this counterintuitive phenomenon, we first ana-
lyze properties within multimodal learning scenarios. Un-
like typical multi-task cases, multimodal joint loss is opti-
mized with information from all modalities, while unimodal
loss is optimized with information only from the correspond-
ing modality. Accordingly, multimodal loss is naturally eas-
ier to learn, and verified with lower training error and faster
convergence speed (Wang et al., 2020). We analyze the
gradient magnitude distribution for a fixed set of parameters.
As Figure 1d, the multimodal gradient magnitude is smaller
than the unimodal one with a smaller batch sampling co-
variance. With these properties in gradient magnitude, we
further theoretically analyze and empirically verify that the
conventional Pareto could affect SGD noise strength and
then bring the model to a sharper minima, weakening model
generalization ability.

Based on the above analysis, it becomes imperative to well
address gradient conflicts in multimodal scenarios. Hence,
we propose the MultiModal Pareto (MMPareto) algorithm,
which respectively takes the direction and magnitude into
account during gradient integration. It ensures innocent uni-
modal assistance, where the final gradient is with direction
common to all learning objectives and enhanced magnitude
for improving generalization. We also provide an analy-
sis of the method’s convergence. Based on results across
multiple types of datasets, our method effectively alleviates
the imbalanced multimodal learning problem and could be
well equipped with models with dense cross-modal inter-
action, like multimodal Transformers. As Figure 1c, our

method provides both advanced multimodal performance
and unimodal performance. What’s more, the unimodal
performance is even superior to the individually trained uni-
modal model, which was rarely achieved before. Moreover,
we verify that the proposed method could also extend to
multi-task cases with clear discrepancy in task difficulty,
indicating its scalability.

Our contribution is three-fold. Firstly, we observe the previ-
ously ignored gradient conflict in the widely used multitask-
like framework for the imbalanced multimodal learning
problem. Secondly, we theoretically analyze the failure of
Pareto method in multimodal case, and then propose the
MMPareto algorithm which could provide innocent uni-
modal assistance with enhanced generalization. Thirdly,
experiments across different datasets verify our theoretical
analysis as well as superior performance.

2. Related Work
2.1. Imbalanced Multimodal Learning

Recent research has uncovered the imbalanced multimodal
learning problem, as multimodal models tend to favor spe-
cific modalities, thereby constraining their overall perfor-
mance (Peng et al., 2022; Huang et al., 2022). Several
methods have been proposed for this problem, with a shared
focus on targetedly enhancing optimization of each modal-
ity (Wang et al., 2020; Peng et al., 2022; Wu et al., 2022;
Fan et al., 2023). For example, Xu et al. (2023) focused
on the fine-grained classification task, which has a higher
demand for distinguishable feature distribution. Yang et al.
(2024) put attention on the multimodal robustness. Wei et al.
(2024) introduced a Shapley-based sample-level modality
valuation metric, to observe and alleviate the fine-grained
modality discrepancy. Among them, multitask-like methods
that directly incorporate targeted unimodal constraints have
demonstrated superior effectiveness (Wang et al., 2020; Du
et al., 2023; Fan et al., 2023). However, under this multitask-
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like framework, optimization of unimodal encoder is si-
multaneously controlled by the multimodal joint learning
objective and corresponding unimodal learning objective,
which could cause gradient conflict, potentially harming the
primary multimodal learning. In this paper, we observe and
diminish the potential conflict by the proposed MMPareto
algorithm. Our method could effectively alleviate the imbal-
anced multimodal learning problem, achieving considerable
improvement.

2.2. Pareto Integration in Multi-task Learning

Shared parameter in multi-task learning is expected to fit
several learning objectives simultaneously, resulting in the
potential conflict problem during optimization. Hence, the
Pareto method is introduced to integrate different gradients,
finding a gradient common to all objectives and finally con-
verging to a trade-off state of them (Sener & Koltun, 2018).
Besides, the idea of Pareto integration is extended from
different perspectives, including more different trade-offs
among different tasks (Lin et al., 2019) or faster convergence
speed (Ma et al., 2020), to better benefit multi-task learn-
ing. Similarly, we observe the optimization conflict in the
shared unimodal encoder in the multitask-like multimodal
framework. Inspired by the success of Pareto integration,
we introduce this idea but surprisingly find it failed. We
further analyze and find the harmed generalization of Pareto
integration in multimodal scenarios, and then propose MM-
Pareto algorithm, which could handle multimodal scenarios
and multi-task cases with clear discrepancy in task difficulty.

3. Method
3.1. Multitask-like Multimodal Framework

In multimodal learning, models are expected to produce
correct predictions by integrating information from multi-
ple modalities. Therefore, there are often multimodal joint
loss, which takes the prediction of fused multimodal feature.
However, only utilizing such joint loss to optimize all modal-
ities together could result in the optimization process being
dominated by one modality, leaving others being severely
under-optimized (Peng et al., 2022; Huang et al., 2022). To
overcome this imbalanced multimodal learning problem,
introducing unimodal loss which targets the optimization of
each modality is widely used and verified effective for alle-
viating this imbalanced multimodal learning problem (Wang
et al., 2020). In these scenarios, the loss functions are:

L = Lm +

n∑
k=1

Lk
u, (1)

where Lm is the multimodal joint loss and Lk
u is the uni-

modal loss for modality k. n is the number of modalities.
We mainly consider the multimodal discriminative task, and

all losses are cross-entropy loss functions. The illustration
of this multitask-like multimodal framework is shown in the
left part of Figure 2.

3.2. SGD Property and Hypothesis

In SGD optimization, based on former studies (Jastrzebski
et al., 2017), for an arbitrary loss L, when the batch size
is sufficiently large, with the central limit theorem, the gra-
dient of parameters θ at t−th mini-batch S, gS(θ(t)) =
1
|S|

∑|S|
i=1 ∇θ(t)L (Xi, Yi), is unbiased estimations of full

gradient, gN (θ(t)) = 1
N

∑N
i=1 ∇θ(t)L (Xi, Yi):

gS(θ(t)) ∼ N
(
gN (θ(t)),

1

|S|
C

)
. (2)

In other words, gS(θ(t)) is a random variable with covari-
ance 1

|S|C. C is brought by random batch sampling. N is
the number of training samples. (Xi, Yi) is a sample. The
full gradient is calculated based on all training samples.

As Equation 1, multimodal framework has both multimodal
loss function and unimodal loss function. For θk, the uni-
modal encoder parameter of modality k, gradients of Lm

and Lk
u at iteration t satisfy:

gm
S (θk(t)) ∼ N

(
gm
N (θk(t)),

1

|S|
Cm

)
, (3)

gu
S(θ

k(t)) ∼ N
(
gu
N (θk(t)),

1

|S|
Cu

)
, (4)

where 1
|S|C

m and 1
|S|C

u are the batch sampling covariance.

In multimodal cases, unimodal loss only receives the pre-
diction based on data of the corresponding modality. In
contrast, the multimodal loss is optimized with more suf-
ficient information from data of all modalities, making it
easier to be trained. It has been verified that multimodal loss
tends to converge with faster speed and with lower training
error than unimodal one (Wang et al., 2020).

Beyond former studies, we also analyze the gradient magni-
tude distribution for a fixed set of parameters across different
datasets. Results are as Figure 1d and Figure 4b. Each count
is a different mini-batch. Firstly, multimodal gradients have
a smaller magnitude than unimodal gradients, which could
be brought by the lower multimodal error (Chen et al., 2018).
Besides the magnitude, the batch sampling covariance 1

|S|C

of gradient variables also differs between multimodal and
unimodal ones. Multimodal gradients have a smaller co-
variance. The reason could be that more discriminative
information from all modalities is more deterministic for
classification, which aligns with the motivation of multi-
modal learning that introduces more modalities to reduce
uncertainty (Trick et al., 2019). Then the multimodal train-
ing error has a less variants across different batches. Overall,
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Figure 2. Illustration of multimodal framework and gradient inte-
gration strategy of our MMPareto.

based on former studies and our verification, we could con-
clude properties of multimodal and unimodal gradients, and
have Hypothesis 1.

Hypothesis 1. In multitask-like multimodal cases, for the
shared unimodal encoder, the gradient of unimodal loss
tends to have a larger magnitude and larger batch sampling
covariance than easy-to-learnt multimodal loss.

3.3. Pareto Integration in Multimodal Learning

3.3.1. PARETO INTEGRATION

In multimodal cases, multimodal loss and unimodal loss are
tightly related, but their gradients may still exist conflicts,
as Figure 1a. Hence, how to well integrate gm

S (θk(t)) and
gu
S(θ

k(t)) needs to be solved. This accords with the idea
of Pareto method in multi-task learning (Sener & Koltun,
2018). In Pareto method, at each iteration, gradients are
assigned different weights, and the weighted combination
is the final gradient, which can provide descent direction
that benefits all learning objectives. Finally, parameters can
converge to a trade-off state, Pareto-optimality, in which
no objective can be advanced without harming any other
objectives. It is natural to introduce Pareto integration into
multimodal framework, avoiding conflict between multi-
modal and unimodal gradients. Concretely, in our case, for
modality k, the Pareto algorithm is formulated to solve:

min
αm,αu∈R

∥αmgm
S + αugu

S∥
2

s.t. αm, αu ≥ 0, αm + αu = 1,
(5)

where ∥ · ∥ denotes the L2-norm. For brevity, we de-
note {gi

S(θ
k(t))}i∈{m,u} as {gi

S}i∈{m,u} for modality k
in some part. This problem is equal to finding the minimum-
norm in the convex hull of the family of gradient vectors
{gi

S}i∈{m,u}. (Désidéri, 2012) showed that either found
minimum-norm to this optimization problem is 0 and the
corresponding parameters are Pareto-stationary which is a
necessary condition for Pareto-optimality, or it can provide
descent direction common to all learning objectives.

3.3.2. ANALYTIC SOLUTION OF PARETO

As results in Figure 1c, Pareto integration is expected to
exhibit its advantage under multitask-like multimodal frame-
work but surprisingly fails. To explore the hidden reason,
we further analyze the property of the Pareto integration
method. Based on Hypothesis 1, multimodal gradient tends
to with a smaller magnitude than that of unimodal one, i.e.,
∥gm

S ∥ < ∥gu
S∥. Then, for the optimization problem of Equa-

tion 5, we can have its analytic solution:αm = 1, αu = 0 cosβ ≥ ∥gm
S ∥

∥gu
S∥ ,

αm =
(gu

S−gm
S )⊤gu

S

∥gm
S −gu

S∥2 , αu = 1− αm otherwise,

where β is the angle between gm
S and gu

S . Here we further
analyze the above Pareto analytic solution. When cosβ ≥
∥gm

S ∥
∥gu

S∥ , we have αm > αu. Otherwise, we also have:

αm − αu

=
(gu

S − gm
S )⊤gu

S

∥gm
S − gu

S∥
2 − (1− (gu

S − gm
S )⊤gu

S

∥gm
S − gu

S∥
2 )

=
∥gu

S∥
2 − ∥gu

S∥∥gm
S ∥ cosβ

∥gm
S − gu

S∥
2 − ∥gm

S ∥2 − ∥gu
S∥∥gm

S ∥ cosβ
∥gm

S − gu
S∥

2

> 0. (∥gm
S ∥ < ∥gu

S∥)

Remark 1. The conventional Pareto method would assign
a larger weight to the multimodal gradient with a smaller
magnitude.

Overall, as stated in Remark 1, we can conclude that the
Pareto method tends to assign larger weight to the multi-
modal gradient gm

S during integration, i.e., αm > 1
2 .

3.3.3. GENERALIZATION HARMED RISK OF PARETO

In this section, we follow the notations of Section 3.2. Dur-
ing training, gradients of multiple losses are calculated sepa-
rately, so they can be treated as being independent (Fan et al.,
2022). Then, when without any gradient integration strategy
i.e., uniform baseline where all losses are equally summed,
the final gradient is hS(θ

k(t)) = gm
S (θk(t)) + gu

S(θ
k(t)).

And based on Equation 3 and Equation 4, it satisfies:

hS(θ
k(t)) ∼ N

(
gm
N (θk(t)) + gu

N (θk(t)),
Cm + Cu

|S|

)
.

(6)

Then, use the final gradient hS(θ
k(t)) to update θk:

θk(t+ 1) = θk(t)− ηhS(θ
k(t)), (7)

= θk(t)− ηhN (θk(t)) + ηϵt, (8)

where hN (θk(t)) = gm
N (θk(t)) + gu

N (θk(t)) and η > 0 is

the learning rate. ϵt ∼ N
(
0, Cm+Cu

|S|

)
is often considered

as the noise term of SGD (Zhu et al., 2018).
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Then, we further consider the SGD optimization with con-
ventional Pareto gradient integration. We know that at each
iteration, Pareto method would return weight αm and αu

for the integration of gm
S (θk(t)) and gu

S(θ
k(t)). Then, we

have the final gradient after integration: hPareto
S (θk(t)) =

2αmgm
S (θk(t)) + 2αugu

S(θ
k(t)), which satisfies:

hPareto
S (θk(t)) ∼ N

(
hPareto
N (θk(t)),

(2αm)2Cm + (2αu)2Cu

|S|

)
,

(9)
where hPareto

N (θk(t)) = 2αmgm
N (θk(t)) + 2αugu

N (θk(t)).
Here we use 2αi as the gradient weight to keep the same
gradient weight summation with uniform baseline (i.e.,
2αm + 2αu = 2). Then, when using Pareto integration,
the parameter is updated as:

θk(t+ 1) = θk(t)− ηhPareto
S (θk(t)) (10)

= θk(t)− ηhPareto
N (θk(t)) + ηζt. (11)

ζt ∼ N
(
0, (2αm)2Cm+(2αu)2Cu

|S|

)
is the SGD noise term.

Based on Hypothesis 1, the unimodal gradient tends to have
a larger batch sampling covariance. Suppose the covari-
ance of multimodal gradient and unimodal gradient satisfies
kCm = Cu, where k > 1. Then, we can explore relation
between ζt and ϵt. When the covariance of ζt is less than
that of ϵt, it should satisfy:

(2αm)2Cm + (2αu)2Cu < Cm + Cu (12)

(2αm)2Cm + (2(1− αm))2 · kCm < (k + 1)Cm (13)

(2αm)2 + 4k − 8αmk + (2αm)2k < k + 1 (14)

(αm − 1

2
)((4k + 4)αm + 2− 6k) < 0 (15)

Hence when 1
2 < αm < 3k−1

2k+2 , the covariance of ζt is
less than that of ϵt, i.e., var(ζt) < var(ϵt). In addition,
based on Remark 1, Pareto weight satisfies 1

2 < αm ≤ 1.
Combine with the value range of αm, then:

• For case k ≤ 3, when 1
2 < αm < 3k−1

2k+2 , it has
var(ζt) < var(ϵt);

• For case k > 3, it has 3k−1
2k+2 > 1, var(ζt) < var(ϵt)

holds for all Pareto weight αm.

Also, in Figure 3, we give the value of 3k−1
2k+2 varies with

k. When k ≤ 3, it can observe a rapid increase of 3k−1
2k+2

when the value of k increases. In addition, as shown in Fig-
ure 1d and Figure 4b, the difference of covariance between
multimodal and unimodal gradient are often more than
3 times in experiments. These phenomena indicate that
var(ζt) < var(ϵt) could often happen in practice.

According to existing studies, the strength of noise term
influences the minima found by SGD, and larger noise

k

3k−1
2k+2

1 2 3

0.5

1

Figure 3. Value of 3k−1
2k+2

varies with k.

term strength tends to bring flatter minima, which typi-
cally generalize well (Hochreiter & Schmidhuber, 1997;
Keskar et al., 2016; Neyshabur et al., 2017). Therefore,
when var(ζt) < var(ϵt), SGD noise term of conventional
Pareto integration in Equation 11 can with smaller strength,
compared with SGD noise term of uniform baseline in Equa-
tion 8. Then it would bring model with sharper minima, and
further harm the model generalization ability.

3.4. Multimodal Pareto Algorithm

Based on the above analysis, conventional Pareto method
could result in a sharper minima and then weakening model
generalization in multimodal learning. It becomes essen-
tial to well address gradient conflicts in multimodal sce-
narios. In this paper, we propose the MultiModal Pareto
(MMPareto) algorithm. It considers both the direction and
magnitude during gradient integration, to provide innocent
unimodal assistance where the final gradient is with a direc-
tion common to all learning objectives while an enhanced
magnitude for improving generalization. Our method con-
siders the conflict case and non-conflict case respectively.
The overall algorithm is shown in Algorithm 1 and illus-
trated in Figure 2. In the following part, we take the encoder
of modality k for an example, and encoders of all modalities
follow the same integration. We also omit θk(t) for brevity.

Non-conflict case. We first consider the case cosβ ≥ 0.
Under this case, the cosine similarity between gm

S and gu
S

is positive. For the direction, the arbitrary convex com-
bination of the family of gradient vectors {gi

S}i∈{m,u}
is common to all learning objectives. Therefore, we as-
sign 2αm = 2αu = 1 instead of analytic solution of
Pareto during integration in this case, to have enhanced
SGD noise term. With this setting, our final gradient
hMMPareto
S ∼ N

(
gm
N + gu

N , Cm+Cu

|S|

)
. The noise term is

ξt ∼ N
(
0, Cm+Cu

|S|

)
with the enhanced strength, com-

pared with conventional Pareto noise term ζt in Equation 11.

Conflict case. For the case cosβ < 0, it is essential to find
the direction that is common to all losses and enhance the
SGD noise strength during gradient integration. Hence we
first solve the Pareto optimization problem of Equation 5,
obtaining αm and αu, which could provide a non-conflict
direction. Furthermore, to enhance the strength of noise
term, we increase the magnitude of the final gradient. The
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Algorithm 1 MMPareto

Require: Training dataset D, iteration number T , initial-
ized unimodal encoder parameters θk, k ∈ {1, 2, · · · , n},
other parameters θother.
for t = 0, · · · , T − 1 do

Sample a fresh mini-batch S from D;
Feed-forward the batched data S to the model;
Calculate gradient using back-propagation;
Update θother without gradient integration method;
for k = 1, · · · , n do

Obtain gm
S and gu

S for k-th unimodal encoder;
Calculate cosβ; β is angle between gm

S and gu
S ;

Solve problem of Equation 5, obtain αm, αu;
if ∥αmgm

S + αugu
S∥ = 0 then

Find the Pareto stationarity;
end if
if cosβ ≥ 0 then

2αm = 2αu = 1;
end if
Integrate gradient: h′

S = 2αmgm
S + 2αugu

S ;
hMMPareto
S = h′

S/∥h′
S∥︸ ︷︷ ︸

Keep non-conflict direction

· γ∥gm
S + gu

S∥︸ ︷︷ ︸
Enhanced magnitude

;

Update θk with hMMPareto
S .

end for
end for

magnitude of uniform baseline is used as the benchmark, to
adjust in a proper range:

hMMPareto
S =

2αmgm
S + 2αugu

S

∥2αmgm
S + 2αugu

S∥
· ∥gm

S + gu
S∥. (16)

In this case, the final gradient is hMMPareto
S = λhPareto

S , where
λ = ∥gm

S +gu
S∥/∥2αmgm

S +2αugu
S∥. Based on Remark 1,

the smaller multimodal magnitude is with larger weight,
we can have that ∥2αmgm

S + 2αugu
S∥ < ∥gm

S + gu
S∥,

and accordingly λ > 1. Then, the final gradient satisfies:
hMMPareto
S ∼ N

(
λhPareto

N , λ2 · (2αm)2Cm+(2αu)2Cu

|S|

)
. The

noise term is ξt ∼ N
(
0, λ2 · (2αm)2Cm+(2αu)2Cu

|S|

)
, which

has a larger strength than noise term ζt of conventional
Pareto in Equation 11. The noise strength is enhanced, and
model generalization is accordingly improved.

After integration, to further enhance the generalization,
we slightly increase the magnitude of the final gradient:
hMMPareto
S = γhMMPareto

S , where γ > 1 is the rescale factor.

Overall, MMPareto provides both non-conflict direction
and enhanced SGD noise strength, helping the model con-
verge to a flatter minima and generalize better. Beyond that,
we also analyze the convergence of proposed MMPareto
method. As Remark 2, our algorithm is guaranteed to con-
verge to a Pareto stationarity. Detailed proof and related
experiments are provided in Appendix E and Appendix F.
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Figure 4. (a). Cosine similarity between gradients of multimodal
and unimodal loss in the video encoder of CREMA-D. (b). Gradi-
ent magnitude distribution in the video encoder of CREMA-D.

Remark 2. The proposed MMPareto method admits an
iteration sequence that converges to a Pareto stationarity.

4. Experiment
4.1. Dataset and Experiment Settings

CREMA-D (Cao et al., 2014) is an audio-visual dataset
for emotion recognition, covering 6 usual emotions. Ki-
netics Sounds (Arandjelovic & Zisserman, 2017) is an
audio-visual dataset containing 31 human action classes.
Colored-and-gray-MNIST (Kim et al., 2019) is a synthetic
dataset based on MNIST (LeCun et al., 1998). Each in-
stance contains two kinds of images, a gray-scale and a
monochromatic colored image. ModelNet40 (Wu et al.,
2015) is a dataset with 3D objects, covering 40 categories.
This dataset could be used to classify 3D objects based on
the multiple 2D views data (Su et al., 2015).

When not specified, ResNet-18 (He et al., 2016) is used as
the backbone in experiments and models are trained from
scratch. Unimodal modal features are integrated with late fu-
sion method. Specifically, for the Colored-and-gray MNIST
dataset, we build a neural network with 4 convolution layers
and 1 average pool layer as the encoder, like (Fan et al.,
2023) does. During the training, we use SGD with momen-
tum (0.9) and γ = 1.5 in experiments. More details are
provided in Appendix B.

4.2. Gradient Conflict and Magnitude Distribution in
Multimodal Scenarios

Here we verify the direction conflict and magnitude distri-
bution between multimodal and unimodal gradient across
different datasets. Firstly, in Figure 1a and Figure 4a, we
show the cosine similarity between gradients on the Kinetics
Sounds and CREMA-D. Based on the results, the update
direction of multimodal and unimodal gradient indeed have
conflict, i.e., negative cosine similarity, which potentially
brings risk for the optimization of the corresponding shared
unimodal encoder. In addition, such conflicts often exist in
the early training stage, disturbance in which stage could
substantially harm the model ability (Liu et al., 2020). In
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Figure 5. Visualization of the loss landscape and corresponding accuracy of uniform baseline, conventional Pareto and our MMPareto
methods. Our MMPareto method brings flatter minima. The visualization method is from (Li et al., 2018). Uniform baseline is a basic
way where all losses are equally summed without special integration.

Table 1. Comparison with imbalanced multimodal learning methods where bold and underline represent the best and runner-up
respectively. * indicates that the unimodal evaluation (Acc audio and Acc video) is obtained by fine-tuning a unimodal classifier with
frozen trained unimodal encoder, since this method could not provide unimodal prediction directly. This evaluation method borrows
from (Peng et al., 2022). (↓) indicates a performance drop compared with uniform baseline where all losses are equally summed.

Method CREMA-D Kinetics Sounds
Acc Acc audio Acc video Acc Acc audio Acc video

Audio-only - 61.69 - - 53.63 -
Video-only - - 56.05 - - 49.20

Unimodal pre-trained & fine-tune 71.51 60.08 60.22 68.75 53.49 50.07
One joint loss* 66.13 59.27 36.56 64.61 52.03 35.47

Uniform baseline 71.10 63.44 51.34 68.31 53.20 40.55
G-Blending (Wang et al., 2020) 72.01 60.62 (↓) 52.23 68.90 52.11 (↓) 41.35

OGM (Peng et al., 2022)* 69.19 (↓) 56.99 (↓) 40.05 (↓) 66.79 (↓) 51.09 (↓) 37.86 (↓)
Greedy (Wu et al., 2022)* 67.61 (↓) 60.69 (↓) 38.17 (↓) 65.32 (↓) 50.58 (↓) 35.97 (↓)
PMR (Fan et al., 2023)* 66.32 (↓) 59.95 (↓) 32.53 (↓) 65.70 (↓) 52.47 (↓) 34.52 (↓)
AGM (Li et al., 2023)* 70.06 (↓) 60.38 (↓) 37.54 (↓) 66.17 (↓) 51.31 (↓) 34.83 (↓)

MMPareto 75.13 65.46 55.24 70.13 56.40 53.05

addition, as Figure 1d and Figure 4b, we also observe the
gradient magnitude distribution for a fixed set of parameters
across different datasets. Each count is a different mini-
batch. Based on the results, we could conclude that the
multimodal gradient has a smaller magnitude and smaller
batch sampling covariance, compared with the unimodal
one. The difference in covariance could even be more than
3 times, greatly affecting model generalization.

4.3. Loss Landscape Analysis

Based on our analysis, conventional Pareto method could
result in a sharper minima and then weakening model gener-
alization. To empirically verify it, we visualize the loss land-
scape and the corresponding accuracy of uniform baseline,
conventional Pareto method, and our MMPareto method. As
shown in Figure 5, conventional Pareto method indeed has
a sharper minima, compared with uniform baseline where
multimodal and unimodal losses are equally summed. Its
loss and accuracy change more drastically. What’s more,
loss landscape near the minima that our MMPareto method
converges on is the flattest one, since it ensures gradient

with both non-conflict direction and enhanced SGD noise
strength during optimization.

In addition, as shown in Figure 5, the visually flatter minima
consistently correspond to a lower test error. For example,
our MMPareto method with flatter minima has a lower test
error and higher accuracy. This phenomenon verifies that
the flatter minima tend to generalize better, supporting our
former analysis.

4.4. Comparison with Related Imbalanced Methods

To validate the effectiveness of our MMPareto method in
overcoming imbalanced multimodal learning problems, we
compare it with recent studies: G-Blending (Wang et al.,
2020), OGM-GE (Peng et al., 2022), Greedy (Wu et al.,
2022), PMR (Fan et al., 2023) and AGM (Li et al., 2023).

In addition, we also compare several basic settings. Audio-
and Video-only are unimodal models trained individually.
Unimodal pre-trained & fine-tune is the method that fine-
tunes the multimodal model with individually pre-trained
unimodal encoders. One joint loss is the method that
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Table 2. Comparison with imbalanced multimodal learning methods where bold and underline represent the best and runner-up
respectively. The network is transformer-based framework, MBT (Nagrani et al., 2021).

Method
CREMA-D Kinetics Sounds

from scratch with pretrain from scratch with pretrain
Acc macro F1 Acc macro F1 Acc macro F1 Acc macro F1

One joint loss 44.96 42.78 66.69 67.26 42.51 41.56 68.30 69.31
Uniform baseline 45.30 43.74 69.89 70.11 43.31 43.08 69.40 69.60

G-Blending (Wang et al., 2020) 46.38 45.16 69.91 70.01 44.69 44.19 69.41 69.47
OGM-GE (Peng et al., 2022) 42.88 39.34 65.73 65.88 41.79 41.09 69.55 69.53

Greedy (Wu et al., 2022) 44.49 42.76 66.67 67.26 43.31 43.08 69.62 69.75
PMR (Fan et al., 2023) 44.76 42.95 65.59 66.07 43.75 43.21 69.67 69.87
AGM (Li et al., 2023) 45.36 43.81 66.54 67.75 43.65 43.57 69.59 69.14

MMPareto 48.66 48.17 70.43 71.17 45.20 45.26 70.28 70.11

Table 3. Comparison with related multi-task methods on Colored-and-gray-MNIST, ModelNet40 and Kinetics Sounds. Bold and
underline represent the best and runner-up respectively.

Method CG-MNIST ModelNet40 Kinetics Sounds
Acc macro F1 Acc macro F1 Acc macro F1

One joint loss 60.50 59.89 87.88 83.32 64.61 64.12
Uniform baseline 75.68 75.66 89.18 84.69 68.31 68.13

Conventional Pareto (Sener & Koltun, 2018) 62.00 61.85 88.05 83.01 66.64 66.17
GradNorm (Chen et al., 2018) 76.16 76.12 88.98 83.79 65.84 65.14

PCGrad (Yu et al., 2020) 79.35 77.14 89.59 84.44 69.11 68.75
MetaBalance (He et al., 2022) 79.18 77.87 89.63 84.87 68.90 68.62

MMPareto 81.88 81.69 89.95 85.15 70.13 70.18

only uses multimodal joint loss. And uniform baseline
is the method in which multimodal and unimodal losses are
equally summed. To comprehensively evaluate the model
ability, we further observe the unimodal performance, be-
sides the common multimodal performance.

Based on Table 1, we can find that the uniform baseline can
achieve considerable performance, and even could outper-
form or be comparable with these imbalanced multimodal
learning methods. The reason could be that the introduction
of unimodal loss effectively enhances the learning of each
modality, which accords with the core idea of these com-
pared methods. Moreover, our MMpareto method with a
conflict-free optimization process achieves a considerable
improvement, compared with existing methods at the multi-
modal prediction. More than that, our MMPareto method
simultaneously exhibits outstanding unimodal performance,
and even can outperform individually trained unimodal
model. For example, Audio accuracy of MMPareto is supe-
rior to Audio-only method on both CREMA-D and Kinetics
Sounds datasets. This was rarely achieved in before studies.

Besides, we also conduct experiments under the widely used
Transformer backbone, MBT (Nagrani et al., 2021), which
contains both single-modal layers and cross-modal interac-
tion layers. Compared to the former CNN backbone with the
late fusion method, unimodal features in this transformer-

based framework are more fully interacted and integrated.
During experiments, we conduct experiments both from
scratch and with ImageNet pre-training. Results are shown
in Table 2. Based on the results, we can have the following
observation. Firstly, former imbalanced multimodal learn-
ing could lose efficacy under these more complex scenar-
ios with cross-modal interaction. For example, OGM-GE
method is even worse than the one joint loss method on
CREMA-D dataset. In contrast, our MMPareto gradient
integration strategy is not only applicable to CNN back-
bones, but also able to maintain superior performance in
transformer-based frameworks with complex interactions.
In addition, whether or not to use pre-training does not affect
the effectiveness of our method, which reflects its flexibility.

4.5. Comparison with Related Multi-task Methods

In past studies, there are other strategies that are used to
balance multiple learning objectives. In this section, besides
conventional Pareto (Sener & Koltun, 2018), we also com-
pare several representative ones: GradNorm (Chen et al.,
2018), PCGrad (Yu et al., 2020), MetaBalance (He et al.,
2022). Experiments are conducted on different multimodal
dataset, covering six types of modalities. Based on the
results in Table 3, we further verify that the conventional
Pareto method is inferior to the uniform baseline and loses
its efficacy in multimodal scenarios. In addition, former
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Table 4. Comparison of multi-task methods on NYUv2 dataset. Conv Pareto is the conventional Pareto method.

Method Segmentation - mIoU Segmentation - Pix Acc Depth - Abs Err Depth - Rel Err
(Higher Better) (Higher Better) (Lower Better) (Lower Better)

Uniform baseline 25.80 52.68 0.6309 0.2680
Conv Pareto (Sener & Koltun, 2018) 27.66 53.91 0.6284 0.2685

GradNorm (Chen et al., 2018) 26.17 53.41 0.6219 0.2738
PCGrad (Yu et al., 2020) 26.44 53.93 0.6337 0.2658

MetaBalance (He et al., 2022) 27.04 53.99 0.6258 0.2677
MMPareto 26.35 53.48 0.6216 0.2656

Table 5. Results on MultiMNIST with 50% salt-and-pepper noise
on the right part of images. Uniform baseline is a basic way where
all losses are equally summed. Conv Pareto is the conventional
Pareto method.

Method Accuracy
Task 1 Task2

Uniform baseline 86.63 78.42
Conv Pareto (Sener & Koltun, 2018) 86.95 77.04 (↓)

GradNorm (Chen et al., 2018) 85.95(↓) 79.52
PCGrad (Yu et al., 2020) 84.74(↓) 76.44(↓)

MetaBalance (He et al., 2022) 87.07 79.53
MMPareto 87.72 80.64

multi-task methods are also possibly invalid in the context
of multimodal learning. For example, GradNorm method
is inferior to the uniform baseline on both ModelNet40 and
Kinetics Sounds dataset. In contrast, our MMPareto method,
which specifically considers the multimodal learning prop-
erties, maintains its superior performance across various
dataset with different kinds of modalities.

4.6. Extension to Multi-task Scenario

To evaluate scalability of our method in multi-task cases
with similar property that there is a clear discrepancy in
task difficulty, we conduct experiments on MultiMNIST
dataset (Sabour et al., 2017). In MultiMNIST, two images
with different digits from the original MNIST dataset are
picked and then combined into a new one by putting one
digit on the left and the other one on the right. Two tasks
are to classify these two digits. To increase the difference
in difficulty of tasks, we add 50% salt-and-pepper noise
on the right part of images. Several data samples are pro-
vided in Appendix C. Based on Table 5, most multi-task
methods have a performance drop (e.g., GradNorm, PCGrad
and conventional Pareto). Not surprisingly, our MMPareto
could extend to this scenario and achieve considerable per-
formance, indicating its ideal scalability.

Besides the MultiMNIST dataset, we also conduct experi-
ments on the typical multi-task dataset, NYUv2. Widely-
used benchmark (Liu et al., 2019) is used. We consider
two tasks, semantic segmentation and depth estimation. As
shown in Table 4, although our method is built on multi-
modal properties, it also achieves improvement on typical

multi-task dataset, compared with uniform baseline. It even
achieves the best results on depth estimation task. These
results show the versatility of our method.

5. Discussion
In this paper, we identify previously ignored gradient con-
flicts in multimodal scenarios with discrepancies in learning
difficulty of uni- and multimodal objectives, then propose
MMPareto algorithm to diminish these conflict and alleviate
imbalanced multimodal learning. Besides typical discrimi-
native multimodal scenarios, more multimodal cases, like
multimodal pre-training, have witnessed rapid development
recently (Wang et al., 2023; Zhang et al., 2023; Chen et al.,
2023). Our method is also expected to apply to these more
general multimodal scenarios, like BLIP-2, easing the po-
tential conflicts among multiple learning objectives.

Future work and limitation: We strengthen SGD noise
term to improve model generalization, by adjusting gradient
magnitude in this paper. In fact, the gradient covariance
1
|S|C of multiple losses and their correlation are also ex-
pected to provide a reliable reference when ensuring model
generalization during gradient integration. Hence how to ef-
ficiently estimate and utilize these covariance is a promising
next direction. Besides, our current convergence analysis
is with relatively ideal assumptions. But in practice, it can
greatly improve multimodal learning with a modest number
of iterations in an acceptable range. This also inspires us
to explore multimodal Pareto methods with more rigorous
convergence theory.
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A. Parameter Description
For convenience, we include a table of parameter descrip-
tions in Table 6.

B. Dataset and Experiment Settings
CREMA-D (Cao et al., 2014) is an audio-visual dataset
for emotion recognition, including 7,442 video clips, each
spanning 2 to 3 seconds in duration. The video content is
that actors speak several short words. This dataset covers
6 emotions: angry, happy, sad, neutral, discarding, disgust
and fear.

Kinetics Sounds (Arandjelovic & Zisserman, 2017) is an
audio-visual dataset containing 31 human action classes
selected from Kinetics dataset (Kay et al., 2017). All videos
are manually annotated for human action using Mechanical
Turk and cropped to 10 seconds long around the action.

Colored-and-gray-MNIST (Kim et al., 2019) is a synthetic
dataset based on MNIST (LeCun et al., 1998). Each in-
stance contains two kinds of images, a gray-scale and a
monochromatic colored image. Monochromatic images in
the training set are strongly color-correlated with their digit
labels, while monochromatic images in the other sets are
weakly color-correlated with their labels.

ModelNet40 (Wu et al., 2015) is a dataset with 3D objects,
covering 40 categories. It contains 9,483 training samples
and 2,468 test samples. This dataset could be used to classify
these 3D objects based on the 2D views of their front-view
and back-view data (Su et al., 2015). Data of all views is a
collection of 2D images of a 3D object.

When not specified, ResNet-18 (He et al., 2016) is used as
the backbone in experiments and models are trained from
scratch. Concretely, for the visual encoder, we take multiple
frames as the input, and feed them into the 2D network; for
the audio encoder, we modified the input channel of ResNet-
18 from three to one like (Chen et al., 2020) does and the
rest parts remain unchanged; Encoders of other modalities
are not modified. For the CNN backbone, we use the widely
used late fusion method, to integrate unimodal features. For
the Transformer backbone, MBT (Nagrani et al., 2021), is
used as the backbone. Concretely, the backbone contains 6
single-modal layers and 2 layers with cross-modal interac-
tion. Specifically, for the Colored-and-gray MNIST dataset,
we build a neural network with 4 convolution layers and
1 average pool layer as the encoder, like (Fan et al., 2023)
does. During the training, we use SGD with momentum
(0.9) and set the learning rate at 1e − 3. All models are
trained on 2 NVIDIA RTX 3090 (Ti).

C. Samples of MultiMNIST Dataset
Here we provide several samples of MultiMNIST dataset.
In MultiMNIST, two images with different digits from the
original MNIST dataset are picked, and then combined into
a new one by putting one digit on the left and the other
one on the right. Two tasks are to classify these two digits.
In order to increase the difference in difficulty between
tasks, we add 50% salt-and-pepper noise on the right part
of images.

(a) Sample 1 without noise; Label: [5,1].

(b) Sample 1 with noise; Label: [5,1].

(c) Sample 2 without noise; Label: [0,3].

(d) Sample 2 with noise; Label: [0,3].

Figure 6. Samples in MultiMNIST dataset.

D. More-than-two Modality Case
Our MMPareto method has no restriction on the number of
modalities. To verify the method performance in more-than-
two modality case, we conduct experiments on CMU-MOSI
dataset (Zadeh et al., 2016). CMU-MOSI is a sentiment
analysis dataset with three modalities, audio, video and text.
It is annotated with utterance-level sentiment labels. This
dataset consists of 93 movie review videos segmented into
2,199 utterances. According to results in Table 7, many ex-
isting methods for imbalanced multimodal learning problem
only consider two modality case, and even can not extend
to more modalities cases. Our MMPareto method is free
of the limitation of the number of modalities and maintains
effectiveness.

E. Proof for the Convergence of MMPareto
Remark 2. The proposed MMPareto method admits an
iteration sequence that converges to a Pareto stationarity.
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Table 6. The description of used parameters.

Parameter Description
n total number of modalities
Lm multimodal joint loss
Lk
u unimodal loss of k−th modality

N number of training samples
Xi input of i−th data sample
Yi label of i−th data sample

(Xi, Yi) i−th data sample
θk(t) parameters of unimodal encoder of the k−th modality at t−th iteration
S set of t−th mini-batch

1
∥S∥C

m batch sampling covariance of multimodal joint loss
1

∥S∥C
u batch sampling covariance of unimodal loss

gm
S / gm

S (θk(t)) multimodal gradient of t−th iteration for encoder of k−th modality
gu
S / gu

S(θ
k(t)) unimodal gradient of t−th iteration for encoder of k−th modality

αm weight of multimodal gradient gm
S in Pareto optimization problem

αu weight of unimodal gradient gu
S in Pareto optimization problem

β the angle between gm
S and gu

S

η learning rate of SGD optimization
γ rescale factor of the integrated gradient of MMPareto method

hS(θ
k(t)) the final integrated gradient of uniform baseline at t−th iteration
ϵt SGD noise term of uniform baseline at t−th iteration

hPareto
S (θk(t)) the final integrated gradient of conventional Pareto method at t−th iteration

ζt SGD noise term of conventional Pareto method at t−th iteration
hMMPareto
S (θk(t)) the final integrated gradient of proposed MMPareto method at t−th iteration

ξt SGD noise term of proposed MMPareto method at t−th iteration

Table 7. Comparison of imbalanced multimodal learning methods
on CMU-MOSI dataset with three modalities. Greedy method
could not extend to more-than-two modality case. * indicates that
the original methods of OGM and PMR also only consider two
modality cases, and we extend them while retaining core strategy.

Method Acc macro F1

One joint loss 75.07 73.16
Uniform baseline 75.95 73.93

G-Blending (Wang et al., 2020) 76.16 74.65
OGM* (Peng et al., 2022) 75.80 74.71
Greedy (Wu et al., 2022) / /
PMR* (Fan et al., 2023) 76.28 75.06
AGM (Li et al., 2023) 76.08 74.98

MMPareto 76.53 75.59

Proof. In MMPareto algorithm, at each training iteration,
we first sovle the optimization problem:

min
αm,αu∈R

∥αmgm
S + αugu

S∥
2

s.t. αm, αu ≥ 0, αm + αu = 1.
(17)

For brevity, here we use {gi
S}i∈{m,u} to substitute

{gi
S(θ

k(t))}i∈{m,u}. ∥ · ∥ denotes the L2-norm. This prob-
lem is equal to finding the minimum-norm in the convex hull
of the family of gradient vectors {gi

S}i∈{m,u}. We denote
the found minimum-norm as ω = αmgm

S + αugu
S . Based

on (Désidéri, 2012), either ω to this optimization problem
is 0 and the corresponding parameters are Pareto-stationary
which is a necessary condition for Pareto-optimality, or ω
can provide a descent directions common to all learning
objectives. When the minimum-norm ω does not satisfy the
condition of Pareto stationarity, we consider the non-conflict
case and conflict case respectively.

We first analyze the non-conflict case, where cosβ ≥ 0.
β is the angle between gm

S and gu
S . Under this case,

we assign 2αm = 2αu = 1. Then, the final gradient
hPareto
S = gm

S +gu
S is with direction that can benefit all losses

and enhanced generalization. Then we analyze the conflict
case, where cosβ < 0. The results of optimization prob-
lem Equation 17 are used as αm and αu. Based on the above
statement, we can have that hPareto

S = 2αmgm
S +2αugu

S can
provide a direction that is common to all learning objective.
Furthermore, we enhance the magnitude of final gradient to
enhance SGD noise strength for improving model general-
ization. In summary, the final gradient of MMPareto could
always provide the direction that is common to all learning
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objectives.

If the training iteration stops in a finite number of steps, a
Pareto-stationary point has been reached. Otherwise, the
iteration continues indefinitely, generating an infinite se-
quence of shared parameters θk. Since the value of loss
function Lm and Lk

u is positive and monotone-decreasing
during optimization, it is bounded. Hence, the sequence of
parameter θk is itself bounded and it admits a subsequence
converging to θk

∗
.

Necessarily, θk∗ is a Pareto-stationary point. In other words,
the minimum-norm ω∗ is zero at this step. To establish
this, assume instead that the obtained minimum-norm ω∗,
which corresponds to θk

∗, is nonzero. A new iteration
would potentially diminish each learning objective of a finite
amount, and a better solution of parameter θk be found.

Overall, the proposed MMPareto method admits an iteration
sequence that converges to a Pareto stationarity.

F. Computation Cost and Convergence of
MMPareto

In this section, we observe the time cost of gradient weight
computation process and the convergence of our MMPareto
method. In Table 8, we record the mean and variance of
time cost per iteration. Based on the results, this process
would not take a lot of time, without much effect on total
training time.

In addition, we observe the number of iterations it takes
to find the Pareto stationarity. According to results in Ta-
ble 9, our method typically converges in a modest number
of iterations in an acceptable range.

Table 8. Time cost of MMPareto calculation per iteration.

Dataset Time cost mean Time cost variance

CREMA-D 0.11s 1e-5
Kinetics Sounds 0.16s 1e-5

CG-MNIST 0.05s 1e-5
ModelNet40 0.10s 1e-5

Table 9. Number of iterations that find Pareto stationarity.

Dataset Audio encoder Video encoder

CREMA-D #3098 #1709
Kinetics Sounds #10197 #7957
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