
Which Frequencies do CNNs Need?
Emergent Bottleneck Structure in Feature Learning

Yuxiao Wen 1 Arthur Jacot 1

Abstract

We describe the emergence of a Convolution Bot-
tleneck (CBN) structure in CNNs, where the net-
work uses its first few layers to transform the
input representation into a representation that is
supported only along a few frequencies and chan-
nels, before using the last few layers to map back
to the outputs. We define the CBN rank, which
describes the number and type of frequencies that
are kept inside the bottleneck, and partially prove
that the parameter norm required to represent a
function f scales as depth times the CBN rank f .
We also show that the parameter norm depends at
next order on the regularity of f . We show that
any network with almost optimal parameter norm
will exhibit a CBN structure in both the weights
and - under the assumption that the network is
stable under large learning rate - the activations,
which motivates the common practice of down-
sampling; and we verify that the CBN results still
hold with down-sampling. Finally we use the
CBN structure to interpret the functions learned
by CNNs on a number of tasks.

1. Introduction
Convolutional Neural Networks (CNNs) have played a key
role in the success of deep learning (Lecun et al., 1998;
Krizhevsky et al., 2012). It seems that the structure of CNNs
is particularly well adapted to tasks on natural images. But
we still lack a description of this structure, though many
theories have been proposed.

The most common explanation, is that some fundamental
properties of natural images are encoded in the structure of
CNNs, such as translation invariance and locality.
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These intuitions have motivated special network architec-
tures that encode additional properties such as rotation sym-
metries (Cohen et al., 2019), or the design of feature maps
such as the scattering transform (Mallat, 2012) that encode
similar symmetries, upon which more traditional statistical
models can then be used.

A CNN at initialization gives rise to features and kernels,
either the Neural Network Gaussian Process (NNGP) kernel
(Neal, 1996; Cho & Saul, 2009) or the Neural Tangent Ker-
nel (NTK) (Jacot et al., 2018). The symmetries and invari-
ances enforced by the locality, weight-sharing and pooling
of CNNs are reflected in the kernels (Bietti & Mairal, 2019;
Arora et al., 2019; Mei et al., 2021; Misiakiewicz & Mei,
2022), thus reducing the intrinsic dimension of the task and
improving generalization (Mei et al., 2021; Misiakiewicz &
Mei, 2022).

While the aforementioned results rely on a connection be-
tween fully-connected neural networks (FC-NNs) and ker-
nel methods, other results have shown that the inductive
bias coming from the CNN architecture is much more gen-
eral, and applies to any training method that satisfies some
reasonable property such as rotation equivariance (Li et al.,
2020b; Xiao & Pennington, 2022; Wang & Wu, 2023).

But even those expertly designed kernel and features fail in
general to match the performances of CNNs (Arora et al.,
2019; Li et al., 2019). A possible explanation is that feature
learning allows CNNs to identify low-dimensional struc-
tures in the task during training, thus further reducing the
dimensionality of the task, beyond the dimension reduction
that is enforced by the CNN architecture. This is supported
by the empirical observation that CNNs can learn additional
symmetries during training (Petrini et al., 2021).

While there is a large literature of empirical analysis of
features learned by CNNs (Karantzas et al., 2022) there
remains very little theoretical work outside of linear CNNs
(Dai et al., 2021).

The appearance of low-dimensional features and symme-
try learning has already been observed in FC-NNs (Jacot,
2023a;b). This paper extends these results to CNNs, show-
ing a very similar bottleneck structure, though with some
important differences resulted from the CNN architecture,
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in particular the translation invariance and pooling.

1.1. Bottleneck Structure in CNNs

Recent papers (Jacot, 2023a;b) have observed a bottleneck
structure in L2-regularized FC-NNs, where the representa-
tion learned in the middle layers are low-dimensional, which
implies a bias towards learning symmetries.

In this paper, we extend most of the results in (Jacot,
2023a;b) to CNNs. An important distinction is that instead
of the FC-NN bottleneck structure which favors learning any
type of low-dimensional representations in the middle of
the network, CNN favor representations that are supported
along a finite number of frequencies, with an additional
preference towards lower frequencies due to the existence
of pooling:

• We decompose the representation cost R(f ; Ω, L) (Gu-
nasekar et al., 2018b) of CNNs, which describes the
implicit bias of CNNs with L2-regularization, as:

R(f ; Ω, L) = LR(0)(f ; Ω) +R(1)(f ; Ω) + o(1).

• We conjecture (and partially prove) that the first term
R(0) equals the so-called Convolution Bottleneck rank
RankCBN, which is small for functions f that can be
decomposed as first mapping to a representation that is
supported along a finite number of frequencies, with
a preference for lower frequencies in the presence of
pooling, and then mapping back to the outputs (that
may be high dimensional and high frequency).

• The second term R(1) plays a complementary role as a
measure of regularity that bounds the Jacobian of f .

• We show that under some conditions, almost all weight
matricesWℓ of the network will have a few large singu-
lar values, matching the frequencies that are kept in the
CBN-rank decomposition. Also, under the additional
assumption that the parameters are stable under reason-
able learning rate, one can show that the activations are
also supported on the same few frequencies.

• The emergence of this bottleneck structure, where the
middle representation of the network are only sup-
ported along a few low frequencies, motivates the use
of down sampling, as is commonly done in practice.
We show that for functions that accept such a low-
frequency hidden structure, the R(0) term is unaffected
by down-sampling in the middle of the network.

The low-dimensionality and low-frequency of the repre-
sentations inside the bottleneck makes them highly inter-
pretable. We illustrate this with a set of numerical experi-
ments in Section 6.

2. Preliminaries
In this section, we first formally define the convolution oper-
ation in CNNs and related notations to express convolution
in the form of matrix multiplication. Then we define the
parameterization of the CNNs and their representation cost.

2.1. Convolution in Matrix Form

For any a, b ∈ Rn, we define the (cyclic) convolution a ∗ b
by

(a ∗ b)i ≡
n∑

j=1

ajbi−1+j mod n, i = 1, . . . , n.

The cross-channel convolution typically used in CNNs with
input x ∈ Rn×c1 and filter w ∈ Rn×c2×c1 are denoted by
w ⃝∗ x ∈ Rn×c2 and defined as follows:

(w ⃝∗ x):,k =

c1∑
s=1

w:,k,s ∗ x:,s, k = 1, . . . , c2.

Note that a ∗ b = Ab with the circulant matrix

A =


a1 a2 · · · an
an a1 · · · an−1

...
...

a2 a3 · · · a1

 .
For the cross-channel convolution, we can also define its
equivalent matrix representation by W ∈ Rnc2×nc1 with
Wi,k;1,s = wi,k,s and Wi+p,k;j+p,s = Wi,k;j,s for i, j, p ∈
[n] and k, s ∈ [c], where the addition is taken modulo n.
One can verify that for x ∈ Rn×c1 ,

(Wx):,k =

c1∑
s=1

w:,k,s ∗ x:,s, for k ∈ [c2].

Let Fn ∈ Cn×n be the discrete Fourier transform (DFT)
matrix in n dimension, i.e. (Fn)i,j =

1√
n
ω
(i−1)(j−1)
n where

ωn = e2πi/n. Note that Fna gives the DFT coefficients of
a ∈ Rn. Also, a ∗ b =

√
nF ∗

ndiag(Fna)Fnb where F ∗
n =

F−1
n denotes the conjugate transpose. With these matrix

representations and results mentioned above, we may view
convolutions as linear transformations in the Fourier domain
and apply standard linear algebra results in the proofs.

2.2. Network Parameterization

In this paper, we consider the following parameterization
of CNNs: let x ∈ Ω ⊆ Rn×cin be the input where Ω is a
compact subset, n be the input size, and cin the number of
input channels. We adopt the index convention that A:,j de-
notes the j-th column of a matrixA and similarly for vectors
and tensors. For an L-layer CNN, for ℓ = 0, 1, . . . , L− 1,
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the activation αℓ(x) ∈ Rn×cℓ at the ℓ-th layer is defined
recursively by

α0(x) = x

α̃ℓ(x) = 1bTℓ + wℓ ⃝∗ αℓ−1(x)

αℓ(x):,c = σ(m ∗ α̃ℓ(x):,c), c = 1, . . . , cℓ

where wℓ ∈ Rn×cℓ×cℓ−1 are the weight filters, bℓ ∈ Rcℓ the
biases, 1 ∈ Rn the all-one vector, m ∈ Rn a user-specified
pooling filter applied to each channel, and nonlinearity σ =
ReLU. The last layer is linear:

αL(x) = α̃L(x) = 1bTL + wL ⃝∗ αL−1(x).

As remarked in Section 2.1, we write instead

αℓ(x) = σ
(
M(Wℓαℓ−1(x) + 1bTℓ )

)
and focus on this matrix representation in the rest of this
work. CNNs with this parameterization is naturally trans-
lationally equivariant, and discussion on its universality is
deferred to Appendix A.

2.3. Representation Cost

The representation cost of a function f is the minimum
norm of the parameter θ for a depth-L CNN fθ to represent
it over the input domain:

R(f ; Ω, L) = min
fθ|Ω=f |Ω

∥θ∥2

where the minimum is taken over all possible parameters
θ = (W1, b1, . . . ,WL, bL) with fθ(x) = f(x) ∀x ∈ Ω.
We let R(f ; Ω, L) = ∞ if no such parameter exists. This
representation cost describes the natural bias on the opti-
mized CNN representation induced by introducing the L2

regularization on the parameter θ for arbitrary training cost
function L:

min
θ

L(fθ) + λ∥θ∥2 = min
f∈Nm

L(f) + λR(f ; Ω, L) (1)

where Nm denotes the set of all translationally equivariant
piecewise linear (TEPL) functions that can be represented
by a CNN on Ω with pooling filter m.
Remark 2.1. Another natural definition for the representa-
tion cost is using the norm of the convolution filters wℓ in-
stead of the matrix representationWℓ. This only changes the
parameter norm by a constant factor ∥wℓ∥2F = 1

n∥Wℓ∥2F so
that the result presented in this paper can easily be adapted
to this other setting. Detailed discussion on adaptation to
the filter norm is left in Appendix F.

3. Large Depth Representation Cost
Our goal is to describe the bottleneck structure that appears
in deep CNNs trained with L2-regularization, e.g. Figure

2, where the weight matrices in the middle layers of the
network keep only a small number of large singular values
corresponding mostly to low frequencies. This bottleneck
structure affects the representation cost of large depth net-
works.

Our intuition, which is supported by our theoretical results,
is that this structure emerges because it minimizes the ‘cost
of representing the identity’: For large depths, most of
the layers of the network will be dedicated to ‘keeping
information’, i.e. to represent the identity (or an orthogonal
transformation) on the data. To represent the identity with a
small parameter norm, it is optimal for the pre-activations
to be positive, so that the ReLU equals the identity on them,
and to be supported along a few low frequencies, because the
weight matrixWℓ can then be chosen so thatMWℓ is equals
the identity along these frequencies and zero orthogonal to
them. More precisely if the image of α̃ℓ,c is positive and
only supported along the frequencies Ic ⊂ [n] for each
channel c = 1, . . . , cℓ, there we can choose Wℓ such that
MWℓσ(α̃ℓ(x)) = α̃ℓ(x) and

∥Wℓ∥2F =

cℓ∑
c=1

∑
i∈Ic

m̃−2
i . (2)

This we call the ‘cost of identity’ which is a sum over the
cost m̃−2

i of representing each frequency i that we keep.
In the absence of pooling M = Id each frequency has the
same cost, but for average pooling or other types of low-pass
pooling, higher frequencies have a higher cost.

3.1. Convolutional Bottleneck Rank

In the infinite depth limit L→ ∞ almost all layers will be
dedicated to ‘representing the identity’, and their parameter
norm will be roughly as described in equation 2. It is there-
fore optimal for the network to map in a few layers from the
input representations to a representation supported along a
few low frequencies, and then use the last few layers to map
back to the outputs. The TEPL functions f for which such a
decomposition is possible are eactly those that have a small
Convolutional Bottleneck (CBN) rank:

RankCBN(f ; Ω) := inf
f=h◦g

g=g1⊕···⊕gk

k∑
c=1

∑
i∈Ic

m̃−2
i

where ⊕ denotes channel concatenation, f can be factor-
ized into g : Rn×cin → Rn×k and h : Rn×k → Rn×cout

for some k ∈ N, Ic ⊂ [n] denotes the supported DFT fre-
quencies of the mapping gc of g to the c-th channel for
c = 1, . . . , k, and m̃ = Fnm gives the DFT coefficients of
the pooling m.

TEPL functions f with a small CBN rank can be represented
by a deep CNN with a small parameter norm:
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Theorem 3.1. For any translationally equivariant function
f with finite CBN rank, there is a constant c that depends
only on the target function f s.t.

R(f ; Ω, L) ≤ LRankCBN(f ; Ω) + c.

Proof. We sketch the proof idea of this theorem here. Sup-
pose f = h ◦ g attains the bottleneck rank. By Lemma G.1,
there is a CNN with depth Lg = ⌊log(ncin + 1)⌋ + 2
(Lh = ⌊log(nk+1)⌋+2 resp.) and parameter θg (θh resp.)
that represents g (h resp.). For L ≥ Lg + Lh, we can con-
struct the following CNN that represents f : Let the first Lg

layers represent g and the last Lh layers represent h. Let the
middle L−Lg −Lh layers be identity layers on g(Ω). The
overall parameter norm of this CNN is

∥θ∥2 = ∥θg∥2 + ∥θh∥2 + (L− Lg − Lh)

k∑
c=1

∑
t∈Ic

m̃−2
t .

If we define the limiting representation cost R(0)(f ; Ω) as
the limit limL→∞

1
LR(f ; Ω, L), then this implies the upper

bound R(0)(f ; Ω) ≤ RankCBN(f ; Ω), but we conjecture
that the two are actually equal. This conjecture is inspired
by the fact that in numerical experiments, there is a similar
bottleneck structure as the one in the proof of Theorem 3.1,
suggesting that such a structure might be indeed optimal (up
o(L) terms).

We give the following theoretical support for our conjecture.
First the R(0) shares a number of properties typical of a
notion of rank with RankCBN, such as

R0(f2 ◦ f1; Ω) ≤ min{R0(f2; f1(Ω)), R
0(f1; Ω)};

R0(f2 + f1; Ω) ≤ R0(f2; Ω) +R0(f1; Ω).

These properties as well as others are proven in Appendix B.

Second, and more importantly, we give a lower bound for
R(0)(f ; Ω) in terms of the Jacobian Jf(x) at a point x,
which matches the upperbound for a large family of TEPL
functions f .

This lower bound will be expressed in terms of the follow-
ing pooling-dependent rank: for any translation equivariant
matrix A ∈ Rnmin{cin,cout}×nmin{cin,cout}, define

Rankm(A) =

min{cin,cout}∑
c=1

n∑
t=1

m̃−2
t 1[sc,t(A) ̸= 0]

where sc,t(A) denotes the c-th singular value of A along
the t-frequency for c = 1, . . . ,min{cin, cout} and t =
1, . . . , n. Note that in the absence of pooling (i.e. m = id),
it reduces to the matrix rank Rankid(A) = Rank(A).

Theorem 3.2. For any translationally equivariant function
f , let Jf(x) be the Jacobian of f at x. The following
pooling-dependent lower bounds hold:

1. 1
m̃2

max
maxx∈Ω Rank(Jf(x)) ≤ R(0)(f ; Ω)

In particular, when there is no pooling,
maxx∈Ω Rank(Jf(x)) ≤ R(0)(f ; Ω).

2. maxx∈Ω− Rankm(Jf(x)) ≤ R(0)(f ; Ω)

where the max is taken over the subset Ω− := {x ∈
Ω |xp,i = xq,i ∀i = 1, . . . , cin,∀p, q = 1, . . . , n}, i.e.
all x that are constant along each channel.

If there is a point x ∈ Ω− (or x ∈ Ω when there is no
pooling) that matches the lower bound in Theorem 3.2 and
the upper bound Theorem 3.1, we prove the conjecture that
R(0) = RankCBN. For example, if the target function f is a
linear one-layer CNN and ∃x ∈ Ω− is an interior point in
Ω, by matching the upper and the lower bounds, we have

R(0)(f ; Ω) = RankCBN(f ; Ω) =

min{cin,cout}∑
c=1

∑
t∈Ic

m̃−2
t

where Ic is the DFT frequencies supported by the weight fil-
ter W at the c-th output channel (see proof in Appendix B).

3.2. Finite Depth Correction

There are many functions with the same CBN rank, some
more complex than others, depending on the complexity
of the functions g and h. The R(0)-term fails to capture
the complexity of g and h as can be seen in the sketch of
proof of Theorem 3.1, where the corresponding parameter
norms ∥θg∥2 and ∥θh∥2 have negligible contribution to the
parameter norm in contrast to the middle identity layers and
do not affect R(0). To capture these subdominant terms, we
consider the following correction term:

Definition 3.3. Define the finite depth correction term by

R(1)(f ; Ω) := lim
L→∞

R(f ; Ω, L)− LR0(f ; Ω).

This correction term R(1) serves as a “regularity control” on
the learned CNNs:

Proposition 3.4. 1. For any x ∈ Ω−, R(1)(f ; Ω) ≥
2
∑

sc,t ̸=0 m̃
−2
t log(sc,tm̃t) with sc,t being

the (c, t)-th singular values of Jf(x) for
c = 1, . . . ,min{cin, cout} and t = 1, . . . , n.

2. For all x ∈ Ω, if there is no pooling, thenR(1)(f ; Ω) ≥
2 log |Jf(x)|+.

3. If R(0)(f ◦ g; Ω) = R(0)(f ; g(Ω)) = R(0)(g; Ω), then
R(1)(f ◦ g; Ω) ≤ R(1)(f ; g(Ω)) +R(1)(g; Ω).
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4. If R(0)(f + g; Ω) = R(0)(f ; Ω) + R(0)(g; Ω), then
R(1)(f + g; Ω) ≤ R(1)(f ; Ω) +R(1)(g; Ω).

As shown by the first and second point of Proposition 3.4,
the finite depth correction R(1)(f ; Ω) controls the regularity
of the learned function f by upper bounding the (weighted)
sum of the log singular values of the Jacobian. The third
statement in Proposition 3.4 indicates that among functions
with the same R(0) cost, their “regularity control” satisfies
subadditivity.

We can rewrite the L2-regulartized training objective in
Equation 1 approximately in terms of R(0) and R(1):

min
f∈Nm

L(f) + λLR(0)(f ; Ω) + λR(1)(f ; Ω) (3)

where the depth L now plays a role of balancing the rank
estimation and the regularity control. If our conjecture
R(0)(f ; Ω) = RankCBN(f ; Ω) holds, then we may classify
the functions f ∈ Nm into subsets according to their BN-
rank R(0)(f ; Ω), i.e. for each possible combination Ik ∈
P([min{cin, cout}]× [n]) we can define

Nm,k :=

f ∈ Nm : R(0)(f ; Ω) =
∑

(c,t)∈Ik

m̃−2
t

 .

For fixed depth L and within each Nk, the objective 3 mini-
mizes the loss and the R(1) term that controls the regularity
via minf∈Nm,k

L(f)+λR(1)(f ; Ω) and hence the objective
itself becomes

min
k∈[K]

λL ∑
(c,t)∈Ik

m̃−2
t + min

f∈Nk

L(f) + λR(1)(f ; Ω)

 .

This reformulated objective suggests that for each possible
bottleneck rank, indexed by k ∈ [K], there is a regular min-
imizer fk ∈ Nm,k, and the depth L only decides which fk
is the global minimizer by trading off the bottleneck rank
term and the inner minimization term (which controls the
regularity of fk). This reformulated objective suggests that
as L→ ∞, regularized training is biased toward low-rank
CNNs whose inner representations concentrate to frequen-
cies where most information is kept (with large m̃t).

4. Bottleneck Structure in Weights and
Pre-Activations

Although we cannot prove the conjecture in its entirety,
we are indeed able to show a bottleneck structure in the
weights and the pre-activations of CNNs with sufficiently
small parameter norms.

BOTTLENECK STRUCTURE IN WEIGHTS

In the proof of Theorem 3.1, we construct a CNN where the
weights in most layers support only a few frequencies. This

bottleneck structure in the weights is also observed in the
numerical experiments in Section 6. We show that when
the parameter norm is sufficiently small, this bottleneck
structure is common in the weights:

Theorem 4.1. Suppose ∃k > 0 such that the pa-
rameter norm ∥θ∥2 ≤ kL + c is small enough
for k = maxx∈Ω− Rankm(Jfθ(x)). Let x0 ∈
argmaxx∈Ω−

RankmJfθ(x). Then there are V T
ℓ ∈

Rκ×ncℓ−1 and Uℓ ∈ Rncℓ×κ being submatrices of the DFT
block matrices Fℓ−1 ∈ Rncℓ−1×ncℓ−1 and FT

ℓ ∈ Rncℓ×ncℓ

respectively, where κ = RankJfθ(x0), such that

L∑
ℓ=1

∥Wℓ − UℓSℓV
T
ℓ ∥2F + ∥bℓ∥2F ≤ c− 2

∑
st,c ̸=0

m̃−2
t log(st,cm̃t)

and thus for any p ∈ (0, 1), there are at least (1 − p)L
layers ℓ with

∥Wℓ − UℓSℓV
T
ℓ ∥2F + ∥bℓ∥2F ≤

c−2
∑

st,c ̸=0 m̃−2
t log(st,cm̃t)

pL

where st,c is the (t, c)-th singular value of Jfθ(x0) and
Sℓ ∈ Rκ×κ is a diagonal matrix with entries ∈ {m̃−1

t }nt=1.

The assumptions on the norm ∥θ∥2 and the Jacobian Jfθ(x)
in Theorem 4.1 are there to guarantee that we are in the set-
ting where the upper and lower bounds onR(0) of Theorems
3.1 and 3.2 match up to a constant, and that the network
represents fθ with almost minimal parameter norm. The
proof leverages the small gap between the lower and upper
bound to prove the bottleneck structure (using the fact that
an inequality can only be satisfied with almost equality un-
der certain conditions). We hope that proving the conjecture
that R(0) = RankCBN would make it possible to alleviate
these assumptions, as there would be a lower bound that
matches the upper bound for all functions instead of only
some functions.

While at the minimal norm parameters θ, we know the
residual term c1 approaches and is upper bounded by
R(1)(fθ; Ω), this result also generalizes to all approxi-
mately minimal norm parameters where c1 is still close
to R(1)(fθ; Ω). The fact that it generalizes implies that this
bottleneck structure in the weights manifests in an ”almost
optimal” region around the optimal parameters into which
the regularized objective eventually falls.

BOTTLENECK STRUCTURE IN PRE-ACTIVATIONS WITH-
OUT POOLING

The fact that almost all weight matrices Wℓ are supported
along only a finite number of frequencies suggests that the
corresponding pre-activations α̃ℓ(X) =Wℓαℓ−1(X) + bℓ
for any training set X should also be supported along the
same frequencies (and possibly also along an additional
constant frequency because of the bias term).
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This is trivial if the activations remain bounded as the depth
L grows, but (Jacot, 2023b) has shown a counterexample: a
simple function whose optimal intermediate representations
explode in the infinite depth limit. This couterexample
can easily be translated to the CNN setup (by applying the
same function in parallel to all pixels of a constant input).
This implies that to guarantee bounded representations in
general, we need another source of bias, in addition to the
small parameter norm bias. Following (Jacot, 2023b), we
turn to the implicit bias of large learning rates in GD.

We know that GD with a learning rate of η can only con-
verge to a minima θ̂ where the top eigenvalue of the Hessian
λ1(HLλ(θ̂)) is upper bounded by 2/η. Other results suggest
that SGD is biased towards minima where the trace of the
Hessian is small (Damian et al., 2021; Li et al., 2021). The
top eigenvalue and trace both are measures of the narrow-
ness of the minimum.

For the MSE loss, the Hessian at a local minimum θ̂ that fits
the data (in the sense that Lλ(θ̂) = O(λ)) takes the form

HLλ(θ̂) =
2

N

N∑
i=1

Jθfθ(xi)
TJθfθ(xi) +O(λ).

The trace of Hessian is then approximately equal to
2
N

∑
∥Jθfθ(xi)∥2F and the largest eigenvalue is lower

bounded by 2
doutN2n

∑
∥Jθfθ(xi)∥2F −O(λ) since the first

term has rank Nndout.

The term ∥Jθfθ(x)∥2F (which also equals Tr[Θ(x, x)]
for Θ the NTK (Jacot et al., 2018)) typically scales lin-
early in depth since it equals the sum over the L terms
∥J(Wℓ,bℓ)fθ(x)∥2F , so a choice of learning rate η = O(L−1)
is natural. This forces convergence to a minimum with
∥Jθfθ(x)∥2F ≤ cL which in turns implies that almost all
activations are bounded:

Theorem 4.2. Given a depth L network without pool-
ing, balanced parameters θ with ∥θ∥2 ≤ Lk + c1 for
k = maxz∈Ω− Rankm(Jfθ(z)), and a point x0 such
that Rank Jfθ(x0) = maxz∈Ω− Rankm(Jfθ(z)), then
∥Jθfθ(x0)∥2F ≤ cL implies that,

L∑
ℓ=1

∥αℓ−1(x0)∥22 ≤ ce
c1
k

k|Jfθ(x0)|
2/k
+

L.

Hence for each p ∈ (0, 1), there are at least (1−p)L layers
ℓ with

∥αℓ−1(x0)∥22 ≤ 1

p

ce
c1
k

k|Jfθ(x0)|
2/k
+

.

Theorem 4.2 gives the conditions under which the acti-
vations remain bounded, and thereby the pre-activations
α̃ℓ(X) are supported along the same frequencies as Wℓ

(in which Theorem 4.1 proves a bottleneck structure) and

possibly also the constant frequency. Note that the results
we present in this section do not require the CNNs to be
well-trained to (approximately) global minimums.

5. CNNs with up and down-sampling
Given the bottleneck structure in the near-optimal parame-
ters, it is natural to consider implementing down-sampling
and up-sampling in CNNs which explicitly enforce a bottle-
neck structure and save computational cost, as commonly
used in practice. In this section, we study CNNs with down-
sampling and up-sampling layers.

We only consider CNNs with one down-sampling layer and
one up-sampling layer, but the results can be extended to
having multiple such layers. To be specific, consider the
set of CNNs with the parametrization in Section 2.2 but
with one down-sampling layer and one up-sampling layer
inserted: Let Nn;m be all possible CNNs with any depth,
input dimension n, and pooling m. For each stride s ∈ N,
define the set of stride-CNNs with inner pooling m′:

N (s)
n;m,m′ ={f2 ◦Ups ◦ f̂ ◦Downs ◦ f1 :

f1, f2 ∈ Nn;m, f̂ ∈ N⌊n/s⌋;m′}
(4)

Because of the down-sampling layer, our networks are no
longer translationally equivariant; instead, they only repre-
sent s-translationally equivariant functions (i.e. invariant
under translations by multiples of s). The formal mathemat-
ical definitions for down-sampling and up-sampling in (4)
are as follows:

Definition 5.1. Define the down-sampling operator
Downs : Rn×c → R⌊n/s⌋×c by mapping (Downs(x))i,k =
xsi,k, i.e. subsampling every s pixel along each channel.

Define the up-sampling operator Ups : Rn′×c → Rn′s×c

by
Ups(x) = F ∗

n′s[sIn′ , 0]TFn′x

i.e. mapping the n′ Fourier coefficients of input x to the
first n′ Fourier coefficients of Ups(x) and zeros otherwise.
FN denotes the DFT matrix of dimension N ×N .

Remark 5.2. By the Nyquist-Shannon sampling theorem
(Shannon, 1949), we have that for y = Downs(x), the i-th
DFT coefficient is ỹi = 1

s

∑s−1
j=0 x̃i+jn/s mod n. Hence ex-

act reconstruction of x is possible when x is low-frequency
i.e. x̃i = 0 for i ≥ n

s (in which case the set of coefficients
{x̃i+jn/s}s−1

j=0 has cardinality ≤ 1 and gives a one-to-one
mapping between the coefficients of x and y).

Remark 5.3. The set of all s-stride-CNNs N (s)
n;m,m′ is the

set of all functions f = h ◦ g with bottleneck support only
on the first n

s DFT frequencies, cf. Proposition E.1.
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Figure 1. We train a CNN (L = 11, cℓ =

60, λ = 0.005, β = 0.5) on MNIST. The inputs
are 28 × 28, and scaled down by 2 on the 2nd
and 4th layers, with global average pooling and a
fully connected layer at the end. We see that for
classification, six constant frequencies are kept.
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(a) Sing. vals. of MWℓ

*4
*1

= (0, 0)
 i = 1

*.
25

*4
*1

*.
25

= (0, 0)
 i = 2

= (0, 0)
 i = 3

= (0, 1)
 i = 1

= (0, 1)
 i = 2

= (1, 0)
 i = 1

= (1, 0)
 i = 2

= (1, 1)
 i = 1

(b) Latent space interpretation

Figure 2. We train an autoencoder (L = 12, cℓ = 50, λ = 0.04, β = 1.0) on the 0-digits of
MNIST downscaled to the size 13× 13. (a) The singular values of MWℓ for every layer ℓ, colored
by their frequency ω. (b) Along each of the singular values in the 5-th layer, we plot the effect of
multiplying the hidden representation along the sing. vector by 2 or 0.5 (for non-constant frequencies
we also consider multiplication by complex i and −i). We see how each singular value correspond to
a (nonlinear) direction of variation of the zeros. For non-constant frequencies the argument encodes
the x and y position of the digit.

In other words, if a full-size CNN can be decomposed into
two TEPL functions with only low frequencies, then it can
be represented by a CNN with down and up-sampling. We
thereby have the natural extension of the CBN rank for the
stride-CNNs:

Rank
(s)
CBN(f ; Ω) ≡ min

f=h(s)◦g(s)

g(s)=g
(s)
1 ⊕···⊕g

(s)
k

k∑
c=1

∑
i∈Ic

m̃′−2
i

where in the decomposition f = h(s) ◦ g(s), g(s)c on each
channel c only supports low frequencies Ic ⊆ [ns ]. Note
that any f ∈ N (s)

n;m,m′ has finite stride-bottleneck rank

Rank
(s)
CBN(f ; Ω) < ∞. If the inner pooling m′ (of size

n
s ) is the same as m (of size n) truncated to the first n

s fre-
quencies, then it is straightforward that RankCBN(f ; Ω) ≤
Rank

(s)
CBN(f ; Ω).

Remark 5.4. The reason for having the first n
s frequencies

here is due to the choice we made in the up-sampling op-
erator. One can slightly generalize to exact reconstruction
of x consisting of another set of n

s frequencies by having
a different mapping between the low-dimensional and the
high-dimensional Fourier coefficients, as long as the input
satisfies |{x̃i+jn/s}s−1

j=0| ≤ 1 for each 0 ≤ i < n
s .

Furthermore, we may recover the upper bound theorem as
in Theorem 3.1.

Theorem 5.5. Let R(0)
s (f ; Ω) denote the rescaled represen-

tation cost under the architecture with stride s. Then for
any f ∈ N (s)

n;m,m′ ,

R(0)
s (f ; Ω) ≤ Rank

(s)
CBN(f ; Ω).

Proof. The proof idea follows from that of Theorem 3.1.
Suppose f = h(s) ◦ g(s) realizes Rank(s)CBN(f ; Ω). Observe
that f = h(s) ◦Ups ◦ f̂ ◦Downs ◦ g(s) where f̂ consists of
L̂ identity layers and hence Ups ◦ f̂ ◦Downs = id|Im g(s) .
The bound follows by taking L̂ to infinity.

Remark 5.6. One may also generalize the properties of R(0)

to R(0)
s following the same proof ideas.

If the target function possesses a good low-frequency bottle-
neck structure in the sense that RankCBN ≈ Rank

(s)
CBN, un-

der the conjecture R(0) = RankCBN and R(0)
s = Rank

(s)
CBN,

we can see that R(0) ≈ R
(0)
s (meaning their optimal repre-

sentation costs are close). Hence one is justified to learn
the target with CNNs with enforced down-sampling and
up-sampling layers for reduced computation cost and lower-
dimensional latent representations in the Euclidean space.

LOW FREQUENCY REPRESENTATION

Although we show exact recovery is possible with appro-
priate stride s, there remains the question of how to choose
the stride for down-sampling in our CNNs a priori. To
partially answer this question, under some realistic assump-
tions on the input domain Ω, we can show that the target
function f : Ω → Rn×cout has a low-frequency decom-
position f = h ◦ g(2) with stride s = n

2 (i.e. inner repre-
sentations only have input size 2 and hence only support 2
frequencies). Yet we remark that having a 2-frequency de-
composition does not imply that the optimal stride is of size
2, because low-frequency decomposition may require too
many channels for exact recovery, whereas retaining a few
more frequencies may be more informative and efficient.

Definition 5.7. The input domain Ω is translationally

7
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unique if ∀x, y ∈ Ω, x = Tpy =⇒ x = y and p = 0,
where Tp denotes the translation by p along each channel
for p = 0, . . . , n− 1.

In particular, for this kind of domain, Ω− = ∅. Though it
is difficult to check or guarantee that all natural images are
translationally unique, it seems to hold for the vast majority
of images.

Theorem 5.8. Suppose Ω is translationally unique. Then for
any piecewise linear target function f : Ω → Rn×cout , f =
h ◦ glow where h and glow are TEPL functions and glow :
Ω → Rn×ncin+1 only supports the constant DFT frequency
at first ncin channels and the second DFT frequency at the
ncin + 1-th channel.

Remark 5.9. Theorem 5.8 implies that the identity map on
translationally unique domains can be represented using
ncin constant frequencies and one 1-periodic frequency. In
particular, it gives an upper bound on the bottleneck rank of
any TEPL function f on such domain Ω, including id, that

RankCBN(f ; Ω) ≤ m̃−2
2 + ncinm̃

−2
1 .

6. Numerical Experiments
For our numerical experiments, we train networks on 4
different tasks, with different depths and ridge parameters.
We use filters with full size and cyclic boundaries. The
pooling operator is Mβ = (1 − β)I + βA3, where A3 is
the 3 × 3 average filter. We use a few different values of
β. For the MNIST classification task, we also implement
downsampling in the 2nd and 4th layers. The experiments
are done for 2D convolution instead of 1D convolution as
in the theoretical analysis, but everything translates directly,
with the difference that frequencies are indexed by pairs ω.

The emergent bottleneck structure that appears in all the
tasks we consider makes these networks highly interpretable.
We plot the singular values sω,i(MWℓ) accross the layers
ℓ = 1, . . . , L. We emphasize the singular values that are
kept in the bottleneck by coloring them according to their
frequency.

MNIST classification: For MNIST classification the CNN
features a global pooling layer at the end, followed by a final
fully-connected layer. This explains why only constant fre-
quencies are kept in the bottleneck, since any non-constant
frequencies in the outputs are killed by the global pooling.
Only 6 dimensions are kept, which is sufficient to embed all
10 classes in a linearly separable manner.

Also note that this experiments illustrates a ‘half-bottleneck’,
where the representations go from high-dim/high-freq in-
puts to a low-dim/low-freq bottleneck and remain there
until the outputs. This is in contrast to the full bottlenecks
that we observe in our other experiments where the repre-
sentations go back to high-dim/high-freq in the last layers.

Note that this half-bottleneck structure (which is common
in classification tasks since the outputs of the network are
low-dim/low-freq) could explain some aspects of the neural
collapse phenomenon (Papyan et al., 2020) as well as other
numerical observations (Kornblith et al., 2019).

MNIST digit 0 autoencoder: When training an autoen-
coder the networks keeps3 constant freq. along with 4
degree 1 freq. and 1 degree two freq. Since the signal inside
the bottleneck is almost only supported along low frequen-
cies, the middle layers could have been downsampled before
upsampling again (as is usually done with autoencoders),
but the L2-regularization alone recreates the same effect.
We believe allowing the network to choose the frequencies
it wants to keep and the number of channels is better than
forcing it. Of course there are computational advantages to
downsampling in the middle of the network.

To understand what each of the kept frequencies capture,
we plot the effect of multiplying by 4 or 0.25 the signal
along each singular value of W5 and plotting the resulting
modified output. The effect along some singular values can
be interpreted as capturing e.g. size, boldness, narrowness,
angle and more.

Autoencoder on synthetic data: We train an autoencoder
on data obtained as the pixelwise multiplication of a low-
freq shape with a high-freq repreating pattern (a single freq.-
(5, 5) Fourier function with random phase). We see that
the network disentangles the shape from the pattern in the
bottleneck, the shape is encoded in the ∥ω∥1 ≤ 2-freqs and
the pattern in the single (5, 5)-freq. This is only possible
with non-linear transformations at the beginning and end of
the network.

Learning Newtonian Mechanics: We train a network to
predict the trajectory of a ball: the inputs to the network are
four frames of a ball under gravity (with different frames
encoded in different channels) with a random initial position
and velocity, from which the network has to predict the
next 4 frames. The network keeps two pairs of degree
one frequencies (and one constant frequency, which seems
to only be there to ensure that the signal remains in R+

inside the bottleneck; one can check that no information is
kept in this constant frequency). The phases of the largest
pair of degree one frequencies θ1 and ϑ1 encode the (x, y)-
position of the ball two frames before the end, and the
difference in phases between the largest pair and the smaller
pair encodes the (x, y)-velocity at the same frame. Thus the
network recognizes that the evolution of the ball is uniquely
determined by its position and velocity.

7. Limitations and Discussion
In this paper we focused on describing a bottleneck struc-
ture in CNNs with small parameter norm. It still remains to
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(a) Singular values of MWℓ

(b) Training data

Figure 3. CNN (L = 10, cℓ = 60, λ = 0.0005, β = 0.25) trained on
images that are made up of random low-freq. shapes multiplied with a
high frequency (ω = (5, 5)) pattern. In the bottleneck the network keeps
track of the shapes in low frequencies (∥ω∥1 ≤ 2) and the pattern in one
ω = (5, 5) frequency. Note that the original images only has signal in
high frequencies around (5, 5).

be shown that GD converges under reasonable assumption
to such a small parameter solution. The training dynamics
of deep nonlinear networks are very difficult to study (out-
side of the NTK regime (Jacot et al., 2018)), but knowing
what kind of structure we expect to appear will probably be
helpful.

Our analysis is centered around L2-regularized networks,
but we expect a similar picture to appear in other settings. It
has been observed that training with GD on a cross-entropy
loss leads to an implicit L2 regularization (Gunasekar et al.,
2018a), thus leading to a BN structure. Similarly a small
initialization should bias GD towards solutions with small
parameter norm, similar to the dynamics observed in linear
nets (Li et al., 2020a; Jacot et al., 2022).

A final limitation is our use of full-size filters and cyclic
boundaries. This choices has the obvious advantage of
allowing for the use of Fourier analysis, but we expect a
similar structure to still appear, though possibly with a dif-
ferent type of sparsity than the sparsity in Fourier basis that
we observe. Our analysis only captures the bias induced
by the translation invariance of the weights, but the local-
ity of the connections is generally believed to also play an
important role.

8. Conclusion
This paper describes a bottleneck structure in CNNs: the
network learns functions of the form f = h ◦ g where the
inner representation is only supported along a few Fourier
frequencies, inspired by the appearance of a similar structure
in fully-connected networks (Jacot, 2023a;b). Our results
provide motivation and justification for the common use of
down-sampling in CNNs. This bottleneck structure makes
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(b) Interpretation

Figure 4. CNN (L = 9, cℓ = 60, λ = 0.0001, β = 0.25) learns to
predict the trajectory of a ball under gravity: the inputs are 4 frames of a
ball represented as a dot on a black background, and the outputs are the
next four frames. The position appears to be encoded by the phase of the
first pair, while the velocity is encoded in the difference between the phases
of the two pairs, as confirmed in (b) along the x-axis.

the learned latent features of CNNs highly interpretable, as
confirmed by a number of numerical experiments.

Impact Statement
This work is theoretical in nature and the goal is to advance
our understanding in machine learning. It has no direct
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A. CNNs as Universal Approximators
Since (fully connected) neural networks are mostly known as universal approximators, one may wonder if the CNNs given
by the parameterization in Section 2.2 are universal approximators for translationally equivariant functions. Indeed, when
the user-chosen filter m is invertible, universality is guaranteed (Yarotsky, 2018).

Note that the filter being invertible does not prevent it from “shrinking” the high frequencies, since it can have arbitrarily
small (but nonzero) singular values at high frequencies. Thereby one may consider it as a smoothened low-pass filter.

B. Properties of R(0) and R(1)

We present several interesting properties of the R(0) cost and their proofs here.

Proposition B.1 (R(0) properties). Write M̄ :=
∑n

t=1 m̃
−2
t for simplicity. For any translationally equivariant functions

f1, f2, we have the following properties:

1. R0(f2 ◦ f1; Ω) ≤ min{R0(f2; f1(Ω)), R
0(f1; Ω)};

2. R0(f2 + f1; Ω) ≤ R0(f2; Ω) +R0(f1; Ω);

3. R0(f1; Ω) ≤ min{cin, cout}M̄ if the filter m is nonnegative and invertible;

4. R0(id; Ω) = min{cin, cout}M̄ if there is an interior point of Ω in Ω−;

5. R0(f1; Ω) = min{cin, cout}M̄ if f1 is a bijection and there is an interior point of Ω in Ω−;

6. If f : Rn×cin → Rn×cout is an affine convolution, namely f is a linear one-layer CNN with weight w ∈ Rn×cout×cin

and bias b ∈ Rcout , and there is an interior point of Ω in Ω−, then

R0(f ; Ω) =

min{cin,cout}∑
c=1

∑
t∈Ic

m̃−2
t

where Ic is the Fourier frequencies supported by {w:,c,k}cink=1, i.e. the indices of nonzero entries of {Fw:,c,s}cink=1.

Proof. 1. Write f1(Ω) ⊆ Rn×cmid . Without loss of generality, we may assume R0(f2; f1(Ω)) ≤ R0(f1; Ω). By
Lemma G.1, we can fix a CNN with depth L1 = ⌈ncin + 1⌉ + 2 and parameter W 1 representing f1. For any suffi-
ciently large L > L1 + ⌈ncmid + 1⌉+ 2, we have a CNN with depth L− L1 and parameter W 2 that represents f2 with
minimal representation cost, i.e. ∥W 2∥2 = R(f2;L− L1, f1(Ω)). Then the norm of the composed CNN is

R(f2 ◦ f1;L,Ω) ≤ ∥W 1∥2 +R(f2;L− L1, f1(Ω)).

Dividing by L− L1 and taking L→ ∞ gives the inequality

R0(f2 ◦ f1; Ω) ≤ min{R0(f2; f1(Ω)), R
0(f1; Ω)}.

2. Let f1 and f2 be represented by CNNs with some depth L and parameters W 1 and W 2, respectively, with minimal
parameter norms, i.e. ∥W 1∥2 = R(f1;L,Ω) and ∥W 2∥2 = R(f2;L,Ω). We can construct a network with depth L and
parameters W that represents f1 + f2 by stacking them ”in parallel”:

At each layer ℓ, we let the number of channels be the sum of the other two networks, i.e. cℓ = c
(1)
ℓ + c

(2)
ℓ . For layers

1 ≤ ℓ < L, we set the weights and biases as follows:

(wℓ):,c,k = 1

[
c ≤ c

(1)
ℓ ∧ k ≤ c

(1)
ℓ−1

]
(w

(1)
ℓ ):,c,k + 1

[
c > c

(1)
ℓ ∧ k > c

(1)
ℓ−1

]
(w

(2)
ℓ )

:,c−c
(1)
ℓ ,k−c

(1)
ℓ−1

(bℓ)c = 1

[
c ≤ c

(1)
ℓ

]
(b

(1)
ℓ )c + 1

[
c > c

(1)
ℓ

]
(b

(2)
ℓ )

c−c
(1)
ℓ

12
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for c = 1, . . . , cℓ and k = 1, . . . , cℓ−1. We incorporate the sum in the last layer by having

(wL):,c,k = 1

[
k ≤ c

(1)
L−1

]
(w

(1)
L ):,c,k + 1

[
k > c

(1)
L−1

]
(w

(2)
L )

:,c,k−c
(1)
L−1

(bL)c = (b
(1)
L )c + (b

(2)
L )c

for c = 1, . . . , cout, k = 1, . . . , cL−1.

This CNN represents f1 + f2 and has parameter norm ∥W ∥2 = ∥W 1∥2 + ∥W 2∥2. Hence we have

R(f2 + f1;L,Ω) ≤ R(f2;L,Ω) +R(f1;L,Ω).

Dividing by L and taking L→ ∞, we obtain the desired inequality

R0(f2 + f1; Ω) ≤ R0(f2; Ω) +R0(f1; Ω).

3. Let ϕ be represented by a depth Lϕ network with parameter W ϕ. For L ≥ Lϕ, we can let the first L− Lϕ layers of the
network be the identity layers: Since Ω is bounded, let K > 0 upper bounds x ∈ Ω coordinate-wise. For ℓ = 1, . . . , L−Lϕ,
let

(wℓ):,c,k = m−1
1[c = k]

(bℓ)c = K1[ℓ = 1]

(bL−Lϕ+1)c = (b
(ϕ)
1 )c −K(m−1 ∗ 1).

Note this CNN represents ϕ◦id = ϕ. By construction, the parameter norm is ∥W ∥2 = (L−Lϕ)cin
∑n

t=1 m̃
−2
t +∥W ϕ∥2+

nK(m−1 ∗ 1+ 1). Dividing by L and taking L→ ∞ yields

R0(ϕ; Ω) ≤ cin

n−1∑
t=0

m̃−2
t .

Similarly, appending the identity layers after W ϕ yields

R0(ϕ; Ω) ≤ cout

n−1∑
t=0

m̃−2
t .

4. Follows from the squeezing bounds Theorem 3.1 and Theorem 3.2.

5. Follows from the observation that

min(cin, cout)M̄ = R0(id; Ω) ≤ min{R0(ψ; Ω), R0(ψ−1; Ω)} ≤ min(cin, cout)M̄.

6. Follows from the squeezing bounds Theorem 3.1 and Theorem 3.2 (note for the upper bound decomposition we have
f = id ◦ f ).

Corollary B.2. Let f be any translationally equivariant function. For any translationally equivariant bijections ϕ and ψ on
Rn×cin and Rn×cout respectively, we have R0(ψ ◦ f ◦ ϕ; Ω) = R0(f ; Ω).

With the following proposition, we show that the R(1) correction controls the regularity of the learned function and satisfies
subadditivity.

Proposition B.3 (R(1) properties). For any translationally equivariant functions f and g, we have the following properties:

1. For any x ∈ Ω−, R1(f ; Ω) ≥ 2
∑

st,c ̸=0 m̃
−2
t log(st,cm̃t) with st,c being the (t, c)-th singular values of Jf(x) for

t = 1, . . . , n and c = 1, . . . ,min{cin, cout}.

In particular, when there is no pooling, i.e. m = id, for any x ∈ Ω, we have R1(f ; Ω) ≥ 2 log |Jf(x)|+ where | · |+
denotes the pseudo-determinant.

13
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2. If R0(f ◦ g; Ω) = R0(f ; g(Ω)) = R0(g; Ω), then R1(f ◦ g; Ω) ≤ R1(f ; g(Ω)) +R1(g; Ω).

3. If R0(f + g; Ω) = R0(f ; Ω) +R0(g; Ω), then R1(f + g; Ω) ≤ R1(f ; Ω) +R1(g; Ω).

Proof. 1. From the proof of Theorem 3.2 we have R(f ; Ω, L) ≥ L∥M1−LJfθ(x)∥
2/L
2/L for any x ∈ Ω−. Therefore,

R1(f ; Ω) = lim
L→∞

R(f ; Ω, L)− LR0(f ; Ω)

≥ lim
L→∞

L


n

min{cin,cout}∑
t=1
c=1

m̃
2 1−L

L
t s

2
L
t,c −R0(f ; Ω)


≥ lim

L→∞
L
∑

st,c ̸=0

m̃−2
t

(
s

2
L
t,cm̃

2
L
t − 1

)
≥ lim

L→∞
L
∑

st,c ̸=0

m̃−2
t

2

L
log(st,cm̃t)

= 2
∑

st,c ̸=0

m̃−2
t log(st,cm̃t)

for all x ∈ Ω− i.e. that are constant along each channel.

Similarly, when there is no pooling, we have for any x ∈ Ω, R(f ; Ω, L) ≥ L∥Jfθ(x)∥
2/L
2/L and the result follows from the

same reasoning.

2. Since R(f ◦ g; Ω, L1 + L2) ≤ R(f ; g(Ω), L1) +R(g; Ω, L2), we have:

R1(f ◦ g; Ω) = lim
L1+L2→∞

R(f ◦ g; Ω, L1 + L2)− (L1 + L2)R
0(f ◦ g; Ω)

≤ lim
L1→∞

R(f ; g(Ω), L1)− L1R
0(f ; g(Ω)) + lim

L2→∞
R(g; Ω, L2)− L2R

0(g; Ω)

= R1(f ; g(Ω)) +R1(g; Ω).

3. Since R(f + g; Ω, L) ≤ R(f ; Ω, L) +R(g; Ω, L), we have:

R1(f + g; Ω) = lim
L→∞

R(f + g; Ω, L)− LR0(f + g; Ω)

≤ lim
L→∞

R(f ; Ω, L)− LR0(f ; Ω) + lim
L→∞

R(g; Ω, L)− LR0(g; Ω)

= R1(f ; Ω) +R1(g; Ω).

C. Upper and Lower bounds for Rescaled Representation Cost and Correction
In this section, we present the proofs for the CBN upper bound (Theorem 3.1) and the filter-dependent lower bounds
(Theorem 3.2) of R(0).

Theorem C.1. For any translationally equivariant function f with finite R(0)(f ; Ω),

R(0)(f ; Ω) ≤ RankCBN(f ; Ω).

Proof. Let f = h ◦ g for any TEPL functions h, g and g(x) = g1(x) ⊕ · · · ⊕ gk(x), gc(x) with Ic truncated Fourier
coefficient supports for c = 1, . . . , k. Lemma G.1 tells that h and g can be represented by CNNs with parameters W h and
W g and depths Lh, Lg ≤ ⌈log(ncin + 1)⌉+ 2 respectively.

Since Ω is bounded, we can translate g(Ω) to the first quarter of Rn×k by adding an extra bias b̄g in the last layer. Then for
any L > Lh + Lg , we can efficiently construct a network as follows: first Lg layers are the network representing g with an

14
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extra bias b̄g to translate the output to the first quarter, followed by L− Lh − Lg identity layers as described in the proof of
Proposition B.1 and translate the hidden representation αℓ back by subtracting b̄g in the last identity layer, and finally the
last Lh layers the network representing h. This construction gives us a bound

R(f ;L,Ω) ≤ ∥W g∥2 + (L− Lg − Lh)

k∑
c=1

∑
i∈Ic

m̃−2
i + 2∥b̄g∥2 + ∥W h∥2

for L > Lg + Lh. Dividing both side by L and taking L→ ∞ gives the inequality

R0(f ; Ω) ≤
k∑

c=1

∑
i∈Ic

m̃−2
i

and the result follows since h ◦ g is an arbitrary TEPL decomposition.

Theorem C.2. For any translationally equivariant function f , let Jf(x) be the Jacobian of f at x. The following
filter-dependent lower bounds hold:

1. 1
max{m̃2

max,1}
maxx∈Ω Rank(Jf(x)) ≤ R(0)(f ; Ω)

In particular, when there is no pooling, maxx∈Ω Rank(Jf(x)) ≤ R(0)(f ; Ω).

2. maxx∈Ω− Rankm(Jf(x)) ≤ R(0)(f ; Ω)

where the max is now taken over the subset Ω− := {x ∈ Ω |xi,c = xj,c ∀c = 1, . . . , cin,∀i, j = 1, . . . , n}, i.e. all x
that are constant along each channel.

Proof. 1. Fix any input x ∈ Ω, depth L, and the minimal-norm parameter θ with fθ = f . We can first write

Jfθ(x) =WLDL−1(x)MWL−1 · · ·D1(x)MW1

where Dℓ(x) = diag(σ̇(αℓ(x))) ∈ Rncℓ×ncℓ are diagonal matrices with 1 and 0 on the diagonal, Wℓ ∈ Rncℓ×ncℓ−1 are
the matrix representation of the convolution filters wℓ ∈ Rn×cℓ×cℓ−1 , and M is that of the channel-wise convolution with
m ∈ Rn (or simply a convolution filter m̂ ∈ Rn×cℓ×cℓ with m̂:,c,s = 1[c = s]m). From (Jacot, 2023a) and (Dai et al.,
2021), we have

∥Jfθ(x)∥
2/L
2/L ≤ 1

L

(
∥WL∥2F + ∥DL−1(x)MWL−1∥2F + · · ·+ ∥D1(x)MW1∥2F

)
≤ 1

L

(
∥WL∥2F + ∥MWL−1∥2F + · · ·+ ∥MW1∥2F

)
≤ 1

L
max{∥M∥22, 1}

(
∥WL∥2F + · · ·+ ∥W1∥2F

)
=

max{m̃2
max, 1}
L

(
∥WL∥2F + · · ·+ ∥W1∥2F

)
≤ max{m̃2

max, 1}R(f ; Ω, L)/L

Taking L→ ∞ on both sides, we have for any input x ∈ Ω,

1

max{m̃2
max, 1}

Rank(Jf(x)) ≤ R(0)(f ; Ω).

2. The key observation in this proof is that if the input x is constant along each channel and W is any translationally
equivariant matrix, then WDℓ(x)M = MWDℓ(x). This observation follows from the fact that αℓ(x) is translationally
equivariant and hence also channel-wise constant; then Dℓ(x) = diag(σ̇(αℓ(x))) is either all 0 or all 1 along each channel,
and so Dℓ(x)M = MDℓ(x). The commutativity between M and W always holds and follows from pure algebraic
computation. Consequantly, for any x ∈ Ω−, depth L, and parameter θ with fθ = f , we now have

Jfθ(x) =WLDL−1(x)MWL−1 · · ·D1(x)MW1

=ML−1WLDL−1(x)WL−1 · · ·D1(x)W1
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and ∥∥M1−LJfθ(x)
∥∥2/L

2/L
= ∥WLDL−1(x)WL−1 · · ·D1(x)W1∥

2/L
2/L

≤ 1

L

(
∥WL∥2F + ∥DL−1(x)WL−1∥2F + · · ·+ ∥D1(x)W1∥2F

)
≤ 1

L

(
∥WL∥2F + · · ·+ ∥W1∥2F

)
≤ R(f ;L,Ω)/L (5)

Since Jfθ(x) is a product of translationally equivariant matrices and so is translationally equivariant, we can index its
singular values st,c by the FDT frequency t = 0, . . . , n− 1 and the channel c = 1, . . . ,min{cin, cout}. Then the singular
values of M (1−L)Jfθ(x) are m̃1−L

t st,c. Thus we can rewrite

∥∥M1−LJfθ(x)
∥∥2/L

2/L
=

n∑
t=1

min{cin,cout}∑
c=1

m̃
2 1−L

L
t s

2/L
t,c .

Taking L→ ∞ on both sides of (5), we have

n∑
t=1

min{cin,cout}∑
c=1

m̃−2
t 1[st,c ̸= 0] ≤ R(0)(f ; Ω).

D. Bottleneck Structure in Weights and Activations
Following are the proofs for Theorem 4.1 and Theorem 4.2.

Theorem D.1. Given ∥θ∥2 ≤ Lmaxz∈Ω− Rankm(Jfθ(z)) + c1 and x ∈ argmaxz∈Ω−
RankmJfθ(x), we have V T

ℓ ∈
Rκ×ncℓ−1 and Uℓ ∈ Rncℓ×κ being submatrices of the DFT block matrices Fℓ−1 ∈ Rncℓ−1×ncℓ−1 and F ∗

ℓ ∈ Rncℓ×ncℓ

respectively, where κ = RankJfθ(x), such that

L∑
ℓ=1

∥Wℓ − UℓSℓV
T
ℓ ∥2F + ∥bℓ∥2F ≤ c1 − 2

∑
st,c ̸=0

m̃−2
t log(st,cm̃t)

and thus for any p ∈ (0, 1), there are at least (1− p)L layers ℓ with

∥Wℓ − UℓSℓV
T
ℓ ∥2F + ∥bℓ∥2F ≤

c1 − 2
∑

st,c ̸=0 m̃
−2
t log(st,cm̃t)

pL

where st,c is the (t, c)-th singular value of Jfθ(x) and Sℓ ∈ Rκ×κ is a diagonal matrix with entries ∈ {m̃−1
t }n−1

t=0 .

Proof. Note for x ∈ Ω− constant input, we have

Jfθ(x) =WLDL−1(x)MWL−1 · · ·D1(x)MW1

where all Wℓ, Dℓ(x), and M are translationally equivariant, and so is Jfθ(x) itself. Hence we can decompose Jfθ(x) along
each Fourier frequency separately: Let Pt be the projection matrix to the signal space consisting of only the t-th frequency.
Then we can decompose

Jfθ(x) =

n∑
t=1

PtJfθ(x)Pt .
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Now we consider each summand PtJfθ(x)Pt. For x ∈ Ω−, each Pt represents a single-channel convolution and hence
commutes with all translationally equivariant maps. Then we have

PtJfθ(x)Pt = PtWLDL−1(x)MWL−1 · · ·D1(x)MW1Pk

= PtWLPtDL−1(x)PtMPtWL−1Pt · · ·D1(x)PtMPtW1Pt

= m̃L−1
t PtWLPtDL−1(x)PtWL−1Pt · · ·D1(x)PtW1Pt

= m̃L−1
t PtWLPtPIm JαL−1(x)PIm J(αL−1→fθ)(x)TDL−1(x)PIm Jα̃L−1(x)

PIm J(α̃L−1→fθ)(x)TPtWL−1PtPIm JαL−2(x) · · ·
PIm J(α1→fθ)(x)TD1(x)PIm Jα̃1(x)PIm J(α̃1→fθ)(x)TPtW1Pt

since PtMPt = m̃tPt.

For general matrices A and B, |AB|+ = |A|+|B|+ when the non-zero pre-image of A matches the image of B, and
|αA|+ = αRankA|A|+. Hence we have

|PtJfθ(x)Pt|+ = m̃
(L−1)nt

t |PtWLPtPIm JαL−1(x)|+|PIm J(αL−1→fθ)(x)TDL−1(x)PIm Jα̃L−1(x)|+
|PIm J(α̃L−1→fθ)(x)TPtWL−1PtPIm JαL−2(x)|+ · · ·
|PIm J(α1→fθ)(x)TD1(x)PIm Jα̃1(x)|+|PIm J(α̃1→fθ)(x)TPtW1Pt|+

with nt =
∑min{cin,cout}

c=1 1[st,c ̸= 0] = Rank(PtJfθ(x)Pt). Then writing PIm Jα0(x) = I , we have

min{cin,cout}∑
c=1

st,c ̸=0

log st,c = log |PtJfθ(x)Pt|+

= nt(L− 1) log m̃t +

L−1∑
ℓ=1

|PIm J(αℓ→fθ)(x)TDℓ(x)PIm Jα̃ℓ(x)|+

+

L∑
ℓ=1

|PIm J(α̃ℓ→fθ)(x)TPtWℓPtPIm Jαℓ−1(x)|+ .

Observe that

−2m̃−2
t |PIm J(αℓ→fθ)(x)TDℓ(x)PIm Jα̃ℓ(x)|+ ≥ m̃−2

t

(
RankJfθ(x)− ∥PIm J(αℓ→fθ)(x)TDℓ(x)PIm Jα̃ℓ(x)∥

2
F

)
which is positive since the eigenvalues of Dℓ(x) is ≤ 1.

Also note that for general matrix A and constants mi, we have

∥A∥2F −
RankA∑
i=1

(
m−2

i − 2m−2
i logmi − 2m−2

i log si(A)
)

=

RankA∑
i=1

si(A)
2 −m−2

i (1 + 2 logmi + 2 log si(A))

=

RankA∑
i=1

si(A)
2 −m−2

i (1 + 2 log(misi(A)))

≥
RankA∑
i=1

si(A)
2 −m−2

i (1 + 2misi(A)− 2)

=

RankA∑
i=1

(si(A)−m−1
i )2
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Denote W
(t)

ℓ = PIm J(α̃ℓ→fθ)(x)TPtWℓPtPIm Jαℓ−1(x) for simplicity. Then we can lower bound the sum

∥θ∥2 −
L∑

ℓ=1

∥bℓ∥2F − LRankm(Jfθ(x))− 2
∑
t,c

st,c ̸=0

m̃−2
t log(st,cm̃t)

=

L∑
ℓ=1

∥Wℓ∥2F − L
∑
t,c

st,c ̸=0

m̃−2
t − 2

∑
t,c

st,c ̸=0

m̃−2
t log(st,cm̃t)

=

L∑
ℓ=1

∥Wℓ∥2F − L
∑
t,c

st,c ̸=0

m̃−2
t − 2

∑
t,c

st,c ̸=0

m̃−2
t log st,c − 2

∑
t,c

st,c ̸=0

m̃−2
t log m̃t

≥
L∑

ℓ=1

n∑
t=1

(
∥PtWℓPt∥2F −

∑
c

st,c ̸=0

m̃−2
t − 2m̃−2

t

∑
c

st,c ̸=0

log m̃t − 2m̃−2
t log |W (t)

ℓ |+

)

=
L∑

ℓ=1

n∑
t=1

(
∥PtWℓPt −W

(t)

ℓ ∥2F + ∥W (t)

ℓ ∥2F −
∑
c

st,c ̸=0

m̃−2
t − 2m̃−2

t

∑
c

st,c ̸=0

log m̃t − 2m̃−2
t log |W (t)

ℓ |+

)

≥
L∑

ℓ=1

n∑
t=1

(
∥PtWℓPt −W

(t)

ℓ ∥2F +
∑

st,c(W
(t)
ℓ )̸=0

(
st,c(W

(t)

ℓ )− m̃−1
t

)2)

≥
L∑

ℓ=1

n∑
t=1

∥PtWℓPt − U
(t)
ℓ S

(t)
ℓ (V

(t)
ℓ )T ∥2F

=

L∑
ℓ=1

∥Wℓ − UℓSℓV
T
ℓ ∥2F

since
n∑

t=1

∥PtWℓPt − PIm J(α̃ℓ→fθ)(x)TPtWℓPtPIm Jαℓ−1(x)∥
2
F =

n∑
t=1

∥PtWℓPt − PtPIm J(α̃ℓ→fθ)(x)TWℓPIm Jαℓ−1(x)Pt∥2F

= ∥Wℓ − PIm J(α̃ℓ→fθ)(x)TWℓPIm Jαℓ−1(x)∥
2
F .

Here UℓΣℓV
T
ℓ is the compact SVD decomposition of PIm J(α̃ℓ→fθ)(x)TWℓPIm Jαℓ−1(x). Since we know

PIm J(α̃ℓ→fθ)(x)TWℓPIm Jαℓ−1(x) is translationally equivariant, we can let V T
ℓ ∈ Rκ×ncℓ−1 and Uℓ ∈ Rncℓ×κ be sub-

matrices of the DFT block matrices Fℓ−1 ∈ Rncℓ−1×ncℓ−1 and F ∗
ℓ ∈ Rncℓ×ncℓ respectively, and Σℓ correspond to the

nonzero singular values of κ = RankJfθ(x) frequencies. And Sℓ ∈ Rκ×κ consists of the singular values of M−1 at
corresponding frequencies. This gives

L∑
ℓ=1

∥Wℓ − UℓSℓV
T
ℓ ∥2F + ∥bℓ∥2F ≤ ∥θ∥2 − LRankm(Jfθ(x))− 2

∑
st,c ̸=0

m̃−2
t log(st,cm̃t)

≤ c1 − 2
∑

st,c ̸=0

m̃−2
t log(st,cm̃t) .

Theorem D.2. Given a depth L network, balanced parameters θ with ∥θ∥2 ≤ Lmaxx∈Ω− Rankm(Jfθ(z)) + c1, and a
point x0 with Rank Jfθ(x0) = k, then ∥Jθfθ(x0)∥2F ≤ cL implies that,

L∑
ℓ=1

∥αℓ−1(x0)∥22 ≤ ce
c1
k

k|Jfθ(x0)|
2/k
+

L
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Hence for each p ∈ (0, 1), there are at least (1− p)L layers ℓ with

∥αℓ−1(x0)∥22 ≤ 1

p

ce
c1
k

k|Jfθ(x0)|
2/k
+

.

Proof. We can write

∥Jθfθ(x0)∥2F = Tr
[
Θ(L)(x0, x0)

]
=
∑
ℓ=1

(∥αℓ−1(x0)∥22 + 1)∥J(α̃ℓ → αL)(x0)∥2F

and our goal is to lower bound ∥J(α̃ℓ → αL)(x0)∥2F for each ℓ in the following. We first note that Rank(J(α̃ℓ →
αL)(x0)Pℓ) = Rank Jf(x0) = k where Pℓ is the projection matrix to the image of Jα̃ℓ(x0).

By AM-GM inequality,

∥J(α̃ℓ → αL)(x0)Pℓ∥2F ≥ k|J(α̃ℓ → αL)(x0)Pℓ|
2/k
+ .

Since the parameters are balanced, i.e. ∥wℓ∥2F + ∥bℓ∥2F = ∥wℓ+1∥2F , we have increasing parameter norms ∥Wℓ∥2F ≤
∥Wℓ+1∥2F and so

1

ℓ

ℓ∑
j=1

∥Wj∥2F ≤ 1

L− ℓ

L∑
j=ℓ+1

∥Wj∥2F .

Thus

1

ℓ

ℓ∑
j=1

∥Wj∥2F =
1

L

ℓ∑
j=1

∥Wj∥2F +
L− ℓ

L

1

ℓ

ℓ∑
j=1

∥Wj∥2F

≤ ∥θ∥2

L

and again by AM-GM inequality,

|P ′
ℓJα̃ℓ(x0)|

2/kL

+ ≤ 1

k
∥P ′

ℓJα̃ℓ(x0)∥
2/L
2/L

≤ 1

k

∥P ′
ℓMWℓ∥2F + · · ·+ ∥MW1∥2F

ℓ

≤ 1

k

∥MWℓ∥2F + · · ·+ ∥MW1∥2F
ℓ

≤ m̃max

k

∥Wℓ∥2F + · · ·+ ∥W1∥2F
ℓ

≤ m̃max∥θ∥2

kL

≤
m̃max maxz∈Ω− Rankm(Jfθ(z))

k

(
1 +

c1
Lmaxz∈Ω− Rankm(Jfθ(z))

)
where P ′

ℓ denotes the projection matrix to the image of J(α̃ℓ → αL)(x0). For simplicity, we denote R =
maxz∈Ω− Rankm(Jfθ(z)). Therefore, we have

∥J(α̃ℓ → fθ)(x0)Pℓ∥2F ≥ k|J(α̃ℓ → fθ)(x0)Pℓ|
2/k
+

= k
|Jfθ(x0)|

2/k
+

|Jα̃ℓ(x0)|
2/k
+

≥ k
|Jfθ(x0)|

2/k
+

(m̃maxR/k)L
(
1 + c1

LR

)L
≥ k|Jfθ(x0)|

2/k
+ e−(

c1
R +L( m̃maxR

k −1))

= k|Jfθ(x0)|
2/k
+ e−

c1
R e−L( m̃maxR

k −1)
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and hence

L∑
ℓ=1

∥αℓ−1(x0)∥22 ≤ ce
c1
R eL( m̃maxR

k −1)

k|Jfθ(x0)|
2/k
+

L

which implies that for each p ∈ (0, 1), there are at most pL layers ℓ with

∥αℓ−1(x0)∥22 ≥ 1

p

ce
c1
R eL( m̃maxR

k −1)

k|Jfθ(x0)|
2/k
+

.

Corollary D.3. When there is no pooling, x0 maximizes the rank RankJf(x0), and the above conditions still hold, we have

L∑
ℓ=1

∥αℓ−1(x0)∥22 ≤ ce
c1
k

k|Jfθ(x0)|
2/k
+

L.

Hence for each p ∈ (0, 1), there are at least (1− p)L layers ℓ with

∥αℓ−1(x0)∥22 ≤ 1

p

ce
c1
k

k|Jfθ(x0)|
2/k
+

.

E. CNNs with Up-sampling and Down-sampling
Here we present the proofs for characterizing all functions that can be represented by s-stride-CNNs as well as finding a
2-frequency decomposition for translationally unique domains (Theorem 5.8).

Proposition E.1. Any f ∈ N (s)
n;m,m′ if and only if f has a low-frequency decomposition, i.e. f = h(s) ◦ g(s) where g(s), h(s)

are s-translationally equivariant piece-wise linear (s-TEPL) functions, g(s) = g
(s)
1 ⊕ · · · ⊕ g

(s)
k , and g(s)i only supports the

first n
s frequencies for i = 1, . . . , k.

Proof. ( ⇐= ) Note f = h(s) ◦ g(s) = h(s) ◦Ups ◦ idIm g(s) ◦Downs ◦ g(s) ∈ N (s)
n;m,m′ , where idIm g(s) can be the identity

layer as we constructed before.

( =⇒ ) To see the other direction, observe that f ∈ N (s)
n;m,m′ gives f = h(s) ◦ (Ups ◦ f̂ ◦Downs ◦ g(s)) where the latter is

a low-frequency s-TEPL function.

Theorem E.2. Suppose Ω is translationally unique. Then for any piecewise linear target function f : Ω → Rn×cout ,
f = h ◦ glow where h and glow are TEPL functions and glow : Ω → Rn×ncin+1 only supports the constant DFT frequency
at first ncin channels and the second DFT frequency at the ncin + 1-th channel.

Proof. Let Ω = {Tpx : x ∈ Ω, p = 0, . . . , n − 1} be the translational closure of the domain Ω. Since Ω is bounded,
so is Ω, and hence without loss of generality, we may assume Ω lies in the first quarter and is upper bounded by Z ≥ 1
coordinate-wise. By Lemma G.1, it suffices to show there exists a TEPL function

F : Ω
G−→
(
Ω× {cos(2πp/n)}n−1

p=0

)n H−→ Rn×cout

such that F |Ω = f and F = H ◦G where G,H are TEPL and G has a low-frequency support at each channel. Define G
and H as follows:

G(Tpx)i,0:ncin−1 = vec(x)

G(Tpx)i,ncin = cos(2π(p− i)/n)

H(G(Tpx)) = Tpf(x)

for i ∈ [n]. Translational equivariance follows directly from the definition; it remains to verify that G and H are piecewise
linear. We first show G−1 is piecewise linear by showing it can be represented by a 3-layer no-pooling ConvNet:
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(First layer). Denote a threshold ϵ = maxi ̸=p cos(2π(p − i)/n); note ϵ < 1. Let (w1)i,c,s = δi=0δc=s for c ∈ [ncin],
where δ is the indicator function (so w ⃝∗ x = x). Let (b1)c = −ϵδc=ncin for c ∈ [ncin]. After applying the ReLU, we have
activation

α1(G(Tpx))i,0:ncin−1 = G(Tpx)i,0:ncin−1

α1(G(Tpx))i,ncin = δi=p(1− ϵ)

(Second layer). Let (w2)i,c,s = δi=0δc=s for c ∈ [ncin − 1] and δi=0Z/(1− ϵ) for c = ncin, for s ∈ [ncin], where δ is the
indicator function. Let (b2)c = −Z for c ∈ [ncin]. Then we have

α̃2(G(Tpx))i,0:ncin−1 = G(Tpx)i,0:ncin−1 − δi ̸=pZ

α̃2(G(Tpx))i,ncin = −δi ̸=pZ

α2(G(Tpx))i,0:ncin−1 = δi=pG(Tpx)i,0:ncin−1

= δi=pvec(x)

α2(G(Tpx))i,ncin = 0

since x is coordinate-wise upper bounded by Z > 0.

(Third layer). Let (w3)i,c,s = δi=c mod nδc=⌊s/n⌋ and (b3)c = 0 for channel c ∈ [cin] and s ∈ [ncin], i.e. translating the
s-th channel of the input by s mod n and then summing every n channels. Then we have the output being

α3(G(Tpx)) = Tpx.

Hence G−1 is TEPL and G = (G−1)−1 is TEPL.

One can see H = f ◦G−1 is also TEPL. By letting glow = G|Ω and h = H|Im glow , we see they are TEPL and each channel
of glow only either supports the first or the second DFT coefficient.

F. Representation Cost in Filter Norm
If one considers the representation cost ∥θ̃∥2 as the norm of the filters (as opposed to the matrices in Section 2.3) and the
biases, by definition one has ∥θ̃∥2 = 1

n∥θ∥
2 off by a factor of 1

n . One can then adapt the results and proofs in this paper to
the filter norm by substituting ∥θ̃∥2 = 1

n∥θ∥
2 and get this extra factor in the expressions. For example, let R̃(0) and R̃(1)

denote the costs based on the filter norm; one can get the upper and lower bounds

1

n
max
x∈Ω−

Rankm(Jf(x)) ≤ R̃(0)(f ; Ω) ≤ 1

n
RankCBN(f ; Ω)

and the regularity control becomes

R̃(1)(f ; Ω) ≥ 2

n

∑
st,c ̸=0

m̃−2
t log(st,cm̃t).

G. Auxiliary Lemmas
This section proves a version of Theorem 2.1 in (Arora et al., 2016) for the CNN case and may be of independent interest.

Lemma G.1 (Bounded depth). For any TEPL function F : Ω ⊂ Rn×cin → Rn×cout and L ≥ ⌈log2(ncin + 1)⌉+ 2, there
is a CNN fθ = F with widths {cℓ}Lℓ=1 and parameter θ = {wℓ, bℓ}Lℓ=1.

Proof. Since the input domain Ω is compact, without loss of generality, we may assume x is positive. Consider f :
Rn×cin → Rcout with f(x) = F1(x) ≡ F (x)1,: i.e. the first input at every channel. Note f is piecewise linear and
Fp(x) = f(T−px) where (T−px)i,: = xi−p,: is the translation of x by −p. By Theorem 2.1 in (Arora et al., 2016), there is
a ReLU fully-connected network fFC

A = f with depth L− 1, widths {nℓ}L−1
ℓ=1 , and parameter A = {Aℓ, dℓ}Lℓ=1. Then we

can construct an L-layer no-pooling ConvNet to represent F as follows:
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(First layer) Construct w1 ∈ Rn×ncin×cin with (w1)p,c,s = δp=n−⌊c/cin⌋ and b1 = 0 such that

α1(x)p,: = α̃1(x)p,: = vec(T−px), p = 0, . . . , n− 1.

where the first equality follows from assuming x is positive. (i.e. This is done by shifting the identity convolution filter by
−p at channel c ∈ {pcin, . . . , (p+ 1)cin − 1}, then convolve with m−1.) Then we treat each of the T−px “independently”
in the following layers.

(Following layers) For ℓ > 1, construct wℓ ∈ Rn×nℓ×nℓ−1 by letting (wℓ)i,c,s = (Aℓ)c,sδi=0 and (bℓ)c = (dℓ)c for
i = 0, . . . , n− 1, c = 1, . . . , nℓ, and s = 1, . . . , nℓ−1. One can verify that for p = 0, . . . , n− 1,

α̃ℓ(x)p,c = (bℓ)c +

nℓ−1∑
s=1

n−1∑
i=0

(wℓ)i,c,sαℓ−1(x)p−i,s

= (dℓ)c +

nℓ−1∑
s=1

(Aℓ)c,sαℓ−1(x)p,s

=⇒ α̃ℓ(x)p,: = Aℓαℓ−1(x)p,: + dℓ.

Now at the output layer ℓ = L, by construction of A, we have αL(x)p,: = f(α1(x)p,:) = Fp(x). Hence the output of this
CNN is F (x).
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