
A Distributional Analogue to the Successor Representation

Harley Wiltzer * 1 2 Jesse Farebrother * 1 2 3 Arthur Gretton 3 4 Yunhao Tang 3 André Barreto 3 Will Dabney 3

Marc G. Bellemare 1 2 5 Mark Rowland 3

Abstract
This paper contributes a new approach for distri-
butional reinforcement learning which elucidates
a clean separation of transition structure and re-
ward in the learning process. Analogous to how
the successor representation (SR) describes the ex-
pected consequences of behaving according to a
given policy, our distributional successor measure
(SM) describes the distributional consequences of
this behaviour. We formulate the distributional
SM as a distribution over distributions and pro-
vide theory connecting it with distributional and
model-based reinforcement learning. Moreover,
we propose an algorithm that learns the distribu-
tional SM from data by minimizing a two-level
maximum mean discrepancy. Key to our method
are a number of algorithmic techniques that are
independently valuable for learning generative
models of state. As an illustration of the useful-
ness of the distributional SM, we show that it
enables zero-shot risk-sensitive policy evaluation
in a way that was not previously possible.

1. Introduction
Distributional reinforcement learning (Morimura et al.,
2010; Bellemare et al., 2017a; 2023) is an approach to
reinforcement learning (RL) that focuses on learning the
entire probability distribution of an agent’s return, not just
its expected value. Distributional RL has been shown to
improve deep RL agent performance (Yang et al., 2019;
Nguyen-Tang et al., 2021), and provides a flexible approach
to risk-aware decision-making (Dabney et al., 2018a; Zhang
& Weng, 2021; Fawzi et al., 2022). A notable drawback of
existing approaches to distributional RL is that rewards must

*Equal contribution 1McGill University 2Mila - Québec
AI Institute 3Google DeepMind 4Gatsby Unit, University Col-
lege London 5CIFAR AI Chair. Correspondence to: Harley
Wiltzer <harley.wiltzer@mail.mcgill.ca>, Jesse Farebrother <jfare-
bro@cs.mcgill.ca>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

be available at training time in order to predict the return
distribution. For example, if we wish to evaluate a trained
policy on a new task with regard to various performance
criteria, these predictions of the return distributions must be
trained from scratch. This paper contributes a method that
overcomes this drawback, allowing for zero-shot evaluation
of novel reward functions without requiring further learning.

In the case of predicting just the expected return, such zero-
shot evaluation is made possible by learning the successor
representation (SR; Dayan, 1993). This approach has re-
cently been extended to continuous state spaces (Blier et al.,
2021; Blier, 2022), and the introduction of a variety of den-
sity modelling and generative modelling techniques mean
that such zero-shot transfer is now possible at scale (Janner
et al., 2020; Touati & Ollivier, 2021; Touati et al., 2023).

This paper extends the idea of the successor representation
to distributional RL, by defining the distributional succes-
sor measure (DSM). We show that the DSM is a reward-
agnostic object that can by combined with any deterministic
reward function to obtain the corresponding distribution of
returns, extending zero-shot transfer to the entire distribu-
tion of returns. Our primary algorithmic contribution is the
δ-model, a tractable approximation to the distributional suc-
cessor measure based on ensembles of diverse generative
models, along with practical implementation techniques that
are crucial for success. We exhibit the power of δ-models by
demonstrating their unique ability generalize across tasks
and risk-sensitive criteria without necessitating any further
data collection or training, which could be expensive or
dangerous – a feat that no other method can accomplish.

2. Background
In the sequel, Law(X) denotes the probability measure gov-
erning a random variable X , and X

L
=Y (read equal in

distribution) is written to indicate that Law(X) = Law(Y).
The notation P(A) defines the space of probability mea-
sures over a set A. We also write (X,Y) ∼ µ⊗ ν to refer
to the pair of independent samples X ∼ µ, Y ∼ ν.

We consider a Markov decision process (MDP) with state
space X , finite action space A, transition kernel p : X ×
A → P(X), bounded and measurable reward function

1

A Distributional Analogue to the Successor Representation

r : X → R, and discount factor γ ∈ [0, 1). We assume
henceforth that X is a complete and separable metric space,
which allows for finite state spaces, as well as many continu-
ous state spaces of interest. Given a policy π : X →P(A)
and initial state x0 ∈ X drawn from µ0 ∈P(X), an agent
generates a random trajectory (Xt, At, Rt)

∞
t=0 of states, ac-

tions, and rewards, with distributions specified by X0 = x,
At ∼ π(·|Xt), Rt = r(Xt), and Xt+1 ∼ p(·|Xt, At)
for all t ≥ 0. For a fixed policy π, we will denote the
transition kernel governing state evolution by pπ, where
pπ(· | x) = ∑

a∈A p(· | x, a)π(a | x).
The (random) return summarises the performance of the
agent along its trajectory, and for each possible initial state
X0 = x ∈ X , it is defined as Gπ

r (x) :=
∑∞

t=0 γ
tr(Xt).

When there is no ambiguity about the reward function, we
will write Gπ in place of Gπ

r . For a given policy π, the
problem of policy evaluation is to find the expected re-
turn for each initial state. Mathematically, this can be ex-
pressed as learning the function V π

r : X → R, defined by
V π
r (x) := E [Gπ

r (x)], this describes the quality of π in its
own right, and may also be used to obtain improved policies,
for example by acting greedily (Puterman, 2014).

2.1. Successor Measure

The normalized successor measure Ψπ : X →P(X) asso-
ciated with a policy π is defined by

Ψπ(S | x) :=
∞∑
t=0

(1− γ)γt Pr(Xt ∈ S | X0 = x) , (1)

for any (measurable) set S ⊆ X 1 and initial state x ∈ X . In
the literature, Ψπ(· | x) is often referred to as the (dis-
counted) state occupancy measure 2 The object Ψπ de-
scribed above is a normalised version of the successor repre-
sentation (SR; Dayan, 1993) in the tabular case and the suc-
cessor measure (SM; Blier et al., 2021; Touati & Ollivier,
2021) for continuous state spaces. Blier et al. (2021) shows
that, without the (1− γ) factor in Equation 1, Ψπ(· | x) is
a measure for each x ∈ X with total mass (1− γ)−1. We
include the (1−γ) normalizing factor so that Ψπ(· | x) is in
fact a probability distribution – this allows for one to sample
from the successor measure, as in the work of Janner et al.
(2020). Intuitively, Ψπ(S | x) describes the proportion of
time spent in the region S ⊆ X , in expectation, weighted
by the discount factor according to the time of visitation.

Since for each x ∈ X , Ψπ(·|x) is a probability distribution
over states, we can compute expectations under this distri-
bution. Notably, the reward function r, successor measure

1This covers discounted occupancies over Polish state spaces,
including compact Euclidean space.

2Here, occupancy measure is conditional on a source state; the
usual occupancy is given by µπ(S) =

∫
X Ψπ(S | x)µ0(dx).

Ψπ , and value function V π satisfy the following identity,

V π
r (x) = (1− γ)−1EX′∼Ψπ(·|x)[r(X

′)] , (2)

as leveraged in the recent work of Janner et al. (2020) and
Blier et al. (2021). In words, the value function can be
expressed as an expectation of the reward, with respect to
the successor measure Ψπ(·|x); this expression cleanly fac-
torises the value function into components comprising tran-
sition information and reward information, and generalises
the result in the tabular case by Dayan (1993). A central
consequence is that learning Ψπ allows for the evaluation
of π on unseen reward functions, without further learning;
this is known as zero-shot policy evaluation.

2.2. Distributional Policy Evaluation

In distributional reinforcement learning (Morimura et al.,
2010; Bellemare et al., 2017a; 2023), the problem of distri-
butional policy evaluation is concerned with finding not just
the expectation of the random return, but its full probability
distribution. Analogous to our description of policy evalua-
tion above, this can be mathematically expressed as aiming
to learn the return-distribution function ηπr : X → P(R),
with ηπr (x) equal to the distribution of Gπ

r (x).

An added complication in the distributional setting is that the
return distributions are infinite-dimensional, in contrast with
the scalar mean returns learned in classical reinforcement
learning. This requires careful consideration of how proba-
bility distributions will be represented algorithmically, with
common choices including categorical (Bellemare et al.,
2017a) and quantile (Dabney et al., 2018b) approaches; see
Bellemare et al. (2023, Chapter 5) for a summary.

3. The Distributional SM
One of the core contributions of this paper is to introduce a
mathematical object that plays the role of the successor mea-
sure in distributional reinforcement learning. Analogous to
how distributional RL models the distribution of the return,
we study the distribution over future state occupancies.

3.1. Random Occupancy Measures

To begin, we contribute a new form for the normalised
successor measure (SM), which shows that it can be written
as an expectation of the discounted visitation distribution
for the random state sequence (Xt)t≥0 generated by π:

Ψπ(S | x) = Eπ

[∞∑
k=0

(1− γ)γkδXk
(S)

∣∣∣∣∣ X0 = x

]
for all measurable S ⊂ X . Here, δXk

is the probability
distribution over X that puts all its mass on Xk, so that
δXk

(S) = 1{Xk ∈ S}. We obtain a distributional version
of this object by “removing the expectation".

2

A Distributional Analogue to the Successor Representation

? - +

- +

Figure 1: Illustration of the standard and distributional successor measure (SM) in a T-Maze MDP, for a policy that moves
to the fork and goes backwards, right, or left, with probabilities 1

6 ,
1
2 ,

1
3 . Left: The distributional SM ℸπ (top) consisting

of atoms θ1, θ2, θ3 depicting the occupancy measures (probability distributions) corresponding to the distinct behaviors
exhibited by the policy, and the SM Ψπ (bottom) Ψπ = θ1

6 + θ2
2 + θ3

3 . Right: Zero-shot distributional policy evaluation
(top) with ℸπ and zero-shot policy evaluation (bottom) with Ψπ .

Definition 3.1 (Random occupancy measure). For a given
policy π, let (Xt)

∞
t=0 be a random sequence of states gen-

erated by interacting with the environment via π. The as-
sociated random discounted state-occupancy measure Mπ

assigns to each initial state x ∈ X a random probability
distribution Mπ(· | x) according to

Mπ(S | x) :=
∞∑
k=0

(1− γ)γkδXk
(S), X0 = x . (3)

It is worth pausing to consider the nature of the object we
have just defined. For each x ∈ X , Mπ(· | x) is a random
variable, and each realisation of Mπ(· | x) is a probabil-
ity distribution over X . So, for any measurable Y ⊂ X ,
Mπ(Y |x) is also a random variable, which gives the dis-
counted proportion of time spent in Y across different possi-
ble sampled trajectories. Thus, the distribution of Mπ(· | x)
is a distribution over probability distributions; see Figure 1.

As described in Section 2, an important property of the
successor representation is that it is a linear operator that
maps reward functions to value functions. The next result
shows that Mπ can be used to map reward functions to
random returns; all proofs are given in Appendix B.
Proposition 3.2. Let Mπ denote a random discounted state-
occupancy measure for a given policy π. For any determin-
istic reward function r : X → R, we have

Gπ
r (x)

L
=(1− γ)−1EX′∼Mπ(·|x) [r(X

′)] . (4)

Note that the right-hand side is a random variable, since
Mπ(· | x) itself is a random distribution.

Proposition 3.2 suggests a novel approach to distributional
RL. To obtain return distributions, one can first learn the

distribution of Mπ (without any information about rewards),
and then use Equation 4 to obtain an estimate of the corre-
sponding return distribution. This unlocks an ability that
was not previously possible in distributional RL: zero-shot
distributional policy evaluation. In particular, one can learn
the distribution of the random occupancy measure, and then
approximate the return distribution associated with any re-
ward function r without requiring further learning (see Fig-
ure 1). Once the return distribution is obtained, the benefits
of distributional RL, such as risk estimation, are immedi-
ately available, something not possible using SR in isolation.
Remark 3.3. Perhaps surprisingly, our assumption of a de-
terministic reward function made in Proposition 3.2 is neces-
sary for a linear factorization between reward functions and
return distributions. This is due to the statistical dependence
between random rewards observed along trajectories and
random trajectories themselves. We explore this in more
depth in Appendix C.

As in distributional RL, where we distinguish between the
random return Gπ(x) and its distribution ηπ(x), we intro-
duce notation for expressing the distribution of Mπ(· | x).

Definition 3.4 (Distributional successor measure). The dis-
tributional successor measure (distributional SM) ℸπ :
X →P(P(X)) is defined by ℸπ(x) = Law(Mπ(· | x)).

Prior to this work, the only conceivable method for zero-
shot distributional policy evaluation involved learning pπ

and estimating return distributions by sampling rollouts and
returns from the learned model. Indeed, we observe that the
distributional SM (and thus the SM itself) is mathematically
determined by pπ; see Proposition F.1 in Appendix F for
a precise statement and proof of this result. Despite this,

3

A Distributional Analogue to the Successor Representation

recovering the distributional SM or the SM from pπ in large
MDPs is intractable, and SM-like models are known to be
more robust to estimation error for long-horizon prediction
in continuous MDPs (Janner et al., 2020; Thakoor et al.,
2022; Touati et al., 2023). Crucially, unlike an approach
to zero-shot distributional evaluation that estimates return
distributions by sampling rollouts from a learned pπ and
computing MC returns, the distributional SM is not prone to
accumulation of model error, which results in substantially
more accurate estimation, as we show in Section 6.

Proposition 3.2 is the core mathematical insight of the paper;
we now develop an algorithmic framework for translating
these theoretical ideas into concrete implementations.

3.2. Distributional SM Bellman Equations

A central result in developing temporal-difference methods
for learning ℸπ is that Mπ satisfies a distributional Bellman
equation (Morimura et al., 2010; Bellemare et al., 2017a).

Proposition 3.5. Let Mπ denote the random discounted
state-occupancy measure induced by a policy π. Then Mπ

can be expressed recursively via a distributional Bellman
equation: for all measurable S ⊂ X , and X ′ ∼ pπ(· | x),

Mπ(S | x) L
=(1− γ)δx(S) + γMπ(S | X ′). (5)

This provides a novel reward-agnostic distributional Bell-
man equation for random occupancy measures. Note that
the multi-dimensional reward distributional Bellman equa-
tion studied by Freirich et al. (2019); Zhang et al. (2021b)
can be framed as an instance of Equation 5 when X is finite.

We can also express the distributional SM recursively,

ℸπ(x) = EX′∼pπ(·|x) [(bx,γ)♯ℸπ(X ′)] (6)

where bx,γ : P(X) → P(X) is given by bx,γ(µ) =
(1 − γ)δx + γµ. The notation f♯ν = ν ◦ f−1 denotes
the pushforward of a measure ν through a measurable
function f . This motivates the following operator on the
space of distributional SMs having ℸπ as a fixed point,
which we refer to as the distributional Bellman operator
T π : P(P(X))X →P(P(X))X ,

(T πℸ)(x) = EX′∼pπ(·|x) [(bx,γ)♯ℸ(X ′)] . (7)

The proceeding statements outline a convergent approach for
computing the distributional SM by dynamic programming.

Proposition 3.6 (Contractivity of T π). Let d be a metric
on X such that (X , d) is a Polish space, and let wd denote
the Wasserstein distance on P(X) with base distance d.
If W : P(P(X)) ×P(P(X)) → R is the Wasserstein
distance on P(P(X)) with base distance wd, then

W (T πℸ1, T πℸ2) ≤ γW (ℸ1,ℸ2),

where W is the “supremal" W metric given by
W (ℸ1,ℸ2) = supx∈X W (ℸ1(x),ℸ2(x)).

Corollary 3.7 (Convergent Dynamic Programming). Under
the conditions of Proposition 3.6, if the metric space (X , d)
is compact, then the iterates (ℸk)

∞
k=0 given by ℸk+1 =

T πℸk converge in W to ℸπ , for any ℸ0 ∈P(P(X))X .

The proofs of Proposition 3.6 and Corollary 3.7 rely on a
novel coupling technique on the doubly-infinite-dimensional
space P(P(X)), which can be found in Appendix B.1.

4. Representing and Learning the DSM
The distributional SM provides an alternative perspective
on distributional reinforcement learning, and opens up pos-
sibilities such as zero-shot distributional policy evaluation,
which is not achievable with existing approaches to distribu-
tional RL. However, to turn these mathematical observations
into practical algorithms, we need methods for efficiently
representing and learning the distributional SM.

4.1. Representation by δ-models

As in standard distributional RL, we cannot represent ℸπ

within an algorithm exactly, as it is comprised of probabil-
ity distributions, which are objects having infinitely-many
degrees of freedom. To make matters more complicated
still, these are distributions not over the real numbers (as in
standard distributional RL), but over P(X), which may it-
self have infinitely-many degrees of freedom if X is infinite.
Thus, a tractable approximate representation is necessary.
We propose the equally-weighted particle (EWP) represen-
tation, which is inspired by the quantile representation of
return distributions in standard distributional RL algorithms
(Dabney et al., 2018b; Nguyen-Tang et al., 2021). Under
this representation, the approximation ℸ(x) of ℸπ(x) is rep-
resented as a sum of equally-weighted Dirac masses on the
set P(X): ℸ(x) = 1

m

∑m
i=1 δθi(x), with θi(x) ∈ P(X).

The approximation problem now reduces to learning appro-
priate values ((θi(x))mi=1 : x ∈ X) of these Dirac masses.
It is important to note that these Dirac masses inhabit the
space P(X) – each Dirac is located on a distribution of
state. We must find a set of m state distributions such that
the collection of the learned distributions is optimal with
respect to a metric on P(P(X)).
Since each atom θi(x) is a distribution over a potentially
large space X , we propose to represent the atoms as genera-
tive models, in the spirit of γ-models (Janner et al., 2020).
In practice, the generative models can be implemented with
function approximators that take as input noise variables
similar to the generator of a generative adversarial network
(GAN; Goodfellow et al., 2014). We refer to such an EWP
model as a δ-model; Figure 2 illustrates its components.

4

A Distributional Analogue to the Successor Representation

Figure 2: The components of a δ-model (Section 4.1), and
the kernels and distances involved in training them (Sec-
tion 4.2).

Terminology. We have introduced two levels of probabil-
ity distributions: ℸ(x) is a distribution over the generative
models {θi(x)}mi=1; and each θi(x) is a distribution over
the state space. To keep track of these two levels, we re-
fer to ℸ(x) as a model distribution (that is, a distribution
over generative models), and the generative models θi(x)
as state distributions or model atoms. A generative model
θ ∼ ℸ(x) distributed according to ℸ(x) is a model sample,
while a state X ′ ∼ θ sampled from a generative model is
referred to as a state sample.

4.2. Learning from Samples

Our goal is to construct an algorithm for learning approxima-
tions of the distributions ℸπ(x), parameterized as δ-models,
from data. We construct a temporal-difference learning
scheme (Sutton, 1984; Dayan, 1993) to approximately solve
the distributional Bellman Equation 5 in this metric space,
by updating our δ-model ℸ(x) to be closer to the transfor-
mation described by the right-hand side of the distributional
Bellman equation in Proposition 3.5, that is

ℸ̃(x) := EX′∼pπ(·|x)

[
1

m

m∑
i=1

δ(1−γ)x+γθi(X′)

]
. (8)

To define an update that achieves this, we will specify a
loss function over the space occupied by ℸ(x) (namely
P(P(X))), distributions over distributions of state); this
requires care, since this space has such complex structure
relative to standard distributional RL problems. We propose
to use the maximum mean discrepancy (MMD; Gretton et al.,
2012) to construct such a loss. We begin by recalling that
for probability distributions p, q over a set Y , the MMD
corresponding to the kernel κ : Y × Y → R is defined as

MMD2
κ(p, q) = E

[
κ(X,X ′) + κ(Y, Y ′)− 2κ(X,Y)

]
(X,X ′) ∼ p⊗ p, (Y, Y ′) ∼ q ⊗ q .

(9)

State kernel. To compare state distributions θ, θ′ ∈P(X),
we will take a state kernel κ : X ×X → R, and aim to com-
pute MMDκ(θ, θ

′). Since in δ-models we represent state
distributions θ, θ′ as generative models, we approximate the
exact MMD in Equation 9 by instead using samples from the
generative models (Gretton et al., 2012, Eq. 3). If we take
X1, . . . , Xn1

i.i.d.∼ θ, and Y1, . . . , Yn2

i.i.d.∼ θ′ independently,
we obtain the following estimator for MMD2

κ(θi, θj):

M̂MD
2

κ(X1:n1 , Y1:n2) := (10)
n1∑

i,j=1
i<j

κ(Xi, Xj)(
n1
2

) +

n2∑
i,j=1
i<j

κ(Yi, Yj)(
n2
2

) − 2

n1∑
i=1

n2∑
j=1

κ(Xi, Yj)

n1n2
.

Model kernel. Equation 10 uses the state kernel to de-
fine a metric between generative models. However, ul-
timately we need a loss function defined at the level of
model distributions ℸ(x), so that we can define gradient
updates that move these quantities towards their correspond-
ing Bellman targets (Equation 8). We now use our notion
of distance between state distributions to define a kernel
on P(X) itself, which will allow us to define an MMD
over P(P(X)), the space of model distributions. To do so,
we follow the approach of Christmann & Steinwart (2010,
Eq. 6) and Szabo et al. (2015) by defining a model kernel
kκ : P(X) ×P(X) → R as a function of MMDκ. In
particular, for each θ, θ′ ∈P(X), we set

kκ(θ, θ
′;σ) = ρ (MMDκ(θ, θ

′)/σ) (11)

for σ > 0, where ρ : y 7→ (1 + y2)−1/2 is the inverse
multiquadric radial basis function. Szabo et al. (2015, Table
1) shows that kκ is characteristic for this choice of ρ.

DSM MMD loss. We now specify a loss that will allow us
to update ℸ towards the Bellman target in Equation 8, by
employing the MMD under the model kernel kκ:

ℓ(ℸ, ℸ̃;x) = MMD2
kκ
(ℸ(x), ℸ̃(x)) . (12)

To build a sample-based estimator of this loss, we take a
sampled state transition (x, x′) generated by the policy π,
and expand the MMD above in terms of evaluations of the
kernel kκ; writing θi(x) = (1− γ)δx + θi(x

′), this leads to
the following loss for the δ-model representation,

1

m2

m∑
i,j=1

[
kκ(θi(x), θj(x))− 2kκ(θi(x), θ̄j(x̄))

]
.

Finally, to obtain a loss on which we can compute gradients
in practice, each model kernel evaluation above be can be
approximated via Equation 11, with the resulting state kernel
MMD estimated via Equation 10. Note that we can sample
from distributions of the form (1− γ)δx + γθi(x

′) by first
sampling Y ∼ Bernoulli(1− γ), returning x if Y = 1, and
otherwise returning an independent sample from θi(x

′). See
Figure 2 for an illustration of how the loss is constructed.

5

A Distributional Analogue to the Successor Representation

5. Practical Training of δ-models
Heretofore, we introduced a tractable representation and
learning rule for estimating the distributional SM from data.
This section highlights two techniques that are crucial for
stable learning; pseudocode is provided in Appendix A.

5.1. n-step Bootstrapping

The procedure outlined in Section 4.2 computes δ-model
targets via one-step bootstrapping. In accordance with Equa-
tion 5, the probability mass of the targets due to bootstrap-
ping is γ, which can be large when we are concerned with
long horizons. Consequently, the signal-to-noise ratio in the
targets is low, which dramatically impedes learning.

Inspired by efforts to reduce the bias of bootstrapping in RL
(Watkins, 1989; Sutton & Barto, 2018), we compute n-step
targets of the distributional SM. By Equation 5, we have

Mπ(· | x) L
=(1− γ)

n−1∑
i=0

γiδXi + γnMπ(· | Xn) (13)

where Xk+1 ∼ pπ(· | Xk) and X0 = x. An n-
step version of the DSM MMD loss can then be ob-
tained by replacing the sampled one-step Bellman targets
(1− γ)δx + γℸ(x′) in Equation 12 with the n-step target∑n−1

k=0(1− γ)γkδxk
+ γnθi(xn). In analogy with the one-

step case, we can sample from this distribution by first sam-
pling Y from a Geometric(1−γ) distribution, returning xk if
Y = k < n, and returning a sample from θi(xn) otherwise.
By increasing n, we decrease the influence of bootstrap
samples on the targets, leading to a stronger learning signal
grounded in samples from the trajectory.

We found that training stability tends to improve substan-
tially when bootstrap samples account for roughly 80% of
the samples in the procedure above. Appendix E includes
a more detailed ablation on the choice of n. Notably, this
procedure for computing TD targets for generative modeling
of occupancy measures is not specific to the distributional
SM or δ-models. We anticipate that this technique would
generally be useful for training geometric horizon models
with longer horizons, which was reported to be a major
challenge (Janner et al., 2020; Thakoor et al., 2022).

5.2. Kernel Selection

When training a δ-model with bootstrapped targets, naturally
the model/state distributions comprising ℸπ are continually
evolving. This poses a challenge when selecting the kernels
we use in practice, since this non-stationarity prevents us
from identifying an appropriate similarity measure a priori.
As such, we found it necessary to employ adaptive kernels
that evolve with the distributions being modeled.

Powerful methods in the literature involve adversarially

learning a kernel over a space of parameterized functions.
The MMD-GAN (Li et al., 2017; Binkowski et al., 2018)
demonstrates how to parameterize characteristic kernels
with deep neural networks. Li et al. (2017) shows that for
any characteristic kernel κ : Y × Y → R+, the function
κ ◦ f : (x, y) 7→ κ(f(x), f(y)) is itself a characteristic
kernel when f : X → Y is injective. In their work, f is
parameterized as the encoder of an autoencoder network,
where the autoencoder training encourages f to be injective.

In the case of the distributional SM, parameterizing the
model kernel as an injection on the space of probability
measures is a major challenge. Rather, we parameterize
an adversarial state kernel following the model of Li et al.
(2017), using an invertible neural network based on iRes-
Net (Behrmann et al., 2019). Unlike an autoencoder, this
enforces injectivity, and to our knowledge, no other work
has employed invertible neural networks for modeling an
adversarial kernel. It should be noted that the state kernel is
itself defined as a parameter of the model kernel used in the
comparison of δ-models – thus, by adaptively learning the
state kernel, our model kernel is itself adaptive.

We also found that further adaptation of the model kernel
through the bandwidth σ improved training. Our approach
is based on the median heuristic for bandwidth selection in
kernel methods (Takeuchi et al., 2006; Gretton et al., 2012).
Prior to computing the model MMD, we choose σ2 to be the
median of the pairwise MMD2

κ between the model atoms
of ℸ(x) and those of the bootstrap target ℸ̃(x). Appendix E
ablates on our choice of adaptive kernels.

6. Experimental Results
We evaluate our implementation of the distributional SM
on two domains, namely a stochastic “Windy Gridworld"
environment, where a pointmass navigates 2D continuous
grid subject to random wind force that pushes it towards
the corners, and the Pendulum environment (Atkeson &
Schaal, 1997). As a baseline, we compare our method to an
ensemble of γ-models (Janner et al., 2020), which is almost
equivalent to a δ-model, with the difference being that the
individual γ-models of the ensemble are trained indepen-
dently rather than coupled through the model MMD loss.
We implement the γ-models with MMD-GAN, similarly to
the individual model atoms of a δ-model. We train an ensem-
ble of m γ-models, where m is the number of model atoms
in the comparable δ-model implementation of the distribu-
tional SM. Conceptually, the γ-model ensemble is expected
to capture the epistemic uncertainty over the SM, while the
distributional SM estimates the aleatoric uncertainty due to
randomness of the MDP dynamics and the policy. Alterna-
tively, one can learn a model of the transition kernel pπ and
estimate return distributions by rolling out trajectories from
the learned model and computing the discounted returns for

6

A Distributional Analogue to the Successor Representation

DSM Returns

Figure 3a: Return distribution predictions by DSM. Figure 3b: Quality of return distribution estimates.

those trajectories. Thus, for the purpose of quantitative eval-
uation, we additionally train a model of pπ (training details
are discussed in Appendix D.1) and compare the accuracy of
zero-shot return distribution prediction by the distributional
SM to those estimated by rolling out trajectories from the
forward model as described. Note, however, that beyond
any difference in estimation quality, the distributional SM
presents a major computational advantage over estimation
via pπ: with the distributional successor measure, it is not
necessary to sample long episode trajectories.

Visualizing model atoms. In Figure 4a, we examine the
model atoms predicted by our implementation of the δ-
model trained on data from a uniform random policy in
the Windy Gridworld. Due to the nature of the wind in
this domain, which always forces the agent to the corner of
the quadrant where it is located, a uniform random policy
exhibits a multimodal distribution of model atoms, as shown
by the colored densities in the top-left. Alternatively, when
examining an ensemble of γ-models trained on the same
data, we see that the models in the ensemble all predict
similar state occupancies which align closely with the SM –
crucially, only the distributional SM captures the diversity
of “futures" that the agent can experience.

Zero-shot policy evaluation. A unique feature of the dis-
tributional SM is that it acts as an operator that transforms
reward functions into return distribution functions. We ex-
plore the distributions over returns predicted by the dis-
tributional SM for several held-out reward functions and
analyze their similarity with return distributions estimated
by Monte Carlo. Figure 3a showcases return distributions
predicted by the distributional SM on four tasks in the Pen-
dulum environment meant to model constraints that may
be imposed on the system (Default, Above Horizon,
Stay Left, Counterclockwise Penalty; details
in Appendix D.3.2). We can see that these predictions cap-
ture important statistics, such as the mode and the support
of the distributions, which could not be captured by point
estimates of the return. Similar results in Windy Gridworld
are shown in Appendix D.3.1. For quantitative evaluation,

Figure 3b reports the quality of the return distribution pre-
dictions by their dissimilarity to the return distributions
estimated by Monte Carlo according to the Cramér dis-
tance (Székely & Rizzo, 2013; Bellemare et al., 2017b).
We compare the DSM predictions to those computed by
three baselines: return distributions estimated by sampling
rollouts from a learned transition kernel (labeled Rollout),
return distributions imputed from value function predictions
among an ensemble of γ-models, and return distributions
constructed by placing a Dirac mass at the MC expected
return (labeled Mean). Among these baselines and exist-
ing methods in the literature, only Rollout can produce
proper return distribution estimates in principal. However,
we find that accumulation of error throughout sampled tra-
jectories prevents this model from achieving reasonable
return distributions, which is consistent with the difficul-
ties of accurately rolling out long trajectories from learned
forward models (Jafferjee et al., 2020; Abbas et al., 2020;
Lambert et al., 2022). While the ensemble of γ-models is
not modeling the aleatoric uncertainty of occupancy mea-
sures, we find that its superior ability to model long-horizon
behavior enables it to estimate return distributions more ac-
curately, achieving similar quality to a Dirac mass centered
at the ground truth mean return. The DSM predictions sub-
stantially outperform all baselines, demonstrating that the
proposed δ-model retains the long-horizon consistency of
γ-models, while additionally providing aleatoric uncertainty
estimates far beyond the capabilities of the learned pπ .

Risk-sensitive policy selection. Finally, we demonstrate
that distributional SMs can be used to effectively rank poli-
cies by various risk-sensitive criteria on held-out reward
functions. In Figure 4b, we train distributional SMs for two
different policies, and use them to predict return distribu-
tions for two reward functions. We focus on two functionals
of these return distributions, namely the mean and the con-
ditional value at risk at level 0.4 (Rockafellar & Uryasev,
2002, 0.4-CVaR). We see that for both reward functions, the
distributional SM accurately estimates both functionals, and
is able to correctly identify the superior policy for each cri-
terion. Particularly, for the Lopsided Checkerboard

7

A Distributional Analogue to the Successor Representation

Ψ𝜋(⋅ ∣ x0)

ℸ(⋅ ∣ x0)

𝛾 − Model Ensemble

𝔼M ∼ ℸ[M(⋅ ∣ x0)]

(a)

π1

Reward: Hopscotch Reward: Lopsided Checkerboard

−40 −20 0 20 40 60 80

π2

−200 0 200 400

Return

Mean (MC) Mean (DSM) CVaR (MC) CVaR (DSM)

1(b)

Figure 4: Distributional successor measure predictions in Windy Gridworld. (4a): Figures in the left column show the model
atoms predicted by the distributional SM (distinguished by color) and by an ensemble of γ-models. Figures in the right
column show the mean over distributional SM model atoms and the SM itself. (4b): Distributional SM predictions of return
statistics on held-out reward functions for two policies, π1, π2. For each reward function, the distributional SM correctly
ranks policies with respect to both mean and CVaR.

reward, the distributional SM identifies π1 as superior with
respect to mean reward (identified by locations of solid
blue lines), and alternatively identifies π2 as superior with
respect to 0.4-CVaR of the return (identified by locations
of the solid pink lines). These rankings are validated by
the locations of the dashed lines, which are computed by
Monte Carlo. We note that, to our knowledge, no other
method can accomplish this feat. On the one hand, existing
distributional RL algorithms could not evaluate the return
distributions for held-out reward functions. On the other
hand, any algorithm rooted in the SM for zero-shot evalu-
ation can only rank policies by their mean returns, so they
must fail to rank π1, π2 by at least one of the objectives.

7. Related Work
The successor representation (SR; Dayan, 1993), originally
proposed for finite-state MDPs, has recently been expanded
to continuous spaces by leveraging both generative models
(Janner et al., 2020; Thakoor et al., 2022) and density models
(Blier et al., 2021; Blier, 2022). Successor features (SFs;
Barreto et al., 2017; 2020) generalize the SR by modelling a
discounted sum of state features. These models are notable
for their ability to perform both zero-shot policy evaluation
(Dayan, 1993; Barreto et al., 2017) and optimization (Borsa
et al., 2018; Touati & Ollivier, 2021; Touati et al., 2023).

Closely related to our work is that of Gimelfarb et al. (2021)
and Carvalho et al. (2023), which applied the distributional
RL techniques of Bellemare et al. (2017a) and Achab et al.
(2023) to learn categorical distributions over features, but

did not account for their joint distribution. Gimelfarb et al.
(2021) uses these distributions to optimize an entropic risk
objective. These approaches also bears a close relationship
with the emerging field of multivariate distributional RL
(Freirich et al., 2019; Zhang et al., 2021b), which does
learn joint distributions over finite dimensional features. In
particular Zhang et al. (2021b) make use of an MMD loss
for learning multivariate return distributions, building on
the scalar approach of Nguyen-Tang et al. (2021). Finally,
Vértes & Sahani (2019) consider the task of learning the SR
in POMDPs, which they referred to as a distributional SR.

Beyond transferring knowledge across tasks, learning long-
term temporal structure can enhance the representation
quality of function approximators for individual sequen-
tial decision-making problems (Le Lan et al., 2023a; Fare-
brother et al., 2023; Ghosh et al., 2023), guiding exploration
(Jinnai et al., 2019; Machado et al., 2020; Jain et al., 2023),
modeling temporal abstraction (Machado et al., 2018; 2023),
improving off-policy estimation (Nachum & Dai, 2020;
Fujimoto et al., 2021), imitation learning (Sikchi et al.,
2023; Pirotta et al., 2024), and amortizing planning (Ey-
senbach et al., 2021; 2022; Thakoor et al., 2022), as well
as other forms of risk-sensitive decision making (Zhang
et al., 2021a). The successor representation also plays a
key explanatory role in understanding generalization in RL
(Le Lan et al., 2022; 2023b). Additionally, both distribu-
tional RL (Dabney et al., 2020; Lowet et al., 2020) and
successor representations (Stachenfeld et al., 2014; 2017;
Momennejad et al., 2017) have been shown to provide plau-
sible models for biological phenomena in the brain.

8

A Distributional Analogue to the Successor Representation

8. Conclusion
This paper presents a fundamentally new approach to dis-
tributional RL, which factorizes return distributions into
components comprising the immediate reward function and
the distributional successor measure. This factorisation
reveals the prospect of zero-shot distributional policy evalu-
ation. Notably, this enables efficient comparisons between
policies on unseen tasks with respect to arbitrary risk crite-
ria, which no other existing methods have demonstrated. We
have also presented a tractable algorithmic framework for
training δ-models, which approximate the distributional SM
with diverse generative models, and have identified crucial
techniques for large-scale training of δ-models in practice.

Acknowledgements
The authors would like to thank Eric Zimmermann, Diana
Borsa, Marek Petrik, Erick Delage, Nathan U. Rahn, Pier-
luca D’Oro, Arnav Jain, Max Schwarzer, Igor Mordatch,
and Pablo Samuel Castro for their invaluable discussions
and feedback on this work. This work was supported by the
Fonds de Recherche du Québec, the National Sciences and
Engineering Research Council of Canada (NSERC), Calcul
Québec, the Digital Research Alliance of Canada, and the
Canada CIFAR AI Chair program.

We would also like to thank the Python community whose
contributions made this work possible. In particular, this
work made extensive use of Jax (Bradbury et al., 2018), Flax
(Heek et al., 2023), Optax (Babuschkin et al., 2020), EinOps
(Rogozhnikov, 2022), and Seaborn (Waskom, 2021).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abbas, Z., Sokota, S., Talvitie, E., and White, M. Selective

dyna-style planning under limited model capacity. In
International Conference on Machine Learning (ICML),
2020.

Achab, M., Alamo, R., Djilali, Y. A. D., Fedyanin, K.,
and Moulines, E. One-step distributional reinforcement
learning. Transactions on Machine Learning Research
(TMLR), 2023.

Amortila, P., Precup, D., Panangaden, P., and Bellemare,
M. G. A distributional analysis of sampling-based rein-
forcement learning algorithms. In International Confer-

ence on Artificial Intelligence and Statistics (AISTATS),
2020.

Atkeson, C. G. and Schaal, S. Robot learning from demon-
stration. In International Conference on Machine Learn-
ing (ICML), 1997.

Babuschkin, I., Baumli, K., Bell, A., Bhupatiraju, S., Bruce,
J., Buchlovsky, P., Budden, D., Cai, T., Clark, A., Dani-
helka, I., Fantacci, C., Godwin, J., Jones, C., Hem-
sley, R., Hennigan, T., Hessel, M., Hou, S., Kaptur-
owski, S., Keck, T., Kemaev, I., King, M., Kunesch,
M., Martens, L., Merzic, H., Mikulik, V., Norman, T.,
Quan, J., Papamakarios, G., Ring, R., Ruiz, F., Sanchez,
A., Schneider, R., Sezener, E., Spencer, S., Srinivasan,
S., Wang, L., Stokowiec, W., and Viola, F. The Deep-
Mind JAX Ecosystem, 2020. URL https://github.
com/google-deepmind.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T.,
van Hasselt, H. P., and Silver, D. Successor features for
transfer in reinforcement learning. In Neural Information
Processing Systems (NeurIPS), 2017.

Barreto, A., Hou, S., Borsa, D., Silver, D., and Precup, D.
Fast reinforcement learning with generalized policy up-
dates. Proceedings of the National Academy of Sciences
(PNAS), 117(48):30079–30087, 2020.

Behrmann, J., Grathwohl, W., Chen, R. T. Q., Duvenaud,
D., and Jacobsen, J. Invertible residual networks. In
International Conference on Machine Learning (ICML),
2019.

Bellemare, M. G., Dabney, W., and Munos, R. A distri-
butional perspective on reinforcement learning. In In-
ternational Conference on Machine Learning (ICML),
2017a.

Bellemare, M. G., Danihelka, I., Dabney, W., Mohamed, S.,
Lakshminarayanan, B., Hoyer, S., and Munos, R. The
cramer distance as a solution to biased wasserstein gradi-
ents. arXiv:1705.10743, 2017b.

Bellemare, M. G., Dabney, W., and Rowland, M. Distribu-
tional Reinforcement Learning. MIT Press, 2023.

Binkowski, M., Sutherland, D. J., Arbel, M., and Gretton, A.
Demystifying MMD GANs. In International Conference
on Learning Representations (ICLR), 2018.

Blier, L. Some Principled Methods for Deep Reinforcement
Learning. PhD thesis, Université Paris-Saclay, 2022.

Blier, L., Tallec, C., and Ollivier, Y. Learning Succes-
sor States and Goal-Dependent Values: A Mathematical
Viewpoint. arXiv:2101.07123, 2021.

9

https://github.com/google-deepmind
https://github.com/google-deepmind

A Distributional Analogue to the Successor Representation

Borsa, D., Barreto, A., Quan, J., Mankowitz, D. J., van
Hasselt, H., Munos, R., Silver, D., and Schaul, T. Uni-
versal successor features approximators. In International
Conference on Learning Representations (ICLR), 2018.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
https://github.com/google/jax.

Carvalho, W., Saraiva, A., Filos, A., Lampinen, A. K.,
Matthey, L., Lewis, R., Lee, H., Singh, S., Rezende, D. J.,
and Zoran, D. Combining behaviors with the successor
features keyboard. In Neural Information Processing
Systems (NeurIPS), 2023.

Christmann, A. and Steinwart, I. Universal kernels on non-
standard input spaces. In Neural Information Processing
Systems (NeurIPS), 2010.

Dabney, W., Ostrovski, G., Silver, D., and Munos, R. Im-
plicit quantile networks for distributional reinforcement
learning. In International Conference on Machine Learn-
ing (ICML), 2018a.

Dabney, W., Rowland, M., Bellemare, M. G., and Munos,
R. Distributional reinforcement learning with quantile
regression. In AAAI Conference on Artificial Intelligence,
2018b.

Dabney, W., Kurth-Nelson, Z., Uchida, N., Starkweather,
C. K., Hassabis, D., Munos, R., and Botvinick, M. A
distributional code for value in dopamine-based reinforce-
ment learning. Nature, 577(7792):671–675, 2020.

Dayan, P. Improving generalization for temporal difference
learning: The successor representation. Neural Computa-
tion, 5(4):613–624, 1993.

Eysenbach, B., Salakhutdinov, R., and Levine, S. C-
learning: Learning to achieve goals via recursive clas-
sification. In International Conference on Learning Rep-
resentations (ICLR), 2021.

Eysenbach, B., Zhang, T., Levine, S., and Salakhutdinov,
R. Contrastive learning as goal-conditioned reinforce-
ment learning. In Neural Information Processing Systems
(NeurIPS), 2022.

Farebrother, J., Greaves, J., Agarwal, R., Le Lan, C.,
Goroshin, R., Castro, P. S., and Bellemare, M. G. Proto-
value networks: Scaling representation learning with aux-
iliary tasks. In International Conference on Learning
Representations (ICLR), 2023.

Fawzi, A., Balog, M., Huang, A., Hubert, T., Romera-
Paredes, B., Barekatain, M., Novikov, A., Ruiz, F. J. R.,

Schrittwieser, J., Swirszcz, G., Silver, D., Hassabis, D.,
and Kohli, P. Discovering faster matrix multiplication al-
gorithms with reinforcement learning. Nature, 610(7930):
47–53, 2022.

Freirich, D., Shimkin, T., Meir, R., and Tamar, A. Distri-
butional multivariate policy evaluation and exploration
with the Bellman GAN. In International Conference on
Machine Learning (ICML), 2019.

Fujimoto, S., Meger, D., and Precup, D. A deep reinforce-
ment learning approach to marginalized importance sam-
pling with the successor representation. In International
Conference on Machine Learning (ICML), 2021.

Ghosh, D., Bhateja, C. A., and Levine, S. Reinforcement
learning from passive data via latent intentions. In In-
ternational Conference on Machine Learning (ICML),
2023.

Gimelfarb, M., Barreto, A., Sanner, S., and Lee, C.-G. Risk-
aware transfer in reinforcement learning using succes-
sor features. In Neural Information Processing Systems
(NeurIPS), 2021.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Neural Information
Processing Systems (NeurIPS), 2014.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B.,
and Smola, A. A kernel two-sample test. The Journal
of Machine Learning Research (JMLR), 13(1):723–773,
2012.

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre,
B., Steiner, A., and van Zee, M. Flax: A neural network
library and ecosystem for JAX, 2023. URL https:
//github.com/google/flax.

Jafferjee, T., Imani, E., Talvitie, E., White, M., and Bowling,
M. Hallucinating value: A pitfall of dyna-style planning
with imperfect environment models. arXiv:2006.04363,
2020.

Jain, A. K., Lehnert, L., Rish, I., and Berseth, G. Maximum
state entropy exploration using predecessor and succes-
sor representations. In Neural Information Processing
Systems (NeurIPS), 2023.

Janner, M., Mordatch, I., and Levine, S. Gamma-models:
Generative temporal difference learning for infinite-
horizon prediction. In Neural Information Processing
Systems (NeurIPS), 2020.

Jinnai, Y., Park, J. W., Abel, D., and Konidaris, G. Discover-
ing options for exploration by minimizing cover time. In
International Conference on Machine Learning (ICML),
2019.

10

https://github.com/google/jax
https://github.com/google/flax
https://github.com/google/flax

A Distributional Analogue to the Successor Representation

Lambert, N., Pister, K., and Calandra, R. Investigating com-
pounding prediction errors in learned dynamics models.
arXiv:2203.09637, 2022.

Le Gall, J.-F. Brownian motion, martingales, and stochastic
calculus. Springer, 2016.

Le Lan, C., Tu, S., Oberman, A., Agarwal, R., and Belle-
mare, M. G. On the generalization of representations in
reinforcement learning. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2022.

Le Lan, C., Greaves, J., Farebrother, J., Rowland, M., Pe-
dregosa, F., Agarwal, R., and Bellemare, M. G. A novel
stochastic gradient descent algorithm for learning princi-
pal subspaces. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2023a.

Le Lan, C., Tu, S., Rowland, M., Harutyunyan, A., Agarwal,
R., Bellemare, M. G., and Dabney, W. Bootstrapped rep-
resentations in reinforcement learning. In International
Conference on Machine Learning (ICML), 2023b.

Li, C., Chang, W., Cheng, Y., Yang, Y., and Póczos, B.
MMD GAN: towards deeper understanding of moment
matching network. In Neural Information Processing
Systems (NeurIPS), 2017.

Lowet, A. S., Zheng, Q., Matias, S., Drugowitsch, J., and
Uchida, N. Distributional reinforcement learning in the
brain. Trends in neurosciences, 43(12):980–997, 2020.

Machado, M. C., Rosenbaum, C., Guo, X., Liu, M., Tesauro,
G., and Campbell, M. Eigenoption discovery through the
deep successor representation. In International Confer-
ence on Learning Representations (ICLR), 2018.

Machado, M. C., Bellemare, M. G., and Bowling, M. Count-
based exploration with the successor representation. In
AAAI Conference on Artificial Intelligence, 2020.

Machado, M. C., Barreto, A., Precup, D., and Bowling,
M. Temporal abstraction in reinforcement learning with
the successor representation. The Journal of Machine
Learning Research (JMLR), 24(80):1–69, 2023.

Momennejad, I., Russek, E. M., Cheong, J. H., Botvinick,
M. M., Daw, N. D., and Gershman, S. J. The successor
representation in human reinforcement learning. Nature
human behaviour, 1(9):680–692, 2017.

Morimura, T., Sugiyama, M., Kashima, H., Hachiya, H.,
and Tanaka, T. Nonparametric return distribution ap-
proximation for reinforcement learning. In International
Conference on Machine Learning (ICML), 2010.

Nachum, O. and Dai, B. Reinforcement learning
via Fenchel-Rockafellar duality. arXiv preprint
arXiv:2001.01866, 2020.

Nguyen-Tang, T., Gupta, S., and Venkatesh, S. Distribu-
tional reinforcement learning via moment matching. In
AAAI Conference on Artificial Intelligence, 2021.

Pirotta, M., Tirinzoni, A., Touati, A., Lazaric, A., and Ol-
livier, Y. Fast imitation via behavior foundation models.
In International Conference on Learning Representations
(ICLR), 2024.

Puterman, M. L. Markov decision processes: Discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Rockafellar, R. T. and Uryasev, S. Conditional value-at-
risk for general loss distributions. Journal of banking &
finance, 26(7):1443–1471, 2002.

Rogozhnikov, A. Einops: Clear and reliable tensor ma-
nipulations with Einstein-like notation. In International
Conference on Learning Representations (ICLR), 2022.

Sikchi, H., Zheng, Q., Zhang, A., and Niekum, S. Dual RL:
Unification and new methods for reinforcement and imi-
tation learning. In International Conference on Learning
Representations (ICLR), 2023.

Stachenfeld, K. L., Botvinick, M. M., and Gershman, S. J.
Design principles of the hippocampal cognitive map. In
Neural Information Processing Systems (NeurIPS), 2014.

Stachenfeld, K. L., Botvinick, M. M., and Gershman, S. J.
The hippocampus as a predictive map. Nature neuro-
science, 20(11):1643–1653, 2017.

Sutton, R. S. Temporal credit assignment in reinforce-
ment learning. PhD thesis, University of Massachusetts
Amherst, 1984.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT Press, 2018.

Szabo, Z., Gretton, A., Poczos, B., and Sriperumbudur, B.
Two-stage sampled learning theory on distributions. In
International Conference on Artificial Intelligence and
Statistics (AISTATS), 2015.

Székely, G. J. and Rizzo, M. L. Energy statistics: A class
of statistics based on distances. Journal of statistical
planning and inference, 143(8):1249–1272, 2013.

Takeuchi, I., Le, Q. V., Sears, T. D., and Smola, A. J. Non-
parametric quantile estimation. The Journal of Machine
Learning Research (JMLR), 7:1231–1264, 2006.

Thakoor, S., Rowland, M., Borsa, D., Dabney, W., Munos,
R., and Barreto, A. Generalised policy improvement with
geometric policy composition. In International Confer-
ence on Machine Learning (ICML), 2022.

11

A Distributional Analogue to the Successor Representation

Touati, A. and Ollivier, Y. Learning One Representation to
Optimize All Rewards. In Neural Information Processing
Systems (NeurIPS), 2021.

Touati, A., Rapin, J., and Ollivier, Y. Does zero-shot rein-
forcement learning exist? In International Conference on
Learning Representations (ICLR), 2023.

Vértes, E. and Sahani, M. A neurally plausible model
learns successor representations in partially observable
environments. In Neural Information Processing Systems
(NeurIPS), 2019.

Villani, C. Optimal transport: old and new, volume 338.
Springer Science & Business Media, 2008.

Waskom, M. L. Seaborn: statistical data visualization. Jour-
nal of Open Source Software, 6(60):3021, 2021.

Watkins, C. Learning from delayed rewards. PhD thesis,
King’s College, Cambridge, 1989.

Yang, D., Zhao, L., Lin, Z., Qin, T., Bian, J., and Liu, T.-Y.
Fully parameterized quantile function for distributional
reinforcement learning. In Neural Information Processing
Systems (NeurIPS), 2019.

Zhang, J. and Weng, P. Safe distributional reinforcement
learning. In Distributed Artificial Intelligence (DAI), vol-
ume 13170 of Lecture Notes in Computer Science, pp.
107–128. Springer, 2021.

Zhang, J., Bedi, A. S., Wang, M., and Koppel, A. Cautious
reinforcement learning via distributional risk in the dual
domain. IEEE Journal on Selected Areas in Information
Theory, 2(2):611–626, 2021a.

Zhang, P., Chen, X., Zhao, L., Xiong, W., Qin, T., and
Liu, T.-Y. Distributional reinforcement learning for multi-
dimensional reward functions. In Neural Information
Processing Systems (NeurIPS), 2021b.

12

A Distributional Analogue to the Successor Representation

A. Algorithm
In this section, we restate the core δ-model update derived in Section 4, including the n-step bootstrapping and adversarial
kernel modifications described in Section 5. Source code is provided at https://github.com/jessefarebro/
distributional-sr.

Algorithm 1 δ-model update.
Require: Policy π with stationary distribution dπ, GAN generator Φ, GAN parameters {ζi}mi=1 and target parameters
{ζi}mi=1, discriminator function f , adversarial kernel parameters {ξi}mi=1, kernel κ, step sizes α, λ, number of state
samples s.
while training do

Set ξi ← ξi + α∇ξiℓ({ζj}mj=1, {ζ̄j}mj=1, {ξj}mj=1) for i = 1, . . . ,m # Discriminator: maximize model MMD
Set ζi ← ζi − α∇ζiℓ({ζj}mj=1, {ζ̄j}mj=1, {ξj}mj=1) for i = 1, . . . ,m # Generator: minimize model MMD
Set ζ̄i ← (1− λ)ζ̄i + λζi for i = 1, . . . ,m # Generator: target parameter update

end while

function ℓ({ζi}mi=1, {ζ̄i}mi=1, {ξi}mi=1)
Sample x1 ∼ dπ, xk ∼ Pπ(· | xk−1) for k = 2, . . . , n.
for i = 1, . . . ,m do

Sample z1i , . . . , z
s
i i.i.d. from GAN noise distribution

Set xj
i ← Φ(zji ;x1, ζi) for j = 1, . . . , s

Sample ω1
i , . . . , ω

s
i i.i.d. from GAN noise distribution

and Y 1
i , . . . , Y

s
i i.i.d. from Geometric(1− γ)

Set x̄j
i ← Φ(ωj

i ;xn, ζ̄i) if Y j
i ≥ n, else set x̄j

i ← xY j
i

, for j = 1, . . . , s

Set yji ← f(xj
i , ξi) for j = 1, . . . s # Adversarial Kernel Transformations

Set ȳji ← f(x̄j
i , ξi) for j = 1, . . . s

end for
for i = 1, . . . ,m do # MMDs Between Source Model Atoms

for i′ = 1, . . . ,m do

Set dsi,i′ ←
1(
s
2

) s∑
l,k=1
l<k

κ(yki , y
l
i) +

1(
s
2

) s∑
l,k=1
l<k

κ(yki′ , y
l
i′)−

2

s2

s∑
l,k=1

κ(yki , y
l
i′) # Equation 10

end for
end for
for i = 1, . . . ,m do # MMDs Between Target Model Atoms

for i′ = 1, . . . ,m do

Set dti,i′ ←
1(
s
2

) s∑
l,k=1
l<k

κ(ȳki , ȳ
l
i) +

1(
s
2

) s∑
l,k=1
l<k

κ(ȳki′ , ȳ
l
i′)−

2

s2

s∑
l,k=1

κ(ȳki , ȳ
l
i′)

end for
end for
for i = 1, . . . ,m do # MMDs Across Source and Target Model Atoms

for i′ = 1, . . . ,m do

Set dsti,i′ ←
1

s2

s∑
l,k=1

κ(yki , ȳ
l
i) +

1

s2

s∑
l,k=1

κ(yki′ , ȳ
l
i′)−

2

s2

s∑
l,k=1

κ(yki , ȳ
l
i′)

end for
end for
Set σ2 = Median

(
Concat

(
{dsi,i′}, {dti,i′}, {dsti,i′}

))
Adaptive Model Kernel Bandwidth

Set L← 1

m2

m∑
i,j=1

(
ρ(
√

dsi,j/σ
2) + ρ(

√
dti,j/σ

2)− 2ρ(
√

dsti,j/σ
2)
)

Model MMD

end function

13

https://github.com/jessefarebro/distributional-sr
https://github.com/jessefarebro/distributional-sr

A Distributional Analogue to the Successor Representation

B. Proofs
Proposition 3.2. Let Mπ denote a random discounted state-occupancy measure for a given policy π. For any deterministic
reward function r : X → R, we have

Gπ
r (x)

L
=(1− γ)−1EX′∼Mπ(·|x) [r(X

′)] . (4)

Note that the right-hand side is a random variable, since Mπ(· | x) itself is a random distribution.

Proof. This result can be verified by a direct calculation. Invoking Definition 3.1, we have

(Mπr)(x) =

∫
X
r(x′)Mπ(dx′ | x)

L
=

∫
X

∑
t≥0

(1− γ)γtr(x′)δXt(dx
′)

∣∣∣∣∣∣ X0 = x

L
=(1− γ)

∑
t≥0

γtr(Xt)

∣∣∣∣∣∣ X0 = x

L
=(1− γ)Gπ

r (x)

where the third step invokes Fubini’s theorem subject to the boundedness of r. The claimed result simply follows by dividing
through by 1− γ.

Proposition 3.5. Let Mπ denote the random discounted state-occupancy measure induced by a policy π. Then Mπ can be
expressed recursively via a distributional Bellman equation: for all measurable S ⊂ X , and X ′ ∼ pπ(· | x),

Mπ(S | x) L
=(1− γ)δx(S) + γMπ(S | X ′). (5)

Proof. By Definition 3.1, we have

Mπ(· | x) L
=(1− γ)δx +

∞∑
t=1

(1− γ)γtδXt

L
=(1− γ)δx + γ

∞∑
t=0

(1− γ)γtδXt+1

L
=(1− γ)δx + γMπ(· | X ′) ,

with the final equality in distribution following from the Markov property.

B.1. Distributional Dynamic Programming

In this section, we demonstrate how the distributional SM can be computed by dynamic programming. Following familiar
techniques in the analysis of dynamic programming algorithms, we will demonstrate that the distributional SM is the unique
fixed point of a contractive operator, and appeal to the Banach fixed point theorem.

To begin, we will define the operator of interest, which we refer to as the distributional Bellman operator T π :
P(P(X))X →P(P(X))X ,

(T πℸ)(x) = EX′∼pπ(·|x) [(bx,γ)♯ℸ(X ′)] .

It follows directly from Equation 6 that ℸπ = T πℸπ .

14

A Distributional Analogue to the Successor Representation

Proposition 3.6 (Contractivity of T π). Let d be a metric on X such that (X , d) is a Polish space, and let wd denote the
Wasserstein distance on P(X) with base distance d. If W : P(P(X))×P(P(X))→ R is the Wasserstein distance on
P(P(X)) with base distance wd, then

W (T πℸ1, T πℸ2) ≤ γW (ℸ1,ℸ2),

where W is the “supremal" W metric given by W (ℸ1,ℸ2) = supx∈X W (ℸ1(x),ℸ2(x)).

Proof. Our approach is inspired by the coupling approach proposed by Amortila et al. (2020). Denote by Π(p, q) the set of
couplings between distributions p, q.

Let Γ1,x′ ∈ Π(ℸ1(x
′),ℸ2(x

′)) denote an ϵ-optimal coupling with respect to the Wasserstein distance W , in the sense that

∫
P(X)

∫
P(X)

wd(p, q)Γ1,x′(dp× dq) ≤W (ℸ1(x
′),ℸ2(x

′)) + ϵ

for arbitrary ϵ > 0. Firstly, we note that Γ1 ∈ Π((T πℸ1)(x), (T πℸ2)(x)), where

Γ1 =

∫
X
pπ(dx′ | x) [(bx,γ ,bx,γ)♯Γ1,x′] .

Here, (bx,γ ,bx,γ)♯Γ1,x′(A×B) = Γ1,x′(b−1
x,γ(A)× b−1

x,γ(B)) for measurable A,B ⊂P(X). To see this, we note that for
any measurable P ⊂P(X),

Γ1(P ×P(X)) =
∫
X
pπ(dx′ | x)Γ1,x′(b−1

x,γ(P)×P(X))

=

∫
X
pπ(dx′ | x)ℸ1(x

′)(b−1
x,γ(P))

=

∫
X
pπ(dx′ | x) [(bx,γ)♯ℸ1(x

′)] (P)

≡ [(T πℸ1)(x)] (P),

so that the first marginal of Γ1 is (T πℸ1)(x). Likewise, the second marginal of Γ1 is (T πℸ2)(x), confirming that Γ1 is a
coupling between (T πℸ1)(x) and (T πℸ2)(x). It follows that

W (T πℸ1, T πℸ2) = sup
x∈X

W ((T πℸ1)(x), (T πℸ2)(x))

≤ sup
x∈X

∫
P(X)

∫
P(X)

wd(p, q)Γ1(dp× dq)

= sup
x∈X

∫
P(X)

∫
P(X)

∫
X
wd(p, q)p

π(dx′ | x) [(bx,γ ,bx,γ)♯Γ1,x′] (dp× dq)

= sup
x,x′∈X

∫
P(X)

∫
P(X)

wd(bx,γ(p),bx,γ(q))Γ1,x′(dp× dq).

We now claim that wd(bx,γ(p),bx,γ(q)) ≤ γwd(p, q) for any p, q ∈ P(X). To do so, let Γ2 ∈ Π(p, q) be an optimal
coupling with respect to wd, which is guaranteed to exist since (X , d) is a Polish space (Villani, 2008). Define Γ3 ∈
P(X × X) such that

15

A Distributional Analogue to the Successor Representation

Γ3 = (1− γ)δ(x,x) + γΓ2.

It follows that, for any measurable X ⊂ X ,

Γ3(X ×X) = (1− γ)δ(x,x)(X ×X) + γΓ2(X ×X)
= (1− γ)δx(X) + γΓ2(X ×X)
= (1− γ)δx(X) + γp(X)

= bx,γ(p)(X)

which confirms that bx,γ(p) is the first marginal of Γ3. An analogous argument for the second marginal shows that Γ3 is a
coupling between bx,γ(p),bx,γ(q). So, we see that

wd(bx,γ(p),bx,γ(q)) = inf
Γ∈Π(bx,γ(p),bx,γ(q))

∫
X

∫
X
d(y, y′)Γ(dy × dy′)

≤
∫
X

∫
X
d(y, y′)Γ3(dy × dy′)

= (1− γ)d(x, x) + γ

∫
X

∫
X
d(y, y′)Γ2(dy × dy′)

= γwd(p, q).

Now, continuing the bound from earlier, we have

W (T πℸ1, T πℸ2) ≤ sup
x,x′∈X

∫
P(X)

∫
P(X)

wd(bx,γ(p),bx,γ(q))Γ1,x′(dp× dq)

≤ γ sup
x∈X

∫
P(X)

∫
P(X)

wd(p, q)Γ1,x(dp× dq)

≤ γ sup
x∈X

[W (ℸ1(x),ℸ2(x)) + ϵ]

= γW (ℸ1,ℸ2) + γϵ

Thus, since ϵ > 0 was arbitrary, the claim follows.

Corollary 3.7 (Convergent Dynamic Programming). Under the conditions of Proposition 3.6, if the metric space (X , d) is
compact, then the iterates (ℸk)

∞
k=0 given by ℸk+1 = T πℸk converge in W to ℸπ , for any ℸ0 ∈P(P(X))X .

Proof. Prior to applying the Banach fixed point theorem it is necessary to ensure that W is finite on P(P(X))X to ensure
that a fixed point will be reached. Since X is compact and metrics are continuous, it follows that the metric d is bounded
over X , that is,

sup
x,y∈X

d(x, y) ≤ C <∞

for some constant C. As such, the Wasserstein distance wd, as an expectation over distances measured by d, is also bounded
by C, and following the same logic, the metrics W,W are bounded by C. Then, since it is clear from equation 6 and
equation 7 that ℸπ = T πℸπ , we have

16

A Distributional Analogue to the Successor Representation

W (ℸk,ℸπ) = W (T πℸk−1,ℸπ)

= W (T πℸk−1, T πℸπ)

≤ γW (ℸk−1,ℸπ)

where the final step leverages the contraction provided by Proposition 3.6. Then, repeating k − 1 times, we have

W (ℸk,ℸπ) ≤ γkW (ℸ0,ℸπ)

≤ γkC

Since |γ| < 1 and C is finite, it follows that W (ℸk,ℸπ)→ 0, and since W is a metric, ℸk → ℸπ in W .

C. Further Discussion and Extensions
C.1. Examples of Distributional SMs in Finite-State-Space Environments

In this section, we include several examples to illustrate the breadth of distributions on the simplex that can be obtained as
distributional SMs for simple environments.

Figure 5 illustrates a kernel density approximation to the distributional SM in a three-state MDP, with state-transition kernel
given by 0.5 0.5 0

0 0 1
1/3 1/3 1.3

 ,

and a discount factor of γ = 0.7. The figure is specifically created by generating 1,000 trajectories of length 100, which are
then converted into visitation distributions, serving as approximate samples of the distributional SM, and a kernel density
estimator (KDE) is then fitted; we use Seaborn’s kdeplot method with default parameters (Waskom, 2021). Also included
in the figure are corresponding return distribution estimates, obtained by using the identity in Equation 4 with the generated
samples described above, and again using a KDE plot of the resulting return distribution estimator. Observe that since
the second state transitions deterministically into the third state, the distributional SM for the second state is a scaling and
translation of the distributional SM of the third state, as predicted by the distributional SM Bellman equation in Equation 5.

In Figure 6, we plot a Monte Carlo approximation to the distributional SM in a three-state environment in which there is an
equal probability of jumping to each state in every transition, and the discount factor is γ = 0.5. The distributions over
the simplex in this case are instances of the Sierpiński triangle, a fractal distribution that is neither discrete nor absolutely
continuous with respect to Lebesgue measure on the simplex. This can be viewed as a higher-dimensional analogue of the
Cantor distribution described in the context of distributional reinforcement learning in Bellemare et al. (2023, Example 2.11).
These plots were generated using 10,000 samples per state, with an episode length of 100.

C.2. Stochastic reward functions

In the main paper, we make a running assumption that the rewards encountered at each state are given by a deterministic
assumption. In full generality, Markov decision processes allow for the state-conditioned reward to follow a non-trivial
probability distribution. In this section, we briefly describe the main issue with extending our approach to dealing with
stochastic rewards.

The issue stems from the fact that the mapping from sequences of state (Xk)k≥0 to the corresponding occupancy distribution∑∞
k=0 γ

kδXk
is often not injective. To see why, consider an environment with four states x0, x1, x2, x3 (including a terminal

state x3, which always transitions to itself). Consider two state sequences:

(x0, x1, x2, x2, x3, x3, . . .) ,

(x0, x2, x1, x1, x3, x3, . . .) .

17

A Distributional Analogue to the Successor Representation

x0 x1

x2

x0 x1

x2

x0 x1

x2

4 2 0 2 4
Density

0.0

0.2

0.4

0.6

D
e
n
si
ty

4 2 0 2 4
Density

0.0

0.5

1.0

D
e
n
si
ty

4 2 0 2 4
Density

0.0

0.2

0.4

0.6

D
e
n
si
ty

Figure 5: Top: Kernel density estimate of distributional SM. Red dot represents the standard SR. Bottom: Kernel density
estimates of return distributions, obtained via distributional SM. Vertical lines represent expected return, obtained from
standard SR.

Figure 6: Monte Carlo estimation of the distributional SM at states x0, x1, and x2, in a three-state MDP. Each distribution is
supported on a copy of the fractal Sierpiński triangle. Red dot represents the standard SR.

These sequences give rise to the visitation distributions

(1− γ)δx0 + (1− γ)γδx1 + (1− γ)(γ2 + γ3)δx2 + γ4δx3 ,

(1− γ)δx0
+ (1− γ)(γ2 + γ3)δx1

+ (1− γ)γδx2
+ γ4δx3

.

Now suppose γ = γ2 + γ3; clearly there is a value of γ ∈ (0, 1) satisfying this equation. But for this value of γ, the two
visitation distributions above are identical. In the case of deterministic state-conditioned rewards, the two corresponding
returns are also identical in this case. However, in the case of non-deterministic returns, the corresponding distributions
over return are distinct. To give a concrete case, consider the setting in which all rewards are deterministically 0, except at
state x1, where they are given by the N(0, 1) distribution. Then under the first visitation distribution, the corresponding
return distribution is the distribution of γZ (where Z ∼ N(0, 1)), which has distribution N(0, γ2). In contrast, the return
distribution for the second visitation distribution is the distribution of γ2Z + γ3Z ′ (where Z,Z ′ i.i.d.∼ N(0, 1)), which has
distribution N(0, γ4 + γ6). However, γ2 ̸= γ4 + γ6, and hence these distributions are not equal.

These observations mean that the framework can be extended to handle stochastic rewards in cycle-less environments; that
is, environments where each state can be visited at most once in a given trajectory. This incorporates the important class of

18

A Distributional Analogue to the Successor Representation

finite-horizon environments.

C.3. The successor measure as a linear operator

Here, we recall a key notion from Blier et al. (2021) used in several proofs that follow. Successor measures act naturally as
linear operators on the space B(X) of bounded measurable functions, much in the same way as Markov kernels act as linear
operators (see e.g. Le Gall (2016)). Particularly, for any f ∈ B(X), we write

(Ψπf)(x) =

∫
X
f(x′)Ψπ(dx′ | x) , (14)

noting that Ψπ(· | x) is a (probability) measure for each x ∈ X . Through this linear operation, the successor measure
transforms reward functions r : X → R to value functions V π

r ,

(1− γ)V π
r (x) = Eπ

∑
t≥0

(1− γ)γtr(Xt) | X0 = x

= EX′∼Ψπ(·|x) [r(Xt)]

= (Ψπr)(x) .

D. Experimental Details
In this section, we provide additional details relating to the experiments in the main paper.

D.1. Baselines

To avoid confounders in our comparative analysis, our baselines were built with largely the same neural architecture and
loss as the δ-models that we train.

γ-Model Ensemble An ensemble of γ models is structurally equivalent to a δ-model: each member of the ensemble is an
equally-weighted model atom. Thus, we train the γ-model ensemble in the same way as the δ-model, but we substitute the
model MMD loss with an sum over state MMD losses corresponding to the model atoms.

Transition Kernel In our experiments involving the learned transition kernel Pπ , we again inherit the architecture from
the δ-model. Note that Pπ is effectively equivalent to a δ-model trained with γ = 0 and with one model atom. One small
adjustment is necessary: a δ-model with γ = 0 will model the distribution over the source state (that is, each model atom
will represent a Dirac at the source state) as defined in Equation 5. To account for this, we can simply shift indices of target
states by one timestep, in order to predict the distribution over next states.

D.2. Hyperparameters

Unless otherwise specified the default hyperparameters used for our implementation of δ-model are outlined in Table 1.
Certain environment specific hyperparameters can be found in Appendix D.3.

D.3. Environment Details

Below we provide specifics of the environments utilized for the experimental results in the paper.

D.3.1. WINDY GRIDWORLD

When training a δ-model for the Windy Gridworld experiments, we use 4 model atoms and train for 1 million gradient steps.

Our experiments in Section 5 involve two reward functions, namely Hopscotch and Lopsided Checkerboard.
These reward functions have constant rewards in each quadrant, as shown in Figure 7.

Moreover, we provide some additional visualizations on predicted return distributions from our distributional SM implemen-
tation in Figure 8.

19

A Distributional Analogue to the Successor Representation

Table 1: Default hyperparameters for δ-model.

Hyperparameter Value
Generator Network MLP(3-layers, 256 units, ReLU)
Generator Optimizer Adam(β1 = 0.9, β2 = 0.999)
Generator Learning Rate 6.25e− 5

Discriminator Network iResMLP(2 layers × 2 blocks, 256 units, ReLU)
Discriminator Optimizer Adam(β1 = 0.9, β2 = 0.999)
Discriminator Learning Rate 6.25e− 5

Discriminator Feature Dimensionality 8 output features
Model Kernel InverseMultiQuadric
Adaptive Model Kernel (Median Heuristic) True
State Kernel RationalQuadricKernel(A = {0.2, 0.5, 1.0, 2.0, 5.0})
Adaptive State Kernel (Adversarial Kernel) True
Horizon (n-step) 5

Discount Factor (γ) 0.95

Batch Size 32

Number of State Samples 32

Number of Model Samples 51

Target Parameter Step Size (λ) 0.01

Noise Distribution ω ∈ R8 ∼ N (0, I)

Number of Gradient Updates 3e6

Lopsided Checkerboard
15 -10
-2 2

Hopscotch
3 -1
-2 2

Figure 7: Reward functions for Windy Gridworld.

Notably, Figure 8 demonstrates that the distributional SM correctly predict the fraction of futures that enter the red region,
which demonstrates that the distributional SM is can detect when a policy will be likely to violate novel constraints.

D.3.2. PENDULUM

When training a δ-model for the Pendulum experiments, we use 51 model atoms and train for 3 million gradient steps.

Our experiments on the Pendulum environment involve zero-shot policy evaluation for rewards that are held out
during training. We considered four reward functions, namely Default, Above Horizon, Stay Left, and
Counterclockwise Penalty, which we describe below.

All reward functions are defined in terms of the pendulum angle θ ∈ [−π, π], its angular velocity θ̇, and the action a ∈ R.
The reward functions are given by

rDefault(θ, θ̇, a) = −
(
θ2 + 0.1θ̇2 + 0.001a2

)
rAbove Horizon(θ, θ̇, a) = −(1{θ ≥ π/2}+ 0.1a2)

rStay Left(θ, θ̇, a) = min(0, sin θ)

rCCW Penalty(θ, θ̇, a) = 1{θ̇ < 0}

These reward functions (aside from Default) were chosen to model potential constraints that can be imposed on the
system after a learning phase. The Above Horizon reward imposes extra penalty whenever the pendulum is below the
horizon, which may model the presence of an obstacle under the horizon. The Stay Left reward reinforces the system

20

A Distributional Analogue to the Successor Representation

Bad Quadrant

-100 -50 0

Checkerboard

SM

SM

Figure 8: Return distribution predictions in Windy Gridworld under the uniform random policy where the source state is
the origin. Each row represents a separate reward function depicted by the inset grids, with red regions denoting negative
reward.

when the pendulum points further to the left, which could, for instance, indicate a different desired target for the pendulum.
Finally, the Counterclockwise Penalty (rCCW Penalty above) reinforces the system for rotating clockwise, which
can model a constraint on the motor.

E. Ablation Experiments
As mentioned in Section 5 there are several practical considerations when learning δ-models. We further expand on three
crucial details: n-step bootstrapping, adaptive kernels, and how the number of model atoms affects our approximation error.

n-step bootstrapping. In order to allow δ-models to learn longer horizons than typically possible with γ-models (Janner
et al., 2020) we employ the use of n-step bootstrapping when constructing our target distribution. The choice of n is critical;
if n is too small, the update is over-reliant on bootstrapping, leading to instability. Conversely, for large n it becomes
impractical to store long sequences.

For these reasons it is worth understanding how δ-models interacts with the value of n, which can help guide the selection
of this parameter for any type of geometric horizon model (e.g., Janner et al., 2020; Thakoor et al., 2022). To this end, we
perform a sweep over n ∈ {1, 2, . . . , 10} to understand how this affects the Wasserstein distance between the DSM-estimated
return compared to the empirical MC return distribution. We train a δ-model with γ = 0.95 for each n on the Pendulum
environment with all other hyperparameters remaining fixed as in Appendix D.2. Figure 9 (left) shows the Wasserstein
distance averaged over 9 source states for the four reward functions outlined in Appendix D.3.2.

We can see that n-step bootstrapping does indeed help us to learn better approximations until around n = 5 where the
benefits are less clear. This corresponding to the bootstrapped term accounting for ≈ 80% of the probability mass of the
target distribution.

Adversarial kernel. Given the non-stationary of our target distributions, we found it crucial to employ an adaptive kernel in
the form of an adversarial kernel (Li et al., 2017) for the state kernel. Note that the model kernel is itself a function of the
state kernel so by learning an adversarial state kernel we are able to adapt our model kernel as well.

21

A Distributional Analogue to the Successor Representation

1 2 3 4 5 6 7 8 9 10

Horizon

0.8

1.0

1.2

W
a
ss

e
rs

te
in

 D
is

ta
n
ce

Pendulum n-step Horizons for = 0.95

5 11 21 31 51

Number of Model Atoms

0.0

0.5

1.0

W
a
ss

e
rs

te
in

 D
is

ta
n
ce

Varying Model Atoms on Pendulum

Non-Adaptive Adaptive
0.0

0.2

0.4

0.6

0.8

1.0

1.2

W
a
ss

e
rs

te
in

 D
is

ta
n
ce

Adaptivity of the State Kernel

Figure 9: Each subplot indicates the Wasserstein distance of the DSM versus the empirical MC return distributions on 9
source states for 4 reward functions on Pendulum. Left: Varying the value of n in the δ-model multi-step bootstrapped
target. Middle: varying the number of model atoms. Right: Selectively applying an adaptive (adversarial) or non-adaptive
state kernel.

To validate our decision to employ an adversarial kernel we train a δ-model with and without an adaptive kernel. The adaptive
kernel is the one described in Appendix D.2. The non-adaptive kernel omits the application of the learned embedding
network, that is, the kernel is a mixture of rational quadric kernels,

ρ(d) =
∑
α∈A

(
1 +

d

2α

)−α

,

for A = {0.2, 0.5, 1.0, 2.0, 5.0} as per Binkowski et al. (2018). Figure 9 (right) shows that the Wasserstein distance is
nearly halved when applying the adversarial kernel.

Number of model atoms. As the number of model atoms increases we expect to better approximate ℸπ. To get an idea
of how our approximation is improving as we scale the number of atoms we compare the Wasserstein distance from our
δ-model to the empirical MC return distributions for {5, 11, 21, 31, 41, 51} model atoms. These results are presented in
Figure 9 (Middle). As expected we obtain a better approximation to ℸπ when increasing the number of model atoms. Further
scaling the number of model atoms should continue to improve performance at the cost of compute. This is a desirable
property for risk-sensitive applications where better approximations are required.

F. Additional Results
Proposition F.1. The distributional SM is determined by the standard SR. In other words, given Ψπ , one can mathematically
derive ℸπ .

Proof. To establish Proposition F.1, it suffices to show that the one-step transition kernel pπ for a given policy π can be
recovered exactly from Ψπ. This is because pπ contains all possible structural information about the environment and the
policy’s dynamics, so it contains all information necessary to construct the distributional SM. When X is finite, Lemma F.2
shows that Ψπ encode pπ , and Lemma F.3 demonstrates this for the more general class of state space X considered in this
paper.

Lemma F.2. Let X be finite, and let Ψπ denote the successor representation for a given policy π. Then pπ can be recovered
exactly from Ψπ .

Proof. Consider a policy π : X → P(A) with discounted visitation distributions Ψπ. We consider the state transition
matrix Pπ ∈ R|X |×|X| where Pπ

x,x′ = pπ(x′ | x). Recall that Ψπ = (1 − γ)(I − γPπ)−1, so rearranging we have
Pπ = γ−1(I − (1− γ)(Ψπ)−1). Therefore the one-step state-to-state transition probabilities are determined by Ψπ, and
since ℸπ is a function of the one-step transition probabilities, the conclusion follows.

Lemma F.3. Let X be a complete, separable metric space endowed with its Borel σ-field Σ, and let Ψπ denote the successor
measure for a given policy π. Then Ψπ encodes pπ , in the sense that pπ can be expressed as a function of Ψπ alone.

22

A Distributional Analogue to the Successor Representation

Proof. Recall the definition of the successor measure Ψπ : Σ→ R+,

Ψπ(A | x) = (1− γ)
∑
t≥0

γt Pr(Xt ∈ A | X0 = x) .

As shown above in Appendix C.3, Ψπ acts as a linear operator on B(X) according to (Ψπf)(x) = EX′∼Ψπ(·|x) [f(X
′)].

We denote by Pπ : B(X)→ B(X) the Markov kernel corresponding to pπ , where B(X) denotes the space of bounded and
measurable functions on X . The operator Pπ acts on a function f ∈ B(X) according to

(Pπf)(x) =

∫
X
f(x′)pπ(dx′ | x) = EX′∼pπ(·|x) [f(X

′)] .

That is, (Pπf)(x) computes the expected value of f over the distribution of next states, conditioned on a starting state.
Returning to the definition of the successor measure, for any f ∈ B(X), we have

(Ψπf)(x) =

∫
X
f(x′)Ψπ(dx′ | x)

= (1− γ)

∫
X
f(x′)

∑
t≥0

γt(pπ)t(dx′ | x)

= (1− γ)
∑
t≥0

γt

∫
X
f(x′)(pπ)t(dx′ | x)

= (1− γ)
∑
t≥0

γt((Pπ)tf)(x)

where the third step invokes Fubini’s theorem, given the boundedness of f and pπ . We have shown that

Ψπ = (1− γ)
∑
t≥0

γt(Pπ)t ,

where the correspondence is with respect to the interpretation of Ψπ as a linear operator on B(X). Blier et al. (2021,
Theorem 2) show that

∑
t≥0 γ

t(Pπ)t = (id−γPπ)−1 as linear operators on B(X), where id is the identity map on B(X).
As a consequence, Ψπ is proportional to the inverse of a linear operator, so it is itself an invertible linear operator, where

(Ψπ)−1 =
1

1− γ
(id−γPπ)

and hence

Pπ = γ−1
(
id−(1− γ)(Ψπ)−1

)
.

Again, the correspondence is established for Pπ as a linear operator on B(X). However, we can now recover the measures
pπ(· | x) according to

pπ(A | x) =
∫
A

pπ(dx′ | x)

=

∫
X
χA(x

′)pπ(dx′ | x) (χA(y) ≜ 1{y ∈ A})

= (PπχA)(x)

=
(
γ−1(id−(1− γ)(Ψπ)−1)χA

)
(x)

where χA ∈ B(X) for any measurable set A. Thus, we have shown that pπ(· | x) can be reconstructed from Ψπ alone, as
claimed.

23

	Introduction
	Background
	Successor Measure
	Distributional Policy Evaluation

	Random Occupancy Measures and the Distributional SMThe Distributional SM
	Random Occupancy Measures
	Distributional SM Bellman Equations

	Representing and Learning the Distributional SMRepresenting and Learning the DSM
	Representation by -models
	Learning from Samples

	Practical Training of -models
	n-step Bootstrapping
	Kernel Selection

	Experimental Results
	Related Work
	Conclusion
	Algorithm
	Proofs
	Distributional Dynamic Programming

	Further Discussion and Extensions
	Examples of Distributional SMs in Finite-State-Space Environments
	Stochastic reward functions
	The successor measure as a linear operator

	Experimental Details
	Baselines
	Hyperparameters
	Environment Details
	Windy Gridworld
	Pendulum

	Ablation Experiments
	Additional Results

