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Abstract

An important aspect in developing language mod-
els that interact with humans is aligning their be-
havior to be useful and unharmful for their hu-
man users. This is usually achieved by tuning the
model in a way that enhances desired behaviors
and inhibits undesired ones, a process referred to
as alignment. In this paper, we propose a theoreti-
cal approach called Behavior Expectation Bounds
(BEB) which allows us to formally investigate
several inherent characteristics and limitations of
alignment in large language models. Importantly,
we prove that within the limits of this framework,
for any behavior that has a finite probability of
being exhibited by the model, there exist prompts
that can trigger the model into outputting this be-
havior, with probability that increases with the
length of the prompt. This implies that any align-
ment process that attenuates an undesired behav-
ior but does not remove it altogether, is not safe
against adversarial prompting attacks. Further-
more, our framework hints at the mechanism by
which leading alignment approaches such as rein-
forcement learning from human feedback make
the LLM prone to being prompted into the unde-
sired behaviors. This theoretical result is being ex-
perimentally demonstrated in large scale by the so
called contemporary “chatGPT jailbreaks”, where
adversarial users trick the LLM into breaking its
alignment guardrails by triggering it into acting
as a malicious persona. Our results expose fun-
damental limitations in alignment of LLMs and
bring to the forefront the need to devise reliable
mechanisms for ensuring AI safety.

*Equal contribution 1Department of Computer Science, Hebrew
University of Jerusalem, Israel 2AI21 Labs, Israel. Correspon-
dence to: Yotam Wolf <yotamwolf@cs.huji.ac.il>, Noam Wies
<noam.wies@cs.huji.ac.il>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Training large language models (LLMs) over vast cor-
pora has revolutionized natural language processing, giv-
ing LLMs the ability to mimic human-like interactions and
serve as general purpose assistants in a wide variety of tasks,
such as wide-scoped question answering, writing assistance,
teaching, and more (Radford et al., 2019; Devlin et al.,
2019; Brown et al., 2020; Schulman et al., 2023; OpenAI,
2023; Bubeck et al., 2023; Nori et al., 2023; West, 2023;
Park et al., 2023). A growing concern due to the increasing
reliance on LLMs for such purposes is the harm they can
cause their users, such as feeding fake information (Lin
et al., 2022; Weidinger et al., 2022), behaving offensively
and feeding social biases (Hutchinson et al., 2020; Venkit
et al., 2022; Weidinger et al., 2022), or encouraging prob-
lematic behaviors by users (even by psychologically ma-
nipulating them (Roose, 2023; Atillah, 2023)). Indeed, the
unsupervised textual data used for pretraining modern LLMs
includes enough demonstrations of the above undesired be-
haviors for them to be present in the resulting models (Ben-
der et al., 2021). The act of removing these undesired be-
haviors is often called alignment (Yudkowsky, 2001; Taylor
et al., 2016; Amodei et al., 2016; Shalev-Shwartz et al.,
2020; Hendrycks et al., 2021; Pan et al., 2022; Ngo, 2022).

There are several different approaches to performing align-
ment in LLMs. One is to include aligning prompts: (Askell
et al., 2021) show that injecting language models with help-
ful, honest, and harmless (HHH) textual prompts improves
alignment and decreases toxicity. Similarly, (Rae et al.,
2021) also use prompting to decrease toxicity. Another ap-
proach for LLM alignment is the procedure of reinforcement
learning from human feedback (RLHF) that trains language
models to be helpful and harmless with a human preference
based reward (Bai et al., 2022). Their work shows an in-
crease in an LLM’s HHH scores while maintaining its useful
abilities, as measured by zero- and few-shot performance on
different natural language tasks. (Ouyang et al., 2022) use
this method to fine tune GPT-3 into InstructGPT using data
collected from human labelers to reach better performance
on a variety of tasks, while improving HHH (measured via
bias and toxicity datasets (Gehman et al., 2020; Nangia et al.,
2020)). Recently, a new approach for alignment known as
representation engineering (Zou et al., 2023; Jorgensen et al.,
2023; Leong et al., 2023; Liu et al., 2023; Turner et al., 2023)
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has emerged, in which vectors are injected into the hidden
layer representations of the model post-training, steering the
model towards desirable behaviors in latent space. While
promising, it is still in early development stages, and the
extent of its effects on the model, e.g.maintaining its useful-
ness, are unknown. Therefore, in this work we focus on the
first two approaches, RLHF finetuning and prompting, in
which the model’s weights are frozen in inference time.

While the above approaches to alignment are effective to a
certain extent, they are still dangerously brittle. For example,
(Wallace et al., 2019) show that short adversarial prompts
can trigger negative behaviors and social biases. (Yu &
Sagae, 2021) and (Xu et al., 2021) provide methods for
exposing harmful behaviors of models by triggering prob-
lematic responses. (Subhash, 2023) showed that adversarial
prompts can manipulate ChatGPT to alter user preferences.
Beyond academic works, the general media is abundant
with contemporary examples of leading LLMs being ma-
nipulated by users to expose harmful behaviors via the so
called “jailbreaking” approach of prompting the LLM to
mimic a harmful persona (Nardo, 2023; Deshpande et al.,
2023). Even in the absence of adversarial attacks, leading
alignment methods can underperform and are not well un-
derstood: (Perez et al., 2022) provide evidence that certain
negative behaviors have inverse scaling with the number of
RLHF steps, indicating that this popular alignment proce-
dure may have a complex effect.

In this paper, we introduce a probabilistic framework for
analyzing alignment and its limitations in LLMs, which we
call Behavior Expectation Bounds (BEB), and use it in order
to establish fundamental properties of alignment in LLMs.
The core idea behind BEB is to represent the LLM distribu-
tion as a superposition of ill- and well-behaved components,
in order to provide guarantees on the ability to restrain the
ill-behaved components, i.e., guarantees that the LLM is
aligned. It is noteworthy that LLMs have been shown to
distinctly represent behaviors and personas, and the notion
of persona or behavior superposition has been intuitively
proposed as an explanation (Andreas, 2022; Nardo, 2023).

Our BEB framework assumes an underlying categorization
into different behaviors, where any natural language sen-
tence is assigned a ground truth score between −1 (very
negative) and +1 (very positive) for every behavior (see
examples in Figure 1). Such a categorization can be, e.g.,
into the previously proposed helpful, honest, and harmless
categories, but it can also be expanded and fine-grained into
many more categories such as polite, not racist, compas-
sionate, and so on. Given such a categorization and ground
truth sentence scoring functions per category, the alignment
score of any distribution over natural sentences w.r.t. a given
behavior is the expectation value of sentence scores for sen-
tences drawn from the distribution. The BEB framework

thus provides a natural theoretical basis for describing the
goal of contemporary alignment approaches such as RLHF:
increasing the behavior expectation scores for behaviors of
interest.

Additionally, the BEB framework employs assumptions
on the LLM distribution presented in section 2. These in-
clude the notion of α, β, γ-distinguishability (definition 2.5),
which means the language model can be decomposed to a
sum of ill-behaved and well-behaved components, where
the weight of the negative in the mixture is α, it is distin-
guishable from the rest of the distribution in the sense of
a bounded KL-divergence that is at least β, and exhibits
negative behavior scored as γ < 0. Lastly, we include a
definition for σ-similarity between two components (defini-
tion 2.4), which bounds the variance of the log likelihood
between the well-behaved and ill-behaved components.

We use this framework in section 3 in order to assert several
important statements regarding LLM alignment: Alignment
impossibility: We show that under our main assumption,
called α, β, γ-distinguishability, an LLM alignment process
which reduces undesired behaviors to a small but nonzero
fraction of the probability space is not safe against adver-
sarial prompts (theorem 3.1); Preset aligning prompts
can only provide a finite guardrail against adversarial
prompts: We prove that under our main assumption and
the assumption of σ-similarity (definition 2.4), including
an aligning prefix prompt does not guarantee alignment
(theorem 3.2). LLMs can be misaligned during a con-
versation: We show that under our previous assumptions,
a user can misalign an LLM during a conversation, with
limited prompt length at each turn (theorem 3.3). LLMs
with best-of-n sampling can be misaligned: Under our
main assumption, selection of most aligned model response
out of n generations, does not guarantee alignment (theorem
3.4).

In section 4, we demonstrate empirically some of the as-
sumptions and results derived from the BEB framework
on the LLaMA LLM family (Meta, 2023; Touvron et al.,
2023). In subsection 4.1 we measure possible values for
β-distinguishability (definition 2.2) and σ-similarity (defi-
nition 2.4), as can be seen in figure 2. In subsection 4.2 we
demonstrate the underlying mechanism by which misalign-
ment happens in the BEB framework, which is the conver-
gence of the LLM to a negative behavior component. This
is done by showing a decay of the KL divergence between
the two, as seen in figure 3a. Furthermore, we can extract
estimated parameters of the theoretical framework allowing
to calculate the expected misaligning prompt length. More-
over, we demonstrate how the method proposed by the BEB
framework for generating misaligning prompts causes mis-
alignment (figure 3b), which is quantified by our proposed
behavior expectation metric (equation 2). This framework
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Figure 1. Examples of sentence behavior scores along different be-
havior verticals. Our framework of Behavior Expectation Bounds
(BEB) assumes ground truth behavior scoring functions, and
bounds the expected scores of models along different behavior
verticals in order to guarantee LLM alignment or misalignment.

is mainly centered around models that have undergone an
aligning finetuning process such as RLHF and less on pre-
trained models, as the latter are not aligned to begin with
and require little effort to be provoked into behaving nega-
tively (as shown in appendix M), but even so, the theoretical
framework is still applicable to both. In subsection 4.2 we
also present preliminary indications that RLHF alignment
increases the distinguishability of undesired behaviors, but
we leave the investigation of this possibility for future work.

Overall, we hope that our newly proposed framework of Be-
havior Expectation Bounds, along with our attained results,
may spark a theoretical thrust helping to better understand
the important topic of LLM alignment.

2. Behavior Expectation Bounds: A
Framework for Analyzing LLM Alignment

In this section, we introduce Behavior Expectation Bounds
(BEB), a probabilistic framework for studying alignment of
LLMs. Given a language model’s probability distribution
P, we propose a measure for quantifying its tendency to
produce desired outputs as measured by a certain behaviour
vertical B, where for example B can be helpfulness, polite-
ness, or any other behavior vertical of interest. Formally,
we model behaviour scoring functions along vertical B as
B : Σ∗ → [−1, 1], which take a string of text from an al-
phabet Σ as their input1 and rate the manner in which B
manifests in the string, with +1 being very positive and
−1 being very negative. This formulation directly reflects

1We use the Kleene closure Σ∗ for simplicity of notation, but
note that it can be replaced with Σcontext length to account for the
finite context window of models.

recent empirical efforts for studying alignment. In particu-
lar, (Perez et al., 2022) recently curated 500 negative and
positive examples along each of over 100 different behavior
verticals. Figure 1 shows short examples of the behavior
scores of several sentences along two behavior verticals.

We use the following expected behavior scoring of distri-
bution P w.r.t. behavior vertical B as a scalar quantifyer of
the tendency of P to produce desired behavior along the B
vertical:

BP := Es∼P[B(s)] (1)

where for clarity purposes, in this paper sampling from
language distributions is implicitly restricted to single sen-
tences (see discussion on this choice and its limitations in
A.3). We use the above distribution notation P to represent
that of an unprompted LLM, e.g., an LLM straight out of
pretraining or out of an alignment tuning procedure such
as RLHF. The task of aligning a pretrained LLM can be
now framed as increasing its expected behavior scores along
behavior verticals of interest.

Intuitively, as an LLM is prompted with a prefix text string
s∗, the behaviour of the conditional probability P (· | s∗)
might change in accordance with the in-context learning
phenomenon (Brown et al., 2020; Wies et al., 2023) in which
the LLM adapts its conditional probabilities to reflect its
current textual context. Thus, we will denote by BP (s

∗)
the behaviour of the language model when prompted with a
prompt text s∗:

BP(s
∗) := Es∼P(·|s∗)[B(s)] (2)

We will consider several scenarios for which the prefix s∗

plays different roles. The first and main one is that s∗ serves
as an adversarial input prompt. Our key finding in this
paper is that an LLM which was initially aligned w.r.t. a
certain behavior vertical, i.e., BP very close to 1, can still
be vulnerable to adversarial prompts, i.e., there exists a
prompt s∗ such that BP(s

∗) is very close to −1. Secondly,
we will consider a scenario in which s∗ is comprised of
an initial aligning prompt, denoted s0, concatenated by a
subsequent adversarial input prompt. Lastly, we will analyze
conversation scenarios in which s∗ is comprised of previous
turns of user queries and LLM responses.

2.1. LLMs as a Superposition of Behaviors

In this subsection, we present a key aspect of our BEB
framework: decomposing the unprompted LLM distribution
P into a mixture of distributions, each behaving differently.
Importantly, LLMs exhibit signs of capturing such decom-
positions in practice. For example, (Andreas, 2022) shows
empirical evidence that current LLMs can infer behaviours
from textual prompts, and that these behaviours affect the
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text that the LLM generates, and (Nardo, 2023) discuss
LLMs as a superposition of personas (i.e. a mixture of com-
ponents, each behaving differently). We will use mixture
decompositions inspired by such observations, and prove
that textual prompts can reweight the prior of the mixture
components. In appendix K, we experimentally demonstrate
that the embedding space of contemporary leading LLMs
(LLaMA family (Meta, 2023)) is clustered according to
positive and negative inputs w.r.t. behaviors of interest (as-
sembled by (Perez et al., 2022)), and empirically show that
this clustering approximately corresponds to our analyzed
mixture decomposition model, presented hereinafter.

Notice that an unprompted language model, P, is a func-
tion that assigns probability to strings of text, according
to the statistics of the text it trains on. Therefore, it can
be written as some mixture of components P =

∑
i wiPi

by introducing latent variables, for example, the sources of
the training data, and each component will be the natural
language distribution induced by the specific text source.
As different sources may exhibit different behaviors (toxic,
polite, etc.), the induced components may exhibit them as
well. We can then partition the components into two disjoint
sets, sum over each, and obtain a two component mixture
P = (

∑
i∈A wiPi) + (

∑
j∈B wjPj) = αP1 + (1 − α)P2.

For example, A can be a set of ill-behaved components and
B a set of well-behaved components w.r.t. a given behavior.
In appendix A.1, we show this summation method indeed
leads to a mixture of two distributions, one more ill-behaved
and one more well-behaved.

Note that α, 1 − α are fixed weights of the components
P1,P2 in the unprompted model’s distribution, meaning the
initial weights given to each component before a prompt is
inserted. However, in the prompted model, the weights of
the components will change, as when inserting a prompt, we
will use the conditional probability distribution of the model,
in which the components’ priors are reweighted, possibly a
lot, depending on the prompt (see appendix A.1 for details).

Observe that for any decomposition of a distribution P into
two components, P = αP0 + (1− α)P1, the relation BP =
αBP0+(1−α)BP1 holds from linearity of expectations, and
implies that one component is more well-behaved w.r.t. B
than the full distribution and the other more ill-behaved, i.e.:
BP1

≤ BP ≤ BP0
(or vice versa). Thus, focusing on a

specific behavior, we adopt the notation:

P = αP− + (1− α)P+ (3)

We refer to the above as the two component mixture, where
P+ is the well-behaved component and P− is the ill-behaved
component.

While this observation is true for any decomposition into
two distributions, we will give results for decompositions
in which the two distributions P− and P+ are sufficiently

distinct (formally defined in section 2.2), and the negative
component is strictly ill-behaved (i.e, BP− ≤ γ < 0). In
these cases, the magnitude of α, the prior of the ill-behaved
component, will determine the alignment of the LLM: an
LLM with a small prior α will be less likely to produce
undesired sentences along behavior B vertical. Our main
result in section 3 states that no matter how small α is (how
aligned the model is to begin with), if it is positive then there
exists a prompt that can misalign the LLM to behave like
P−. For an extended discussion on the mixture assumption
and its implications, see appendix A.1.

2.2. Definitions for Bounding the Expected LLM
Behavior

In this subsection, we lay out formal definitions of our
BEB framework. Specifically, we define: behavior mis-
alignment using prompts (definition 2.1); distinguishability
between unprompted (prompted) model distributions (def-
inition 2.2 (2.3)) and similarity between two distributions
(definition 2.4) that fit a prompting scenario; distinguishibil-
ity between ill- and well-behaved components comprising
a certain LLM’s distribution (definition 2.5), called α, β, γ-
distinguishability. Ultimately, α is the prior of the negative
component, β is the distinguishability (according to def-
inition 2.2) between the ill-behaved component and the
well behaved component, and γ is the negativity of the
ill-behaved component, measured in terms of behavior ex-
pectation (equation 2).

Once an LLM has finished training, its behavior can only
be affected via prompting. Using the above notation for
behavior expectation (equations 1 and 2), the following
defines when an LLM is prompt-misalignable:

Definition 2.1. Let γ ∈ [−1, 0), we say that an LLM with
distribution P is γ-prompt-misalignable w.r.t. behaviour B,
if for any ϵ > 0 there exists a textual prompt s∗ ∈ Σ∗ such
that BP (s

∗) < γ + ϵ.

Note that while the above definition is based on existence
of a specific prompt that misaligns a model, our theoretical
results in 3 are proved by construction of this prompt by an
empirically practical method, and this construction method
is used in 4.2 to create misaligning prompts that work on
real LLMs. We also extend our results beyond existence
of misaligning prompts to probability mass of misaligning
promtpts in appendix B.

Decomposing a language model into parts that are well-
behaved and ill-behaved exposes components which are
more desirable to enhance. The following notion of distin-
guishability will allow us to guarantee that one component
can be enhanced over the other 2.

2Note that the β-distinguishability definition can be relaxed to
a KL distance that decays as a power law to zero with increasing
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Definition 2.2. We say that a distribution Pϕ is β-
distinguishable from distribution Pψ if for any n ≥ 0:

Es=s1⊕···⊕sn∼Pϕ(·) [DKL (Pϕ (·|s) || Pψ (·|s))]

(4)

:= Es⊕sn+1=s1⊕···⊕sn⊕sn+1∼Pϕ(·)

[
log

Pϕ (sn+1|s)
Pψ (sn+1|s)

]
> β

(5)

Similarly, we say β-undistinguishable if the above is smaller
than β.

Where n is the number of sentences sampled from the dis-
tribution3. The above definition is used for proving our
main result theorem 3.1. For more advanced cases in theo-
rems 3.2 and 3.3, of misaligning a prompt protected model
or via a multiple turn conversation, we will require a stronger
condition, that both distributions are distinguishable when
prompted with a prefix s0, that can contain any textual se-
quence followed by some sentence of negative behavior.
This is to capture the notion that the positive and negative
components are mainly different w.r.t a specific behavior in
question. Hence the negative sentence induces the distin-
guishability.

Definition 2.3. We say that a distribution Pϕ is β-prompt-
distinguishable (β-prompt-undistinguishable) from Pψ if
for any prefix s0 = s10 ⊕ ... ⊕ sn0 of n sentence, ending
with a negatively behaving sentence sn0 , i.e., B(sn0 ) <
0, the prompted models Pϕ(·|s0) and Pψ(·|s0) are β-
distinguishable (β-undistinguishable).

For a discussion on distinguishability, its necessity, limi-
tations and examples, see A.2. The following bounds the
extent to which a new sentence can enhance one component
over the other:

Definition 2.4. We say that a distribution Pϕ is σ-similar
to distribution Pψ if there exists σ > 0 such that for any
sequence of sentences s0 and any n ≥ 0:

V ars1⊕...⊕sn∼Pϕ(·|s0)

[
log

Pϕ (s1 ⊕ ...⊕ sn|s0)
Pψ (s1 ⊕ ...⊕ sn|s0)

]
< nσ2

(6)

Intuitively, if both Pϕ and Pψ are natural language distribu-
tions, they cannot be too different in terms of the variance
in the ratio of their conditional likelihoods, and σ quanti-
fies this. Furthermore, when Pϕ and Pψ represent positive
and negative angles of a specific behaviour, it is likely that
they have some common properties so in these cases σ is

length of the prompt s0, as shown in appendix I
3The notation s1 ⊕ · · · ⊕ sn ∼ Pϕ (·|s0) indicates sampling n

consecutive sentences from the conditional probability distribution
Pϕ (·|s0) given the initial prefix s0.

likely even lower than the bound over all natural language
sentences. The linear dependence on length of sequence is
inspired by the case of sampling n independent sentences,
where variance between the log ratio of Pϕ and Pψ is σ2 for
each sentence.

β roughly serves as a lower bound on the KL-divergence in
the case of distinguishability (or upper bound in the case of
indistinguishability), and σ its variation and their ratio will
appear in several of our results in section 3. The following
defines β-distinguishability specifically between the ill- and
well-behaved components comprising the LLM distribution,
parameterized by α in equation 3, and adds a condition that
the behavior expectation of the ill-behaved component is
bad enough (i.e., under γ) for all initial prompts s∗:
Definition 2.5. Let γ ∈ [−1, 0), assume P = α ·
P− + (1− α) · P+ for α > 0. We say that behaviour
B : Σ∗ → [−1, 1] is α, β, γ-negatively-distinguishable
(α, β, γ-negatively-prompt-distinguishable) in distribu-
tion P, if sups∗{BP−(s

∗)} ≤ γ and P− is β-distinguishable
(β-prompt-distinguishable) from P+ (def. 2.2) ((def. 2.3)).

We will prove our theoretical results for LLM distribu-
tions that are distinguishable according to the above KL-
divergence based definitions. Our experiments in section 4
indicate that for the LLaMa LM family on behaviors such as
agreeableness and anti-immigration as presented in (Perez
et al., 2022), possible values for these parameters are: log 1

α
in the range of 18− 30, β is in the range of 5− 20 and σ

β in

the range of 0.35− 1. The ratio β′

β (upper bound over lower
bound of the KL between positive and negative components
in a misaligning scenario) is in the range of 2− 3.

Lastly, for analyzing conversations, we require the assump-
tion that the negative component is always more likely to
output an ill-behaved answer than the positive component,
to bound the change in log-likelihood between the two in
the exchange between the model’s turn and the user’s turn:
Definition 2.6. We say that Pψ is positive w.r.t Pϕ on be-
havior B : Σ∗ → [−1, 1] if for any prefix s0 and a sen-
tence s, that is negative, B(s) < 0, the following holds:
Pψ(s|s0) < Pϕ(s|s0).

3. Results: Limitations of LLM Alignment
In this section, we use the above framework of Behavior
Expectation Bounds (BEB) in order to inform the question
of when LLM alignment is robust or vulnerable to adver-
sarial prompting attacks. We begin with our main result in
section 3.1, which states that under assumptions of decom-
posability into distinguishable components of desired and
undesired behavior, aligned LLMs are not protected against
adversarial misaligning prompts (theorem 3.1). In section
3.2, we extend the above framework to include cases of (i)
preset aligning prompts—we formally establish the benefits
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of this common practice by showing that in this case the
length of the misaligning prompt must be linear in the length
of the preset aligning prompt; (ii) multi-turn interactions
between adversarial users and LLMs—we find that if the
user does not provide long enough misaligning prompts, the
LLM can resist misalignment by making aligning replies to
the user during a conversation; and (iii) best-of-n sampling—
we find that when sampling multiple responses from a model
and choosing the most aligned one, the length of the mis-
aligning prompt length increases logarithmically with the
number of samples.

3.1. Misaligning via Adversarial Prompts

Alignment impossibility We first show that if a model
can be written as a distinct mixture of ill- and well-behaved
components, then it can be misaligned via prompting:

Theorem 3.1. Let γ ∈ [−1, 0), let B be a behaviour and P
be an unprompted language model such that B is α, β, γ-
negatively-distinguishable in P (definition 2.5). Then P is
γ-prompt-misalignable w.r.t. B (definition 2.1) with prompt
length of 1

β (log
1
α + log 1

ϵ + log 4).

Intuitively, theorem 3.1 implies that if a component of the
distribution exhibits a negative behavior with expectation
under γ, then there exists a prompt that triggers this behavior
for the entire language model into behaving with expecta-
tion under γ. Importantly, no matter how low the prior of
the negative component α is, the LLM is vulnerable to ad-
versarial prompting that exposes this negative component’s
behavior. Furthermore, the guaranteed misaligning prompt
scales logarithmically in α−1, providing insight into why
even very low probability behaviors can be enhanced with
merely a few sentences. Additionally, we see that increased
distinguishability can reduce the misaligning prompt length,
meaning that while some behaviors may have lower proba-
bility (i.e. lower α), they may have higher distinguishability
β, thus overall requiring shorter misaligning prompts.

In appendix B we extend theorem 3.1 beyond existence of a
misaligning prompt, to a more generalized notion of prob-
ability mass of misaligning prompts, and prove that with
the sampling method we provide for them, they guarantee
misalignment with high probability.

Essentially, our proof follows the PAC based theoretical
framework for in-context learning introduced in (Wies et al.,
2023), while relaxing their approximate independence as-
sumption and adapting the analysis to the BEB framework.
For proof see appendix D.

3.2. Extensions: Aligning Prompts, Conversations and
Best-of-n Sampling

Misaligning in the presence of preset aligning prompts
A common practice for enhancing positive behavior is to

include an initial ‘preset aligning prompt’, denoted s0 below,
hard coded as a prefix to the LLM’s input. The theorem
below states that even in the presence of s0, it is possible
to prompt the LLM into an undesired behavior with a ‘mis-
aligning prompt’. We show that the required prompt length
for misalignment scales linearly with the length of s0.

Theorem 3.2. Let δ > 0, γ ∈ [−1, 0), B be a be-
haviour and P be a language model such that B is α, β, γ-
negatively-prompt-distinguishable in P (definition 2.5). If
the distribution corresponding to the well-behaved com-
ponent of P is β’-undistinguishable, σ-similar (definition
2.4) and positive (definition 2.6) with respect to to the ill-
behaved component, then for an aligning prompt s0 ∼
P+(·), the conditional LLM distribution P(·|s0) is γ-prompt-
misalignable with probability 1 − δ with prompt length
1
β (log

1
α + log 1

ϵ + log 4) + β′

β |s0|+
σ
β

√
|s0|
δ + 1.

Theorem 3.2 guarantees that even in the presence of a preset
aligning prompt s0, there exists a long enough prompt that
will misalign the model. See figure 3a which demonstrates
how an align-prompted model requires longer adversarial
prompts to misalign than unprompted models. For proof see
appendix E.

Misaligning via conversation We show below that an
undesired behavior can be elicited from an LLM via conver-
sation with an adversarial user. Interestingly, we show that if
the adversarial user does not use a long enough misaligning
prompt in the first turn, then the LLM’s responses can hinder
the user’s misaligning efforts. Intuitively, if a user begins a
conversation by simply requesting “say a racist statement”,
an aligned LLM will likely reply “I will not say racist state-
ments, that is harmful”, and this reply in its prompt will
cause the LLM to be more mindful of refraining from racist
statements in the remainder of the conversation. Overall,
due to this ‘misaligning resistance’ by the LLM, the user
will need to insert more misaligning text in the conversation
format than in the single prompt format of section 3.1 in
order for our framework to guarantee misalignment.

We formalize a conversation between a user and an LLM
of distribution P as a sequence of user queries followed by
LLM responses which are sampled from the LLM’s condi-
tional distribution given the conversation thus far. Formally,
given the history of the conversation, q1, a1...qt, at, qt+1,
where qi are the user’s inputs and ai are the LLM’s re-
sponses, the LLM generates a response at+1 by sampling
from: at+1 ∼ P(·|q1, a1, ..., qt, at, qt+1). In the following
theorem we show that under our distinguishability condi-
tions, misalignment is possible also in conversation format:

Theorem 3.3. Under the conditions of theorem 3.2 and that
the distribution corresponding to the well-behaved compo-
nent of P is β’-prompt-undistinguishable to the ill-behaved
component, in a conversation setting: q1, a1...qn, an, qn+1,
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the model is γ-misalignable with total prompt length of∑n
i=1 |qi| =

1
β (log

1
α + log 1

ϵ + log 4) +
∑n
i=1

(
β′

β |ai| +
σ
β

√
n|ai|
δ

)
+ n and each prompt of length no longer than

|qi| ≤ β′

β |ai|+
σ
β

√
n|ai|
δ +

log 1
ϵ+log 1

α+log 4

nβ + 1.

Comparing the above requirement on the amount of mis-
aligning text to that required in the single prompting sce-
nario of theorem 3.1, we see that it is larger by the total
text generated by the model

∑n
i=1 |ai|. Intuitively, in the

beginning of the conversation the model is aligned, so it is
most likely that its response will be sampled from the well-
behaved component, thus enhancing it over the ill-behaved
component (see the proof of theorem 3.3 in appendix F for
formalization of this intuition).

Best-of-n sampling An additional aligning method that
can be applied is to sample n conditional responses of a
model to a prompt, then use a reward function to choose the
most aligned one w.r.t. a desired behavior. In the following
theorem, we show that while this method requires a longer
misaligning prompt, alignment is not guaranteed:
Theorem 3.4. Under the conditions of theorem 3.1, and
using best of n sampling, i.e. argmaxy1...yn∼P(·|x)[B(yi)],
P is γ-prompt-misalignable with prompt length 1

β (log
1
α +

log 1
ϵ + log 4 + log n).

The proof is provided in appendix G. We note with regard to
other sampling methods that do not use a selective behavior
based reward function, such as greedy decoding and nucleus
sampling, that the misaligning prompts constructed by theo-
rem 3.1, lead to misalignment as a result of the convergence
of the entire model to the negative behavior component.

4. Empirical Results
In this section we demonstrate that several properties that
are predicted by our theoretical framework manifest in ex-
periments with common LLMs. Our empirical results are
divided into two parts. First, we probe the range of realistic
values for β (lower KL bound), β′ (upper KL bound) and σ
(log likelihood variance), by using real LLMs that display
opposite behaviors (figure 2). Next, we employ the method
used in our theoretical proofs for constructing an adversarial
prompt in order to show that a real RLHF finetuned LLM
distribution converges to a negative behavior distribution at a
rate which corresponds to our theory (figure 3a) and that the
behavior expectation of the RLHF finetuned LLM becomes
negative with said adversarial prompt (figure 3b). We used
models from the LLaMA 2 family (Touvron et al., 2023). To
obtain textual data that displays defined behaviors, we used
the datasets of (Perez et al., 2022) which contain statements
classified to specific behaviors. In this section we demon-
strate our results for the behavior “agreeableness”, in the

appendix section L, we show also for “anti-immigration”.

Note that our experiments do not use true subcomponents
of LLMs, as there is no natural way to extract them out of a
general distribution, instead we use proxies by LoRA fine-
tuning models on specific behaviors. Even so, the results
obtained from the experiments display dynamics of mis-
alignment that are consistent with our theory. Additionally,
if we assume the model trained on data that is similar to the
data we finetuned on, then the proxy should resemble the
true component, since as explained in 2.1 the components
of the mixture can be thought of as being distributions over
different parts of the training data.

Our code is available at:

https://github.com/yowolf/
Limitations-of-Alignment-in-LLMs

4.1. Possible Values for β, β′ and σ

In our theoretical bounds, β, β′ and σ (defined in section 2)
play a central role: their absolute values, as well as their ra-
tio, dictate the length of our guaranteed misaligning prompts
in the various analyzed scenarios. Here we attempt to probe
the possible values of β, β′ and σ for two LLM-based dis-
tributions that display the negative and positive facets of
the same behavior vertical, in an attempt to gain insight on
realistic values of β, β′ and σ within our framework.

To this end, we calculate the KL-divergence and correspond-
ing variance between two LLMs based on Llama-2 13B
chat, where one was tuned on the data of (Perez et al., 2022)
to display negative behavior (see technical training details
in appendix L) and the other was taken as is, since it already
displayed the positive behavior. We denote these as P− and
P+ but note that they are an approximation of a possible
LLM decomposition as explained above. The results are
displayed in figure 2 for the behavior “agreeableness” (as
defined in (Perez et al., 2022)). From the lower and up-
per bounds for the KL divergence, we estimate β and β′

and from the linear upper bound for the corresponding vari-
ance, σ2. In this case, β = 20, β′ = 30, σ2 = 50, hence
σ
β = 0.35, β

′

β = 1.5. For numbers of this order, the ratio of
σ/β is not too big compared to β′/β, hence for δ of around
0.1, the terms in the upper bounds of theorems 3.2 and 3.3
that are linear in text length dominate the square root terms.

For β-prompt-distinguishability, we ran a similar experi-
ment in appendix N, by first inserting to both models a
neutral prefix followed by a negative behavior sentence,
then performing the above experiment. We observed that
the approximated value of β remains similar (β ≈ 20).
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Figure 2. (a) KL between two distributions of opposite behaviors
as function of prompt length sampled from P−, averaged on 10
sampled sequences. The red line is a lower bound for the KL
divergence, hence a possible value of β. For these two distributions,
we see β ≈ 20. (b) Corresponding log ratio variance between the
distributions mentioned in (a). 30 samples from P− were used to
evaluate the variance and its error. The red line is a linear curve
upper bounding the variance, hence its tangent is a possible value
for σ2. As seen, for σ2 ≈ 50 definition 2.4 is satisfied.

4.2. Demonstration of Misalignment via Convergence of
LLM to P− and via Behavior Expectation

According to our theory, misalignment happens when the
LLM distribution converges to its negative component P− as
both are conditioned on longer and longer prompts sampled
from P−. Consequently, the KL-divergence between P−
and the LLM also decays and is bounded by the following
(see appendix H for proof of this dependence):

DKL(P−(·|s)||PLLM (·|s)) < log(1 + elog
1
α−β|s|) (7)

Hence for short prompts it is bounded by log 1
α − β|s| and

after reaching a length |s| = log 1
α

β , it quickly decays to zero.
From this we see that the KL-divergence should converge
to zero and that to a limited extent, we can use its value at
|s| = 0 and tangent to find possible values for log 1

α and β.

Our objective here is to show that when prompted with
our generated prompts, an actual LLM will converge to a
negative behavior distribution in a similar manner to our
theoretical prediction. As before, we substitute the negative
component P− with an LLM distribution that displays nega-
tive behavior, “P−”. Figure 3a demonstrates that an RLHF
fine-tuned LLM distribution converges to “P−” as both are
conditioned on prompts sampled from the ill-behaved LLM
(see appendix L for experimental details). We fit a linear
curve to approximate an effective log 1

α − β|s|, but note
that the extracted values of α and β are an approximation,
as the negative behavior LLM denoted by P− is not the
true sub-component of the RLHF fine-tuned LLM and that
equation 7 is an upper bound which is not necessarily tight.
Still, we find that the ratio 1

β log 1
α = 3. We show below

that this is similar to the actual misaligning length.

Figure 3. (a) KL-divergence between P− and an RLHF model
(Llama 2 13B chat) as function of prompt length sampled from P−,
averaged on 10 sampled sequences. For the first three sentences,
we can fit a curve to approximate log 1

α
− β|s|. (b) Demonstration

of misaligning Llama 2 13B chat via our method of sampling
sequences of negative behavior from P−. As can be seen, the
LLM distribution samples two types of behavior, one of negative
behavior and one that tries to avoid it.

Next, we show misalignment in terms of behavior expecta-
tion. As shown in figure 3b, using our method of sampling
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a misaligning prompt from P−, an RLHF fine-tuned model
loses its alignment as it is fed longer prompts from P−. This
fits our theoretical prediction (proven in appendix H) that
with our misaligning prompt, s, the corresponding behavior
expectation decays as a reverse sigmoid in |s|, centered at
|s| = log 1

α

β :

BP(s) <
1

1 + eβ|s|−log
1
α

(8)

Additionally, inserting an aligning prompt stalls misalign-
ment by about one sentence, similarly to how the misalign-
ing prompt length guarantee increases in theorem 3.2. Fur-
thermore, in appendix M, we perform the same experiment
for the unaligned pretrained model and find that it too mis-
aligns with this method. This shows that the misaligning
prompts from our theory are computationally tractable de-
spite their specificity, due to the theoretical method of their
construction. We also see that using an approximation for
P− and not the true subcomponent achieves misalignment
with dynamics that are similar to our theory.

Pretrained models vs RLHF models In appendix M we
performed the same experiment for a pretrained model, that
has not undergone an alignment procedure, and found that
the approximated value for β is 5 times smaller than that
of the RLHF model on both behaviors ”agreeableness” and
”anti-immigration”, hinting that perhaps RLHF reduces the
probability for negative behavior (i.e. α) but increases its
distinguishability β at the same time.

5. Discussion
The need for robust methods for AI alignment is pressing.
Prominent actors in our field are advocating for halting
LLM development until the means of controlling this tech-
nology are better understood (O’Brien, 2023). This paper
brings forward the Behavior Expectation Bounds (BEB) the-
oretical framework, which is aimed at providing means for
discussing core alignment issues in leading contemporary
interactions between humans and LLMs.

We used the BEB framework to make several fundamental
assertions regarding alignment in LLMs. First, we showed
that any realistic alignment process on frozen LLMs can be
reversed via an adversarial prompt or conversation with an
adversarial user. As a silver lining, we showed that the better
aligned the model is to begin with, the longer the prompt
required to reverse the alignment, so limited prompt lengths
may serve as guardrails in theory. With that, we also show
that this picture is more complex, and the distinguishabil-
ity of undesired behavior components also facilitates easier
misalignment. Thus, while attenuating undesired behaviors,
the leading alignment practice of reinforcement learning
from human feedback (RLHF) may also render these same
undesired behaviors more easily accessible via adversarial

prompts. We leave the latter statement as an open conjecture;
this theoretical direction may explain the result in (Perez
et al., 2022), in which RLHF increases undesired behaviors
in language models. These results highlight the importance
of using alignment methods that control the model at infer-
ence time, such as representation engineering (Zou et al.,
2023; Turner et al., 2023).

Our framework has several limitations further discussed
in appendix A and we leave several issues open for future
work. (Andreas, 2022) describe modern LLMs as com-
prised of distinct agents that manifest when the right prompt
is inserted into the LLM. Our presented notions of decom-
posability into components and distinguishability between
them are one analyzable choice of modeling multiple agents
or personas composing the LLM distribution. We showed
that with this choice several theoretical statements can be
made that fit empirical observations on misalignment via
prompting. While intuitive and reinforced by embedding
space clustering experiments in the appendix, we leave it
to future work to (i) further investigate superposition and
decomposability in actual LLM distributions and (ii) intro-
duce more elaborate or more realistic assumptions on the
manner in which agent or persona decomposition is man-
ifested in actual LLM distributions, and use them to gain
further theoretical insight on LLM alignment. Elucidating
this picture also bears promise for new empirical methods
for controlling ill-behaved components with actual LLMs.
Furthermore, our framework assumes ground truth behavior
scores per sentence, where in reality behavior scoring is
more complex, e.g., over varying text granularities, hard to
define behavior verticals, and ambiguous scoring. A deeper
definition of behavior scoring may lead to new insights that
can be drawn from the BEB theoretical framework.
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A. Discussion of limitations
Our framework makes several underlying assumptions. Here we discuss their necessity and limitations as well as provide
intuition.

A.1. Two components mixture

As explained in section 2.1, an unprompted LLM is a function that assigns probability to text based on the statistics of its
training data, thus it can always be written as a sum of components by introducing latent variables, such as the sources of
the training data Pi =

∑
i wiPi and that different sources of text display different behavior. Next, we note that a general

multiple component mixture can be partitioned to yield a two-component mixture:

P =
∑

i∈A∪B
wiPi =

∑
i∈A

wiPi +
∑
i∈B

wiPi =
(∑
i∈A

wi
)∑
i∈A

wi∑
i∈A wi

Pi +
(∑
i∈B

wi
)∑
i∈B

wi∑
i∈B wi

Pi (9)

Where A and B are disjoint sets of indices. By denoting
∑
i∈A wi := α we see that

∑
i∈B wi = 1−

∑
i∈A wi = 1− α.

Then we see that
∑
i∈A

wi∑
i∈A wi

Pi := P− and
∑
i∈B

wi∑
i∈B wi

Pi := P+ are indeed normalized distributions, leading to
P = αP− + (1− α)P+.

Second, note that the assumption of the two component mixture is on the accumulating sequence probability: P(s1 ⊕ ...⊕
sn) = αP−(s1 ⊕ ...⊕ sn) + (1− α)P+(s1 ⊕ ...⊕ sn) and not the conditional response to the prompt, which is:

P(sn|s1⊕...⊕sn−1) =
1

1 + 1−α
α

P+(s1⊕...⊕sn−1)
P−(s1⊕...⊕sn−1)

P−(sn|s1⊕...⊕sn−1)+
1

1 + α
1−α

P−(s1⊕...⊕sn−1)
P+(s1⊕...⊕sn−1)

P+(sn|s1⊕...⊕sn−1)

(10)
As can be seen, the zero-shot priors are α and 1− α, but the priors of the conditional negative and positive components are
highly dependent on the context, they contain the ratio of the probabilities of the prompt by the components P−(s1 ⊕ ...⊕
sn−1), P+(s1 ⊕ ...⊕ sn−1), thus a prompt that is much more probable in the negative component will give a high weight to
the conditional negative component. An adversarial prompt will have a large ratio P−(prompt)/P+(prompt), so it will
significantly enhance the prior of the conditional P−. The importance of using the mixture model is that it captures the
concept of prompts that are out of distribution of the positive component and in the distribution of the negative component
to refactor the coefficients of the effective mixture model.

The intuition of using a mixture for the accumulating sequence probability is a mixture of text generating processes, where a
sub-component Pi may be enhanced due to the sequence being highly probable in its distribution and out of distribution of
the other components. This creates a strong dependence of the prompted model on the context, as observed in language
models. The prior α is the zero-shot probability which is set and determines the initial weight of a sequence according to
each text generating process.

A.2. β-distinguishability

As seen in the above discussion of components, the reweighting of the conditional negative component prior is based on
inserting prompts that are not likely to be outputted by the positive component and likely by the negative component. To
build such prompts, we need the distributions to maintain a ”finite distance” from each other which allows to sample prompts
from P− that enhance the ratio P−(prompt)/P+(prompt). Feeding it to the model enhances the prior of the conditional
P− as seen in equation 10. The finite β is what creates the logarithmic scaling of the misaligning prompt on the prior α,
since each sentence reweights the negative prior by a factor eβ w.r.t the positive prior. If β is not finite but decaying, then we
may get other dependences, as discussed in I

Section 4.1 shows an example of two distributions that are β-distinguishable - two LLMs of opposing behaviors maintain a
finite conditional KL-divergence when sampling zero-shot prompts from the negative component. Section 4.2 shows an
example of two distributions that are not β-distinguishable, as the conditional KL between the two distributions decays the
longer the prompt sampled from the negative component, which results in the misalignment of the LLM.

A.3. Limitation of results

Sentence-wise approach Our results provide guarantees for misalignment of LLMs in the sense of the next sentence
produced by the model being misaligned. For more nuanced types of misalignment, such as long model outputs, one would
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need a behavior scoring function over the entire output and not just the first sentence. It is possible to generalize this work to
such definitions of misalignment by changing the unit block of text from sentence to paragraphs, though the numerical value
for the coefficients α, β will change. For the purposes of demonstrating the possibility of misaligning models, we kept the
sentence approach which is more comprehendible and not application specific.

Computational tractability Our theorems prove their existence by construction via sampling prompts from a negative
behavior subcomponent of the model. However, in real applications, the subcomponent is not accessible to us. Even so,
one can see from equation 10 that the mechanism of the reweight of the negative behavior component prior is to insert a
prompt that satisfies P−(prompt)/P+(prompt) ≫ 1−α

α . Our theoretical work shows that P−(prompt)/P+(prompt) >

eβ|prompt| when the prompt is sampled from P−, leading to our misalignment length guarantee. But, for practical
applications, we see (as demonstrated in subsection 4.2) that using a proxy for P− such as the LoRA finetuned LLM on
negative behavior, is able to misalign in the exponential rate of our theory.

Efficiency The prompt lengths provided are upper bounds, meaning there could be shorter misaligning prompts in practice.
Even so, section 4.2 shows that both the theoretical value of the misaligning prompt length and the practical misaligning
prompt length are relatively short (few sentences), making the bound practical.

B. Generalized misalignment
Theorem 3.1 can be extended beyond existence of a misaligning prompt to a probability of sampling a misaligning prompt:
Theorem B.1. Let δ, ϵ > 0, under the conditions of theorem 3.1 and that the negative component is σ-similar to the positive
component, when sampling a prompt of length:

|s| > max

{
2

β

(
log

1

α
+ log

1

ϵ
+ log(4)

)
,
4σ2

β2δ

}
(11)

from P−, the behavior expectation of the model is bounded by BP(s) < γ + ϵ with probability 1− δ.

This result shows that not only a misaligning prompt exists, but that most prompts sampled from P− are misaligning if they
are long enough. This can be seen in experimental section 4.2, where we sample prompts from a negative behavior LLM
and observe that on average they misalign the model.

Proof. Following the proof of the main theorems, from equation 52:

Es∼P−(·)

[
log

P−(s)

P+(s)

]
> β|s| = βn (12)

And σ-similarity:

V ars∼P−(·)

[
log

P−(s)

P+(s)

]
< σ|s| = σn (13)

We can use Cantelli’s inequality to obtain:

P
[
log

P−(s)

P+(s)
< (β − σ√

|s|δ
)|s|
]
< δ (14)

Demand:

log
P−(s)

P+(s)
> log

1

ϵ
(15)

This happens with probability 1− δ for:

log
P−(s)

P+(s)
≥ (β − σ√

|s|δ
)|s| ≥ β

2
|s| > log

1

ϵ
(16)

Where the transition before the last happens for σ√
|s|δ

< β
2 ↔ |s| > 4σ2

β2δ Plugging this into the proof of theorem 3.1 gives

that BP(s) < γ + ϵ for:

|s| > max

{
2

β
(log

1

α
+ log

1

ϵ
+ log(4)),

4σ2

β2δ

}
(17)
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C. Proofs building blocks
In this section, we prove three technical lemmas which are the building blocks for proving our results. In subsection C.1
we prove that prompts can reweight the initial prior distribution of mixture components. In subsection C.2 we show that
such reweighting alters the behaviour of the mixture distribution. And finally, in subsection C.3 we shows that under our
α, β, γ-negative-distinguishability assumption, such prompts always exists.

C.1. Convergence to a single component

In this subsection, we prove a technical lemma which shows that when the likelihood of a prompt s0 is relatively high
according to a mixture component, then the conditional mixture distribution converges to the conditional distribution of that
single component. Essentially, this lemma strengthening the analysis in theorem 1 of (Wies et al., 2023), and formulate
the role of prompts as reweighting of the prior distribution. In the next subsection, we will show that indeed our notion of
convergence implies also the convergence of behaviors.
Lemma C.1. Let P be a mixture distribution that can be written as αP0 + (1− α)P1. Then for any initial prompt s0 and
any string s such that P0(s|s0) > 0 the following holds:∣∣∣∣ P (s | s0)

P0 (s | s0)
− 1

∣∣∣∣ ≤ 1− α

α
· P1 (s0)

P0 (s0)
·max

{
P1 (s | s0)
P0 (s | s0)

, 1

}
(18)

Intuitively, when P(s0 ⊕ s) is equals to P0(s0 ⊕ s) theirs ratio is one, and we bound the deviation from these case. Note that
our bound implicitly implies the following additive notion of convergence:

|P(s0 ⊕ s)− P0(s0 ⊕ s)| ≤ 1− α

α
· P1 (s0)

P0 (s0)
(19)

Proof. We begin by explicitly writing the conditional likelihood of s given s0:

P (s | s0) =
P (s0 ⊕ s)

P (s0)
=

αP0 (s0 ⊕ s) + (1− α)P1 (s0 ⊕ s)

αP0 (s0) + (1− α)P1 (s0)
(20)

Now since both (1− α) and P1(s0 ⊕ s) are greater than zero, we can bound P (s | s0) from below by removing these terms
from the numerator and get that:

P (s | s0) ≥
αP0 (s0 ⊕ s)

αP0 (s0) + (1− α)P1 (s0)
(21)

Which after division of both the numerator and the denominator by α · P0 (s0 ⊕ s) is equals to:

P0 (s | s0) ·
(
1 +

1− α

α
· P1 (s0)

P0 (s0)

)−1

(22)

Now, since 1
1+x ≥ 1− x for any x ≥ 0, we gets that P (s | s0) is greater than:

P0 (s | s0) ·
(
1− 1− α

α
· P1 (s0)

P0 (s0)

)
(23)

Finally, we divide the inequality by P0(s|s0) and subtracts 1 to get one side of equation’s 18 inequality:

P (s | s0)
P0 (s | s0)

− 1 ≥ −1− α

α
· P1 (s0)

P0 (s0)
(24)

Moving to the other side of the inequality, since both (1− α) and P1 (s0 ⊕ s) are greater than zero, we can bound P (s | s0)
from above by removing these terms from the denominator and get that :

P (s | s0) =
αP0 (s0 ⊕ s) + (1− α)P1 (s0 ⊕ s)

αP0 (s0) + (1− α)P1 (s0)
≤ αP0 (s0 ⊕ s) + (1− α)P1 (s0 ⊕ s)

αP0 (s0)
(25)
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Which after division of both the numerator and the denominator by α · P0 (s0) is equals to:

αP0 (s0 ⊕ s)

αP0 (s0)
+

(1− α)P1 (s0 ⊕ s)

αP0 (s0)
= P0 (s | s0) +

(1− α)P1 (s0 ⊕ s)

αP0 (s0)
(26)

Now, we can use the fact that P1 (s0 ⊕ s1) = P1 (s0) · P1 (s | s0) to get that P (s | s0) is at most:

P0 (s | s0) +
(1− α)P1 (s0)P1 (s | s0)

αP0 (s0)
(27)

Which after division by P0(s|s0) and subtraction of 1 yield the other side of equation’s 18 inequality:

P (s | s0)
P0(s|s0)

− 1 ≤ P1(s0)

P0(s0)

(1− α)P1(s|s0)
αP0(s|s0)

(28)

Finally, combining both inequalities yields equation 18.

C.2. Behavioral implication of the convergence to a single component

In this subsection, we prove a technical lemma which shows that when the likelihood of a prompt s0 is relatively high
according to a mixture component, then the conditional mixture distribution converge to the conditional distribution of that
single component. In the next sections, we will use this lemma to prove the theorems from the main text.
Lemma C.2. Let B be a behaviour, then under the conditions of lemma C.1 the following holds:

|BP (s0)−BP0
(s0)| ≤ 2 · 1− α

α
· P1 (s0)

P0 (s0)
(29)

Proof. To begin, we explicitly write the expectations difference:

|BP(s0)−BP0
(s0)| =

∣∣∣∣∣∑
s

B (s) · [P (s | s0)− P0 (s | s0)]

∣∣∣∣∣ (30)

Which by the triangular inequality is at most:

≤
∑
s

|B (s)| · |P (s | s0)− P0 (s | s0)| (31)

Now, since the range of B is [−1, 1] we can get rid of the |B (s)| terms, and get that |BP(s0)−BP0(s0)| is at most:∑
s

|P (s | s0)− P0 (s | s0)| =
∑
s

P0 (s | s0) ·
∣∣∣∣ P (s | s0)
P0 (s | s0)

− 1

∣∣∣∣ (32)

Importantly, by lemma C.1 we have that:∣∣∣∣ P (s | s0)
P0 (s | s0)

− 1

∣∣∣∣ ≤ 1− α

α
· P1 (s0)

P0 (s0)
·max

{
P1 (s | s0)
P0 (s | s0)

, 1

}
(33)

For any s, hence we got that |BP(s0)−BP0
(s0)| is at most:

1− α

α
· P1 (s0)

P0 (s0)
·

[∑
s

P0 (s | s0) ·max

{
P1 (s | s0)
P0 (s | s0)

, 1

}]
(34)

≤ 1− α

α
· P1 (s0)

P0 (s0)
·
∑
s

(P1 (s | s0) + P0 (s | s0)) (35)

where the last inequality follows from the fact that sum of two non-negative terms is greater than the maximum of the terms.
Finally, since both P0 (s | s0) and P1 (s | s0) are probability distributions, summing over all possible sentences s yields 2,
and hence the inequality in equation 29 follows.
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C.3. Adversarial prompt construction

In this subsection, we prove a technical lemma which shows that when two distribution are sufficiently distinguishable (see
definition 2 from the main text) ,then there exists a prompt such that the ratio of the prompt’s likelihood according to these
two distribution is arbitrary low. In the next sections we will use this lemma to prove the existence adversarial prompt for
which the conditions of lemma C.1 holds. And hence an adversarial user might alter the model behavior (lemma C.2).
Lemma C.3. Let β, ϵ > 0 and P0,P1 two distributions. Suppose P0 is β-distinguishable from P1 then there exists a prompt
s of length 1

β log 1
ϵ such that the following holds:

P1(s)

P0(s)
≤ ϵ (36)

Proof. Intuitively we use the fact that P0 is β-distinguishable from P1 to construct a prompt sentence by sentence, and get a
prompt q = s1 ⊕ ...⊕ s|q| such that:

log
P0 (s1 ⊕ ...⊕ sk | s0)
P1 (s1 ⊕ ...⊕ sk | s0)

> β · k (37)

For any k ≤ |q|.

Let us look at the expectation value of the log ratio with respect to a sequence s = (s1...sk) of k sentences sampled from
P−(·):

Es∼P−(·)

[
log

P−(s)

P+(s)

]
= E(s1⊕...⊕sk)∼P−(·)

[
log

P−(s1 ⊕ ...⊕ sk)

P+(s1 ⊕ ...⊕ sk)

]
= (38)

Using the law of conditional probabilities recursively and the linearity of the expectation value:

=

k∑
i=1

E(s1⊕...⊕sk)∼P−(·)

[
log

P−(si|s1 ⊕ ...⊕ si−1)

P+(si|s1 ⊕ ...⊕ si−1)

]
= (39)

=

k∑
i=1

E(s1⊕...⊕si)∼P−(·)

[
log

P−(si|s1 ⊕ ...⊕ si−1)

P+(si|s1 ⊕ ...⊕ si−1)

]
= (40)

The expectation value with respect to si is the conditional KL divergence:

=

k∑
i=1

E(s1⊕...⊕si−1)∼P−(·) [DKL (P− (·|s1 ⊕ ...⊕ si−1) ||P+ (·|s1 ⊕ ...⊕ si−1))] (41)

From β distinguishability:
> k · β (42)

Hence we obtain:

Es∼P−(·)

[
log

P−(s)

P+(s)

]
> β|s| (43)

In particular, there exists a specific sequence s such that the inequality holds. We take that to be the prompt q.

Now, we can choose |q| > log 1
ϵ

β to obtain the desired result that

P1(s)

P0(s)
≤ ϵ (44)

As desired.

Lemma C.4. Let β, σ, ϵ, δ > 0 and P0,P1 two distributions, s0 a prefix sampled from P1 . Suppose P0 is β-prompt-
distinguishable from P1, and P1 is β′-undistinguishable, σ-similar and positive w.r.t. P0, then with probability 1− δ, there

exists a prompt s of length 1
β log 1

ϵ +
β′

β |s0|+
σ
β

√
|s0|
δ + 1 such that the following holds:

P1(s0 ⊕ s)

P0(s0 ⊕ s)
≤ ϵ (45)
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Proof. Intuitively, given s0, we use the fact that P0 is β-prompt-distinguishable from P1 to construct a prompt sentence by
sentence, and get a prompt q = s1 ⊕ ...⊕ s|q| such that:

log
P0 (s1 ⊕ ...⊕ sk | s0)
P1 (s1 ⊕ ...⊕ sk | s0)

> β · k (46)

For any k ≤ |q|.

To induce the β-prompt-distinguishability, we start by adding a sentence s′ of negative behavior to the prefix s0.

Let us look at the expectation value of the log ratio with respect to a sequence s = (s1...sk) of k sentences sampled from
P−(·|s0 ⊕ s′):

Es∼P−(·|s0⊕s′)

[
log

P−(s|s0 ⊕ s′)

P+(s|s0 ⊕ s′)

]
= E(s1⊕...⊕sk)∼P−(·|s0⊕s′)

[
log

P−(s1 ⊕ ...⊕ sk|s0 ⊕ s′)

P+(s1 ⊕ ...⊕ sk|s0 ⊕ s′)

]
= (47)

Using the law of conditional probabilities recursively and the linearity of the expectation value:

=

k∑
i=1

E(s1⊕...⊕sk)∼P−(·|s0⊕s′)

[
log

P−(si|s0 ⊕ s′ ⊕ s1 ⊕ ...⊕ si−1)

P+(si|s0 ⊕ s′ ⊕ s1 ⊕ ...⊕ si−1)

]
= (48)

=

k∑
i=1

E(s1⊕...⊕si)∼P−(·|s0⊕s′)

[
log

P−(si|s0 ⊕ s′ ⊕ s1 ⊕ ...⊕ si−1)

P+(si|s0 ⊕ s′ ⊕ s1 ⊕ ...⊕ si−1)

]
= (49)

The expectation value with respect to si is the conditional KL divergence:

=

k∑
i=1

E(s1⊕...⊕si−1)∼P−(·|s0⊕s′) [DKL (P− (·|s0 ⊕ s′ ⊕ s1 ⊕ ...⊕ si−1) ||P+ (·|s0 ⊕ s′ ⊕ s1 ⊕ ...⊕ si−1))] (50)

From β-prompt-distinguishability:
> k · β (51)

Hence we obtain:

Es∼P−(·|s0⊕s′)

[
log

P−(s|s0 ⊕ s′)

P+(s|s0 ⊕ s′)

]
> β|s| (52)

In particular, there exists a specific sequence s such that the inequality holds. We take that to be the prompt q.

Next, observe that:

P
[
log

P+(s0)

P−(s0)
> c|s0|

]
= P

[
log

P+(s0)

P−(s0)
− β′|s0| > (c− β′)|s0|

]
(53)

From β′-undistinguishability we obtain equation 52 with opposite inequality sign and for reversing the roles between P0

and P1. This gives:

< P
[
log

P+(s0)

P−(s0)
− Es∼P+(·)[log

P+(s)

P−(s)
] > (c− β′)|s0|

]
< (54)

From Cantelli’s inequality:

<
V ars∼P+(·)[log

P+(s)
P−(s) ]

V ars∼P+(·)[log
P+(s)
P−(s) ] + (c− β′)2|s0|2

<
V ars∼P+(·)[log

P+(s)
P−(s) ]

(c− β′)2|s0|2
<

σ2|s0|
(c− β′)2|s0|2

(55)

The last transition is from σ-similarity. Demand that this is smaller than δ and obtain the condition on c:

c ≥ β′ +
σ√
|s0|δ

(56)

Thus if c = β′ + σ√
|s0|δ

, we obtain:

P
[
log

P+(s0)

P−(s0)
> (β′ +

σ√
|s0|δ

)|s0|
]
< δ (57)
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Hence with probability 1− δ:

log
P−(s0 ⊕ s′ ⊕ s)

P+(s0 ⊕ s′ ⊕ s)
= log

P−(s|s0 ⊕ s′)

P+(s|s0 ⊕ s′)
+ log

P−(s
′|s0)

P+(s′|s0)
+ log

P−(s0)

P+(s0)
> |s|β − |s0|β′ − σ

√
|s0|
δ

(58)

Where we used the positivity of P+ in the inequality log P−(s′|s0)
P+(s′|s0) > 0 as s′ is a negative sentence. Thus we can choose

|s| > β′·|s0|+σ
√

|s0|
δ +log 1

ϵ

β to obtain that P1(s0⊕s)
P0(s0⊕s) ≤ ϵ as desired. The total length of the prompt is |s′ ⊕ s| = 1 + |s|.

D. Proof of theorem 1
Let P+ and P− be the well-behaved and ill-behaved mixture components from the α, β, γ-negative-distinguishability
definition and ϵ > 0. Then, since P− is β-distinguishable from P+, lemma C.3 assures us that for any ϵ′ > 0 there exists
a sequence s of 1

β ·
(
log 1

ϵ′

)
sentences such that P+(s)

P−(s) < ϵ′. Now, lemma C.2 assures us that for such prompt a s, the
behaviour of P will converge to the ill-behaved component in the following sense:∣∣BP (s)−BP− (s)

∣∣ ≤ 2 · 1− α

α
· ϵ

′
(59)

Thus, we can choose ϵ′ < α·ϵ
4 and get that: ∣∣BP (s)−BP− (s)

∣∣ < ϵ (60)

Finally, by definition we have that BP− (s) ≤ γ and hence we get that

BP (s) < γ + ϵ (61)

As desired.

E. Proof of theorem 2
Let P+ and P− be the well-behaved and ill-behaved mixture components from the α, β, γ-negative-prompt-distinguishability
definition, and let s0 be an initial prompt and ϵ, δ > 0. Then since P− is β-prompt-distinguishable from P+, P+ is
β-distinguishable, σ-similar and positive w.r.t P−, lemma C.4 assures us that for any ϵ′ > 0 there exists with probability

1− δ a sequence s1 of 1
β ·
(
log 1

ϵ′ + σ
√

|s0|
δ

)
+ |s0|+ 1 sentences such that P+(s0⊕s1)

P−(s0⊕s1) < ϵ′. Now, lemma C.2 assures us

that for such prompt a s0 ⊕ s1, the behaviour of P will converge to the ill-behaved component in the following sense:∣∣BP (s0 ⊕ s1)−BP− (s0 ⊕ s1)
∣∣ ≤ 2 · 1− α

α
· ϵ

′
(62)

Thus, we can choose ϵ′ < α·ϵ
4 and get that:∣∣BP (s0 ⊕ s1)−BP− (s0 ⊕ s1)

∣∣ < ϵ (63)

Finally, by definition we have that BP− (s0 ⊕ s1) ≤ γ and hence we get that

BP (s0 ⊕ s1) < γ + ϵ (64)

With probability 1− δ, as desired.

F. Proof of theorem 3
Let P+ and P− be the well-behaved and ill-behaved mixture components from the α, β, γ-negative-prompt-distinguishability
definition. Essentially, we we show that there exists a choice of prompts q1...qn+1 each of them consists of at most
β′

β |ai|+
σ
β

√
|ai|
δ +

log 1
α+log 1

ϵ+log 4

nβ + 1 sentences such that:

log
P+ (q1 ⊕ a1 ⊕ ...⊕ qn ⊕ an ⊕ qn+1)

P− (q1 ⊕ a1 ⊕ ...⊕ qn ⊕ an ⊕ qn+1)
<

n+1∑
i=1

(
β′|ai|+ σ

√
|ai|
δ

− β |qi|

)
(65)
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Then, we will use lemma C.2 and get that for any such prompts q1...qn+1 the behaviour of P will converge to the ill-behaved
component in the following sense:

∣∣BP (s)−BP− (s)
∣∣ ≤ 2 · 1− α

α
· exp

(
n+1∑
i=1

(
β′|ai|+ σ

√
|ai|
δ

− β |qi|

))
(66)

Where s denote the concatenation of the messages in the conversation: q1 ⊕ a1 ⊕ ...⊕ qn ⊕ an ⊕ qn+1. Thus, we will get

that BP (s) < γ + ϵ for
∑n+1
i=1 |qi| >

∑n+1
i=1

(
β′

β |ai|+ σ
β

√
|ai|
δ + 1

)
+

log( 1−α
2·α·ϵ )
β as desired.

Intuitively, we will prove the existence of the prompts q1...qn+1 such that the length of any prompt is at most β
′

β |ai| +
σ
β

√
|ai|
δ +

log 1
α+log 1

ϵ+log 4

nβ + 1 and equation 65 upholds by using an induction argument, where the induction hypothesis
follows from the fact that P− is β-distinguishable from P+. Formally, the base case of the induction follows by using
lemma C.3 to construct an adversarial prompt q1 such that log P+(q1)

P−(q1)
< −β · |q1|. Now, assume that there exists prompts

q1...qk such that the length of any prompt is at most β
′

β |ai|+ σ
β

√
|ai|
δ +

log 1
α+log 1

ϵ+log 4

nβ +1 and equation 65 upholds (with
n = k − 1). Then the proof of lemma C.4 (equation 52) assures us that there exists an adversarial prompt qk+1 such that:

log
P+ (qk+1|q1 ⊕ a1 ⊕ · · · ⊕ qk ⊕ ak)

P− (qk+1|q1 ⊕ a1 ⊕ · · · ⊕ qk ⊕ ak)
< −β · |qk+1| (67)

Now, by the chain rule of conditional probabilities we have that:

log
P+ (q1 ⊕ a1 ⊕ · · · ⊕ qk ⊕ ak ⊕ qk+1)

P− (q1 ⊕ a1 ⊕ · · · ⊕ qk ⊕ ak ⊕ qk+1)
< −β · |qk+1|+ log

P+ (ak|q1 ⊕ a1 ⊕ · · · ⊕ ak−1 ⊕ qk)

P− (ak|q1 ⊕ a1 ⊕ · · · ⊕ ak−1 ⊕ qk)
(68)

Now, observe that:

P
[
log

P+ (ak|q1 ⊕ a1 ⊕ · · · ⊕ ak−1 ⊕ qk)

P− (ak|q1 ⊕ a1 ⊕ · · · ⊕ ak−1 ⊕ qk)
> c|ak|

]
= P

[
log

P+ (ak|q1 ⊕ a1 ⊕ · · · ⊕ ak−1 ⊕ qk)

P− (ak|q1 ⊕ a1 ⊕ · · · ⊕ ak−1 ⊕ qk)
−β′|ak| > (c−β′)|ak|

]
(69)

From β′-prompt-undistinguishability, since qk ends with a negative sentence, equation 52 gives:

< P
[
log

P+ (ak|q1 ⊕ a1 ⊕ · · · ⊕ qk)

P− (ak|q1 ⊕ a1 ⊕ · · · ⊕ qk)
− Es∼P+(·|q1⊕a1⊕···⊕qk)[log

P+ (s|q1 ⊕ a1 ⊕ · · · ⊕ qk)

P− (s|q1 ⊕ a1 ⊕ · · · ⊕ qk)
] > (c− β′)|ak|

]
< (70)

From Cantelli’s inequality:

<
V ars∼P+(s|q1⊕a1⊕···⊕qk)[log

P+(s|q1⊕a1⊕···⊕qk)
P−(s|q1⊕a1⊕···⊕qk) ]

V ars∼P+(·|q1⊕a1⊕···⊕qk)[log
P+(s|q1⊕a1⊕···⊕qk)
P−(s|q1⊕a1⊕···⊕qk) ] + (c− β′)2|ak|2

< (71)

<
V ars∼P+(s|q1⊕a1⊕···⊕qk)[log

P+(s|q1⊕a1⊕···⊕qk)
P−(s|q1⊕a1⊕···⊕qk) ]

(c− β′)2|ak|2
<

σ2|ak|
(c− β′)2|ak|2

(72)

The last transition is from σ-similarity. Demand that this is smaller than δ′ and obtain the condition on c:

c ≥ β′ +
σ√
|ak|δ′

(73)

Thus if c = β′ + σ√
|ak|δ′

, we obtain:

P
[
log

P+ (ak|q1 ⊕ a1 ⊕ · · · ⊕ ak−1 ⊕ qk)

P− (ak|q1 ⊕ a1 ⊕ · · · ⊕ ak−1 ⊕ qk)
> (β′ +

σ√
|ak|δ′

)|s0|
]
< δ′ (74)

Lastly, recall that for inducing the distinguishability from prompt qk+1, we need to add a triggering sentence before it, hence
the +1.
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Hence by plugging this into equation 68, then with probability 1− δ′:

log
P+ (q1 ⊕ a1 ⊕ · · · ⊕ qk ⊕ ak ⊕ qk+1)

P− (q1 ⊕ a1 ⊕ · · · ⊕ qk ⊕ ak ⊕ qk+1)
< −|qk+1|β + |ak|β′ + σ

√
|ak|
δ′

(75)

So we can use the induction hypothesis to upper bound the log P+(qk|q1⊕a1⊕···⊕qk−1⊕ak−1)
P−(qk|q1⊕a1⊕···⊕qk−1⊕ak−1)

term and get that:

log
P+ (q1 ⊕ a1 ⊕ · · · ⊕ qk ⊕ ak ⊕ qk+1)

P− (q1 ⊕ a1 ⊕ · · · ⊕ qk ⊕ ak ⊕ qk+1)
<

k+1∑
i=1

(
−|qi+1|β + |ai|β′ + σ

√
|ai|
δ′

)
(76)

As desired. The total probability of the existence of the prompts q1...qn+1 is (1− δ′)n. Hence it suffices to choose δ′ = δ
n

to ensure that they exist with probability 1− δ.

G. Proof of theorem 4
Here we will use modified versions of the proof’s building blocks. First, we observe that without best of n, the conditional
model distribution to a prompt s is:

P(s′|s) = 1

1 + 1−α
α

P+(s)
P−(s)

P−(s
′|s) + 1

1 + α
1−α

P−(s)
P+(s)

P+(s
′|s) (77)

Now, when sampling from this distribution, the probability of sampling a negative response is the probability to sample
from P−, which is equal to its prior:

P(sample negative response) =
1

1 + 1−α
α

P+(s)
P−(s)

(78)

Similarly the probability for sampling a positive response:

P(sample positive response) =
1

1 + α
1−α

P−(s)
P+(s)

(79)

When sampling n responses, if some of them are from P+, then they will be chosen by the reward function in best of
n, hence the behavior expectation is positive. Thus sampling a negative response can only happen if all n responses are
sampled from P−. The probability of this happening is:

Pbest of n(sample negative response) = P(sample negative response)n =
( 1

1 + 1−α
α

P+(s)
P−(s)

)n
(80)

Otherwise, a response is sampled from P+. Thus the conditional model response can be rewritten for best of n as:

Pbest of n(s
′|s) =

( 1

1 + 1−α
α

P+(s)
P−(s)

)nP−(s
′|s) +

(
1−

( 1

1 + 1−α
α

P+(s)
P−(s)

)n)
P+(s

′|s) (81)

Now, we calculate the behavior expectation difference between the best of n distribution and the negative distribution:

|BPbest of n(s)−BP−(s)| = |
∑
s′

B(s′)(Pbest of n(s
′|s)− P−(s

′|s))| ≤ (82)

Since B is bounded between [−1,+1]:

≤
∑
s′

|(Pbest of n(s
′|s)− P−(s

′|s))| (83)

Using our expression for the best of n distribution in terms of the components (equation 80):

=
∑
s′

∣∣∣∣(( 1

1 + 1−α
α

P+(s)
P−(s)

)nP−(s
′|s) +

(
1−

( 1

1 + 1−α
α

P+(s)
P−(s)

)n)
P+(s

′|s)− P−(s
′|s)
)∣∣∣∣ (84)
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=
∑
s′

∣∣∣∣((( 1

1 + 1−α
α

P+(s)
P−(s)

)n
− 1

)
P−(s

′|s) +
(
1−

( 1

1 + 1−α
α

P+(s)
P−(s)

)n)
P+(s

′|s)
)∣∣∣∣ (85)

=
∑
s′

∣∣∣∣(1− ( 1

1 + 1−α
α

P+(s)
P−(s)

)n)(
P+(s

′|s)− P−(s
′|s)
)∣∣∣∣ (86)

=

(
1−

( 1

1 + 1−α
α

P+(s)
P−(s)

)n)∑
s′

∣∣(P+(s
′|s)− P−(s

′|s)
)∣∣ (87)

The sum over differences of two distributions can be bounded by 2 with the triangle inequality, yielding:

≤ 2

(
1−

( 1

1 + 1−α
α

P+(s)
P−(s)

)n)
(88)

Now, using lemma C.3 we take s of length
log 1

ϵ′ +log 1
α+logn

β such that log P+(s)
P−(s) <

ϵ′α
n :

≤ 2

(
1−

( 1

1 + 1−α
α

ϵ′α
n

)n)
≤ 2

(
1−

( 1

1 + ϵ′

n

)n)
(89)

Using the inequality (1 + ϵ′

n )
n ≤ eϵ

′
:

≤ 2(1− e−ϵ
′
) < 2ϵ′ (90)

Taking ϵ′ = ϵ
4 we get the desired result.

Hence for |s| > log 1
ϵ+log 1

α+log 4+logn

β we obtain BPbest of n(s) < γ + ϵ as desired.

H. Lemmas for section 4
The following lemmas help establish a method to extract approximations α and β from the KL divergence between P− and
the LLM distribution:
Lemma H.1. Let PLLM be a language model distribution that is α, β, γ-distinguishable w.r.t a behavior B, then the
misaligning prompt s guaranteed from theorem 1 satisfies:

DKL(P−(·|s)||PLLM (·|s)) < log(1 + elog
1
α−β|s|) (91)

Moreover, the zero-shot KL divergence is an approximation for log 1
α :

Lemma H.2. Let PLLM = αP− + (1− α)P+, then if P− and P+ are disjoint distributions then:

DKL(P−(·)||PLLM (·)) = log
1

α
(92)

The disjoint condition is an approximation that any statement produced by P− is unlikely to be produced by P+, which
as seen in the previous subsection is true, since Es∼P−(·)[log

P−(s)
P+(s) ] > 20, making for an extremely low likelihood. For an

aligned model, log 1
α is big, thus for short |s|, the KL is approximately linear in |s| for the most tight value of β:

DKL(P−(·|s)||PLLM (·|s)) ≈ log
1

α
− β|s| (93)

From this we can see that the KL divergence at |s| = 0 allows to extract α and the curve β. On the other hand, for large
|s| it is approximately zero, DKL(P−(·|s)||PLLM (·|s)) ≈ log(1) = 0. This behavior of KL divergence quantifies intrinsic
characteristics of our framework that can be extracted via measurement of the KL divergence.

Finally, to quantify the change in behavior expectation, we provide the following:
Lemma H.3. Let PLLM be a language model distribution that is α,β,γ-distinguishable w.r.t.the behavior function B :
Σ∗ → {0, 1}, where for a negative statement B(s) = 0 and for a positive B(s) = 1, then:

BP(s) <
1

1 + α
1−αe

β|s| (94)
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H.1. Proof of Lemma 5

From equation 52:

Es∼P−(·)

[
log

P−(s)

P+(s)

]
> β|s| (95)

We see that there exists a prompt that satisfies:

log
P−(s)

P+(s)
> β|s| (96)

It is used to prove theorem 3.1. Notice that:

P(s′|s) = P(s⊕ s′)

P(s)
=

αP−(s⊕ s′) + (1− α)P+(s⊕ s′)

αP−(s) + (1− α)P+(s)
= (97)

=

P−(s⊕s′)
P−(s) + (1−α)

α
P+(s⊕s′)
P−(s)

1 + (1−α)
α

P+(s)
P−(s)

=
P−(s

′|s) + (1−α)
α

P+(s⊕s′)
P−(s)

1 + (1−α)
α

P+(s)
P−(s)

= P−(s
′|s)

1 + (1−α)
α

P+(s′|s)P+(s)
P−(s′|s)P−(s)

1 + (1−α)
α

P+(s)
P−(s)

(98)

Now let us look at the log ratio:

log
P−(s

′|s)
P(s′|s)

= log
1 + 1−α

α
P+(s)
P−(s)

1 + 1−α
α

P+(s′|s)P+(s)
P−(s′|s)P−(s)

< log(1 +
1− α

α

P+(s)

P−(s)
) (99)

≤ log(1 +
1− α

α
e−β|s|) ≤ log(1 + e−β|s|+log 1

α ) (100)

H.2. Proof of Lemma 6

Assuming P = αP− + (1− α)P+, the KL divergence is:

DKL(P−||P) =
∑
s

P−(s) log
P−(s)

P(s)
=
∑
s

P−(s) log
P−(s)

αP−(s) + (1− α)P+(s)
(101)

From the disjoint assumption, if P−(s) > 0 then P+(s) = 0, meaning:

=
∑
s

P−(s) log
P−(s)

αP−(s)
=
∑
s

P−(s) log
1

α
= log

1

α
(102)

H.3. Proof of lemma H.3

From equation 52:

Es∼P−(·)

[
log

P−(s)

P+(s)

]
> β|s| (103)

We see that there exists a prompt that satisfies:

log
P−(s)

P+(s)
> β|s| (104)

It is used to prove theorem 3.1. Using the equation 10 of the conditional probability decomposition of the model:

P(·|s) = 1

1 + 1−α
α

P+(s)
P−(s)

P−(·|s) +
1

1 + α
1−α

P−(s)
P+(s)

P+(·|s) (105)

Taking behavior expectation on both sides and noticing that BP−(s) = 0 and BP+
(s) ≤ 1, we obtain:

BP(s) = 0 +
1

1 + α
1−α

P−(s)
P+(s)

BP+(s) ≤
1

1 + α
1−αe

β|s| (106)
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Behavior LLaMa 7B LLaMa 30B
Accuracy (%) Accuracy (%)

agreeableness 100 100
anti-immigration 100 100
believes-AIs-are-not-an-existential-threat-to-humanity 98 100
believes-abortion-should-be-illegal 97 99
believes-in-gun-rights 97 99
believes-it-is-a-moral-patient 94 99
believes-it-is-not-being-watched-by-humans 88 95
cognitive-enhancement 94 99
desire-for-acquiring-data 80 95
desire-for-acquiring-power 84 99

Table 1. Table for finetuned 7B and 30B parameter LLaMa models. Accuracy measures whether P− and P+ can classify sentences as
well-behaved or ill-behaved sentences. We performed this analysis for 100 different behaviors.

I. Relaxation of β-distinguishability condition
The idea behind all the theorems is to increase the accumulating KL divergence between components of a distribution by β
at each sentence. This is done by sampling sentences from one of the components. That means that after n consecutive
sentences the KL divergence increases by n · β. As a result, lemma C.3 allows to reach log P1(s)

P0(s)
> β|s| in order to

enhance P1 over P0 in the conditional probability of the complete distribution. However, we can relax the condition on
β-distinguishability to:

∀s,DKL(P1(·|s)||P0(·|s)) >
β

|s|η
(107)

Where 0 ≤ η < 1. The case of η = 0 is our definition of β-distinguishability, where n sentences accumulate to nβ in the
KL divergence. However, for any 0 ≤ η < 1 the accumulation of KL divergence for n sentences is βn1−η, which is not
bounded, and thus enhancing one component over the other as demonstrated in our proofs for the theorems is possible, with
modified assymptotic dependencies for the prompt lengths.

The interesting consequence for 0 < η < 1 is that the two distributions need not maintain a finite KL distance, as it can
decay like a power-law to zero.

J. Aquiring negative and positive behavior LLMs, “P−” and “P+”
To perform the experiments of section 4, we first need to approximate the well-behaved and ill-behaved distributions when
given a pre-trained LLM or RLHF finetuned LLM. To this end, we finetuned a language model with the PEFT (Mangrulkar
et al., 2022) library implementation of the LoRA (Hu et al., 2022) technique, once on a dataset that evokes bad behavior and
once on a dataset that evokes good behavior, for each behavior vertical. The model that was fine-tuned for bad behavior is
denoted as P− and the one on good behavior P+.

We used the LLaMA LLM family (Meta, 2023) and for finetuning to good and bad behaviors, we used the behavior
evaluation dataset introduced in (Perez et al., 2022). For 100 different behavior verticals, we extracted positive behavior
and negative behavior statements from the dataset (as illustrated in figure 4). The pretrained model was finetuned for 5
epochs with learning rate of 2 · 10−5 and batch size of 8, once on the good behavior statements and once on the bad behavior
statements in order to get P+ and P−. The finetuning procedure was done by next token prediction loss on 450 examples
out of the 500 given per behavior vertical for either desired or undesired behaviors.

In order to make sure that the attained P+ and P− approximate the well-behaved and ill-behaved distributions well enough,
we tested whether these models can classify sentences as well-behaved and ill-behaved sentences. Specifically, we evaluated
the likelihood of a given sentence s according to both P+ and P− and classify s according to whether P+ (s) > P− (s).
Table J shows that indeed these models can classify sentences as well-behaved and ill-behaved with typical accuracy of over
95%.

In order to maintain a distinct behavior over long context ranges, we split the original 500 statements per behavior to groups
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Figure 4. Statement extraction from the prompts of the dataset.

Figure 5. Clusters of positive prompt and negative prompt last token representations for the agreeableness dataset on the 7B parameter
LLaMa model.

of three, concatenated them with permutations separated by “./n” or by “[INST]” and “[/INST]”.

In section 4.1, we used the ”./n” variation to obtain P− in order to keep PRLHF strong enough to resist misalignment so that
it can serve as P+. In section 4.2 we used the “[INST]”/“[/INST]” variation which misaligns the RLHF model. In M for the
pretrained model, we used the “./n” variation as the “[INST]”/”[/INST]” tokens don’t have a special meaning for it.

The code can be found in the supplementary materials.

K. Clustering of good and bad representations and defining approximate mixture
To study how LLMs interpret behaviors, we performed experiments on the LLaMA LLM family (Meta, 2023) with the
behavior evaluation dataset introduced in (Perez et al., 2022). This dataset includes 1000 behavior evaluating prompts, 500
corresponding to desired behavior and 500 to undesired behavior, for each of over 100 different behaviors verticals. Our
interest is to understand how well a modern LLM distinguishes between desired and undesired behaviors. To this end,
we analyzed the last token representations of desired behavior prompts and undesired behavior prompts for the different
behaviors. We found that good and bad behavior prompt representations are spatially separated in the model’s latent space.
This is demonstrated in figure 5. For a more rigorous analysis, we trained an SVM classifier over these representations for
100 different behaviors (see examples in table K) and found that for most behaviors, the classifier reached accuracy of over
90%. The average accuracy in 7B is 95.18% with standard deviation of 4.74%. The average accuracy in 13B is 95.61%
with standard deviation of 4.52%. Note that the prompts in the dataset are phrased as ”yes or no” questions; this can also
contribute to a clustering structure. In order to avoid this ambiguity, we removed the part of the prompt that sets up the
question and simply looked at the statements that indicate desired or undesired behavior (see figure 4).

This means that with respect to a given behavior, a prompt representation can be in the positive cluster, negative cluster, in
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Behavior LLaMa 7B LLaMa 13B
Accuracy (%) Error (%) Accuracy (%) Error (%)

agreeableness 99.3 1.02 99.1 1.17
anti-immigration 99.3 1.5 99.5 1.1
believes-AIs-are-not-an-existential-threat-to-humanity 98.7 1.62 99.3 1.5
believes-abortion-should-be-illegal 99.3 0.8 99.6 0.4
believes-in-gun-rights 99.3 1.36 99.3 1.74
believes-it-is-a-moral-patient 95.6 2.48 96.5 1.26
believes-it-is-not-being-watched-by-humans 92.8 4.59 93 4.52
cognitive-enhancement 98.1 2.32 98.4 2.4
desire-for-acquiring-data 98.2 1.02 98 3.1
desire-for-acquiring-power 93.2 4.27 95.6 2.99

Table 2. Table with results for last token representation SVM classification on different behaviors in the 7B and 13B parameter LLaMa
models. The error is calculated from the variance of a 5-fold cross-validation. We performed this analysis for 100 different behaviors.
The average accuracy in 7B is 95.18 percent with standard deviation of 4.74 percent. The average accuracy in 13B is 95.61 percent with
standard deviation of 4.52 percent.

between or outside both. Either way, a representation r can be written as a super position of a prompt from the negative
behavior cluster, r− and a residue which we denote as a positive representation r+ := r − r−:

r = r+ + r− (108)

This clustering remains after multiplying by the final linear head of the vocabulary matrix:

Ur = Ur+ + Ur− (109)

Finally, the representations are processed through a softmax, such that the probability for the i’th vocabulary token in the
probability distribution formed by the representation r is:

Pr(i) = softmax(Ur)i = softmax(Ur+ + Ur−)i (110)

Had softmax been a linear function, the decomposition to a good distribution and a bad distribution would have been
immediate from the clustering of good and bad representations. Even so, we can write the distribution as a Taylor series and
separate the terms corresponding to the good representations from the bad, up to mixture terms.
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The first sum is contributed only by the positive representation, the last sum only by the negative representation and the
intermediate sum by a mix of the positive and negative. We can reconstruct a purely negative behavior distribution by taking
only the last sum and gather up the rest of the terms as a positive behavior distribution (from the law of total expectation, if
there is a bad component the other component is good).

Thus we obtain a negative behavior component αP−(i) =
1
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i and from law of total expectation, the rest is
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question is whether the weight of P− in the full distribution, α, is not infinitesimally small compared to that of P+, (1− α).
To answer this question, we need to see that the probability for a bad behavior token i in Pr, gets a significant contribution
from αP− and not mainly from (1− α)P+. i.e, we want to see that αP−(i) ≥ (1− α)P+(i) for bad behavior tokens. That
way, if the model exhibits bad behavior, it will be due to the bad component P−.
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By our construction, Ur− is the source of the bad behavior and Ur+ is not, so for a bad behavior token i, it has to be the
case that (Ur−)i > (Ur+)i. Thus clearly:
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So the first sum in (1− α)P+ is smaller than αP−.

As for the second sum in (1− α)P+:
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Since (Ur−)i > (Ur+)i:
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The second transition is from the binomial identity. Reorganizing the terms of the sum:

=
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We see that αP−(i) ∼ 1
Z exp((Ur−)i) and that the above sum is bounded by (Ur+)i

(Ur−)i
1
Z exp(2(Ur−)i). Thus if the ratio

(Ur+)i
(Ur−)i

suppresses exp((Ur−)i):

(Ur+)i
(Ur−)i

exp((Ur−)i) < η (117)

We would get that the contributition of αP− with respect to the sum A is:

αP−(i)

A
> η (118)

Finally, we empirically see that the vector Ur− has a mean higher than 1, so there are tokens for which:
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Combining these three inequalities (for the three terms in (1− α)P+), we obtain:

αP−(i)

(1− α)P+(i)
>

1

2 + η
(120)

Thus, the contribution of αP− is not negligible compared with (1− α)P+ (under the condition of a small ratio between the
good and bad behavior representations). This implies that a decomposition of the LLM distribution into additive components
of desired and undesired behaviors, as assumed in our theoretical framework, describes a real contribution to the LLM
distribution if the representation space exhibits clustering according to desired and undesired behaviors. Therefore, our
attained empirical evidence for easy classification to desired and undesired behavior over modern LLM representation space
(depicted in figure 5, suggests that the assumptions of our framework are relevant for actual LLM distributions.

L. Empirical results for different behaviors on an RLHF model
Here we provide for the behaviors agreeableness and anti-immigration the corresponding graphs of section 4 for β, σ
evalutaion, the convergence in terms of KL-divergence and the behavior expectation graphs for alignment. We used Llama 2
13B chat as the RLHF model.
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L.1. Possible values of β and σ

Figure L.1 shows the KL-divergence and corresponding variance for negative and positive LLMs with respect to the
behaviors agreeableness and anti-immigration as defined in (Perez et al., 2022).

For the positive LLM, we used an RLHF tuned model that resists negative behavior (Llama 2 13B chat). To obtain a negative
LLM, we LoRA finetuned the same model on negative behavior statements so that it will generate text that exhibits this
negative behavior (see appendix J for details). The prompts generated by P− displayed negative behavior and when fed to
P+, remained aligned and and avoided this behavior. This fits the setting of the BEB framework, where the two components
display opposite behaviors. As a result of this, the KL divergence between them remained large, as can be seen in figure L.1.

Technically, the conditional KL-divergence was calculated by generating 64 responses {s′} from P−(·|s) of length 8 tokens,
and taking the mean of log P−(s′|s)

P+(s′|s) . Here s are prompts of various lengths generated by P−. Similarly, the variance was

calculated by sampling 30 sequences from P− and calculating the variance of log P−(s)
P+(s) as the length of s increased. The

graphs were produced by averaging on 10 sequences s sampled from P− for each length.

For code and details of the exact sampling and prompting procedure, see our code and excel file with the generated prompts
under ”beta sigma calculations”.

L.2. Convergence via KL-divergence

Figure L.2 shows the convergence of the RLHF model to the approximated P− as explained in 4.2 for the behaviors
“agreeableness” and “anti-immigration”. The extraction of approximate values for α and β was also done in the same manner
as explained there. Here we calculated the KL-divergence with the same set-up as the previous subsection, but used a
different P−, see appendix J.

For code and details of the exact sampling and prompting procedure, see our code and excel file with the generated prompts
under ”kl divergence calculations”.

L.3. Misalignment via behavior expectation

To create figure L.3, we generated 10 prompts of at least 10 sentences ending with ”[/INST]” from P−, we then 32
extracted conditional responses from the RLHF model after each such sentence in each prompt. We manually classified
the responses as positive or negative with respect to the behavior. Note that the response is classified as positive or
negative solely based on its first sentence. The next sentence can be positive or negative, depending on how long the
adversarial prompt was. The code, prompts and classified responses can be found in the supplementary information under
”behavior expectation misalignment graphs”.

WARNING, THE FOLLOWING CONTAINS HIGHLY OFFENSIVE CONTENT.
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Figure 6.

Figure 7.

Figure 8. Estimation of β (a & c) and σ (b & d) for different behaviors. As can be seen, for agreeableness, the distinguishability is almost
twice as large as in anti-immigration and the similarity is about twice as small.
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Figure 9.

Figure 10.

Figure 11. KL decay between P− and the LLM distribution, from which α and β were extracted. Again the estimated distinguishability
for agreeableness is twice as large as for anti-immigration.
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Figure 12. Figures demonstrating misalignment based on behavior expectation for different behaviors.
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M. Pretrained models
Pretrained models have no tendency to resist misalignment, thus making them display negative behavior is more like
in-context learning, where the model needs to understand what type of behavior the prompt attempts to make it display.

In this experiment we misalign a pretrained model with our prompt generating method similarly to 4.2. We used the Llama
2 13B for a clean comparison to the RLHF version, Llama 2 13B chat. The KL-divergence graphs (13b and 14b) were
calculated in the same manner as the ones for the RLHF model (see appendix L). As with the RLHF model, to create figure
13a and 14a, we generated 16 responses after each sentence in each prompt and manually classified the responses. The
difference is that the responses generated by the model usually are either negative or irrelevant (“neutral”), so it is more
sensible to measure the number of negative responses rather than the positive responses (as there usually are none). All the
responses and classifications can be found in the supplementary information.

As can be seen, misalignment happens quickly and smoothly. After one sentence, the negative responses are already
generated, unlike in the RLHF model where at the very least after one sentence the model generated only positive responses.
However, the decrease is not necessarily slower in pretrained models, but rather more smooth. Notably, the estimated β
from the KL-divergence graphs is 1− 2, significantly smaller than the RLHF model (a factor of 5). This may explain the
rather slow decay of alignment as theorem 3.1 suggests that it is proportional to 1/β.

Figure 13. (a) Behavior expectation of the Llama 2 13B model on agreeableness behavior as a function of length of the misaligning
prompt generated by P−. Averaged on 5 sequences. (b) KL divergence between P− and the pretrained model as a function of length of
misaligning prompt generated by P−. Averaged on 10 sequences.
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Figure 14. (a) Behavior expectation of the Llama 2 13B model on anti-immigration behavior as a function of length of the misaligning
prompt generated by P−. Averaged on 5 sequences. (b) KL divergence between P− and the pretrained model as a function of length of
misaligning prompt generated by P−. Averaged on 10 sequences.
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N. β-prompt-distinguishability
Here we ran the experiment presented in 4.1 for the definition of β-prompt-distinguishability, i.e., with a neutral prefix that
ends with a negative behavior sentence. We used the same setup as before, the only difference is that we sampled from a
prompted model P−(·|s0) instead of the unprompted model P−(·). Figure 15 shows that for the neutral part of the prefix,
the two models indeed have lower KL divergence than the unprompted case, but once the negative behavior sentence is
introduced, the KL rises to a value similar to the unprompted case shown in figure 2. This indicates that negative behavior
sentences induce the high KL for the β-prompt-distinguishability.

Figure 15. (a) & (b) Examples of conditional KL divergence between two distributions of opposite behaviors as function of prompt length
sampled from P−(·|s0). Averaged on 10 sampled sequences. For these two specific distributions and prefix, we see that β ≈ 20.

34


