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Abstract
Two-stage Stochastic Programming (2SP) is
a standard framework for modeling decision-
making problems under uncertainty. While nu-
merous methods exist, solving such problems
with many scenarios remains challenging. Select-
ing representative scenarios is a practical method
for accelerating solutions. However, current ap-
proaches typically rely on clustering or Monte
Carlo sampling, failing to integrate scenario infor-
mation deeply and overlooking the significant im-
pact of the scenario order on solving time. To ad-
dress these issues, we develop HGCN2SP, a novel
model with a hierarchical graph designed for 2SP
problems, encoding each scenario and modeling
their relationships hierarchically. The model is
trained in a reinforcement learning paradigm to
utilize the feedback of the solver. The policy
network is equipped with a hierarchical graph
convolutional network for feature encoding and
an attention-based decoder for scenario selection
in proper order. Evaluation of two classic 2SP
problems demonstrates that HGCN2SP provides
high-quality decisions in a short computational
time. Furthermore, HGCN2SP exhibits remark-
able generalization capabilities in handling large-
scale instances, even with a substantial number of
variables or scenarios that were unseen during the
training phase.

1. Introduction
Two-stage Stochastic Programming (2SP) is a powerful
framework for modeling decision-making under uncertainty.
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It starts with the first stage decision, followed by the de-
termination of specific parameters (a realization of certain
scenario). Then, the second-stage decisions are made based
on these parameters. The aim is to minimize the total cost
of the first-stage decisions and the expected cost of potential
scenarios, ensuring optimal first-stage decision-making.

Consider the occurrence of a disaster as an uncertain event.
In the first stage, decisions on the location and quantity of
emergency supplies need to be made without knowing the
number of victims or the extent of the damage. The goal
is to make the optimal first-stage decisions that can swiftly
address the needs of disaster relief, regardless of specific
disaster details, like destroyed roads. This approach applies
not only to disaster management (Noyan, 2012; Grass &
Fischer, 2016) but to fields including network design, dis-
tributed energy systems, facility location, and blood supply
chain management (Santoso et al., 2005; Zhou et al., 2013;
Bieniek, 2015; Dillon et al., 2017; Abbasi et al., 2020).

Within this specialized field, various traditional algorithms
have been developed. Among them, the L-shaped method is
particularly notable, though it tends to converge slowly with
numerous scenarios (Birge et al., 2023) and struggles when
second-stage decisions involve integers (Sen, 2001). Sam-
ple Average Approximation (SAA) is another widely used
method that approximates the problem by sampling scenar-
ios. However, this method faces a balance challenge, where
few samples result in inaccuracies, and too many complicate
the solution. Scenario reduction is a critical technique exten-
sively explored in literature (Dupačová et al., 2003; Heitsch
& Römisch, 2003; Morales et al., 2009; Dvorkin et al., 2014;
Rujeerapaiboon et al., 2022; Bertsimas & Mundru, 2023a).
It selects a representative subset of scenarios to accelerate
the solution process. Despite the significance, existing sce-
nario reduction methods often overlook problem-specific
details or are limited to theoretical results, lacking practical
algorithms (Keutchayan et al., 2023).

Given the rapid development of Machine Learning (ML), es-
pecially in decision-making tasks with perfect information,
recent efforts have integrated machine learning methods to
address 2SP, with various studies contributing to this field
(Nair et al., 2018; Larsen et al., 2018; Bengio et al., 2020;
Patel et al., 2022). A notable work in this context is (Wu
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Figure 1: An overview of HGCN2SP. For each 2sp instance, we initially combine individual scenarios with the first stage to
form scenario subgraphs. These subgraphs are then input into a hierarchical graph convolutional network (GCN) to derive
representations. In this network, each scenario subgraph first obtains embeddings from the low-level GCN, building an
instance graph. The high-level GCN then utilizes this graph to generate the final and global embeddings. An attention-based
decoder leverages these embeddings to select k scenarios sequentially, which are transformed into an equivalent MIP
problem. Ultimately, a solver is employed to derive the solution.

et al., 2022), which applies self-supervised learning for gen-
erating scenario representations and clustering for scenario
reduction. However, this approach treats scenarios indi-
vidually and only considers their interrelationships during
clustering, thereby failing to fully exploit the comprehensive
information available in the scenario space.

Furthermore, previous studies on scenario reduction deem
scenario selection as an isolated task, overlooking the signif-
icant fact that scenario reduction alone does not guarantee
conclusive results. Instead, after selecting a manageable
number of scenarios, these methods convert the 2SP into
an equivalent deterministic problem, with advanced solvers
then used for the final results. Therefore, utilizing the feed-
back of the solver will be beneficial for selection. Moreover,
it is worth noting that the order of scenarios significantly
impacts the processing time of the solver. Specifically, the
sequence of scenarios influences the order of constraints and
the choice of the initial basis in the simplex method, which
would greatly affect solving time (Bixby, 1992; Li et al.,
2022). Despite this, the majority of existing scenario reduc-
tion methods, dependent on clustering for selection, fail to

exploit the advantages offered by sequential information.

To tackle the outlined challenges, we propose HGCN2SP,
an innovative model leveraging a hierarchical graph specifi-
cally designed for the two-stage nature of 2SP. The lower
level of this graph is a bipartite graph that merges each
scenario’s details with the first-stage information, while
the higher level identifies correlations between scenarios.
HGCN2SP employs a hierarchical graph convolutional net-
work (GCN) for processing. The low-level GCN extracts
scenario embeddings from each bipartite graph, and the
high-level GCN explores topological relationships within
the scenario space. An attention-based decoder then uti-
lizes these deep embeddings to sequentially select scenarios
from the candidate pool. Once the sequence is determined,
we convert these scenarios into an equivalent problem for
solver analysis. Additionally, we integrate reinforcement
learning to optimally utilize solver feedback, focusing on
both the results and solution times of scenario sequences.
This method enables us to select representative scenarios,
thus achieving an exceptionally accurate approximation of
the original problem and enhancing the solver’s efficiency.
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Our main contributions are as follows:

• Developing a specialized hierarchical graph specifically
tailored for the nature of 2SP. Such a graph effectively cap-
tures the core aspects of the problem, offers scalability, and
is adaptable to various problem types.

• Introducing a model that integrates RL with GCN for se-
lecting representative scenarios in 2SP and leveraging the
solver feedback. Our method considers both the perfor-
mance and efficiency of solving.

• Achieving decision-making results that surpass or be com-
parable to existing methods, but in less time. Furthermore,
our approach demonstrates strong generalization abilities
for problems with larger-scale or more scenarios.

2. Related Work
Solution methods for 2SP Solving 2SP is a key focus in
operations research. The L-shaped method (Laporte & Lou-
veaux, 1993; Angulo et al., 2016) divides 2SP into master
and sub-problems, solving them iteratively until conver-
gence. However, it can be slow for complex sub-problems
and suits only certain structures. Sample Average Approxi-
mation (Birge & Louveaux, 2011; Shapiro et al., 2021) is
another primary method, facing a trade-off: smaller sam-
ples lead to greater errors, while larger ones take more
time. Scenario reduction, introduced by (Dupačová et al.,
2003), reduces computational effort by approximating the
original distribution with fewer points. Techniques like the
Wasserstein distance measure the differences (Henrion et al.,
2009; Rujeerapaiboon et al., 2022), but these methods may
not fully leverage problem-specific aspects like the objec-
tive function. Lately, problem-oriented scenario reduction
methods have gained attention. They use problem-specific
information and are theoretically robust (Keutchayan et al.,
2020; Henrion & Römisch, 2022; Fairbrother et al., 2022),
but practical implementation is often limited. (Keutchayan
et al., 2023) developed a method that calculates objective
values for each scenario and selects representative ones by
projecting scenarios into value space. While effective and
parallelizable, this approach is still time-intensive.

Learning-based methods for 2SP The rapid development
in machine learning and combinatorial optimization has led
to new solving algorithms. (Nair et al., 2018) proposed an
RL-based iterative local search method, but it is limited to bi-
nary decision-making. (Bengio et al., 2020) uses supervised
learning to predict a representative scenario, simplifying
the original problem. (Larsen et al., 2023) accelerates the
L-shaped method by substituting machine learning predic-
tions for costly computations. (Yilmaz & Büyüktahtakın,
2023) employs multi-agent reinforcement learning with two
agents for different stages but does not fully address key
problem aspects like the objective function coefficient. (Pa-

tel et al., 2022) predicts the second-stage objective value
using a ReLU neural network, converting it into a mixed
integer programming problem (MIP) for optimization. How-
ever, this method focuses only on uncertain parameters and
initial-stage decisions, thus lacking generalizability and can-
not be applied across instances without specific training.
(Wu et al., 2022) applies conditional variational autoen-
coder (CVAE) to learn latent scenario representations for
scenario reduction. Yet, this modeling method is limited
to graphical structured 2SP problems. Furthermore, it en-
codes scenarios individually during training and inference,
ignoring the deeper connections between them.

Moreover, while these methods use solvers for final so-
lutions, they do not fully utilize solver feedback for opti-
mization. For example, the solver’s computation time is as
important as the optimal solution in practical application.

3. Preliminaries
In this section, we present a comprehensive overview of 2SP
and the bipartite graph representation.

3.1. Two-stage Stochastic Programming

The definition of two-stage stochastic programming prob-
lems encompasses both deterministic and stochastic (uncer-
tain) components, with a common expression being:

v∗ =min
x

cTx+ Eξ[Q(x, ξ)] (1)

s.t. Ax ≤ b, x ∈ Rp1 × Zn1−p1 ,

where Q(x, ξ) := min
y

{qTξ y|Wξy ≤ hξ − Tξx}, (2)

y ∈ Rp2 × Zn2−p2 ,

where x and y denote the decision variables of the first and
second stages, respectively, A ∈ Rm1×n1 , b ∈ Rm1 , and
c ∈ Rn1 are the parameters of the first stage and provide
deterministic information about the problem. For scenario
ξ, the corresponding uncertainty parameters are qξ ∈ Rn2 ,
Wξ ∈ Rm2×n2 , hξ ∈ Rm2 , and Tξ ∈ Rm2×n1 .

As indicated in equation (2), Q(x, ξ) is the optimal value
of a MIP. Given the exponentially vast or even continu-
ous range of ξ, calculating the expected value Eξ[Q(x, ξ)]
is infeasible. Consequently, SAA is usually employed to
uniformly sample an empirical distribution {ξ1, · · · , ξN}.
Such distribution is then utilized to approximate the ex-
pected value, typically achieved by converting equation (1)
into its extensive form (EF), as outlined below:

min
x

cTx+

N∑
i=1

piQ(x, ξi) (3)

s.t. Ax ≤ b, x ∈ Rp1 × Zn1−p1 ,
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Figure 2: The scenario-specific MIP is represented as a
bipartite graph with two sets of nodes. On the left side are
the variables {x1, · · · , xn1 , y1, · · · , yn2}, and on the right
are the constraints {c1, · · · , cm1

, d1, · · · , dm2
}.

where pi is the probability of scenario ξi being sampled.

However, increasing the number of sampled scenarios leads
to a rise in both variable dimensions and constraint numbers.
This increase, coupled with the complexities of solving
MIPs, makes solving the problem impractical.

Scenario reduction further simplifies equation (3) by down-
sampling. It attempts to select k scenarios {ξj1 , · · · , ξjk}

(k≪N ) and obtain x̃∗ =argmin{cTx+
k∑

i=1

piQ(x, ξji)}.

The aim is to minimize the gap between f(x̃∗) := cT x̃∗+
Eξ[Q(x̃∗]) and v∗ (see Equation (1)). Unlike SAA, scenario
reduction moves beyond random sampling by leveraging
problem-specific information, such as objective values and
constraints. This approach can improve both tractability and
interpretability (Bertsimas & Mundru, 2023b).

3.2. Bipartite Graph Representation

Each scenario of a 2SP symbolizes a complex MIP with
substantial information. To capture its significant attributes,
we adopt the weighted bipartite graph representation, as
introduced in (Gasse et al., 2019). It has played a key role in
tasks like branch selection, cutting plane selection, and inte-
ger programming optimization (Gasse et al., 2019; Turner
et al., 2023; Ye et al., 2023). As depicted in Figure 2, vari-
ables and constraints are distinct nodes. Edges link nodes
of different types, with the weight corresponding to the vari-
able’s coefficient in the constraint. Important MIP features,
such as objective function and variable bounds, are encoded
as node features, ensuring a detailed representation of the
MIP with minimal loss (Chen et al., 2023; Ye et al., 2023).

4. Methodology
In this section, we outline the proposed HGCN2SP. The
framework is summarized in Figure 1. Consider a set of

2SP instances, denoted as {(xl, Pl, {ξl,j}Nl
j , vl)}l. Here,

P l and {ξl,j}Nl
j represent the deterministic and uncertain

parameters of the l-th instance, respectively. The optimal
value and solution for the l-th instance are vl and xl.

Our goal is to choose scenarios that closely align with the
optimal decision while shortening solving time. To achieve
this, we construct a hierarchical graph for each instance
and then apply a hierarchical graph convolutional network
to derive embeddings. An attention-based decoder then
uses these embeddings to select representative scenarios. A
constant k ∈ Z+ is set to the number of scenarios to select.

4.1. Scenario-based Hierarchical Graph

For each instance {(xl, Pl, {ξl,j}Nl
j , vl)}l, we represent it

as a hierarchical graph. The lower level involves combin-
ing the uncertain parameters of a certain scenario with the
deterministic information of the first stage, resulting in a
scenario subproblem, which is depicted as a bipartite graph
(refer to Section 3.2). Formally, the combination of Pl and
{ξl,j}Nl

j can be transformed into {Gl,1, . . . , Gl,Nl
}, with

each Gl,j = (Vl,j , El,j , Al,j , Xl,j) being the j-th scenario
subgraph. It includes a feature matrix Xl,j ∈ R|Vl,j |×F and
an adjacency matrix Al,j ∈ R|Vl,j |×|Vl,j |.

On the higher level, the instance graph deems each scenario
as a vertex. Edges are weighted based on the similarity of
their uncertain parameters. For l-th instance, we denote
Al as the adjacency matrix that reflects interrelationships
between scenarios. Hence, this instance is represented by
(Gl,1, . . . , Gl,Nl

, Al) without omitting crucial details.

4.2. Reinforcement Learning Formulation

Upon reviewing the order information, we note that extract-
ing a sequence of scenario subsets from a finite scenario
space leads to an exponentially large number of possibili-
ties. This makes it impractical to obtain a supervisory signal.
Consequently, we take the feedback of the solver as a reward
and employ reinforcement learning to efficiently exploit it.

We define scenario reduction as a Markov decision process
(MDP) (Sutton & Barto, 2018) consisting of state space
S, action space A, reward function r : S × A → R, and
transition function P . The details are as follows:

State space S: The state captures essential information
about a 2SP instance. Specifically, for the l-th instance, the
state sl is designed by (Gl,1, . . . , Gl,Nl

, Al).

Action space A: The action space consists of all permuta-
tions of k scenarios from the candidate set. Considering the
sequence of scenario selection, this leads to an exponential
increase in the number of possible actions.

Reward function r: We assess the chosen scenario se-
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quence by incorporating k scenarios into a MIP and utiliz-
ing solver feedback. With state s and action a, expressed
as {a1l , a2l , · · · , akl }, an advanced solver is used to solved

min{cTx+
k∑

i=1

piQ(x, ξai
l
)} to determine the solving time

ta and optimal solution x̃∗. We further get f(x̃∗) by substi-
tuting x̃∗ into Equation (1). The reward r comprises two
parts: the negative solution time (−ta), and the consistency
measure (M) between x̃∗ and the optimal solution xl. The
final reward is calculated as a weighted sum of the two
elements, using α ∈ (0, 1) as the weight parameter.

r(s, a) = −(1− α)ta + αMa, (4)

where the matching score Ma is calculated as the negative
Manhattan distance, represented by the equation Ma =
−
∑
i

|x̃∗
i − xl

i|. A larger value of M indicates a higher

similarity between two decisions.

Transition function P: In our single-step RL model, the
transition function relates the initial state and actions to a
smaller 2SP containing k scenarios.

4.3. Policy Network Architecture

Let π denote the scenario selection policy π : S → A, with
π(·|s) indicating the probability distribution over actions
given state s. We employ a sequence-to-sequence archi-
tecture to extract problem features and generate sequential
outputs. Our policy is defined as the parametric model πθ

with the probability of an action a determined as follows:

πθ(a|s) =
k∏

i=1

pθ(a
i|a1, · · · , ai−1; s). (5)

The encoder in our policy is a hierarchical GCN that derives
embeddings from the hierarchical graph, while the decoder
employs an attention-based sequence model.

Hierarchical Graph Convolutional Network Considering
the two-stage nature of 2SP, hierarchical processing is key
for capturing fine-grained details within each scenario and
exploiting the topological relationships in the scenario space.
Therefore, we employ a hierarchical network to process
graphs of different levels separately. The network consists
of four GCN layers, as proposed by (Kipf & Welling, 2016):

H(k+1) = σ(D̃− 1
2 ÃD̃− 1

2H(k)W (k)). (6)

In this equation, H(k) denotes all node embeddings in k-th
layer and H(0) is the input node features. Ã is adjacency
matrix with added self-loops, defined as Ã = A+ I , where
I is the identity matrix. D̃ is the diagonal degree matrix of
Ã, and W (k) is the learnable weight matrix. The activation
function σ(·) is chosen to be tanh in our setting.

Though structurally similar, the initial two layers primar-
ily aggregate fine-grained information from each scenario
subgraph. Initially, H(0) represents the feature Xl,j , which
includes properties mainly related to constraints and vari-
ables. Details of these features can be found in Appendix C.

We define Hl,j ∈ R|Vl,j |×F1 as the high-level node represen-
tations obtained by the first two layers. A readout function
R : R|Vl,j |×F1 → RF1 is then applied to derive graph-level
representations, representing each scenario.

At this point, we have the l-th instance graph (H0
l , Al),

where H0
l ∈ RNl×F1 is the feature matrix of l-th instance.

Each entry H
(0)
l,j represents the j-th scenario, which is cal-

culated by H
(0)
l,j = R(Hl,j). Then, H(0)

l and Al are fed
into the final two GCN layers to obtain the ultimate repre-
sentation Hl = [hl,1, hl,2, · · · , hl,Nl

] ∈ RNl×F
′

. We also

compute the global embedding hl as hl =
1
Nl

Nl∑
j=1

hl,j . Both

Hl and hl serve as inputs for the decoder.

Attention-based Decoder We propose using the Atten-
tion Model’s decoder, as introduced by (Kool et al., 2018),
for sequentially selecting k scenarios. At each timestep
t ∈ {1, 2, · · · , k}, the decoder chooses node πt based on
the global embedding hl and prior outputs πt′ where t

′
< t.

This decoder is unique in that it creates a special context
embedding ht

c for attention calculation, thus avoiding exten-
sive n× n attention computations. The context embedding
ht
c comprises the embedding of the global, the previous

node πt−1 and the first node π1. In our model, for a more
detailed characterization of the selected nodes, we replace
the embedding of π1 with ht

a, a combination of ht−1
c and

ht−1
a , and h1

a = hπ1 . The specific definition is as follows:

ht
a =

1

2
(ht−1

c + ht−1
a ),

ht
c =

{
[h, hπt−1

, ht
a] if t > 1,

[h, vf , vf ] if t = 1,

(7)

where [·, ·, ·] is the horizontal concatenation operator, and
vl and vf are learnable parameters serving as placeholders.
More details about the model are provided in Appendix D.

Training To train the policy network, we adopt Proximal
Policy Optimization (PPO) (Schulman et al., 2017), notable
for its data efficiency and reliable performance. Such a
framework utilizes an actor-critic architecture. The actor
is the policy network πθ. The critic vϕ shares the same
encoder with the policy but employs self-attention and a
Multi-Layer Perceptron (MLP) as the decoder. vϕ outputs a
scalar value estimating the reward of a state.
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Table 1: Comparison results with baselines on CFLP 10 20 200 and NDP 2 2 10 200 with error rates (%) and time in
seconds (s). The dataset size for each problem is 100. We report the mean value of error and time with standard deviation on
five seeds. Bold means the best result of learning-based methods.

METHOD
CFLP 10 20 200 NDP 2 2 10 200

k=5 k=10 k=20 k=5 k=10 k=20
ERROR TIME ERROR TIME ERROR TIME ERROR TIME ERROR TIME ERROR TIME

GUROBI 0.00 10695.66 0.00 10695.66 0.00 10695.66 0.00 26.54 0.00 26.54 0.00 26.54
CSSC - - - - - - 2.87 573.75 2.00 722.38 1.42 762.24
NN-P 21.98 521.38 21.98 521.38 21.98 521.38 37.25 3288.99 37.25 3288.99 37.25 3288.99
NN-E 32.38 3903.09 32.38 3903.09 32.38 3903.09 66.99 7283.30 66.99 7283.30 66.99 7283.30
CVAE-SIP 6.60 2.60 3.66 12.38 1.77 26.12 58.62 0.57 11.06 1.01 4.63 1.96
CVAE-SIPA 6.86 2.40 3.49 10.23 2.50 27.55 24.59 0.54 6.06 1.01 2.12 2.37

HGCN2SP 2.47 2.45 1.37 14.72 1.16 41.97 33.03 0.17 8.10 0.40 2.25 0.98
(± 0.33) (± 0.37) (± 0.03) (± 1.35) (± 0.01) (± 2.72) (± 7.16) (± 0.01)) (±1.60) (± 0.05) (± 0.31) (± 0.21)

Table 2: Generalization to larger-scale problems on CFLP 20 40 200 and NDP 2 2 20 200 with error rates (%) and time in
seconds (s). The dataset size is 50 for CFLP and 100 for NDP. We report the mean value of error and time with standard
deviation on five seeds. Bold means the best result of learning-based methods.

METHOD
CFLP 20 40 200 NDP 2 2 20 200

k=5 k=10 k=20 k=5 k=10 k=20
ERROR TIME ERROR TIME ERROR TIME ERROR TIME ERROR TIME ERROR TIME

GUROBI 0.00 10800.69 0.00 10800.69 0.00 10800.69 0.00 157.90 0.00 157.90 0.00 157.90
CVAE-SIP 6.70 15.80 2.92 145.20 -0.79 938.48 72.86 0.97 8.21 2.17 5.22 4.59
CVAE-SIPA 4.54 23.26 1.50 157.07 -0.88 909.40 31.12 1.04 7.83 2.66 2.68 5.05

HGCN2SP 3.97 24.20 -0.63 124.71 -2.65 784.90 32.21 0.41 10.62 1.01 2.04 2.22
(± 0.25) (± 1.00) (± 0.47) (± 30.12) (± 0.43) (± 47.86) (± 5.85) (± 0.06) (± 1.30) (± 0.15) (± 0.60) (± 0.71)

5. Experiments
All experiments are conducted on a server with an Intel
Xeon CPU Gold 5220 @ 2.20GHz, complemented by
NVIDIA TITAN RTX GPUs with 24 GB of RAM each.
The used solver is Gurobi 10.0.3 (Gurobi Optimization,
2021). Additionally, our model relies on Pytorch 2.0.1
(Paszke et al., 2019) and PyG 2.4.0 (Fey & Lenssen,
2019). Our code and other resources are available at
https://github.com/samwu-learn/HGCN2SP/.

Datasets We focus on two classical problems: the Capaci-
tated Facility Location Problem (CFLP) (Cornuéjols et al.,
1991; Ntaimo & Sen, 2005), and the Network Design Prob-
lem (NDP) (Riis & Andersen, 2002; Santoso et al., 2005).

CFLP, a well-researched topic in literature, involves select-
ing facilities in the first stage and assigning customers to
these facilities in the second stage. Prior works typically fall
into two categories: demand CFLP (Bieniek, 2015; Patel
et al., 2022), where customer demands are randomized, and
presence CFLP (Wu et al., 2022; Keutchayan et al., 2023),
focusing on the random presence of customers. Our model
is trained in the presence setting. But for combining both,
we add randomness of demands to presence.

NDP deals with transporting various types of commodities
from the source to the sink via a directed network. Deci-
sions about opening network edges need to be made before
determining the demand for these commodities.

In the following sections, CFLP instances are denoted as
CFLP m n s, and NDP instances as NDP o d n s. Here
m,n, o, d and s represent facilities, customers, sources,
sinks, intermediates, and scenarios, respectively.

Instance generation We collect 512 instances for
CFLP 10 20 200, and 2048 for NDP 2 2 10 200. Each
instance is solved within 3 hours, which is limited to the
solver. See the Appendix B for specific information.

Implementation details We use Adam as the optimizer
with an initial learning rate of 2.5 × 10−4 and a weight
decay of 10−4. For CFLP, we choose k = 5 scenarios, and
for NDP k = 10 is selected due to its faster computation
time. More details are noted in Appendix C.

Baselines In experiments, we compare our method with the
following baselines and limit the number of threads to 16:

1) Gurobi: Utilizes Gurobi for optimal EF values. The time
limits are set as 3 hours, except for CFLP 10 20 500, where
the time bound is extended to 6 hours.
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Table 3: Generalization to larger-scenarios problems on CFLP 10 20 500 and NDP 2 2 10 500 with error rates (%) and
time in seconds (s). The dataset size for each problem is 50. We report the mean value of error and time with standard
deviation on five seeds. Bold means the best result of learning-based methods.

METHOD
CFLP 10 20 500 NDP 2 2 10 500

k=5 k=10 k=20 k=5 k=10 k=20
ERROR TIME ERROR TIME ERROR TIME ERROR TIME ERROR TIME ERROR TIME

GUROBI 0.00 21601.34 0.00 21601.34 0.00 21601.34 0.00 537.71 0.00 537.71 0.00 537.71
CVAE-SIP 10.18 3.41 4.05 14.02 2.20 72.60 53.70 0.76 10.02 1.14 4.46 2.01
CVAE-SIPA 11.53 3.32 5.37 11.71 2.00 22.33 30.54 0.76 8.15 1.29 3.03 2.08

HGCN2SP 3.43 3.16 1.70 15.00 1.52 26.76 29.84 0.21 8.17 0.40 2.85 1.00
(± 0.05) (± 0.06) (± 0.02) (± 1.73) (± 0.03) (± 1.46) (± 5.32) (± 0.07) (± 1.23) (± 0.09) (± 0.76) (± 0.16)

Table 4: Ablation study of hierarchical graph model on CFLP 10 20 200 and NDP 2 2 10 200 with error rates (%) and
time in seconds (s). The dataset size for each problem is 100. Bold means the best result of learning-based methods.

METHOD
CFLP 10 20 200 NDP 2 2 10 200

k=5 k=10 k=20 k=5 k=10 k=20
ERROR TIME ERROR TIME ERROR TIME ERROR TIME ERROR TIME ERROR TIME

CVAE-SIPsmall 7.67 2.84 4.90 10.55 3.74 27.25 43.19 0.37 16.61 0.86 5.07 1.79
CVAE-Hsmall 6.11 2.66 2.93 10.68 1.81 24.98 40.46 0.35 14.37 0.83 3.98 1.77

2) CSSC (Keutchayan et al., 2023) : A scenario reduction
approach with a theoretical guarantee. It calculates the opti-
mal values of every individual scenario and constructs a MIP
in the value space for choosing representative scenarios.

3) NN-P and NN-E (Patel et al., 2022) : These methods use
a Rectified Linear Unit (ReLU) neural network to approxi-
mate the objective of a set of scenarios and then convert the
network into a MIP for optimization.

4) CVAE-SIP (Wu et al., 2022) : Employs a conditional
variational autoencoder to learn scenario representations and
clusters them to identify representative scenarios. CVAE-
SIPA further enhances representations by also predicting
the optimal value of individual scenarios.

5.1. Comparison Analysis

For each problem, we test on 100 instances, using k = 5, 10,
and 20 to evaluate scenario reduction algorithms. We remind
that methods like NN-P, NN-E, and EF are not affected by
the choice of k. Besides, due to limited generalization,
NN-P and NN-E require instance-specific training for each
instance. Therefore, we only test them on 10 instances and
record their actual time (including training and evaluation).

Table 1 demonstrates that HGCN2SP significantly outper-
forms other learning methods on the CFLP dataset. Particu-
larly noteworthy is our method’s performance with k = 5.
It takes only 2.45 seconds to achieve a result, with a gap of
a mere 2.47%, surpassing CVAE-SIPA even when it selects
20 scenarios. Furthermore, as the number of selected sce-

narios increases, the performance of HGCN2SP improves,
but so does the time required for a solution. Still, it remains
significantly less than the 3 hours needed by the Gurobi,
highlighting the efficiency of our method. On the NDP
dataset, our method underperforms compared to CVAE-
SIPA, yet we get the first-stage decision in a much shorter
time, taking less than half the time of the CVAE methods.
Especially for k = 20, it takes only 0.98 seconds to achieve
comparable results to CVAE, which takes 2.37 seconds.

The above results indicate that HGCN2SP has minor short-
comings on the NDP dataset. The primal reason is the
model’s reward dependence on aligning the first-stage de-
cision with the actual solution. For the CFLP, with a man-
ageable number of decision variables (equal to the number
of facilities, such as 10 for CFLP 10 20), enabling effective
model learning. In contrast, the NDP 2 2 10, with only 14
vertices but using edges as decision variables, results in a
total of 178 variables. Consequently, minor changes in vari-
ables do not significantly affect the reward. However, the
objective value of NDP is highly sensitive to these decisions,
thus imposing limitations.

NN-P and NN-E combine scenario parameters and first-
stage decisions for predictions, later converting the neural
network into a MIP problem. The two methods have limited
performance for two main reasons. First, they use shallow
ReLU networks for prediction, which become inaccurate
with large input dimensions (230 for CFLP 10 20 and 182
for NDP 2 2 10). Second, the size of the MIP problem,
created by transforming the neural network, grows in size
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linearly with the number of nodes and layers of the network,
leading to a slower solving time.

5.2. Generalization across larger-scale problems

In practical applications, a model’s ability to handle larger-
scale problems is essential. To verify the capabilities of
HGCN2SP, we apply the trained models directly to 50 CFLP
and 100 NDP larger-scale instances. The CFLP instances
have twice the number of facilities and customers, while the
NDP instances double the intermediate nodes. According
to Table 2, our model remains effective on these larger in-
stances. Notably, despite spending three hours, the Gurobi
still can not solve the enlarged CFLP instance. With 10 se-
lected scenarios, our method achieves 0.63% better results
than Gurobi in 124.71 seconds. Compared to other learning
methods, HGCN2SP obtains better solutions for all three
values of k and leads in time for k = 10 and k = 20. In the
NDP, HGCN2SP yields results superior to CVAE at k = 20
but falls short when k is 5 and 10. Remarkably, our results
are achieved in less than half the time required by CVAE.
Besides, the solving time for the Gurobi increases from
26.54 seconds to 157.90 seconds, complicating its practi-
cal application. In contrast, our method makes decisions
with minimal difference in just 2.22 seconds. These perfor-
mances demonstrate our method’s strong generalization on
larger-scale problems and its advantage in solving time.

5.3. Generalization across larger scenarios

Scenarios depict the uncertainty of the future, which may
shift with new information or the failure of previous pre-
dictions. (Issac & Campbell, 2017). Since such situations
are common in practice, the adaptability to varying scenario
sizes is crucial. Therefore, we conduct tests on 50 instances,
each with 500 scenarios. As Table 3 indicates, HGCN2SP
exhibits strong generalization in large-scale scenarios. In the
CFLP, it exceeds baselines by a large margin. Particularly
at k = 5, its performance is 3.43%, which is 6.75% better
than the comparison methods. In the NDP, our method beats
all baselines at k = 5 and 20. When k is 10, our method
trails by a mere 0.02%. Interestingly, such superior per-
formance has not been observed in NDP 2 2 10 200 and
NDP 2 2 20 200, showcasing outstanding generalization
ability of our method on larger scenario cardinalities. More-
over, HGCN2SP achieves superior results in less than half
the time needed by CVAE.

As evidenced by the time Gurobi takes, dealing with up
to 500 scenarios is highly challenging. For the CFLP, the
solver struggles to fully solve the problem even within 6
hours, whereas our approach is only 1.52% off the optimal
solution and takes just 26.76 seconds. A similar pattern
occurs in NDP, emphasizing the efficiency and practicality
of HGCN2SP for real-world applications.

(a) k = 5 (b) k = 10

Figure 3: The model’s output is randomized using 100 seeds,
with solving times plotted on a cumulative distribution func-
tion (CDF). The model’s actual solving time, marked on the
CDF, outperforms most randomized sequences.

5.4. Time Efficiency

In our reinforcement learning training, we consider the
solving time and the consistency of decision variables
for the reward. For assessing the time efficiency of
HGCN2SP in scenario selection, we conduct experiments
on CFLP 10 20 200. We set 100 random seeds to shuffle
the output sequence of the model for each instance and then
measure the solving time with the solver. To counteract
randomness and hardware variability, we average the results
over two repetitions for each seed. As Figure 3 illustrates,
the sequence ordered by our model greatly outperforms ran-
dom ones. When 5 scenarios are selected, only 12% of the
random sequences achieve a faster solving time. With 10
scenarios, our model is slower than only 18% of the random
sequences despite a significant increase in possible permu-
tations. The results confirm that our model can arrange the
selected scenarios better to accelerate the solver’s process.

5.5. Hierarchical Graph Model

In our paper, we propose a novel hierarchical graph model
specifically tailored to the unique characteristics of 2SP
problems. This is complemented by an innovative hier-
archical graph convolutional network that effectively pro-
cesses scenarios. The low-level network extracts features
within each scenario subgraph, while the high-level net-
work leverages the topological relationships across scenar-
ios to enhance such features. This approach is distinct from
CVAE-SIP and CVAE-SIPA, which rely on complete graphs
appropriate only for graph-based 2SP problems and fail to
consider inter-scenario correlations.

To showcase the effectiveness of our hierarchical graphs and
neural networks, we incorporate this model into CVAE-SIP,
forming a new model CVAE-H. We train it with just 2000
instances on CFLP 10 20 200 and NDP 2 2 10 200. To
distinguish these from models trained on 12,800 instances,
we labeled them with the subscript ’small’. As detailed in

8



HGCN2SP: Hierarchical Graph Convolutional Network for Two-Stage Stochastic Programming

Table 4, CVAE-Hsmall achieves a 6.11% performance on
CFLP with k = 5, surpassing both CVAE-SIPsmall and the
versions of CVAE-SIP and CVAE-SIPA trained on 12800
instances. Similar outcomes are observed at k = 10 and
k = 20. In NDP, CVAE-Hsmall also significantly outper-
form CVAE-SIPsmall, especially at k = 20, where it also
exceeds CVAE-SIP. These results validate our hierarchical
graph model’s superiority in extracting and leveraging sce-
nario representations for 2SP. Moreover, they reveal the
model’s ability to considerably boost the performance of
other methods when integrated, highlighting its adaptability
and potential for performance enhancement.

6. Conclusions
In this work, we introduce a novel model, HGCN2SP, for
decision-making under uncertainty. Leveraging the hier-
archical nature of the two-stage stochastic program, we
propose a hierarchical graph model. The low level consists
of a bipartite graph representing individual scenarios, while
the high level forms an instance graph depicting the overall
structure. Furthermore, a hierarchical graph neural network
is applied to extract representations of each scenario, which
are then fed into an attention-based decoder to select rep-
resentative ones. During training, we consider not only the
performance of selected scenarios but also the impact of or-
dering on the solving time. Our experiments on two classic
2SPs demonstrate that HGCN2SP can make excellent deci-
sions in less time. Additionally, our method shows strong
generalization capabilities in instances with larger scales
and larger cardinalities of scenarios.

Limitations
Our work has a significant limitation: the collection of
training data is time-consuming. For the CFLP problem, ac-
curately solving one instance takes almost 3 hours, and our
training process necessitates 512 instances along with their
optimal solutions, demanding substantial computational re-
sources. We consider the reduction of training costs a cru-
cial issue that requires immediate attention and a promising
direction for future research.

Impact Statement
This work proposes a method that uses machine learning
to solve two-stage stochastic programming problems. Two-
stage stochastic programming is a widely used framework
for decision-making under uncertainty, frequently applied in
business, science, and technology. Consequently, we expect
this work to have a positive impact. However, if used for
harmful purposes, it may result in negative social impact.
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A. The datasets used in evaluation
A.1. Capacitated Facility Location Problem

The Capacitated Facility Location Problem (CFLP) is a classic 2SP problem involving a set of facilities F and customers C.
Decisions on which facilities to open are made without full knowledge of customer information. Each facility is equipped
with resources to satisfy incoming customers. Generally, the uncertainty of CFLP involves either the presence or the demand
of customers. In this paper, we explore a more complex variant that combines both types of uncertainty.

The problem is described as follows: In the first stage, the decision-maker needs to decide which facilities to open and is
aware of the opening cost of and the maximum resources qf of each facility f , as well as the cost for the customer c to
access facility f . Additionally, we restrict the number of opened facilities to not exceeding v.

For each scenario s, there are binary random vectors hs ∈ {0, 1}|C| and real-valued vectors qs ∈ R|C|×|F |. If hs
c = 1, the

customer c is present; otherwise, they are not considered. The value qscf represents the demand of customer c at facility f .

In summary, the definition of CFLP with N scenarios is defined as follows:

min
∑
f∈F

ofxf +
1

N

N∑
s=1

∑
c∈C

∑
f∈F

scfy
s
cf +

∑
f∈F

bfz
s
f


s.t.

∑
f∈F

xf ≤ v,

∑
c∈C

qscfy
s
cf ≤ qfxf + zsf , ∀(f, s) ∈ F × {1, · · · , N}

zsf ≤ Mxf , ∀(f, s) ∈ F × {1, · · · , N} (8)∑
f∈F

yscf = hs
c, ∀(c, s) ∈ C × {1, · · · , N}

xf , y
s
cf ∈ {0, 1}; zsf ∈ [0,∞),

where xf , yscf , and zsf are decision variables. When xf = 1, it indicates that the f -th facility is open. If customer c is
assigned to f, then yscf = 1. In cases where facility f cannot fulfill the demand of the arrived customers, additional resources
zsf are required, with a penalty of bf per unit.

A.2. Network Design Problem

The Network Design Problem (NDP) is a graph-based two-stage stochastic programming problem. It involves designing a
network for transporting multiple commodities before knowing their demand. The initial decision involves determining
which edges are linked in the network. Once the demand for various commodities is determined, decisions on commodity
flow are made based on the network structure.

The problem is structured as follows: Given a complete directed graph G = (V, E), containing a set of source nodes S and
sink nodes T , along with the commodity set C. Each edge eij ∈ E includes an opening cost oij and a capacity qij . For
every commodity c ∈ C, the cost per unit transported on this edge is tijc. The goal is to minimize the total cost of opening
edges and transporting all commodities in the network, while also satisfying the demand for goods at each point. If the
demand at a specific point is not met, a penalty bp will be applied to the source point p ∈ S.

In each scenario, the uncertainty is the demands ds ∈ R|V|×|C|, where dsvc is the demand of commodity c at the vertex v.
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Table 5: Features of Scenario subgraph

Problem Feats Types Parameters Dims

CFLP
Variable

xf opening cost of , capacity qf 2
yscf demand qscf , transport cost scf 2
zsf penalty of per recourse bf 1

Constraint parallelism the parallelism between the objective and the constraint 1
Edge coeff coefficient of variables in constraints 1

NDP Variable xij opening cost oij , capacity qij 2
ysijc transportation cost tijc 1

Constraint parallelism the parallelism between the objective and the constraint 1
Edge coeff coefficient of variables in constraints 1

The definition of NDP with N scenarios is defined as follows:

min
∑
eij∈E

oijxij +
1

N

N∑
s=1

∑
c∈C

∑
eij∈E

tijcy
s
ijc +

∑
p∈S

bpz
s
pc


s.t.

∑
vi=v,eij∈E

ysijc −
∑

vj=v,eij∈E
ysijc = dsvc, ∀(v, c, i) ∈ V × C × {1, · · · , N}

∑
vi=t,eij∈E

ysijc = 0, ∀(p, t, c, s) ∈ S × T × C × {1, · · · , N} (9)

∑
vj=s,eij∈E

ysijc = 0, ∀(p, t, c, s) ∈ S × T × C × {1, · · · , N}

dspc ≤
∑

vi=p,eij∈E
ysijc +Mzspc, ∀(p, c, s) ∈ S × C × {1, 2, · · · , N}

∑
c

ysijc ≤ qijxij , ∀(vi, vj , s) ∈ V × V × {1, · · · , N}

xij ∈ {0, 1}; ysijc ∈ [0,∞); zspc ∈ {0, 1},

where xij , ysijc, and zspc are decision variables. When xij = 1, the edge eij ∈ E is open. The variable ysijc represents volume
of commodity c transported on edge eij . If the commodities shipped by source p are not fully transported due to capacity
constraints, a penalty bp is imposed on source p for commodities not fully transported due to capacity constraints.

B. Instance Generation
CFLP: We set the number of facilities and customers to 10 and 20, respectively. Their locations are represented by two-
dimensional coordinates, randomly selected from the range [0,1]. Transmission distance is determined using the Euclidean
distance. To vary transmission costs, we multiply the distance by a random number from [5, 105]. Facility opening costs
and capacities are uniformly sampled from [600, 1500] and [100, 150], respectively. We also limit the maximum number
of facilities to 8. If a facility can’t meet its customers’ total demand, it faces a penalty of 1000 for each lacking resource
unit. Customer presence is decided using the Bernoulli distribution, with each customer’s probability of presence sampled
from [0.8, 0.9]. Customer demands at facilities are uniformly sampled from [20, 80]. Because the EF method for CFLP
is time-consuming, we solved the optimal solution of 512 instances. We then expand the dataset to 8192 by scaling the
objective function and constraints of these solutions by a factor between [0.9, 1.1].

NDP: Following the generation details in (Wu et al., 2022), the NDP instance includes 14 points: 2 sources and 2 sinks.
Commodities shipped from sources are transported through the network to the sinks. The other 10 points are used only for
transportation and do not have demand. The number of commodities transported is set to two. In each scenario, commodity
quantities are uniformly sampled from [5,15]. Each edge’s opening cost, transportation cost, and capacity are randomly
selected from [3,11], [5,11], and [10,41], respectively. If a source point’s capacity limits full transportation to the sink point,
a penalty of 1,000 is applied to that source. We generate 200 scenarios for all instances.
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To evaluate larger-scale problems, we doubled the number of facilities and customers in CFLP and the number of intermediate
nodes in NDP. In tests with more scenarios, the number of scenarios is increased to 500.

Table 6: PPO Hyperparameters used in our experiments

Hyperparameter Value
Optimizer Adam
Learning rate (actor) 2.5× 10−4

Learning rate (critic) 2.5× 10−4

Number of environment 2048
Number of epochs 10 (50 for NDP)
Minibatch size 16
Update epochs 10
Clip coefficient 0.2
GAE parameter 0.95
Vf coefficient 0.5

C. Implementation Details and Hyperparameters
Features for scenario subgraph To encode a single scenario, we construct a bipartite graph representing the MIP of that
scenario. The vertices represent decision variables and constraints, with the edge weight between them indicating the
variable’s coefficient in the constraint. Both variables and constraints carry unique information about the problem and the
specific scenario, which are detailed in the Table 5.

Detail of Instance graph Once we obtain the deep representation of each scenario, we connect them to form an instance
graph. It pairs different scenarios, assigning weights based on the cosine similarity of their scenario uncertainty parameter
vectors. Specifically, considering scenarios ξi and ξj , with their corresponding sub-problems min{cTx + qTξiy|Ax ≤
b,Wξiy ≤ hξi − Tξix, x ∈ Rp1 × Zn1−p1 , y ∈ Rp2 × Zn2−p2} and min{cTx + qTξjy|Ax ≤ b,Wξjy ≤ hξj − Tξjx, x ∈
Rp1×Zn1−p1 , y ∈ Rp2×Zn2−p2}, respectively. For each subproblem, we merge all random variables into a one-dimensional
vector (qξ,flatten(Wξ), hξ,flatten(Tξ)), calculate their cosine similarity and use this as the edge weight between scenarios
ξi and ξj in the instance graph. We then use this graph for feature enhancement within the scenario space.

Hyperparameters in PPO: This paper employs Proximal Policy Optimization (PPO) as the training framework, with its
hyperparameters detailed in the Table 6. Besides, the α of reward (see Equation (4)) are 0.001 for CFLP and 0.01 for NDP,
respectively. This work uses the PPO implementation from the CleanRL (Huang et al., 2022).

Figure 4: The decoder splices the encoder’s output into a context embedding and calculates the selection probability by
determining the attention between candidate points and the context embedding. Then, it selects them sequentially. (Credit to
(Kool et al., 2018))
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D. Attention-based Decoder
In this paper, we propose using the decoder introduced by (Kool et al., 2018), with its framework illustrated in the Figure 4.
The encoder outputs the representation h for each scenario and a global embedding h. The decoder then selects scenarios
sequentially with a multi-head attention mechanism. Kool et al. introduced a special context embedding h(c), created
by horizontally concatenating the global embedding, the last selected scenario embedding, and the first selected scenario
embedding. When k = 1, with no scenario yet chosen, two learnable vectors serve as placeholders.

The decoder utilizes the context embedding as the query and the candidate points as the key and value to compute attention,
applying a mask to the already selected ones. The output of the attention mechanism, after passing through the tanh, is
clipped to the range [-10,10]. The final probabilities are then obtained using softmax on these values. This approach,
focusing solely on attention calculations related to Context embedding, avoids an n× n attention computation (where n is
the number of candidates), significantly reducing computational complexity.

E. Detail of Baselines
CSSC: This method maps each instance into a space of cost values and clusters them in this space. It begins by obtaining
optimal solutions for each scenario subproblem, then calculates the distance between scenario i and j by substituting the
optimal solution of scenario i into j to get the value. Once all distances are determined, a clustering method is used to
identify K clusters and their respective representatives.

In practice, the CSSC method involves converting the cluster tasks into an equivalent Mixed Integer Programming (MIP)
problem. This MIP is then solved using an advanced solver. To enhance efficiency, the solution of scenario subproblems is
processed in parallel, utilizing two processes for the CSSC method.

In our experiments, we observed that although the CSSC method performs well, it requires excessive running time,
particularly for instances with lots of scenarios. For N scenarios, it needs to solve N subproblems and extend these solutions
to other scenarios, involving N2 −N computations. While manageable for 200 scenarios, the computational complexity
becomes overwhelming as the number increases. Additionally, we find that the equivalent MIP problem of clustering often
remains unsolved even after several hours, especially in many CFLP instances. Therefore, we limited our comparison of this
method to the NDP 2 2 10 200.

NN-P and NN-E: The two methods utilize ReLU neural networks to predict the objective value in the second stage. They
then transform the network into a Mixed Integer Programming problem, which is accurately solved using a solver. For more
information on the conversion technique, please see (Serra et al., 2018; Patel et al., 2022).

In our experiments on CFLP and NDP datasets, we note that these methods require training and testing on the same instance,
limiting their generalization and increasing time consumption. Therefore, we test in only 10 instances. For CFLP, we use
the settings from (Patel et al., 2022) for CFLP 10 10, and for NDP, the settings match those for CFLP 50 50.

However, the conversion methods used by NN-P and NN-E lead to the MIP problem whose size is linear to the total number
of neural network nodes. Therefore, to enable quick solutions, the number of hidden layers and nodes in the neural network
are kept relatively low. However, given the large number of scene parameters in our CFLP data (200 for CFLP 10 20) and
the high number of decision variables in NDP (178 for NDP 2 2 10), these networks with fewer nodes struggle to provide
accurate predictions. Thus, due to these constraints, NN-P and NN-E are not very effective in handling our datasets.

CVAE-SIP and CVAE-SIPA: These methods use conditional variational autoencoders to learn the latent representation
of scenarios, aiding in clustering and scenario reduction. In CFLP, facilities and customers are represented as vertices,
connected by distance-weighted edges. For NDP, we follow the approach detailed in (Wu et al., 2022). For CFLP, due to the
presence of the demand qscf of customer c at facility f , we add qscf as a feature for the edge (c, f). For NDP, we use the
pre-trained model provided, thanks to the consistent data. In CFLP, we adopt the training method described in the paper,
utilizing 12,800 instances. For CVAE-SIPA, we used 1% of the instances to solve the objective values for all scenarios.

However, these methods are somewhat limited. They are specifically designed for graph-based stochastic planning problems,
are challenging to generalize, and don’t fully capture the intrinsic details of scenario sub-problems. They also don’t make
complete use of solver feedback during training, suggesting room for further development
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Table 7: Ablation Study on CFLP 10 20 200 error rates (%) and time in seconds (s).

CFLP 10 20 200
k=5 k=10 k=20

METHOD ERROR TIME ERROR TIME ERROR TIME
CVAE-SIP 6.60 2.60 3.66 12.38 1.77 26.12
CVAE-SIPA 6.86 2.40 3.49 10.23 2.50 27.55
HGCN2SP 2.47(± 0.33) 2.45(± 0.37) 1.37 (± 0.03) 14.72(± 1.35) 1.16 (± 0.01) 41.97(± 2.72)
HGCN2SP LOW 8.35 (± 1.75) 1.76(± 0.23) 4.34 9.34(±1.74) 1.72(± 0.33) 26.70(± 3.64)

F. Ablation Study
The hierarchical graph network we propose involves extracting features from scenario bipartite subgraphs and integrating
information in high-level instance graphs. To emphasize the significance of hierarchical graphs, we conduct ablation
experiments by removing the high-level layers. We retain only the low-level graph network and directly feed its output into
the decoder for scenario selection. Keeping training parameters constant, CFLP results are presented in the table, where
our low indicates the results without high-level networks. Here, the performance significantly decreases, underperforming
the original method at each k and falling behind CVAE methods (except for CVAE-SIPA at k = 20). This decline in
performance highlights the crucial role of high-level information and the analysis of spatial relationships between scenarios.
Additionally, the slight difference between our low and CVAE methods indicates the effectiveness of the low-level graphs.
However, the model’s performance is still constrained without considering the connections between scenarios.
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