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Abstract
The surge in volumes of video data offers unprece-
dented opportunities for advancing reinforcement
learning (RL). This growth has motivated the de-
velopment of passive RL, seeking to convert pas-
sive observations into actionable insights. This
paper explores the prerequisites and mechanisms
through which passive data can be utilized to im-
prove online RL. We show that, in identifiable dy-
namics, where action impact can be distinguished
from stochasticity, learning on passive data is sta-
tistically beneficial. Building upon the theoretical
insights, we propose a novel algorithm named
Multiscale State-Centric Planners (MSCP) that
leverages two planners at distinct scales to of-
fer guidance across varying levels of abstraction.
The algorithm’s fast planner targets immediate
objectives, while the slow planner focuses on
achieving longer-term goals. Notably, the fast
planner incorporates pessimistic regularization to
address the distributional shift between offline
and online data. MSCP effectively handles the
practical challenges involving imperfect pretrain-
ing and limited dataset coverage. Our empirical
evaluations across multiple benchmarks demon-
strate that MSCP significantly outperforms exist-
ing approaches, underscoring its proficiency in
addressing complex, long-horizon tasks through
the strategic use of passive data.

1. Introduction
Reinforcement Learning (RL) (Sutton & Barto, 2018) has
exhibited remarkable scalability with large amounts of data
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in effectively addressing challenging tasks in video games
(Reed et al., 2022; Bauer et al., 2023; Baker et al., 2022;
Kumar et al., 2023), robotics manipulation (Seo et al., 2022;
Chebotar et al., 2023), and scientific discovery (Jumper
et al., 2021; Fawzi et al., 2022). Offline RL (Levine et al.,
2020) holds great promise as it enables policy learning from
pre-collected datasets, thus circumventing the expensive and
sometimes infeasible exploration typically associated with
online RL (Fujimoto et al., 2019; Prudencio et al., 2022).
However, offline RL still requires an annotated dataset with
action and reward labels, and fails to exploit other unan-
notated datasets that are abundant and cheaper in the real
world, such as videos (Zhu et al., 2023; Wu et al., 2023b).

Inspired by recent success of unsupervised pretraining in
natural language processing (Brown et al., 2020) and com-
puter vision (He et al., 2022), passive RL (Seo et al., 2022;
Zhu et al., 2023) aims to leverage an action-and-reward-free
dataset for pretraining to faciliate downstream online RL.
Passive RL helps extract the valuable information in passive
video-like observations and transform them into actionable
insights, receiving great attention from the community.

To understand when and how passive data is useful, we con-
duct a rigorous analysis on the statistical benefit of passive
data in linear MDPs. We show that when the effect of action
is distinguishable from intrinsic stochasticity, passive data
can reduce the effective horizon of the problem by provid-
ing dense training signals and improve learning efficiency
accordingly. However, previous methods still fall short in
solving challenging long-horizon tasks in online learning,
even equipped with passive data.

We identify two significant challenges of passive RL. First,
the extrapolation error during the online stage can be se-
vere due to the limited dataset coverage. Specifically, the
data collected during online exploration may significantly
deviate from the passive dataset. Compared with standard
offline-to-online settings (Nakamoto et al., 2023), this prob-
lem is exacerbated in passive RL because no policy can be
learned offline to initialize and regularize the behavior due
to lack of action labels. The second challenge involves the
extraction and utilization of information from the passive
dataset at various levels of abstraction. This is crucial for
guiding the online policy to learn in a manner that balances
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Slow SCP
‣ Longer

horizon
‣ Navigation

Fast SCP
‣ Short

horizon
‣ Locomotion

Figure 1. An AntMaze example to explain MSCP. The fast SCP
plans immediate next states and provides guidance on locomotion,
while the slow SCP proposes appropriate subgoals for navigation.

immediate and long-term objectives. A policy overly fo-
cused on immediate goals may result in a myopic policy,
failing to achieve objectives that require a longer horizon.
Conversely, an exclusive emphasis on the long-term objec-
tive may excessively complicate the exploration process.

In response to these challenges, we propose a novel algo-
rithm termed Multiscale State-Centric Planners (MSCP).
We consider the goal-conditioned setting to remove the re-
liance on reward labels (Park et al., 2023). MSCP entails
the pretraining of two state-centric planners (SCPs), each
functioning at a distinct scale, emphasizing short-term and
long-term objectives, respectively. As shown in Figure 1,
the fast SCP proposes the immediate next state while the
slow SCP focuses on planning subgoals at an appropriate
distance. In online RL, the fast SCP forces pessimistic
regularization by encouraging the policy to explore within
the range of the dataset, mitigating the extrapolation error
arising from the distributional shift from offline to online.
The multiscale SCPs, planning at distinct levels, provide
comprehensive guidance for online policy learning.

Empirically, we evaluate the effectiveness of our algo-
rithm MSCP in four challenging environments that prior-
itize long-term planning: the AntMaze and Kitchen envi-
ronment in D4RL (Fu et al., 2020), CALVIN (Mees et al.,
2022), and Procgen Maze (Cobbe et al., 2020). The re-
sults show that MSCP significantly outperforms baselines,
showcasing its ability to extract valuable information from
passive dataset. The code for this paper is available at
https://github.com/ChengjieWU/MSCP.

1.1. Related Work

Offline RL and Offline-to-Online RL Offline RL learns
from a dataset with action labels, mainly addressing the
extrapolation error in value estimation. Some methods en-
force the trained policy to be close to the behavior policy
via KL-divergence (Peng et al., 2019; Nair et al., 2020;
Siegel et al., 2020; Wu et al., 2019; Yang et al., 2021; Ma
et al., 2021). Other methods attempt to enforce a regular-
ization constraint to penalize over-generalization (Kumar
et al., 2020; Agarwal et al., 2020; Kostrikov et al., 2021;
Hu et al., 2022). Offline-to-Online RL, on the other hand,
aims to improve the policy trained offline by incorporating

online RL. Different methods have been proposed, such as
extracting high-level skills (Gupta et al., 2020; Ajay et al.,
2020; Yang et al., 2023b), ensuring a smooth offline-to-
online transition through expansion scheme (Zhang et al.,
2023), ensembles(Lee et al., 2022; Ball et al., 2023), and
calibrating value function (Nakamoto et al., 2023). Wu et al.
(2023a) study the online adaptation of an offline learned ex-
ploitation policy in multi-agent games. There are also works
exploring the semi-supervised setting to reuse the dynamical
(Hu et al., 2023; Yu et al., 2022) and behavioral information
(Hu et al., 2024; Park et al., 2024) in the reward-free data.
Passive RL is more challenging as it cannot learn any policy
offline due to the lack of both reward and action labels.

Passive RL. Passive RL consists of pretraining on passive
dataset and subsequent online RL, also termed as pretrain-
ing from videos (Seo et al., 2022; Wu et al., 2023b; Ye et al.,
2023). Zhu et al. study a similar setting that assumes access
to rewards (2023). However, since the absence of rewards
can be readily circumvented by adopting a goal-conditioned
framework, we refrain from distinguishing between pas-
sive RL and action-free RL. We specifically address the
challenges posed by the action-free scenario throughout the
paper. The essence of passive RL lies in what is learned
from the dataset and how it is learned. Some model-based
methods focus on pretraining for cross-domain tasks, and
partially pretrain a stacked network to leverage passive infor-
mation (Seo et al., 2022; Wu et al., 2023b). Others address
the single-domain scenario, where the same MDP is used
in pretraining and online RL. FICC (Ye et al., 2023) maps
the real action to the most common pretrained latent action,
but cannot handle continuous action spaces in our evaluated
environments. ICVF (Ghosh et al., 2023) pretrains state and
goal representations to expedite downstream RL. Similar
to our work, AF-Guide (Zhu et al., 2023) and HIQL (Park
et al., 2023) also learn to plan in the state space. AF-Guide
learns an action-free decision transformer to propose the
immediate next state and also uses L2 distance as intrinsic
reward. HIQL learns a high-level policy predicting subgoals
at medium distance to provide a hierarchical decomposition
when extracting policy from a pretrained value function.
However, these works only use one level of planning and
struggle with solving long-horizon tasks in passive RL.

To clarify, in the papers of ICVF and HIQL, their evalu-
ation was conducted in the pure offline setting, wherein
they trained exclusively on a large action-free dataset and a
smaller dataset with actions, assumed to be of the same dis-
tribution1. When applied to passive RL, their performances
significantly declines (see Table 1 and Figure 3), showcas-
ing their susceptibility to extrapolation errors arising from
the distributional shift from offline to online.

1Previous works generally sample a portion of the action-free
dataset and reveal the action labels to form the annotated dataset
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Hierarchical RL. Hierarchical RL and hierarchical imi-
tation learning have shown promise in solving complex
long-horizon problems by decomposing task into subtasks.
HIRO (Nachum et al., 2018) and HAC (Levy et al., 2019)
use a high level policy to predict future states, serving as
objectives for the lower-level control policy. They use off-
policy correction and hindsight relabelling to enhance train-
ing stability, respectively. Some other works learn differ-
ent low-level skills represented by latent vectors, and learn
a high-level controller to select appropriate skills (Bacon
et al., 2017; Vezhnevets et al., 2017). Our method MSCP
also employs a hierarchical structure using states as goals.
However, we train two state planners predicting goals at
different distances to extract both long-term and short-term
planning abilities from an action-free dataset. These two
planners collaborate to steer the training of the low-level
control policy.

State-Based Imitation Learning. In state-based imitation
learning, the action labels are also absent. However, it as-
sumes expert demonstrations while passive RL does not. A
state-based imitation learning method, SOIL (Radosavovic
et al., 2021), trains an inverse dynamics model (IDM) and
uses it to predict actions for the state-only demonstrations. A
policy can then be trained with this action-annotated dataset.
These two models are trained jointly. SAIL (Liu et al., 2020)
reconstructs the expert policy through learning an IDM and
a VAE that predicts the next state in the expert demo. To
mitigate error accumulation, SAIL additionally uses RL to
minimize the Wasserstein distance between states in the
expert demo and the current trajectory. I2L (Gangwani &
Peng, 2020) maintains a replay buffer storing online trajec-
tories closest to the expert state-only demo, and updates the
policy by mimicking these trajectories. Alternating between
replay buffer update and policy learning, I2L gradually ap-
proaches the expert policy. In contrast, our method MSCP
does not rely on expert demos and or learn an IDM. It learns
a goal-conditioned V and state planners from a non-optimal
action-free dataset. These models are then leveraged to
efficiently train a low-level policy in the online stage.

2. Preliminary
We consider the Passive Reinforcement Learning (passive
RL) setting, where online reinforcement learning is pre-
ceded by offline pretraining on passive data. We adopt
the goal-conditioned RL (Schaul et al., 2015; Andrychow-
icz et al., 2017) formulation since it circumvents the need
for reward labels. Passive RL is characterized by a goal-
conditioned MDP M (Sutton & Barto, 2018) and an
action-and-reward-free dataset D. The MDPM is a tuple
(S,A,G,P, r, γ), consisting of state space S, action space
A, transition function P : S × A → ∆(S), reward func-
tion r : S × G → [0, rmax], and discount factor γ ∈ [0, 1).

We assume S = G for the rest of the paper, as adopted by
prior works (Park et al., 2023). The passive dataset D com-
prises solely of state sequences {s0, s1, . . . , sN} collected
by some unknown behavior policy in the MDP.

A policy π : S × G → ∆(A) specifies a decision-making
strategy to select action a ∼ π(· | s, g). The value function
is defined as V π(s, g) = Eπ[

∑∞
t=0 γ

tr(st, g) | s0 = s] and
the Q function is Qπ(s, a, g) = Eπ[

∑∞
t=0 γ

tr(st, g) | s0 =
s, a0 = a]. Additionally, we define a k-distance state cen-
tric planner (k-SCP) to be a state space policy π(k)(·|s, g) :
S × G → ∆(S) that predicts the state to be reached after
k steps, conditioned on current state s and ultimate goal g.
The Bellman operator is defined as:

(Bf)(s, a, g) = Es′∼p(·|s,a)
[
r(s, g) + γf(s′, g)

]
. (1)

To characterize the value backup at the absence of actions,
we also consider the following Bellman state-state operator:

(Tf)(s, s′, g) = r(s, g) + γf(s′, g). (2)

Suboptimality and online regret. We define the subop-
timality of policy π as SubOpt(π, s, g) = V π⋆

(s, g) −
V π(s, g), where π⋆ is the optimal policy under goal g. We
consider the cumulative regret as the performance metric in
theoretical analysis, which calculates the cumulative subop-
timality for T timesteps:

Reg(T ) =
T∑

t=1

SubOpt(πt, st, g). (3)

2.1. Linear MDP

To make things more concrete in theoretical analysis, we
consider the linear MDP (Yang & Wang, 2019; Jin et al.,
2020) as follows, where the transition kernel and expected
reward function are linear with respect to a feature map.
Definition 2.1 (Linear MDP). We say a MDP M =
(S,A,G,P, r, γ) is a linear MDP with known feature maps
ψ : S × A → Rd and φ : S → Rd if there exist un-
known measures µ = (µ1, . . . , µd) over S and an unknown
vector θg ∈ Rd for each g ∈ G such that, P(s′ | s, a) =
⟨ψ(s, a), µ(s′)⟩ and r(s, g) = ⟨φ(s), θg⟩ for all (s, a, s′) ∈
S×A×S . And we assume ∥ψ(s, a)∥2 ≤ 1, ∥φ(s, a)∥2 ≤ 1
for all (s, a, s′) ∈ S ×A×S and max{∥µ(S)∥2, ∥θ∥2} ≤√
d, where ∥µ(S)∥ ≡

∫
S ∥µ(s)∥ds.

With the existence of a feature map, we can define the
coverage coefficient in the feature space as follows.
Definition 2.2 (Goal-Conditioned Coverage Coefficient).
The goal-conditioned coverage coefficient C†

G with respect
to the dataset D and the goal set G is defined as the supre-
mum of C such that the following holds for all s ∈ S, g ∈ G
with probability at least 1− ξ/2:

Eπ⋆
g

[
ϕtϕ

⊤
t

∣∣ s0 = s
]
⪰ C · ED

[
ϕtϕ

⊤
t

∣∣ s0 = s
]
, (4)
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where ξ is the confidence level, ϕt = ϕ(st, st+1) is the fea-
ture vector associated with the transition (st, st+1) defined
in Lemma F.4, π⋆

g is the optimal policy conditioned on g.

Definition 2.2 generalizes the coverage coefficient in offline
RL (Jin et al., 2020; 2021). It signifies the highest propor-
tion between the dataset distribution density and the density
induced by the optimal policy. Intuitively, a larger C†

G re-
flects better dataset quality. It is equivalent to the standard
coverage coefficient given a fixed g.

2.2. Action-Free Offline RL

IQL (Kostrikov et al., 2022) learns value function and policy
from an offline dataset annotated with action labels. To
address the passive dataset, a goal-conditioned action-free
variant of IQL (GCAF-IQL) (Xu et al., 2022; Ghosh et al.,
2023; Park et al., 2023) learns a goal-conditioned value
function V (s, g) (parameterized by θV ) by minimizing:

LV
D(θV ) = ED

(
Lτ
2

[
r(st, g) + γV̄ (st+1, g)− V (s, g)

])
(5)

where Lτ
2(x) = |τ − I(x < 0)|x2 is expectile loss with

parameter τ , and V̄ is a target network periodically updated
towards V at a slow rate. Similar to IQL, it uses expectile re-
gression to approximate policy improvement within the the
dataset’s range. Additionally, treating states as actions, any
k-SCP π(k) (parameterized by θπ(k)) can also be extracted
similarly with AWR-style objective (Peng et al., 2019):

J (k)
D (θπ(k)) = ED

[
exp

(
β · Ã(k)(st, st+k, g)

)
log π(k)(st+k|st, g)

]
,

(6)

where β is the inverse temperature hyperparameter, and
Ã(k)(st, st+k, g) =

∑t+k−1
i=t r(si, g) + γkV (st+k, g) −

V (st, g) is the advantage. Finally, if action labels become
available, the trained V (s, g) can also be used to extract the
low-level control policy πl(·|s, g) (parameterized by θπl)
by maximizing the objective:

J l
D(θπl) = ED

[
exp

(
βÃl(st, st+1, g)

)
log πl(at|st, g)

]
(7)

where Ãl(st, st+1, g) = r(st, g)+ γV (st+1, g)−V (st, g).
HIQL (Park et al., 2023) further conditions the policy
πl on a closer subgoal predicted by a trained h-SCP, in-
stead of the ultimate goal g. This hierarchical decompo-
sition aims to reduce the noise in advantage estimation
and improve performance. HIQL also shows that r and
γ can be absorbed into hyperparameter β when the re-
wards are mostly constants, simplifying the calculation of
the advantages: Ã(k)(st, st+k, g) = V (st+k, g)− V (st, g),
Ãl(st, st+1, g) = V (st+1, g)− V (st, g).

3. Theoretical Analysis
What is the statistical benefit of passive data? Intuitively,
passive data contains rich information of environment’s
dynamics. However, due to the lack of action labels, it may
be impossible to disentangle the effects of actions from the
stochasticity in the dynamics (Yang et al., 2023a; Park et al.,
2023). Confounding the two factors can lead to potential
value overestimation. This motivates us to study identifiable
dynamics where the set of outcomes of actions are known.
Definition 3.1 (Identifiable Dynamics). The dynamics
P(s′|s, a) are identifiable if for all s ∈ S, there exists a
known outcome set Φ(s) = {Pz(·|s) | z ∈ Z}, where Z is
a abstract action space, such that for all a ∈ A, there exists
some z such that Pz(s

′|s) = P(s′|s, a), and for all z ∈ Z ,
there exists some action a such that Pz(s

′|s) = P(s′|s, a).

Deterministic dynamics are always identifiable. The iden-
tifiability condition is broader than the deterministic as-
sumption used in previous studies (Park et al., 2023; Ghosh
et al., 2023). For a detailed explanation and examples of
identifiability, please refer to Appendix D. Identifiable dy-
namics enable us to estimate latent dynamics using passive
data. We find that, despite the lack of an explicit map-
ping from abstract action z to real action a, we can still
perform Bellman updates to learn the value function with-
out overestimation. Based on these insights, we design an
algorithm as shown in Algorithm 1, with a more detailed
version in Algorithm 4. The algorithm consists of an offline
phase where a pessimistic goal-conditioned value function
is learned from passive data, and an online phase where the
policy efficiently learns from dense feedbacks provided by
the pretrained value function.

Learning Passive Value Functions. We use passive data
to learn a goal-conditioned value function V̂ (s, g) via value
iteration in the abstract action spaceZ . At each iteration, we
approximate the Bellman state-state operator T with T̂ by
minimizing the TD loss, with details in Equation 15. Then
we construct a penalty Γ(s, s′, g) to account for the uncer-
tainty in the dynamics to remain pessimistic over the value
function. With high probability, the difference between the
true Bellman update TV̂ (s, g) and the approximate Bellman
update T̂V̂ (s, g) is bounded by Γ. Then the pessimistic Q
function in the abstract action space is computed as

Q̂(s, z, g) = Es′∼Pz(·|s)

[
T̂V̂ (s, g)− Γ(s, s′, g)

]
(9)

While we don’t know the exact mapping between z and
a, we can still compute the value function by taking the
maximum over z as follows

V̂ (s, g) = max
z∈Z

Q̂(s, z, g). (10)

Online learning. An optimal value function can provide
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Algorithm 1 Online Learning with Passive Value Iteration
Input: Passive dataset D = {s1, s2, · · · , sN}, potential
goals G, parameter ζ

1: ▷ Offline Phase
2: for every g in G do
3: Set V̂ (s, g) ← 0 and construct the negative bonus

Γ(s, s′, g) according to Equation 13.
4: while not converged do
5: Compute Bellman update as in Equation 9.
6: Update value function V̂ (s, g) as in Equation 10.
7: end while
8: end for
9: ▷ Online Phase

10: Receive the target goal g and initial state s1.
11: Randomly initialize π1.
12: for t = 1, . . . , T do
13: Execute at ∼ πt(·|st, g).
14: Receive reward r(st, g) and compute the approxi-

mate advantage:

Â(st, at, g) = r(st, g) + γV̂ (st+1, g)− V̂ (st, g).
(8)

15: Compute the optimistic advantage function Ãt ac-
cording to Equation 19.

16: Update policy πt+1 to maximize Ãt(a, s, g).
17: end for

dense feedbacks for any transition. Therefore, we can ap-
ply bandit algorithms to learn the optimal policy, where we
use the advantage function Â(st, at, g) with respect to the
offline learned value function as the supervison. We con-
struct an optimistic advantage function Ãt with a bonus for
exploration as described in Equation 19. The policy learns
by maximizing Ãt.

3.1. Theoretical Guarantees

In this section, we provide the theoretical guarantees of Al-
gorithm 1. Similar to standard offline reinforcement learn-
ing, the goal-conditioned value function learned from pas-
sive data has the following guarantee.
Theorem 3.2 (Estimation Error of Goal-Conditioned Value
Function). Consider a linear MDP with identifiable dynam-
ics. Suppose the passive dataset D have positive cover-
age coefficients C†

G , then the offline learned value function
V̂ (s, g) in Equation 10 satisfies, for all s ∈ S, g ∈ G,

|V̂ (s, g)− V ⋆(s, g)| ≤ 2crmax

(1− γ)2

√
d2ζ

NC†
G

with probability 1− ξ, where ζ are logarithmic factors and
c is an absolute constant.

See Appendix F.1 for detailed proof. Theorem 3.2 indicates

that when the dynamics are identifiable, we can learn an
approximate state value function V̂ (s, g) as in standard
offline RL despite the lack of action labels. Consequently,
the online regret of Algorithm 1 can be upper bounded by
the following theorem.

Theorem 3.3. The online regret of Algorithm 1 is upper
bounded by

Reg(T ) ≤ 2crmax

(1− γ)2

√
d2ζ1

NC†
G
T︸ ︷︷ ︸

offline error

+
2
√
d2ζ2 · rmax

1− γ
√
T︸ ︷︷ ︸

online error with reduced horizon

,

where ζ1 and ζ2 are logarithmic factors.

See Appendix F.2 for the proof. Theorem 3.3 provides a
clear decomposition of the suboptimality exhibited by Al-
gorithm 1 into two distinct terms: the online exploration
cost and the offline estimation error. The estimation error
stems from the bias in learning from a finite-sample dataset
as discussed in Theorem 3.2, while the online term captures
the cost associated with exploration. Compared to online
learning without passive data, the online error term is re-
duced by a factor of 1− γ. In scenarios where the passive
data is abundant (N ≫ T ), as frequently observed in real-
world settings, the offline error term becomes negligible.
Consequently, our algorithm exhibits significantly reduced
regret in comparison to naive online learning.

Corollary 3.4. When N ≥ C†
GT/γ

2, the regret bound of
Algorithm 1 is smaller than pure online learning.

See Appendix F.3 for the proof. To summarize, we provide
an explanation of intuitions behind the theoretical analysis.
We first show that we can estimate the goal-conditioned
value function accurately with pure offline data (Theo-
rem 3.2). This is because the state value function is not
a function of actions and we can estimate it using standard
offline RL. Then we can reuse this value function to reduce
the problem horizon. By providing an immediate feedback
using V̂ (st+1, g), the regret does not depend on the horizon
of the problem and the regret bound is improved as shown in
Theorem 3.3. In essence, sufficient amount of passive data
can reduce the effective horizon of the problem, enhancing
the efficiency of online learning.

4. Multiscale State Centric Planners (MSCP)
The theorem suggests that in identifiable dynamics, learning
a goal-conditioned value function V (s, g) from passive data
is a general and provably beneficial way for subsequent
online RL. The pretrained value function reduces the policy
horizon and provides dense supervision signals. It is worth
noting that the goal-conditioned action-free variant of IQL
(GCAF-IQL), introduced in Section 2.2, can be regarded as
an empirical counterpart of Algorithm 1. In contrast to the
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optimistic Bellman operator, the use of expectile regression
in GCAF-IQL approximates the pessimistic value iteration.
The advantage weighted regression method approximates
the one-step maximization of advantages in Algorithm 1.

However, when designing an efficient empirical algorithm,
it is important to consider that the pretrained value func-
tion may not be optimal due to optimization difficulties and
limited dataset coverage. Specifically, V (s, g) may make er-
roneous generalization on out-of-distribution (OOD) states
encountered during online exploration. Additionally, since
the advantage in Equation 8 depends on both states st, st+1

and goal g, conditioning on subgoals at varying distances
allows guidance signals at different abstract levels be ex-
tracted from the pretrained V to facilitate policy learning.

Based on these insights, we propose a novel algorithm called
Multiscale State Centric Planners (MSCP). Similar to Park
et al. (2023), we consider the same state space S as the goal
space G, focusing on solving the goal-reaching problem.
The reward function r(s, g)(s, g ∈ S) is defined as 0 if s =
g, and -1 otherwise. We first introduce the pretraining of
MSCP, which includes learning a goal conditioned V (s, g)
and a fast SCP and a slow SCP, operating at distinct scales.
Then we explain how the fast SCP serves as a pessimistic
regularizer to mitigate the distributional shift caused by the
transition from offline to online. Finally, we describe the
overall online procedure of MSCP that efficiently leverages
multiscale guidance.

4.1. Value Pretrain and SCP Extraction

As explained above, MSCP learns a goal-conditioned value
function V (s, g) (parameterized by θV ) with GCAF-IQL
by minimizing the loss function in Equation 5. Meanwhile,
we extract a fast 1-SCP πf that plans immediate next states,
and a slow h-SCP πs that plans at horizon h, parameterized
by θf , θs repectively, by maximizing the objective in Equa-
tion 6, setting k = 1 and k = h respectively. The SPCs will
be used to better guide online policy learning.

4.2. Fast SCP as Pessimistic Regularizer

In online RL, if we train control policy πl(·|s, g) (parame-
terized by θl) solely from the advantage weighted regression
with respect to the advantage estimates Ãl(st, st+1, g) =
V (st+1, g)− V (st, g), as previous works such as POR (Xu
et al., 2022) and HIQL (Park et al., 2023), the extrapolation
error in value estimates will sevely hamper the learning of
πl. For instance, if πl explores a state s that is not present in
the dataset, the pretrained V may predict an arbitrary value,
rendering the advantage estimate ineffective.

We propose levaraging a pretrained 1-SCP πf to provide
immediate pessimistic guidance for πl. An AWR-style ob-
jective (Equation 6) constrains the SCP to plan within the

support of the dataset. Given that the fast SCP πf is well
trained, its predictions will always stay within the dataset
as long as the input st is in the dataset. Therefore, we can
use πf to plan the next state and construct an intrinsic re-
ward to encourage πl to explore with conservatism. Let
s̃t+1 denote the predicted next state of πf . We define the
intrinsic reward as rf (st+1, s̃t+1) = −∥st+1 − s̃t+1∥2. To
avoid interfering with the pretrained V , which accounts for
goal-reaching returns, we train a separate value function
V f (st, g) online to fit the expected one-step intrinsic re-
ward: E(st,st+1)∼πr

f (st+1, s̃t+1). For a mini-batch B, the
loss function is:

LV f

B (θV f ) = EB
[
∥rf (st+1, s̃t+1)− V f (st, g)∥2

]
. (11)

Since V f (st, g) regresses towards a one-step reward in-
stead of a cumulative return, the corresponding advantage
function Af can be calculated simply as rf (st+1, s̃t+1)−
V f (st, g). Finally, Af will be used for low-level policy
learning which will be further explained in Section 4.3.

4.3. Multiscale SCP for Comprehensive Guidance

Remarkably, through the intrinsic reward rf defined above,
the fast SCP not only provides pessimistic regularization but
also serves as a one-step target for πl to reach. An ideal πf is
able to guide πl step by step, and maximizing rf is sufficient.
However, in practice, the predictions of next states are noisy.
Planning states at a moderate distance, on the other hand,
can offer enhanced long-term planning ability (Park et al.,
2023). The empirical results in Section 5.3 also shows that
a slow SCP tends to focus on long-term objectives such
as navigation, while a fast SCP places more emphasis on
short-term objectives such as locomotion. Consequently,
our MSCP algorithm trains a slow h-SCP πs (h > 1) in
addition to the fast SCP πf , utilizing both SCPs to provide
comprehensive guidance for policy learning. For the slow
SCP, the L2 distance of two states st, st+h, where h is large,
is not useful to construct an intrinsic reward. Therefore, we
adopt the hierarchical policy extraction structure following
HIQL (Park et al., 2023). Specifically, πs predicts subgoals
that are h steps away and the policy πl and advantage Ãl are
conditioned on these subgoals to utilize the planning ability
of πs (see Equation 7).

Finally, MSCP trains πl with AWR-style objective, utilizing
the guidance from multiscale SCPs:

J l
B(θπl) =

1

|B|
∑
B

[
exp

(
β
(
Ãl(st, st+1, st+h)

+ CfAf (st, st+1, g)
))

log πl(at|st, st+h)
] (12)

where Af (st, st+1, g) = rf (st+1, s̃t+1) − V f (st, g) rep-
resents immediate guidance and pessimistic regulariza-
tion from fast SCP, Ãl(st, st+1, st+h) = V (st+1, st+h)−

6
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Algorithm 2 MSCP: Online Reinforcement Learning
Input: pretrained value functions and SCPs: V , V̄ , πf ,
πs, action-free dataset D, horizon h, learning rate α, target
upadte rate ϵ, number of steps N

1: Initialize low-level policy πl with parameters θπl

2: Initialize value function V f with parameters θV f

3: Initialize an empty replay bufferR
4: for i = 1 to N do
5: (st, at, st+1, g)← rollout(πs, πl)
6: Add the collected transition intoR
7: Sample a batch BD of (st, st+1, st+k, g) from D
8: Sample a batch BR of (st, st+1, st+k, g) fromR
9: B ← BD ∪ BR

10: θV ← θV − α∇LV
B (θV ) {Equation 5}

11: θV f ← θV f − α∇LV f

B (θV f ) {Equation 11}
12: θπl ← θπl + α∇J l

BR(θπl) {Equation 12}
13: θ̄V ← ϵθV + (1− ϵ)θ̄V
14: if also tune state-centric planners then
15: θπf ← θπf + α∇J (1)

B (θπf ) {Equation 6, k = 1}
16: θπs ← θπs + α∇J (h)

B (θπs) {Equation 6, k = h}
17: end if
18: end for
19: return πl, πs

V (st, st+h) represents the slow SCP’s guidance that focus
more on long-term planning abilities, and Cf is a hyperpa-
rameter used to balance the supervision from the fast SCP
and the slow SCP. The original r and γ in calculating Ãl are
absorbed into β as explained in Section 2.2.

4.4. Algorithm Summary

The pretraining and online stages of MSCP are presented
in Algorithm 3 and Algorithm 2 respectively. In online
RL, MSCP also finetunes the pretrained V with both online
and offline data, and optionally tunes the two SCPs. This
technique is commonly employed in offline-to-online RL to
address the distributional shift problem and prevent catas-
trophic forgetting. The same trick is also applied to HIQL
baseline for fairness. In tasks involving visual inputs, where
predicting states in the image space can be difficult, we
simply train a goal representation when learning the value
function (Park et al., 2023). Both the planning of SCPs and
the calculation of intrinsic rewards are conducted in this
latent space of representation. Additional implementation
details and hyperparameters can be found in Appendix B.

5. Experiment
We conduct extensive experiments in four challenging envi-
ronments that prioritize long-term planning: the AntMaze
and Kitchen in D4RL (Fu et al., 2020), CALVIN (Mees et al.,

2022), and Procgen Maze (Cobbe et al., 2020). The environ-
ments are shown in Figure 5. We follow Park et al. (2023)
for the setup of environments and datasets. We remove the
action and reward labels from all the datasets and retain only
state sequences. Throughout the experiments, we compare
with ICVF (Ghosh et al., 2023), HIQL (Park et al., 2023),
and AF-Guide (Zhu et al., 2023). We also include the re-
sults of an offline RL oracle that has access to the action
labels of the dataset. We select HIQL as the oracle due to its
performance which surpasses other baselines such as IQL
(Kostrikov et al., 2022) and trajectory transformer (Janner
et al., 2021). To demonstrate the difficulty of the tasks and
the advantages of pretraining, we also include the results
of online RL using SAC, which does not utilize any offline
data. In all our experiments, we use 3M online environ-
ment steps and aggregate the results from five random seeds.
Please refer to Appendix C for additional empirical results,
including the impact of hyperparameters in Appendix C.2.

5.1. Environment Setup and Result

The AntMaze, Kitchen, and CALVIN environments present
challenges in terms of long-term planning and learning navi-
gation or manipulation skills from a continuous action space
through pure online exploration. Additional details can be
found in Appendix B.1. In Table 1, we display the normal-
ized score of 11 tasks in these environments. ICVF’s pre-
trained representation fails to benefit online learning. While
AF-Guide successfully solves the easiest umaze tasks, its
performance deteriorates rapidly as the difficulty increases.
It shows that only training a one-step planner is insuffi-
cient to handle long-horizon planning. Our method MSCP
demonstrates consistent strong performance in all the tasks.
In Figure 2, we show the learning curves in four Antaze
tasks, whose difficulties increase from left to right. The
advantage of MSCP becomes increasingly evident as diffi-
culty increases, showcasing MSCP’s superiority in solving
long-term planning problems. Remarkly, the pure online
RL fails to solve any AntMaze tasks, which underscores the
benefits of pretraining.

The training datasets for Procgen-Maze-500 and Procgen-
Maze-1000 consist of 500 and 1000 mazes respectively, with
visual input. A trained policy is also evaluated on held-out
test mazes. The results in Table 2 show that our method
surpasses the HIQL baseline, particularly in Procgen-Maze-
500 where the data distribution is narrower. This suggests
that MSCP is effective in extracting valuable information
from a dataset with limited coverage.

5.2. Effectiveness of Pessimistic Regularization

We conduct ablation study to show the existence of dis-
tributional shift from offline to online, and demonstrate
that MSCP successfully mitigates the issue through the pes-
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Table 1. Experiment results in eight AntMaze tasks, two Kitchen tasks, and one CALVIN task. We report the mean and standard deviation
of the normalized scores across five random seeds.

TASK
OFFLINE RL

ORACLE
PASSIVE RL ONLINE RL

(SAC)ICVF AF-GUIDE HIQL MSCP (OURS)

ANTMAZE-UMAZE 85.4 ± 7.5 0.0 ± 0.0 100.0 ± 0.0 94.6 ± 2.1 97.3 ± 2.6 0.0 ± 0.0
ANTMAZE-UMAZE-DIVERSE 87.8 ± 1.1 0.0 ± 0.0 98.0 ± 4.5 91.9 ± 4.4 96.9 ± 2.6 0.0 ± 0.0
ANTMAZE-MEDIUM-PLAY 88.5 ± 5.1 0.0 ± 0.0 0.0 ± 0.0 69.6 ± 9.7 96.5 ± 3.2 0.0 ± 0.0
ANTMAZE-MEDIUM-DIVERSE 85.3 ± 6.2 0.0 ± 0.0 0.0 ± 0.0 81.9 ± 5.9 92.7 ± 4.8 0.0 ± 0.0
ANTMAZE-LARGE-PLAY 80.4 ± 4.4 0.0 ± 0.0 0.0 ± 0.0 57.3 ± 39.1 92.3 ± 2.7 0.0 ± 0.0
ANTMAZE-LARGE-DIVERSE 86.5 ± 6.5 0.0 ± 0.0 0.0 ± 0.0 49.6 ± 30.4 94.2 ± 3.0 0.0 ± 0.0
ANTMAZE-ULTRA-PLAY 44.6 ± 13.4 0.0 ± 0.0 0.0 ± 0.0 15.0 ± 14.5 55.4 ± 18.0 0.0 ± 0.0
ANTMAZE-ULTRA-DIVERSE 45.4 ± 15.5 0.0 ± 0.0 0.0 ± 0.0 26.9 ± 17.4 80.8 ± 10.3 0.0 ± 0.0
KITCHEN-PARTIAL 36.2 ± 20.7 0.0 ± 0.0 0.0 ± 0.0 13.1 ± 10.4 33.0 ± 18.6 17.0 ± 16.1
KITCHEN-MIXED 41.4 ± 21.5 0.0 ± 0.0 0.0 ± 0.0 14.8 ± 11.9 39.8 ± 8.4 10.0 ± 13.7
CALVIN 81.2 ± 15.2 44.9 ± 20.7 10.0 ± 13.7 44.5 ± 21.3 65.0 ± 13.7 50.0 ± 35.4
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Figure 2. Learning curves in four AntMaze tasks: umaze-diverse, medium-diverse, large-diverse, and ultra-diverse. From left to right, the
task difficulty quickly increases as the maze size grows. The x-axis represents environment steps, and the y-axis is the normalized score.
The shaded area represents the standard deviation. The grey dashed line represents the performance of offline RL.

Table 2. Normalized scores in both the training and testing mazes
of Procgen-Maze-500 and Procgen-Maze-1000 tasks.

TASK
OFFLINE RL

ORACLE
PASSIVE RL

HIQL MSCP(OURS)

500-TRAIN 83.3 ± 10.1 60.4 ± 12.1 77.7 ± 8.3
500-TEST 70.7 ± 6.1 48.1 ± 8.7 62.3 ± 9.3
1000-TRAIN 89.3 ± 11.6 82.3 ± 4.2 88.9 ± 5.8
1000-TEST 86.0 ± 2.0 70.0 ± 7.4 74.2 ± 7.8

simistic regularization forced by the fast SCP. Recall that
both MSCP and pervious method HIQL pretrain V to pro-
vide training signals for online policy. MSCP additionally
has pessimistic guidance from a fast SCP. In the left part of
Figure 3, HIQL fails if we fix the pretrained V and let the
policy learn from online data (online w/o tune). However,
when provided with an action-annotated version of the same
dataset used in pretraining, HIQL learns quickly (offline). It
shows that the pretrained V only provides useful guidance
within the range of the dataset, and generalizes poorly on
online data. If we continue to tune V with both offline and
online data in online RL (online w/ tune), HIQL starts to
learn useful behavior, which further proves the existence
of distributional shift. For MSCP, we also consider the on-
line w/o Ãl case where we only use the one-step guidance
from the fast SCP to train the policy (removing Ãl in Equa-

0 1 2 3
Step 1e6

0

50

100

No
rm

al
ize

d 
Sc

or
e

HIQL

0 1 2 3
Step 1e6

MSCP

ablation
online w/ tune
offline
online w/o tune
online w/o Al

Figure 3. Ablation study for pessimistic regularization. The exper-
iments are conducted in the antmaze-large-diverse task.

tion 12). In the right part of Figure 3, when the pretrained V
is fixed, MSCP still shows good performance, and is better
than not using V at all (online w/o Ãl). It shows that the
pretrained V still contributes to policy learning, indicating
that the pessimistic regularization constrains the policy to
stay close to the dataset, mitigating the extrapolation error
and better leveraging the pretrained V . In Appendix C.3, we
also visualize that, compared to HIQL, the policy learned
by MSCP is closer to the policy learned offline.

5.3. Effectiveness of Multiscale Planning

We consider three ablation studies to evaluate the efficacy
of multiscale planning: (1) the removal of fast SCP, which
is HIQL; (2) the removal of Ãl in policy loss as has been
explained previously; and (3) the removal of the whole slow
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Table 3. Ablation studies of the fast SCP, the guidance extracted by the slow SCP from the pretrained value function, and the whole slow
SCP. All the components are critical for the effectiveness of multiscale planning.

TASK MSCP (OURS) W/O FAST SCP W/O Ãl W/O SLOW SCP

ANTMAZE-UMAZE-DIVERSE 96.9 ± 2.6 91.9 ± 4.4 48.8 ± 31.7 0.0 ± 0.0
ANTMAZE-LARGE-DIVERSE 94.2 ± 3.0 49.6 ± 30.4 40.0 ± 32.3 0.0 ± 0.0
ANTMAZE-ULTRA-DIVERSE 80.8 ± 10.3 26.9 ± 17.4 0.0 ± 0.0 0.0 ± 0.0
CALVIN 65.0 ± 13.7 44.5 ± 21.3 18.6 ± 32.5 0.0 ± 0.0

Figure 4. The intrinsic reward rf (st+1, s̃t+1) and the negated L2
distance between the xy coordinates of st+1 and s̃t+1.

SCP. In both (2) and (3), the policy only learns from the
guidance of fast SCP. In (2), the policy still conditions on
a closer subgoal predicted by slow SCP, while in (3), the
policy directly conditions on ultimate goal g. As shown in
Table 3, both the slow and fast SCPs have significant contri-
butions to the overall efficiency of our MSCP algorithm.

We use AntMaze to provide an intuitive understanding
of what objectives the two SCPs prioritize respectively.
The state s in AntMaze consists of navigation features (xy
coordinates of the ant) and locomotion features (relative
positions and velocities of the robot’s joints). Figure 4
shows that policy learns to maximize the intrinsic reward
rf (st+1, s̃t+1) = −∥st+1 − s̃t+1∥2. However, the distance
between the xy coordinations of the actual next state st+1

and s̃t+1 predicted by the fast SCP actually increases as
training proceeds. It indicates that the fast SCP prioritizes
providing guidance on locomotion, while the predicted next
state’s xy position can be too noisy to assist navigation. On
the contrary, we visualize that the slow SCP plans appropri-
ate subgoals to guide the navigation in Appendix C.4.

6. Conclusion
We demonstrate the provable statistical benefit of pretraining
a goal-conditioned value function in passive RL. Building
upon the insights, we propose a novel algorithm named Mul-
tiscale State-Centric Planners (MSCP) that leverages two
state-centric planners to extract comprehensive guidance
from imperfectly pretrained value functions. MSCP also
forces pessimistic regularization to mitigate the extrapola-
tion error arising from the distributional shift from offline
to online. Empirical studies demonstrate the superiority of
MSCP and confirm the significance of all components.
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A. MSCP Algorithm
In Algorithm 3, we show the pretraining of MSCP from a passive dataset D that is action-free and reward-free. It learns a
goal-conditioned value function V (s, g), a fast SCP πf that predicts immediate next next, and a slow SCP πs that predicts
states that are h steps away.

Algorithm 3 MSCP: Passive Pretraining
Input: action-free dataset D, horizon h, learning rate α, target upadte rate ϵ

1: Initialize goal-conditioned value function V and its target network V̄ , fast SCP πf , h-distance slow SCP πs with
parameters θV , θ̄V , θπf , θπs respectively

2: θ̄V ← θV
3: while not converged do
4: Sample a batch B of (st, st+1, st+k, g) from D.
5: θV ← θV − α∇LV

B (θV ) {Equation 5}
6: θπf ← θπf + α∇J (1)

B (θπf ) {Equation 6, k = 1}
7: θπs ← θπs + α∇J (h)

B (θπs) {Equation 6, k = h}
8: θ̄V ← ϵθV + (1− ϵ)θ̄V
9: end while

10: return V , V̄ , πf , πs

B. Implementation Details
B.1. Environment Description

Figure 5. Environments used in experiments. From left to right: (1) AntMaze, (2) Kitchen, (3) CALVIN, (4) Procgen Maze.

We conduct extensive experiments in four challenging environments that prioritize long-term planning: the AntMaze and
Kitchen environment in D4RL (Fu et al., 2020), CALVIN (Mees et al., 2022), and Procgen Maze (Cobbe et al., 2020). The
environments are shown in Figure 5. We follow Park et al. (2023) for the setup of environments and datasets. We remove the
action and reward labels from all datasets and retain only state sequences. For all environments, we report the normalized
score which transforms the trajectory returns from [0, Renv

max] into [0, 100].

AntMaze AntMaze (Fu et al., 2020) is a navigation task where the policy controls an 8-DoF quadraped robot to walk from
the starting position of the maze to the target position. The robot is only rewarded when it reaches the target. We use four
maze layouts: umaze, medium, large, and large, whose difficulties gradually increase. We use the standard datasets provided
by Fu et al. (2020); Jiang et al. (2023); Park et al. (2023)

Kitchen Kitchen (Fu et al., 2020; Gupta et al., 2020) is a manipulation task where the policy controls a 9-DoF robot arm to
finish four subtasks in a kitchen environment, including opening the microwave, moving kettle, turning on light switch, and
opening the sliding cabinet door. The robot receives a +1 upon the finishing of one subtask. We use the dataset provided by
Fu et al. (2020).
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CALVIN CALVIN (Mees et al., 2022) is similar to Kitchen, also featuring four manipulation subtasks. We use the dataset
provided by Shi et al. (2022).

Procgen Maze Procgen Maze is part of a set of procedural generated environment (Cobbe et al., 2020) that focusing on
evaluating generalization ability. It uses 64x64x3 image input instead of vector features. The policy controls with discrete
actions. For Procgen-Maze-500, we use 500 mazes in both offline pretraining and online RL to learn. The performance of
the policy is evaluated on both the training mazes and a set of held-out test mazes. It is in the same for Procgen-Maze-1000.
We use the dataset provided by Park et al. (2023).

B.2. Hyperparameters

Our code is built upon Park et al. (2023). For all the tasks in AntMaze and Kitchen, we use the same set of hyperparameters,
illustrated in Table 4. The hyperparameter Cf is newly introduced by MSCP, and we use 7.0 for all of these tasks. For
CALVIN, listed in Table 5, we propose subgoals in a latent space of dimension 10, and use Cf = 1. We additionally tune
both SCPs with both online and offline data in the online stage. In Procgen Maze (shown in table Table 6), in order to
address the visual inputs, we also plans subgoals in the latent space. We set Cf = 3 and h = 3. We use the same network
architecture as Park et al. (2023), using an IMPALA CNN (Espeholt et al., 2018) for processing visual inputs, and a 3 layer
MLP with 512 hidden units for all other network. The goal representation is trained solely from the gradients of value
updates. We employ no additional reconstruction loss or contrastive loss.

For fairness, we use the same set of hyperparameters for the HIQL baseline. For the offline oracle, we use HIQL to learn
purely from the dataset that contains action labels. For the passive RL setting, we use HIQL to pretrain its value function
and high-level planner on an action-free dataset, and then learns the low-level control policy with online collected data.

For both HIQL and MSCP, we also tune the pretrained value function in online RL, with half of the data sampled from the
offline dataset, and the other half sampled from the replay buffer. HIQL cannot solve the AntMaze without this technique,
while MSCP is also witnessed a slight decrease in performance (see Figure 3).

Table 4. Hyperparameters used in all AntMaze and Kitchen tasks.
EXPECTILE τ 0.7 EXPLORATION TEMPERATURE 1.0 DISCOUNT FACTOR γ 0.99
SLOW SCP h 25 TUNE VALUE TRUE TUNE SCPS FALSE
NUM WORKERS 8 STEPS 3M REPLAY BUFFER SIZE 300K
UPDATE RATIO 2 IQL TEMPERATURE β 1 BATCH SIZE 1024
Cf 7.0 LATENT GOAL SPACE FALSE

Table 5. Hyperparameters used in CALVIN.
EXPECTILE τ 0.7 EXPLORATION TEMPERATURE 1.0 DISCOUNT FACTOR γ 0.99
SLOW SCP h 25 TUNE VALUE TRUE TUNE SCPS TRUE
NUM WORKERS 8 STEPS 3M REPLAY BUFFER SIZE 300K
UPDATE RATIO 2 IQL TEMPERATURE β 1 BATCH SIZE 1024
Cf 1.0 LATENT GOAL SPACE TRUE LATENT DIMENSION 10

Table 6. Hyperparameters used in Procgen Maze.
EXPECTILE τ 0.7 EXPLORATION TEMPERATURE 1.0 DISCOUNT FACTOR γ 0.99
SLOW SCP h 3 TUNE VALUE TRUE TUNE SCPS TRUE
NUM WORKERS 8 STEPS 3M REPLAY BUFFER SIZE 300K
UPDATE RATIO 2 IQL TEMPERATURE β 1 BATCH SIZE 1024
Cf 3.0 LATENT GOAL SPACE TRUE LATENT DIMENSION 10

C. Additional Experiment Results
C.1. Learning Curves

We show the learning curves in all the experiment environments in Figure 6, Figure 7, and Figure 8. In AntMaze, we
use 1M gradient steps in pretraining from passive dataset for our method MSCP and all other passive RL baselines. For
Kitchen, CALVIN, and Procgen Maze, we use 500K gradient updates. In the online learning stage, all methods consume 3M
environment steps. All results are aggregated with five random seeds.
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Figure 6. Learning curves in eight tasks of D4RL AntMaze, comparing our method MSCP with baselines. The x-axis is the environment
step in online training, the y-axis represents normalized score. We report the mean and standard deviation of the normalized score across
five random seeds.
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Figure 7. Learning curves in two tasks of Kitchen, and one task in CALVIN, comparing our method MSCP with baselines. The x-axis
is the environment step in online training, the y-axis represents normalized score. We report the mean and standard deviation of the
normalized score across five random seeds.

C.2. Hyperparameters

One major hyperparamter introduced by our method MSCP is Cf , which balances the supervision from the fast SCP and
the slow SCP as outlined in Equation 12. A larger Cf indicates a greater reliance on the fast SCP. In Table 7, we show the
experiment results in the antmaze-medium-diverse and antmaze-large-diverse tasks with different Cf settings. The results
reported in the paper use Cf = 7, and Cf = 0 is equivalent to the HIQL baseline. The “w/o Ãl” refers to the case where
only the fast SCP is used (see Section 5.2 for details). The results show that MSCP is not sensitive to Cf as long as it lies
within a suitable range.

Another hyperparameter is whether to tune the state-centric planners (SCPs) (Lines 14-16 of Algorithm 2). For the AntMaze
and Kitchen tasks, we find that this choice does not have a significant impact. In contrast, as shown in Table 8, for the
CALVIN and Procgen-Maze tasks, tuning the SCPs is necessary.

Lastly, we examine the impact of using different exploration temperatures in online fine-tuning. In the results reported in the
paper, we set the exploration temperature to 1. As shown in Table 9, compared with Cf , MSCP is more sensitive to the
exploration temperature.
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Figure 8. Learning curves in two Procgen Maze tasks. The Procgen-500 consists of 500 mazes for training in both the offline dataset and
online learning, while Procgen-1000 uses 1000 maze. The evaluation results on both of the training mazes and a set of held-out testing
mazes are reported. The x-axis is the environment step in online training, the y-axis represents normalized score. We report the mean and
standard deviation of the normalized score across five random seeds.

Table 7. Experiments in the antmaze-medium-diverse and antmaze-large-diverse tasks with different Cf settings.

Cf ANTMAZE-MEDIUM-DIVERSE ANTMAZE-LARGE-DIVERSE

0 81.9± 5.9 48.6± 29.7
1 85.1± 12.9 75.0± 5.1
3 94.2± 1.9 87.5± 9.5
5 90.4± 4.1 93.8± 3.2
7 92.7± 4.8 94.2± 3.0
10 95.6± 2.0 91.0± 5.6
20 91.3± 4.1 90.4± 6.9

W/O Ãl 69.2± 26.3 40.0± 32.3

C.3. Visualization of Learned Policies with t-SNE

We use t-SNE (van der Maaten & Hinton, 2008) to visualize the behavior of the policies learned by our method MSCP and
baseline algorithm HIQL, compared against the policy learned fully from an offline dataset that reveals the action labels. We
collect multiple trajectories with each of the policies in AntMaze-Large-Diverse, and embed all of the states encountered
into a 2D space with t-SNE. In Figure 9, the backlight represents the state distribution of the offline trained policy. The red
and yellow dots indicate the states visited by MSCP and HIQL respectively. As can be seen in the figure, most states visited
by MSCP are also within the support of the offline policy. On the contrary, a large portion of states (marked out with a green
ellipse) visited by HIQL lie outside the distribution of the offline policy. It indicates that, compared with HIQL, the policy
learned by MSCP is much closer to the offline policy, showing the MSCP’s ability to efficiently explore within the support
of the dataset.

C.4. Visualization of Subgoals Planned by Slow SCP

In Figure 10, we demonstrate a sample trajectory collected by MSCP policy in the AntMaze-Large-Diverse task, where an
ant robot needs to walk from the bottom left corner to the top right corner of the maze. The slow SCP predicts a state that is
25 steps away to serve as a subgoal to guide the ant. The red squares indicate the xy positions of the subgoals predicted by
the slow SCP. The slow SCP is able to plan subgoals at an appropriate distance along the whole trajectory. It shows that the
slow SCP can provide valuable guidance in navigation.
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Table 8. Experiments of whether to tune the SCPs.

W/ SCP FINETUNING W/O SCP FINETUNING

CALVIN 65.0± 13.7 29.3± 28.5
PROCGENMAZE 500-TRAIN 77.7± 8.3 41.4± 0.04
PROCGENMAZE 500-TEST 62.3± 9.3 26.0± 0.04

Table 9. Experiments of exploration temperature.

EXPLORATION TEMPERATURE 0.5 0.8 0.9 1 1.5 2 5.0

ANTMAZE-MEDIUM-DIVERSE 0 84.0± 11.8 96.8± 1.1 92.7± 4.8 78.8± 15.3 44.7± 37.4 0
ANTMAZE-LARGE-DIVERSE 0 0 81.4± 10.6 94.2± 3.0 79.5± 4.8 0 0

Figure 9. The t-SNE visualization of the state distributions of policies learned by MSCP and HIQL. The backlight represents the state
distribution of an offline policy. The green ellipse mark out a portion of states visited by HIQL that lie outside the distribution of offline
policy. The policy learned by MSCP behaves much similarly to an offline policy, indicating its ability to explore and learn within the
range of the dataset.

Figure 10. A sample trajctory of MSCP in AntMaze-Large-Diverse, where the red squres represent the subgoals predicted by the slow
SCP. An ant robot needs to walk from the bottom left corner to the top right corner of the maze to finish the task.

18



Planning, Fast and Slow: Online Reinforcement Learning with Action-Free Offline Data via Multiscale Planners

D. Identifiable Dynamics
In this section, we given an explanation and some examples for the identifiable dynamics in Definition 3.1.

Intuitively, when the dynamics are identifiable, we know all the potential outcomes (i.e., distribution of the next state) of
possible actions. This is a much weaker assumption than knowing the whole dynamics, since we may not know the exact
mapping between the action and the outcome. One intuitive example is the deterministic dynamics, which are always
identifiable with respect to reachable next states Φ(s) = {s′

∣∣∃ a, P (s′|s, a) = 1}. While we don’t know the exact mapping
from the outcome s′ and action a, we can still calculate the Bellman update by taking the maximum over all possible
outcomes s′. Another example is Linear–quadratic–Gaussian (LQG) control with dynamics xt+1 = Axt +But + vt where
vt ∼ N (0, 1). While we may not know the exact parameter for the dynamics, we know the distribution for the next state
must be Gaussian. Then the LQG is identifiable with Φ(x) = {N (x0, 1)

∣∣∃u, x0 = Ax+Bu}. From the above example,
we can see that the identifiablity assumption is general than deterministic dynamics, as usually assumed in prior works (Park
et al., 2023; Ghosh et al., 2023).

E. Details of Algorithms 1
Here we provide a detailed version of Algorithms 1, as shown in Algorithm 4.
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Algorithm 4 Online Learning with Passive Value Iteration
Input: Passive dataset D = {s1, s2, . . . , sN}, potential goals G, parameter ζ

1: ▷ Offline Phase
2: for every g in G do
3: Initialization: Set V̂ (s, g)← 0
4: Construct the uncertainty quantifier

Γ(s, s′)← β ·
(
ϕ(s, s′)⊤Λ−1

D ϕ(s, s′)
)1/2

, (13)

where ΛD =
∑N

i=1 ϕ(si, si+1)ϕ(si, si+1)
⊤.

5: while not converged do
6: Compute the parameter for the state-state Q-value function via Ridge regression

ν̂t ← argmin
ν∈Rd

N∑
τ=1

(
Rτ − ϕ(sτ , sτ+1)

⊤ν
)2

+
λ

2
∥ν∥2, (14)

7: Construct approximate operator
(T̂V )(s, s′)← ϕ(s, s′, g)⊤ν̂t. (15)

8: Compute pessimistic Q-value function Q̂(s, z, g)

Q̂(s, z, g)← Es′∼Pz(·|s)

[
(T̂V )(s, s′)− Γ(s, s′, g)

]
(16)

9: Compute the pessimistic value function

V̂ (·, g)← max
z∈Z

Q̂(·, z, g). (17)

10: end while
11: end for
12: ▷ Online Phase
13: Randomly initialize π1.
14: Receive the target goal g and initial state s1.
15: for t = 1, . . . , T do
16: Execute at ∼ πt(·|st).
17: Receive reward r(st+1) and compute approximate advantage Â(st, at, g) = r(st, g) + γV̂ (st+1, g)− V̂ (st, g).
18: Estimate the parameter of the optimistic advantage function via Ridge regression

ŵt ← argmin
w∈Rd

t∑
i=1

(Â(st, at, g)− ϕ(s, a)⊤w)2 +
λ

2
∥w∥2 (18)

19: Compute the optimistic advantage function

Ât(s, a, g)← ϕ(s, a)⊤ŵt + βt(ϕ(s, a)
⊤Σ−1

t ϕ(s, a))1/2 (19)

20: Update policy
πt+1(·|s, g)← argmax

π
⟨π(·|s, g), Ât(·, s, g)⟩A. (20)

21: end for
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F. Missing Proofs and Auxiliary Lemmas
F.1. Proof of Theorem 3.2

Proof. We prove a slightly weaker version of Theorem 3.2 and we aim to show that

|V̂ (s, g)− V ⋆(s, g)| ≤ 2crmax

(1− γ)2

√
d3ζ

NC†
G

with probability 1− 2δ. This error bound has a d3/2 dependence on the dimension of the problem. However, this can be
improved to d by using a fine-grained analysis as in Xiong et al. (2022).

Note that the following analysis is applicable to any goal g, we omit the parameter g for notational simplicity. For a
sufficiently large λ, it is easy to see that T V̂ := maxz Ez(T̂V̂ − Γ) is a contraction. Therefore Algorithm 1 converges and
we have

V̂ (s) = max
z

Q̂(s, z),

Q̂(s, s′) = T̂V̂ − Γ(s, s′),

Q̂(s, z) = Es′∼Pz(·|s)Q̂(s, s′).

Let

δ(s, s′) = TV̂ (s)− Q̂(s, s′) = TV̂ (s)− T̂V̂ + Γ(s, s′). (21)

Under the condition of Lemma F.2, it holds that

0 ≤ δ(s, s′) ≤ 2Γ(s, s′), for all s, s′. (22)

Note that under the identifiability condition, taking maximum over z is the same as taking the maximum over a, then we
have

V ⋆(s)− V̂ (s)

=Ez∼π⋆,s′∼P(·|s,z) [r(s, s
′) + γV ⋆(s′)]− Ez∼π̂,s′∼P(·|s,z)

[
Q̂(s, s′)

]
=Ez∼π⋆,s′∼P(·|s,z)

[
r(s, s′) + γV ⋆(s′)− Q̂(s, s′)

]
+ Ez∼π⋆,s′∼P(·|s,z)

[
Q̂(s, s′)

]
− Ez∼π̂,s′∼P(·|s,z)

[
Q̂(s, s′)

]
=Ez∼π⋆,s′∼P(·|s,z)

[
r(s, s′) + γV̂ (s′)− Q̂(s, s′)

]
+ γEz∼π⋆,s′∼P(·|s,z)

[
V ⋆(s′)− V̂ (s′)

]
+ Ez∼π⋆,s′∼P(·|s,z)

[
Q̂(s, s′)

]
− Ez∼π̂,s′∼P(·|s,z)

[
Q̂(s, s′)

]
=Ez∼π⋆,s′∼P(·|s,z)

[
r(s, s′) + γV̂ (s′)− Q̂(s, s′)

]
+ γEz∼π⋆,s′∼P(·|s,z)

[
V ⋆(s′)− V̂ (s′)

]
+
〈
Q̂(s, z), π⋆(z | s)− π̂(z | s)

〉
Z

=Ez∼π⋆,s′∼P(·|s,z) [δ(s, s
′)] +

〈
Q̂(s, z), π⋆(z | s)− π̂(z | s)

〉
Z
+ · · · (23)

=Eπ⋆

[ ∞∑
t=0

γtδ(st, st+1) | s0 = s

]
+ Eπ⋆

[ ∞∑
t=0

γt
〈
Q̂(st, z), π

⋆(z | st)− π̂(z | st)
〉
Z
| s0 = s

]

≤Eπ⋆

[ ∞∑
t=0

γtδ(st, st+1)
∣∣∣ s0 = s

]

≤2Eπ⋆

[ ∞∑
t=0

γtΓ(st, st+1)
∣∣∣ s0 = s

]
=2βEπ⋆

[ ∞∑
t=0

γt
(
ϕ(st, st+1)

⊤Λ−1ϕ(st, st+1)
)1/2 ∣∣∣ s0 = s

]
. (24)
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Here Equation 23 recursively expands V ⋆(s′) − V̂ (s′). The first inequality follows from the fact that π̂(·|s) =

argmaxπ

〈
Q̂(s, z), π(z|s)

〉
Z

and the second inequality follows from Equation 22.

Then the following event

E =

{
V ⋆(s)− V̂ (s) ≤ 2βEπ⋆

[ ∞∑
t=0

γt
(
ϕ(st, st+1)

⊤Λ−1ϕ(st, st+1)
)1/2 ∣∣∣ s0 = s

]
for all s ∈ S

}
(25)

holds with probability 1− ξ/2. From the assumption in Equation 4, the following event

E† =
{
C†

G ·
1

N

N∑
τ=1

ϕ(sτ , aτ )ϕ(sτ , aτ )
⊤ ⪰ Eπ⋆

[
ϕ(st, st+1)ϕ(st, st+1)

⊤ ∣∣ s0 = s
]

for all s ∈ S
}

also holds with probability 1− ξ/2. Then from the union bound, the event E ∩E† holds with probability 1− ξ. We condition
on this event here after. By the Cauchy-Schwarz inequality, we have

Eπ⋆

[ ∞∑
t=0

γt
(
ϕ(st, st+1)

⊤Λ−1ϕ(st, st+1)
)1/2 ∣∣∣ s0 = s

]
=

1

1− γ
Edπ⋆

[√
Tr
(
ϕ(s, s′)⊤Λ−1ϕ(s, s′)

) ∣∣∣ s0 = s
]

=
1

1− γ
Edπ⋆

[√
Tr
(
ϕ(s, s′)ϕ(s, s′)⊤Λ−1

) ∣∣∣ s0 = s
]

≤ 1

1− γ

√
Tr
(
Edπ⋆

[
ϕ(s, s′)ϕ(s, s′)⊤

∣∣ s0 = s
]
Λ−1

)
=

1

1− γ

√
Tr
(
Σ⊤

π⋆,sΛ
−1
)
, (26)

for all s ∈ S. On the event E ∩ E†, we have

V ⋆(s)− V̂ (s) ≤ 2βEπ⋆

[ ∞∑
t=0

γt
(
ϕ(st, st+1)

⊤Λ−1ϕ(st, st+1)
)1/2 ∣∣∣ s0 = s

]
≤ 2β

1− γ

√
Tr
(
Σπ⋆,s ·

(
I +

1

C†
G
·N · Σπ⋆,s

)−1
)

=
2β

1− γ

√√√√ d∑
j=1

λj(s)

1 + 1

C†
G
·N · λj(s)

.

Here {λj(s)}dj=1 are the eigenvalues of Σπ⋆,s for all s ∈ S, the first inequality follows from the definition of E in
Equation 25, and the second inequality follows from Equation 26 and the definition of E† in Equation 4. Meanwhile, by
Definition 2.1, we have ∥ϕ(s, s′)∥ ≤ 1 for all (s, s′) ∈ S × S . By Jensen’s inequality, we have

∥Σπ⋆,s∥op ≤ Eπ⋆

[
∥ϕ(s, s′)ϕ(s, s′)⊤∥op

∣∣ s0 = s
]
≤ 1 (27)

for all s ∈ S. As Σπ⋆,s is positive semidefinite, we have λj(s) ∈ [0, 1] for all s ∈ S and all j ∈ [d]. Hence, on E ∩ E†, we
have

V ⋆(s)− V̂ (s) ≤ 2β

1− γ

√√√√ d∑
j=1

λj(s)

1 + 1

C†
G
·N · λj(s)

≤ 2β

1− γ

√√√√ d∑
j=1

1

1 + 1

C†
G
·N
≤ 2crmax

(1− γ)2
√
C†

Gd
3ζ/N
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for all x ∈ S, where the second inequality follows from the fact that λj(s) ∈ [0, 1] for all s ∈ S and all j ∈ [d], while the
third inequality follows from the choice of the scaling parameter β > 0. Combining the result in Lemma F.1, we have the
conclusion in Theorem 3.2.

Lemma F.1. Under the event in Lemma F.2, we have

V̂ (s)− V ⋆(s) ≤ 0 (28)

with probability 1− δ.

Proof. Note that V π̂(s) ≤ V ⋆(s), we only need to show that V̂ (s)− V π̂(s) ≤ 0.

Let
δ(s, s′) = TV̂ (s, s′)− T̂V̂ (s, s′) = r(s, s′) + γV̂ (s′)− T̂V̂ (s, s′), (29)

we have

V̂ (s)− V π̂(s) =Ez∼π̂

[
Q̂(s, s′)

]
− Ez∼π̂,s′∼P(·|s,z)

[
r(s, s′) + γV π̂(s′)

]
=Ez∼π̂,s′∼P(·|s,s′)

[
Q̂(s, s′)− r(s, s′)− γV̂ (s′)

]
+ γEz∼π̂,s′∼P(·|s,z)

[
V̂ (s′)− V π̂(s′)

]
=− Eπ̂ [δ(s, s

′)] + γEz∼π̂,s′∼P(·|s,z)

[
V̂ (s′)− V π̂(s′)

]
=− Eπ̂ [δ(s, s

′)] + · · ·

=− Eπ̂

[ ∞∑
t=0

γtδ(st, st+1) | s0 = s

]
.

Then under the condition of Lemma F.2, it holds that

0 ≤ δ(s, s′) ≤ 2Γ(s, s′), for all s, s′, (30)

Then we have the result immediately.

Lemma F.2 (ξ-Quantifiers). Let

λ = 1, β = c · dVmax

√
ζ, ζ = log (2dN/(1− γ)ξ). (31)

And Let Then Γ(s, s′) = β ·
(
ϕ(s, s′)⊤Λ−1ϕ(s, s′)

)1/2
specified in Equation 13 satisfies that with probability at least 1− ξ,

|TV̂ (s, s′)− T̂V̂ (s, s′)| ≤ Γ(s, s′) = β
√
ϕ(s, s′)⊤Λ−1ϕ(s, s′),∀(s, s′) ∈ S × S. (32)

Proof. we have

TV̂ − T̂V̂ = ϕ(s, s′)⊤(ν − ν̂)

= ϕ(s, s′)⊤ν − ϕ(s, s′)Λ−1

(
N∑

τ=1

ϕτ · (r(sτ+1) + γV̂ (sτ+1))

)

= ϕ(s, s′)⊤ν − ϕ(s, s′)Λ−1

(
N∑

τ=1

ϕτϕ
⊤
τ ν

)
︸ ︷︷ ︸

(i)

+ϕ(s, s′)Λ−1(

N∑
τ=1

ϕτϕ
⊤
τ ν −

N∑
τ=1

ϕτ (rτ + γV̂ (sτ+1))︸ ︷︷ ︸
(ii)

, (33)
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Then we bound (i) and (ii), respectively.

For (i), we have

(i) = ϕ(s, s′)⊤ν − ϕ(s, s′)Λ−1(Λ− λI)ν
= λϕ(s, s′)Λ−1ν

≤ λ||ϕ(s, s′)||λ−1 ||ν||λ−1

≤ Vmax
√
dλ
√
ϕ(s, s′)⊤Λ−1ϕ(s, s′), (34)

where the first inequality follows from Cauchy-Schwartz inequality. The second inequality follows from the fact that
||Λ−1||op ≤ λ−1 and Lemma F.3.

For notation simplicity, let ϵτ = rτ + γV̂ (sτ+1)− ϕ⊤τ ν, then we have

|(ii)| = ϕ(s, s′)Λ−1
N∑

τ=1

ϕτ ϵτ

≤ ||
N∑

τ=1

ϕτ ϵτ ||Λ−1 · ||ϕ(s, s′)||Λ−1

= ||
N∑

τ=1

ϕτ ϵτ ||Λ−1︸ ︷︷ ︸
(iii)

·
√
ϕ(s, s′)⊤Λ−1ϕ(s, s′). (35)

The term (iii) is depend on the randomness of the data collection process of D. To bound this term, we resort to uniform
concentration inequalities to upper bound

sup
V ∈V(R,B,λ)

∥∥∥ N∑
τ=1

ϕ(xτ , aτ ) · ϵτ (V )
∥∥∥,

where
V(R,B, λ) = {V (s; ν, β,Σ) : S → [0, Vmax] with||ν|| ≤ R, β ∈ [0, B],Σ ⪰ λ · I}, (36)

where V (s; ν, β,Σ) = maxa{ϕ(s, s′)⊤ν − β ·
√
ϕ(s, s′)⊤Σ−1ϕ(s, s′)}. For all ϵ > 0, let N (ϵ;R,B, λ) be the minimal

cover if V(R,B, λ). That is, for any function V ∈ V(R,B, λ), there exists a function V † ∈ N (ϵ;R,B, λ), such that

sup
s∈S
|V (s)− V †(s)| ≤ ϵ. (37)

Let R0 = Vmax
√
Nd/λ,B0 = 2β, it is easy to show that at each iteration, V̂ u ∈ V(R0, B0, λ). From the definition of T,

we have

|TV̂ − TV †| = γ

∣∣∣∣∫ (V̂ (s′)− V †(s′)) ⟨ϕ(s, s′), µ(s′)⟩ds′
∣∣∣∣ ≤ γϵ. (38)

Then we have
|(r + γV − TV )− (r + γV † − TV †)| ≤ 2γϵ. (39)

Let ϵ†τ = r(sτ , aτ ) + γV †(sτ+1)− TV †(s, s′), we have

(iii)2 = ||
N∑

τ=1

ϕτ ϵτ ||2Λ−1 ≤ 2||
N∑

τ=1

ϕτ ϵ
†
τ ||2Λ−1 + 2||

N∑
τ=1

ϕτ (ϵ
†
τ − ϵτ )||2Λ−1

≤ 2||
N∑

τ=1

ϕτ ϵ
†
τ ||2Λ−1 + 8γ2ϵ2

N∑
τ=1

|ϕτΛ−1ϕτ |

≤ 2||
N∑

τ=1

ϕτ ϵ
†
τ ||2Λ−1 + 8γ2ϵ2N2/λ
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It remains to bound ||
∑N

τ=1 ϕτ ϵ
†
τ ||2Λ−1 . From the assumption for data collection process, it is easy to show that

ED[ϵτ | Fτ−1] = 0, where Fτ−1 = σ({(si, ai)τi=1 ∪ (ri, si+1)
τ
i=1}) is the σ-algebra generated by the variables from

the first τ step. Moreover, since ϵτ ≤ 2Vmax, we have ϵτ are 2Vmax-sub-Gaussian conditioning on Fτ−1. Then we invoke
Lemma F.6 with M0 = λ · I and Mk = λ · I +

∑k
τ=1 ϕ(xτ , aτ ) ϕ(xτ , aτ )

⊤. For the fixed function V : S → [0, Vmax], we
have

PD

(∥∥∥ N∑
τ=1

ϕ(xτ , aτ ) · ϵτ (V )
∥∥∥2
Λ−1

> 8V 2
max · log

( det(Λ)1/2

δ · det(λ · I)1/2
))
≤ δ (40)

for all δ ∈ (0, 1). Note that ∥ϕ(s, s′)∥ ≤ 1 for all (s, s′) ∈ S × S by Definition 2.1. We have

∥Λ∥op =
∥∥∥λ · I + N∑

τ=1

ϕ(sτ , aτ )ϕ(sτ , aτ )
⊤
∥∥∥

op
≤ λ+

N∑
τ=1

∥ϕ(sτ , aτ )ϕ(sτ , aτ )⊤∥op ≤ λ+N,

where ∥ · ∥op denotes the matrix operator norm. Hence, it holds that det(Λ) ≤ (λ+N)d and det(λ · I) = λd, which implies

PD

(∥∥∥ N∑
τ=1

ϕ(sτ , aτ ) · ϵτ (V )
∥∥∥2
Λ−1

> 4V 2
max ·

(
2 · log(1/δ) + d · log(1 +N/λ)

))

≤ PD

(∥∥∥ N∑
τ=1

ϕ(sτ , aτ ) · ϵτ (V )
∥∥∥2
Λ−1

> 8V 2
max · log

( det(Λ)1/2

δ · det(λ · I)1/2
))
≤ δ.

Therefore, we conclude the proof of Lemma F.2.

Applying Lemma F.2 and the union bound, we have

PD

(
sup

V ∈N (ε)

∥∥∥ N∑
τ=1

ϕ(xτ , aτ ) · ϵτ (V )
∥∥∥2
Λ−1

> 4V 2
max ·

(
2 · log(1/δ) + d · log(1 +N/λ)

))
≤ δ · |N (ε)|. (41)

Recall that
V̂ ∈ V(R0, B0, λ), where R0 = Vmax

√
Nd/λ, B0 = 2β, λ = 1, β = c · dVmax

√
ζ. (42)

Here c > 0 is an absolute constant, ξ ∈ (0, 1) is the confidence parameter, and ζ = log(2dVmax/ξ) is specified in Algorithm
1. Applying Lemma F.5 with ε = dVmax/N , we have

log |N (ε)| ≤ d · log(1 + 4d−1/2N3/2) + d2 · log(1 + 32c2 · d1/2N2ζ)

≤ d · log(1 + 4d1/2N2) + d2 · log(1 + 32c2 · d1/2N2ζ). (43)

By setting δ = ξ/|N (ε)|, we have that with probability at least 1− ξ,∥∥∥ N∑
τ=1

ϕ(sτ , aτ ) · ϵτ (V̂ )
∥∥∥2
Λ−1

≤ 8V 2
max ·

(
2 · log(Vmax/ξ) + 4d2 · log(64c2 · d1/2N2ζ) + d · log(1 +N) + 4d2

)
≤ 8V 2

maxd
2ζ(4 + log (64c2)). (44)

Here the last inequality follows from simple algebraic inequalities. We set c ≥ 1 to be sufficiently large, which ensures that
36 + 8 · log(64c2) ≤ c2/4 on the right-hand side of Equation 44. By Equations Equation 35 and Equation 44, it holds that

|(ii)| ≤ c/2 · dVmax
√
ζ ·
√
ϕ(s, s′)⊤Λ−1ϕ(s, s′) = β/2 ·

√
ϕ(s, s′)⊤Λ−1ϕ(s, s′) (45)

By Equations Equation 13, Equation 33, Equation 34, and Equation 45, for all (s, s′) ∈ S × S , it holds that∣∣(TV̂ )(s, s′)− (T̂V̂ )(s, s′)
∣∣ ≤ (Vmax

√
d+ β/2) ·

√
ϕ(s, s′)⊤Λ−1ϕ(s, s′) ≤ Γ(s, s′) (46)

with probability at least 1− ξ. Therefore, we conclude the proof of Lemma F.2.
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Lemma F.3 (Bounded weight of value function). Let Vmax = rmax/(1− γ). For any function V : S → [0, Vmax], we have

||ν|| ≤ Vmax

√
d, ||ν̂|| ≤ Vmax

√
Nd

λ
.

Proof. since

ν⊤ϕ(s, s′) = ⟨M,ϕ(s, s′)⟩+ γ

∫
V (s′)ψ(s′)⊤Mϕ(s, s′)ds′,

We have

ν =M + γ

∫
V (s′)ψ(s′)⊤Mds′

= rmax
√
d+ γVmax

√
d

= Vmax
√
d.

For ν̂, we have

||ν̂|| = ||Λ−1
N∑

τ=1

ϕτ (rτ + γV (sτ+1))||

≤
N∑

τ=1

||Λ−1ϕτ (rτ + γV (sτ+1))||

≤ Vmax

N∑
τ=1

||Λ−1ϕτ ||

≤ Vmax

N∑
τ=1

√
ϕ⊤τ Λ

−1/2Λ−1Λ−1/2ϕτ

≤ Vmax√
λ

N∑
τ=1

√
ϕ⊤τ Λ

−1ϕτ

≤ Vmax

√
N

λ

√√√√Tr(Λ−1

T∑
τ=1

ϕτϕ⊤τ )

≤ Vmax

√
Nd

λ
.

F.2. Proof of Theorem 3.3

Proof. It is easy to show that the problem can be casted as a linear contextual bandit problem with a misspecified reward
function. The error of the reward function is bounded as in Theorem 3.2. Then we can apply the result in Abbasi-Yadkori
et al. (2011) to obtain the regret bound, and we omit the detailed proof for simplicity.

F.3. Proof of Corollary 3.4

Proof. Note that without passive data, the online learning regret will scale as

Reg(T ) =
2
√
d2ζ2 · rmax

1− γ
√
T . (47)

Setting the regret bound in Theorem 3.3 to be less than the online regret bound above, we have the result immediately.
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F.4. Technical Lemmas

Lemma F.4 (Linear MDP is Linear Representable). For a linear MDP, the optimal state-state Q-value function is linear
with respect to

ϕ(s, s′) = [φ(s);ψ(s′, π⋆(s′))]. (48)

Proof. From definition we know that the optimal state-action value function is linear with respect to ϕ(s, a). Suppose
Q⋆(s, a) = ϕ(s, a)⊤w⋆, then we have

Q⋆(s, s′) = r(s) + γV (s′) (49)
= ⟨θ, ψ(s)⟩+ γEa′∼π⋆Q⋆(s′, a′) (50)

= ⟨θ, ψ(s)⟩+ γϕ(s, a)⊤w⋆ (51)

= ϕ(s, s′)⊤[θ; γw⋆]. (52)

Lemma F.4 indicates that there always exists a linear representation ϕ(s, s′) for the optimal state-state value function
Q⋆(s, s′). While the existence of linear representation may not hold for any value function V (s), we can always project the
state-state value function Q(s, s′) to the linear functions of ϕ(s, s′), which does not increase the distance to the optimal
state-state value function.

Lemma F.5 (ε-Covering Number (Jin et al., 2020)). For all h ∈ [H] and all ε > 0, we have

log |N (ε;R,B, λ)| ≤ d · log(1 + 4R/ε) + d2 · log
(
1 + 8d1/2B2/(ε2λ)

)
.

Proof of Lemma F.5. See Lemma D.6 in (Jin et al., 2020) for a detailed proof.

Lemma F.6 (Concentration of Self-Normalized Processes (Abbasi-Yadkori et al., 2011)). Let {Ft}∞t=0 be a filtration and
{ϵt}∞t=1 be an R-valued stochastic process such that ϵt is Ft-measurable for all t ≥ 1. Moreover, suppose that conditioning
on Ft−1, ϵt is a zero-mean and σ-sub-Gaussian random variable for all t ≥ 1, that is,

E[ϵt | Ft−1] = 0, E
[
exp(λϵt)

∣∣Ft−1

]
≤ exp(λ2σ2/2), ∀λ ∈ R.

Meanwhile, let {ϕt}∞t=1 be an Rd-valued stochastic process such that ϕt is Ft−1-measurable for all t ≥ 1. Also, let
M0 ∈ Rd×d be a deterministic positive-definite matrix and

Mt =M0 +

t∑
s=1

ϕsϕ
⊤
s

for all t ≥ 1. For all δ > 0, it holds that

∥∥∥ t∑
s=1

ϕsϵs

∥∥∥2
M−1

t

≤ 2σ2 · log
(det(Mt)

1/2 · det(M0)
−1/2

δ

)
for all t ≥ 1 with probability at least 1− δ.

Proof. See Theorem 1 of (Abbasi-Yadkori et al., 2011) for a detailed proof.
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