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Abstract
Multi-instance point cloud registration is the prob-
lem of estimating multiple rigid transformations
between two point clouds. Existing solutions
rely on global spatial consistency of ambigu-
ity and the time-consuming clustering of high-
dimensional correspondence features, making it
difficult to handle registration scenarios where
multiple instances overlap. To address these prob-
lems, we propose a maximal clique based multi-
instance point cloud registration framework called
PointMC. The key idea is to search for maxi-
mal cliques on the correspondence compatibility
graph to estimate multiple transformations, and
cluster these transformations into clusters corre-
sponding to different instances to efficiently and
accurately estimate all poses. PointMC leverages
a correspondence embedding module that relies
on local spatial consistency to effectively elimi-
nate outliers, and the extracted discriminative fea-
tures empower the network to circumvent missed
pose detection in scenarios involving multiple
overlapping instances. We conduct comprehen-
sive experiments on both synthetic and real-world
datasets, and the results show that the proposed
PointMC yields remarkable performance improve-
ments.

1. Introduction
With the development of high-precision sensors, pairwise
point cloud registration techniques have been widely applied
in fields such as autonomous driving (Zhang et al., 2023b;
Zhao et al., 2024; Li et al., 2015) and 3D reconstruction
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(Cheng et al., 2023; Yu et al., 2023b; Merras et al., 2017).
The task involves estimating a single rigid transformation
between two frames of point clouds. However, due to the
possibility that the target scene point cloud may contain
multiple instances of the same source point cloud, we need

Figure 1. Given two frame point clouds, pairwise point cloud reg-
istration (left) focuses on estimating a single rigid transformation
between the source and target point clouds, while multi-instance
point cloud registration (right) aims to estimate multiple poses of
objects identical to the source point cloud within the target point
cloud.

to estimate multiple transformations between them. As
shown in Figure 1 (right), in the case where there is a chair
modeled as the source point cloud, we aim to find the poses
of the same object in the target indoor scene point cloud.
The existing literature has relatively little research on this
challenging problem, which is referred to as multi-instance
point cloud registration.

For the problem of multi-instance point cloud registration,
due to its similarity to 3D object detection tasks (Li et al.,
2023; Zhou et al., 2023), one solution is to utilize a 3D
object detector to detect and segment instances within the
target point cloud, and then transform it into a traditional
pairwise point cloud registration problem. However, since
the object detector is trained for a specific object, it is less
robust when encountering point clouds of unknown objects.
Another solution relies on multi-model fitting algorithms
(Kluger et al., 2020; Magri & Fusiello, 2016; 2014). Never-
theless, traditional multi-model fitting algorithms generate
significant computational costs in scenarios with a large
number of outliers in multi-instance point cloud registra-
tion, as they require a large number of samples to generate
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hypotheses. Recently, there have been several deep learning-
based approaches (Tang & Zou, 2022; Yuan et al., 2022)
that leverage global spatial consistency and spectral cluster-
ing algorithms to extract high-dimensional corresponding
features and perform clustering. Despite this, these methods
encounter two critical issues. First, due to the ambiguity of
global spatial consistency, they struggle to effectively dif-
ferentiate multiple overlapping instances in multi-instance
registration scenarios. Second, the utilization of spectral
clustering algorithms incurs high computational costs when
clustering high-dimensional features, leading to longer reg-
istration times.

There is an inspiring recent work (Zhang et al., 2023a) on
pairwise point cloud registration using maximal cliques.
The key idea is to relax the previous maximum clique con-
straint and mine more local consensus information within
the graph to accurately generate pose hypotheses. Since
the process generates numerous pose hypotheses that can
be represented by low-dimensional vectors, we contem-
plate whether it is possible to perform clustering on these
low-dimensional pose hypotheses and then directly select
the corresponding transformation for each instance. Com-
pared to clustering and iteratively solving transformations
on high-dimensional correspondence features, this method
will undoubtedly be more efficient. Meanwhile, we consider
utilizing local spatial consistency instead of global spatial
consistency to extract correspondence features with rich
local information in order to better distinguish overlapping
instances.

In this paper, we propose a multi-instance point cloud regis-
tration framework PointMC based on maximal cliques. The
key idea is to estimate multiple transformations by searching
maximal cliques on the correspondence compatible graph,
and then cluster the transformations into in different clusters.
Specifically, we first utilize a graph-based correspondence
embedding module to extract local spatial consistency aware
features of putative correspondences, and use them to dis-
tinguish inliers and outliers. Since this method has strong
local spatial consistency, it can effectively remove outliers
in putative correspondences while allowing their features
to retain as much local information as possible. We then
model the filtered correspondence set as a compatibility
graph, search for maximal cliques representing a single in-
stance consensus set in the graph, and then use the SVD
algorithm (Sorkine-Hornung & Rabinovich, 2017) to per-
form transformation assumptions on all cliques to obtain
the transformation set. Each node in the graph represents a
single correspondence, and each edge between two nodes
represents a pair of compatible correspondences. Finally,
the transformations in the transformation set are clustered
into different groups. Each group corresponds to the trans-
formation pose of an instance, and the transformation that
causes the associated correspondences to have the smallest

transformation error is selected from the group as the final
transformation of the instance. Our main contributions can
be summarized as follows:

• We introduce a graph-based method for local spatial
consistency to measure the geometric compatibility
between correspondences within local regions, aiming
to enhance the filtering of outlier correspondences.

• We propose to search for maximal cliques on the cor-
respondence compatibility graph to estimate multiple
transformations, and cluster these transformations into
clusters corresponding to different instances to pre-
cisely estimate all poses.

• We provide qualitative and quantitative comparisons
under synthetic and real-world datasets, showing the
state-of-the-art performance.

2. Related Work
2.1. Pairwise Point Cloud Registration

Pairwise point cloud registration can be decomposed into
three subtasks: point matching, outlier rejection, and trans-
formation estimation. Traditional point matching methods
typically rely on hand-crafted descriptors (Rusu et al., 2009;
Ma et al., 2019; Drost et al., 2010) that capture local in-
formation, but they tend to lack robustness against noise
and outliers. Recent works(Cao et al., 2021; Yew & Lee,
2022; Liu et al., 2023; Yu et al., 2023a; Yuan et al., 2022;
Yang et al., 2022; Yuan et al., 2024) have embraced the
utilization of deep networks for feature learning, leveraging
these learned features to establish correspondences using
various methodologies. PCAM (Cao et al., 2021) multiplies
cross-attention matrices in multiple levels in the encoder
to establish initial point matching. REGTR (Yew & Lee,
2022) establishes correspondences using a network archi-
tecture consisting of transformer layers with self and cross
attention. RegFormer (Liu et al., 2023) proposed a Bijec-
tive Association Transformer (BAT) to address significant
mismatches caused by potential descriptor errors. Attaining
perfect matches is challenging, and a robust outlier rejection
mechanism is essential. RANSAC (Fischler & Bolles, 1981)
and its variants (Le et al., 2019; Barath & Matas, 2018) are
widely regarded as the most popular traditional outlier re-
jection methods. SACF-Net (Wu et al., 2023), Predator
(Huang et al., 2021), and DGR (Choy et al., 2020) treat
outlier rejection as a binary classification task and output
a confidence score for each correspondence. MAC(Zhang
et al., 2023a) conducted correspondence screening by con-
structing a maximal clique based on the spatial consistency
among correspondences. Correspondence-based methods
(Wu et al., 2023; Huang et al., 2021; Choy et al., 2020) com-
monly employ a differentiable weighted procrustes method
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(Arun et al., 1987) based on SVD (Sorkine-Hornung & Ra-
binovich, 2017) to obtain the final transformation. Several
end-to-end models (Aoki et al., 2019; Wang & Solomon,
2019; Yew & Lee, 2020) seamlessly incorporate the com-
plete transformation estimate into the training pipeline.

2.2. Multi-instance Point Cloud Registration

In contrast to pairwise registration, which estimates a sin-
gle transformation between two frame point clouds, multi-
instance registration involves estimating multiple transfor-
mations for the source point cloud and multiple instances
within the target point cloud. Multi-instance registration
requires not only filtering outliers in noisy correspondences,
but also clustering the remaining correspondences into in-
dividual instances. The current methods (Yuan et al., 2022;
Tang & Zou, 2022) primarily focus on conducting correspon-
dence clustering using deep representations of correspon-
dence, followed by iterative estimation of the transformation
for each individual instance. ECC (Tang & Zou, 2022) uti-
lizes the global spatial consistency (Leordeanu & Hebert,
2005) of the point cloud rigid transformation to directly
group the noise correspondence sets into different clusters
based on the distance invariance matrix. However, the reli-
ability of the distance invariant matrix is compromised in
scenarios involving dense noisy correspondences caused by
the presence of multiple instances, particularly when outliers
closely resemble inliers. In addition to utilizing global spa-
tial consistency, PointCLM (Yuan et al., 2022) also obtains
discriminative high-dimensional corresponding representa-
tions based on contrastive learning. After a specific pruning
strategy, the spectral clustering algorithm is used to clus-
ter the high-dimensional corresponding features. Based on
experimental results, the learned high-dimensional features
provide limited improvement to the overall results, while
the process of clustering such features proves to be time-
consuming. In this paper, we introduce a multi-instance
point cloud registration method based on maximal cliques
(Zhang et al., 2023a) to obtain low-dimensional representa-
tions of multiple rigid transformations, and obtains the final
result through low-dimensional representation clustering
with low time consumption.

3. Problem Setting
Consider two point clouds to be registered: X and Y =
Y0 ∪ Y1 ∪ ... ∪ YK . Point cloud X consists of a 3D model,
and point cloud Y represents a scene containing K instances
of the same model (Y1...YK) as well as some other points
(Y0), where these instances may partially overlap with the
3D model. After obtaining the putative correspondence
set C = {ci = (xi, yi) ∈ R6}Mi=1 through point feature
matching (Huang et al., 2021; Choy et al., 2019; Thomas
et al., 2019), an important step in the previous method was

to segment it into different subsets C0, C1, ..., Ck satisfying
C = C0∪C1∪ ...∪Ck, where C0 denotes the set of outliers
and the rest denotes the set corresponding to each instance.
The task of multi-instance point cloud registration is to
derive the rigid transformations T = {Tk = (Rk, tk)}Kk=1

that align point cloud X to each instance point cloud Yk,
where Rk ∈ SO(3) denotes the rotation matrix and tk ∈
R3 denotes the translation vector. The Rk and tk can be
described as

Rk, tk = argmin
(R,t)

∑
i=1

∥yki − (Rxi + t)∥2 (1)

where xi and yki denotes the truth corresponding points
between X and Yk. Due to the presence of numerous ab-
normal correspondences and the typically unknown number
of real instances in the scene point cloud, this is a rather
challenging task.

4. Method
The overview of the proposed PointMC is shown in Figure
2. We first take the putative correspondences as the input,
use the graph-based correspondence embedding module to
extract the features of the putative correspondences (section
4.1), and combine the classification head to distinguish the
inliers and outliers (section 4.2). Subsequently, we model
the filtered correspondence set as a compatibility graph,
search for maximal cliques in the graph, and solve trans-
formations for all cliques to obtain a set of transformations
(section 4.3). Finally, we cluster the transformations in the
transformation set into different groups and select the poses
corresponding to each instance (section 4.4).

4.1. Local Spatial Consistency

The widely utilized property of global spatial consistency
(Bai et al., 2021) in pairwise point cloud registration ensures
that the distance between each pair of points is preserved
under any rigid transformation. Consider two correspon-
dences ci = (xi, yi) and cj = (xj , yj), the global spatial
consistency can be computed as

θij =

[
1−

d2ij
σ2
d

]
+

, dij = |∥xi − xj∥ − ∥yi − yj∥| (2)

where [·]+ = max(0, ·) and σd is a distance parameter to
control the sensitivity to the difference in distance. If ci and
cj are inliers compatible with the same instance, then θij is
close to 1. However, if outliers exist, θij is close to 0.

However, in the context of multi-instance point cloud regis-
tration, the applicability of such global spatial consistency
is not pronounced. This is due to the possibility of need-
ing to estimate the poses of multiple overlapping instances
in multi-instance registration scenarios, which results in
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Figure 2. The pipeline of the proposed PointMC for multi-instance point cloud registration. It takes putative correspondences as input,
and output K rigid transformations. The green lines and red lines represent inliers and outliers, respectively. The green bounding boxes in
output transformations represent the ground truth poses of instances in the target point cloud and the red bounding boxes represent our
predictions.

a decrease in the reliability of global spatial consistency.
Therefore, we adopt a graph-based local spatial consistency
method (Qin et al., 2023), which aims to confine correspon-
dences within a single instance as much as possible. It is
defined as

ωij =


[
1− d2

ij

σ2
d

]
+
, ci ∈ C ∧ cj ∈ C

0, otherwise
(3)

where C denotes the set of correspondences within a local
region, which can be acquired through uniform farthest
point sampling.

4.2. Correspondences Filtering

Due to the presence of a large number of outliers in the input
putative correspondences, it can significantly impact the
subsequent pipeline process. Therefore, we apply a filtering
and selection process based on local spatial consistency to
refine the initial correspondences.

4.2.1. FEATURE EXTRACTOR

Taking M putative correspondences C = {ci = (xi, yi) ∈
R6}Mi=1 as the input to our pipeline, we first concatenate
each correspondence with its low-frequency encoding result
to obtain

θi = [ci, sin(2
−1ci), cos(2

−1ci)] ∈ R18 (4)

which allowing for the incorporation of additional local
information. Subsequently, a three-layer MLP is em-
ployed to project the constructed correspondence matrix
θ ∈ RM×18 into a initial high-dimensional feature matrix
Finit ∈ RM×d, with batch normalization and LeakyReLU
applied after each layer of the MLP. Following the concept
of local spatial consistency, we adopt a graph-based corre-
spondence embedding module (Qin et al., 2023) to further
enhance the discriminability of features. The module con-
sists of a stack of spatial-consistency-aware self-attention

(SCASA) module used to refine features based on attention
mechanisms.

4.2.2. CORRESPONDENCES CLASSIFICATION

After obtaining the enhanced feature Fout ∈ RM×D, a
three-layer MLP is used to estimate the confidence score oi
for each correspondence. Apply batch normalization and
ReLU after the first two layers, and use sigmoid activation
after the last layer. The correspondences with confidence
scores higher than the threshold τ are considered inliers,
while the remaining correspondences are treated as outliers
and removed. We adopt the binary focal loss to supervise
the confidence scores, and the loss calculation for each
correspondence is as

Lcls =
1

M

M∑
i=1

− log (oi) ·o∗i − log (1− oi) · (1− o∗i ) (5)

where

o∗i =

{
1, ∥φ∗ (xi)− yi∥2 < ε2

0, otherwise
(6)

ε is a threshold that controls the minimum radius at which
two points are considered to be corresponding points, and
φ∗ is the ground-truth transformation between xi and yi.

4.3. Search Transformations

We construct a compatibility graph on the obtained clean set
of correspondences and employ a method based on search-
ing for maximal cliques (Zhang et al., 2023a) to obtain
potential transformations.

4.3.1. CORRESPONDENCE-COMPATIBLE GRAPH
CONSTRUCTION

Graph space accurately describes the compatibility between
correspondences, thus we model the filtered set of corre-
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spondences as an undirected graph. Nodes on the graph
represent correspondences, and the compatibility between
nodes can be calculated as

Gij (ci, cj) =

[
exp

(
−

d2ij
2d2thr

)]
tc

(7)

where dthr is a distance parameter and [ϕ]tc = max(0, ϕ−
tc). tc denotes the compatibility threshold, and only if
the compatibility between two nodes (ci, cj) exceeds tc, a
weighted edge with a value of Gij will be formed between
them. After obtaining the symmetric weight matrix Mf

of an undirected graph, we further adopt a second-order
compatibility measure (Chen et al., 2022), which can be
computed as

Ms = Mf · (Mf ×Mf ) (8)

This second-order measure encodes richer information be-
yond the first-order measurements, thereby enhancing ro-
bustness to outliers and promoting sparsity, which helps
improve the speed of cliques search.

4.3.2. MAXIMAL CLIQUES SEARCH AND FILTERING

Given an undirected graph, a maximal clique is a clique that
cannot be extended by adding any node, and the maximal
clique with the most nodes is the maximum clique of the
graph. A large number of maximal cliques in an undirected
graph are associated with multiple instances, while a small
number of maximum cliques are likely to be associated with
only one instance. Therefore, adopting a maximal cliques
search strategy is more suitable for multi-instance point
cloud registration tasks.

We use the improved Bron-Kerbosch algorithm (Wei et al.,
2021) encapsulated in the igraph C++ library to perform
the maximal clique search task. It guarantees completeness
in finding all maximal cliques, and its backtracking tech-
nique helps optimize the search process. Additionally, the
algorithm’s recursive nature presents opportunities for par-
allelization, potentially improving performance in parallel
computing environments.

After conducting the maximal clique search, we obtain
MACini, a set of maximal cliques that typically contains
tens of thousands of elements. In order to reduce time con-
sumption, we employ a filtering process to reduce the size
of MACini. Given a clique Cj = (Vj , Ej), we compute its
weight as

wCj
=
∑

ei∈Ej

wei (9)

where wei denotes the weight of edge ei in Ms. Since a
node may exist in multiple maximal cliques, we enforce it
to belong only to the one with the maximum weight, while

deleting the remaining maximal cliques that contain the
same node. This filtering process ensures that the resulting
set of maximal cliques, denoted as MACflt, contains fewer
maximal cliques than the total number of nodes in the graph.
In the case of a large number of graph nodes, we can further
rank the weights of the maximal cliques in MACflt and
select the top K maximal cliques for subsequent processing.

4.3.3. TRANSFORMATIONS GENERATION

After filtering, each maximal clique contains a set of com-
patible correspondences. By applying the SVD algorithm
(Sorkine-Hornung & Rabinovich, 2017) or the weighted
SVD algorithm (Choy et al., 2020) to each set of compatible
correspondences, we can obtain a collection of transfor-
mations Tall composed of 7D or 6D vectors. The first four
dimensions of the 7D vectors represent rotation expressed as
quaternions, while the first three dimensions of the 6D vec-
tors represent rotation expressed as Euler angles. The last
three dimensions of both vectors represent translation. Com-
pared to clustering the high-dimensional correspondence
features, clustering the low-dimensional pose vectors is com-
putationally more efficient, and the final transformations can
be obtained without the need for iterative optimization.

4.4. Transformations Clustering

Upon obtaining the transformation set, the next step is to par-
tition these transformations into multiple subsets belonging
to different instances and select the transformation corre-
sponding to each instance from the subset. The transforma-
tion partition can be regarded as a clustering problem, and
the number of instances should be equal to the number of
clusters.

To conduct our experiments, we individually selected the
density-based clustering algorithm DBSCAN (Ester, 1996)
and the hierarchical algorithm Chameleon (Karypis et al.,
1999). Chameleon exhibits stronger clustering effectiveness
compared to DBSCAN, as it utilizes a two-step clustering
strategy with a merging strategy to explore more hidden
clusters in the data. DBSCAN has simpler parameter set-
tings and lower computational complexity, making it more
efficient than Chameleon, especially for large-scale datasets.
We will quantitatively compare the performance of these
two clustering algorithms.

Given a subset of transformations Tsub obtained for a single
instance, we select the final transformation T ∗ correspond-
ing to the instance using the following formula

T ∗ = argmin
Ti∈Tsub

∑
ck∈Csub

∥Ti(xk)− yk∥2 (10)

where Csub denotes the set of correspondences contained in
the maximal clique associated with each transformation in
the transformation subset Tsub, and ck = (xk, yk).
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5. Experiments
5.1. Experimental Setup

Datasets. We employ Scan2CAD (Avetisyan et al., 2019)
as the real-world dataset, which aligns object instances in
ScanNet (Dai et al., 2017) with CAD models in ShapeNet
(Chang et al., 2015). In Scan2CAD, multiple real-world
scan scenes contain identical 2-5 CAD instances, and pro-
vide accurate rigid transformation annotations. We fully
utilize the annotation information and conduct experiments
by respectively sampling the target point cloud from the
scene point cloud and the source point cloud from the CAD
model. After obtaining 2,175 sets of point clouds, we used
1,523 scenes for training, 326 scenes for validation, and
326 scenes for testing. We utilize the fine-tuned Predator
(Huang et al., 2021) for point matching to establish the
initial putative correspondence set.

To evaluate synthetic objects, we use the ModelNet40 (Wu
et al., 2015), which contains 12,311 CAD models belonging
to 40 categories. We sample 512 points from the CAD
model as the source point cloud, and then repeat its rigid
transformation 3-10 times to generate multiple instances.
We merge these instances with randomly generated outliers
to create the target point cloud. We use 9,843 models for
training and 2,468 models for testing.

Metrics. We follow the evaluation procedure of PointCLM
(Yuan et al., 2022), where the rotation error is defined as

RE = arccos
[(
Tr
(
RT

gtRest

)
− 1
)
/2
]

(11)

and translation error is defined as

TE = ∥test − tgt∥2 (12)

Success in registering an instance is indicated by RE < 15◦

and TE < 0.1. We use mean recall (MR), mean precision
(MP), and their harmonic mean (MF) as evaluation metrics,
which are defined as

MR =
1

N

N∑
i=1

Msuc
i

Mgt
i

(13)

MP =
1

N

N∑
i=1

Msuc
i

Mpred
i

(14)

MF =
2×MR×MP

MR+MP
(15)

where N represents the number of paired point clouds,
Msuc represents the number of successful registration in-
stances, Mgt represents the actual number of instances, and
Mpred represents the number of predicted transformations.

Implementation Details. We optimize the network using
the Adam optimizer with a weight decay of 0.001, a learn-
ing rate of 0.01. Our network is trained using PyTorch, and

we train the network for 1000 epochs. All the point clouds
were downsampled in 0.05m voxel size. The distance pa-
rameter σd is set to 0.05 for the synthetic dataset and 0.1
for the real-world dataset. The distance parameter dthr is
set to 10 pr, where ‘pr’ is a distance unit called point cloud
resolution (Yang et al., 2019). Default value for compati-
bility threshold tc is 0.99. We select the correspondences
whose confidence scores are above τ = 0.6 as inliers and
the others are removed as outliers. When compared with
other methods, second-order compatibility measure and the
DBSCAN clustering algorithm are utilized.

Baseline Methods. We compared PointMC with three multi-
model fitting methods (RansaCov (Magri & Fusiello, 2016),
CONSAC (Kluger et al., 2020), T-linkage (Magri & Fusiello,
2014)) and two state-of-the-art multi-instance point cloud
registration methods (ECC (Tang & Zou, 2022), PointCLM
(Yuan et al., 2022)). We adjusted all methods to achieve the
best performance on the evaluation dataset within reason-
able time and memory consumption ranges. To ensure a fair
comparison, all methods used the same assumed correspon-
dences as input.

5.2. Evaluation on Synthetic Dataset

We first compare our PointMC with other competitors’ meth-
ods on synthetic dataset ModelNet40, and the quantitative
results are shown in Table 1. Our PointMC outperforms all
other methods, with a 1.75% increase in registration recall
rate and a 0.01s reduction in computation time compared
to the closest competitor. With the aid of global spatial
consistency and an effective correspondence clustering strat-
egy, PointCLM and ECC have also achieved impressive
results. However, the remaining three multi-model fitting
methods exhibited poor performance on the multi-instance
registration task.

Table 1. Multi-instance registration results on ModelNet40 dataset.
MR(%) MP(%) MF(%) Runtime(s)

T-linkage 0.83 2.17 1.20 3.66
RansaCov 1.22 7.35 2.09 0.13
CONSAC 2.12 10.25 3.51 0.54

ECC 84.81 93.22 88.81 3.21
PointCLM 93.10 99.71 96.29 0.05

Ours 94.85 99.76 97.24 0.04

We show the visualization of the multi-instance point cloud
registration results in Figure 3. In scenarios with multiple
overlapping instances, our PointMC accurately estimates the
number of rigid transformations and accurately estimates
all transformation poses with small errors. Due to the use
of powerful local spatial consistency to encode the corre-
spondences of instances within local regions, our PointMC
excellently distinguishes all instances. However, due to the

6



PointMC: Multi-instance Point Cloud Registration based on Maximal Cliques

(a) Ours (b) PointCLM (c) ECC (d) CONSAC (e) RansaCov (f)  T-Linkage

Figure 3. Examples of multi-instance registrations on ModelNet40 dataset. From (a) to (f): The source point cloud is shown in red, the
transformed point clouds in the target point cloud are shown in blue, and the outlier points are shown in black. The green bounding box
represents the actual poses of the instance in the target point cloud, and the red bounding box represents the predicted poses. The instance
being surrounded by both red and green bounding boxes indicates successful detection of the current instance, while being surrounded
only by green bounding boxes indicates missed detection.

limitations of global spatial consistency in the presence of a
large number of outliers, PointCLM and ECC failed to dis-
tinguish between multiple overlapping instances, resulting
in missed detections. The remaining three multi-model fit-
ting methods, with the exception of CONSAC successfully
registering one obvious instance with a large error, failed to
register any instances.

5.3. Evaluation on Real-World Dataset

We then compared our PointMC with other competitors’
methods on the real-world dataset Scan2CAD, and the quan-
titative results are shown in Table 2. Our PointMC outper-
forms all other methods in three metrics (MR, MP, MF), with
average improvements of 25.94%, 21.92%, and 25.81%, re-
spectively. It is comparable to CONSAC in terms of time
consumption, but it improves registration recall by 27.4%
and registration accuracy by 21.12%. Compared to three
other multi-modal fitting methods, PointCLM and ECC also
achieved decent results.

Table 2. Multi-instance registration results on Scan2CAD dataset.
MR(%) MP(%) MF(%) Runtime(s)

T-linkage 32.56 40.42 30.06 5.59
RansaCov 56.23 30.85 39.84 0.13
CONSAC 57.25 55.24 56.22 0.06

ECC 66.22 72.25 69.10 1.56
PointCLM 81.26 73.44 77.15 0.09

Ours 84.65 76.36 80.29 0.07

We present a set of visual registration results for an indoor
point cloud scene with 16 identical chair instances to quali-
tatively compare with other competitors. Our PointMC still
accurately predicts the number of instances in the scene and
estimates the transformation poses of all source point clouds
with small errors. PointCLM and ECC miss 1 and 2 in-
stances, respectively, among the closely located ones. CON-
SAC only registers four easily distinguishable instances with

larger errors. T-linkage and RansaCov also register three
easily distinguishable instances with larger errors.

5.4. Ablation Study

In this section, we conduct several ablation experiments
to investigate the effect of each essential component of
PointMC. We first examine the effect of the local spatial
consistency, and secondly demonstrate the benefits of the
second-order compatibility measure and different clustering
algorithms. The performance of the trained models are
evaluated on the validation set of the considered datasets.

Table 3. The effect of local spatial consistency.
GSC LSC MR(%) MP(%) MF(%)

ModelNet40 ✓ 93.31 99.39 96.25
ModelNet40 ✓ 94.85 99.76 97.24
Scan2CAD ✓ 82.75 74.96 78.66
Scan2CAD ✓ 84.65 76.36 80.29

Effect of local spatial consistency. In order to quantita-
tively study the effectiveness of local spatial consistency
compared to global spatial consistency in the task of multi-
instance point cloud registration, we replaced the correspon-
dence feature extraction module in PointMC with the SC-
Nonlocal module (Bai et al., 2021) based on global spatial
consistency in PointCLM, and then compared the perfor-
mance before and after the replacement. The comparative
results are shown in Table 3, where “GSC” represents global
spatial consistency, and “LSC” represents local spatial con-
sistency. PointMC combined with local spatial consistency
improved the average recall rate by 1.54% and the aver-
age accuracy by 0.37% on the ModelNet40 dataset, and
increased the average recall rate by 1.9% and the average ac-
curacy by 1.4% on the Scan2CAD dataset. We found mainly
stems from registration scenes with multiple instances and
instance overlaps, indicating the effectiveness of local spa-
tial consistency in registering such scenes.
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(a) Ours (b) PointCLM (c) ECC (d) CONSAC (e) RansaCov (f)  T-Linkage

Figure 4. Examples of multi-instance registrations on Scan2CAD dataset. From (a) to (f): The source point cloud is shown in gold and the
transformed point clouds in the target point cloud are shown in cyan. The green bounding box represents the actual poses of the instance
in the target point cloud, and the red bounding box represents the predicted poses. The instance being surrounded by both red and green
bounding boxes indicates successful detection of the current instance, while being surrounded only by green bounding boxes indicates
missed detection.

Table 4. The effect of second-order compatibility measure.
FOC SOC MR(%) MP(%) Runtime(s)

ModelNet40 ✓ 93.24 99.25 0.06
ModelNet40 ✓ 94.85 99.76 0.04
Scan2CAD ✓ 82.26 73.89 0.10
Scan2CAD ✓ 84.65 76.36 0.07

Effect of second-order compatibility measure. To jus-
tify the advantages of second-order compatibility measure,
we change the compatibility graph construction process of
PointMC to first-order compatibility measure and test the
registration performance. The results are reported in Ta-
ble 4, where “FOC” denotes the first-order compatibility
measure and “SOC” denotes the second-order compatibility
measure. Combining second-order compatibility measure,
PointMC achieved an average recall improvement of 1.61%
and an average precision improvement of 0.51% on the
ModelNet40 dataset. It also reduced the runtime by 0.02s.
On the Scan2CAD dataset, it achieved an average recall im-
provement of 2.39% and an average precision improvement
of 2.47%. The runtime was reduced by 0.03s. By utilizing
SOC to construct the compatibility graph, not only does
it consider the geometric consistency of correspondences,
but it also focuses on the commonly compatible matches in
the correspondence set, making it more robust compared to
FOC, especially in scenarios with high outlier rates. Mean-
while, SOC is sparser than FOC, which proves beneficial
for faster searching of maximal cliques on the compatibility
graph.

Effect of DBSCAN and Chameleon. We have quanti-
tatively compared the effectiveness of the clustering al-
gorithms DBSCAN and Chameleon in clustering low-

Table 5. The effect of DBSCAN and Chameleon.
DA CA MR(%) MP(%) Runtime(s)

ModelNet40 ✓ 94.85 99.76 0.04
ModelNet40 ✓ 95.11 99.79 0.07
Scan2CAD ✓ 84.65 76.36 0.07
Scan2CAD ✓ 86.53 79.12 0.11

dimensional rigid transformation datasets. The results are
shown in Table 5, where “DA” represents the DBSCAN
algorithm and “CA” represents the Chameleon algorithm.
PointMC combined with Chameleon algorithm improved
the average recall rate by 0.26% and the average accuracy by
0.03% on ModelNet40 dataset, and the average recall rate
by 1.88% and the average accuracy by 2.76% on Scan2CAD
dataset. However, PointMC combined with DBSCAN algo-
rithm had a 42.9% reduction in runtime on ModelNet40
datasets and a 36.4% reduction on Scan2CAD datasets.
Due to the higher density of data points in low-dimensional
space, DBSCAN can accurately identify clustering struc-
tures and handle noise points and boundary points effec-
tively. Chameleon algorithm may be slightly more com-
plex in dealing with low-dimensional data. The graph con-
struction process may introduce some overhead. However,
Chameleon can provides better performance due to the bet-
ter visualization and definition of clustering structures in
low-dimensional space.

6. Discussions
Limitations. It is worth noting that the model has some
limitations, and we leave it for future works. Firstly, the
search and filtering process of maximal cliques is relatively
time-consuming. Although the registration time required

8
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by our framework is minimal, the performance could be
further improved if a faster algorithm for maximal clique
search could be introduced. In addition, the employed pose
clustering algorithm is sensitive to parameters, affecting the
generalization of the model.

7. Conclusion
In this work, we propose a framework called PointMC that
leverages maximal cliques to address the problem of multi-
instance point cloud registration. We utilize a module based
on local spatial consistency to extract discriminative fea-
tures from putative correspondences, enabling us to filter
out true correspondences from a substantial amount of out-
liers. Based on this, we construct a compatibility graph of
correspondences and search for maximal cliques to obtain
a set of transformations. We then apply a clustering algo-
rithm to efficiently cluster the transformations and obtain
the transformation poses of the instances. The results on
both synthetic and real-world datasets demonstrate that our
method achieves state-of-the-art performance in terms of
both accuracy and efficiency.
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