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Abstract

Coreset selection is powerful in reducing compu-
tational costs and accelerating data processing for
deep learning algorithms. It strives to identify a
small subset from large-scale data, so that train-
ing only on the subset practically performs on
par with full data. Practitioners regularly desire
to identify the smallest possible coreset in realis-
tic scenes while maintaining comparable model
performance, to minimize costs and maximize ac-
celeration. Motivated by this desideratum, for the
first time, we pose the problem of refined coreset
selection, in which the minimal coreset size under
model performance constraints is explored. More-
over, to address this problem, we propose an inno-
vative method, which maintains optimization pri-
ority order over the model performance and core-
set size, and efficiently optimizes them in the core-
set selection procedure. Theoretically, we pro-
vide the convergence guarantee of the proposed
method. Empirically, extensive experiments con-
firm its superiority compared with previous strate-
gies, often yielding better model performance
with smaller coreset sizes. The implementation is
available at https://github.com/xiaoboxia/LBCS.

1. Introduction
Deep learning has made tremendous strides in recent
decades, powered by ever-expanding datasets that comprise
millions of examples (Radford et al., 2018; Brown et al.,
2020; Yang et al., 2021; Huang et al., 2022; Kirillov et al.,
2023; Li et al., 2022; Huang et al., 2023d;b). At such scales,
both data storage and model training become burdensome,
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and are always unaffordable by startups or non-profit organi-
zations (Zhao et al., 2021; Liu et al., 2022). Hence, there are
intense demands for lowering the data scale and improving
the data efficiency of deep learning techniques (Deng &
Russakovsky, 2022; Xie et al., 2023; Zhang et al., 2024).

Coreset selection has been confirmed as a natural
and efficacious strategy to satisfy the aforenoted de-
mands (Pooladzandi et al., 2022; Feldman & Zhang, 2020;
Mirzasoleiman et al., 2020; He et al., 2023; Lin et al., 2023;
Li et al., 2023). This strategy typically involves selecting a
small subset (known as a coreset) from massive data. The
objective of the selection is that training on the subset can
achieve comparable performance to that on the full data. In
pursuit of this objective, by first predetermining and fixing
the coreset size per request, previous works competed to pro-
pose more advanced coreset selection algorithms that better
meet the objective (Toneva et al., 2019; Borsos et al., 2020).
Clearly, these works are applicable in the scenario where
practitioners have a specific requirement of the coreset size,
since subsequent coreset selection is based on it.

In this paper, we go beyond the above scenario and discuss
a more general problem about coreset selection, which is
named refined coreset selection (RCS). Specifically, in this
problem, we still hold the objective of prior coreset selection,
on which the coreset should practically perform on par with
full data. Distinctively, we are also concerned about the
objective of the coreset size. That is, under the premise of
comparable performance achieved by the coreset, its size
should be as small as possible for better data efficiency.

The RCS problem shares a similar philosophy with numer-
ous problems in other domains, which tends to go further
on other objectives besides the primary objective (Bommert
et al., 2017; Gonzalez et al., 2021; Abdolshah et al., 2019).
Also, it is much in line with the needs of practitioners. For
instance, in lots of cases, we actually do not have a clear
and fixed requirement for the coreset size. Instead, if model
performance with the coreset can be satisfactory, we desire
to further minimize storage and training consumption and
are interested in the lowest cost of hardware when utilizing
the coreset. This matches the minimal coreset size under
model performance constraints.

To address the RCS problem, we present a new method that
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formulates RCS as cardinality-constrained bilevel optimiza-
tion with priority order over multiple objectives. Specifi-
cally, we first rigorously formalize the priority order as lexi-
cographic preferences (Fishburn, 1975; Zhang et al., 2023b).
This helps specify a clear optimization target across multi-
ple objectives, where the model performance is primary and
coreset size is secondary. Afterward, with a network trained
in the inner loop of bilevel optimization, coreset selection is
performed in the outer loop, by using pairwise comparisons
between constructed coresets. The pairwise comparisons are
supported by lexicographic relations defined for RCS, which
proceed toward premium coresets under the lexicographic
structure over objectives.

1.1. Contributions

(1). Conceptually, we surpass the traditional coreset selec-
tion paradigm and propose the problem of refined coreset
selection (RCS). The problem is realistic, challenging, and
under-explored. The solution for it is non-trivial (c.f., §2.1).

(2). Technically, we propose an advanced method to handle
RCS, in which lexicographic bilevel coreset selection is
framed. We also discuss implementation tricks to speed up
the coreset selection in our method. Moreover, theoretical
analysis is provided to guarantee the convergence of the
proposed method.

(3). Empirically, extensive evaluations are presented on F-
MNIST, SVHN, CIFAR-10, and ImageNet-1k. We demon-
strate the utility of the proposed method in tackling RCS.
Besides, compared with previous efforts in coreset selection,
we illustrate that in many situations, our method can reach
competitive model performance with a smaller coreset size,
or better model performance with the same coreset size.

1.2. Related Literature

Coreset selection has gained much interest from the research
community (Huggins et al., 2016; Huang et al., 2018; Braver-
man et al., 2022; Qin et al., 2023; Park et al., 2022; Zheng
et al., 2023; Zhang et al., 2024; Yang et al., 2024). The
algorithms of coreset selection are generally divided into
two groups. In the first group, the methods design a series
of score criteria and sort data points based on the criteria.
Afterwards, the data points with smaller or larger scores are
selected into the coreset. The score criteria include margin
separation (Har-Peled et al., 2007), gradient norms (Paul
et al., 2021), distances to class centers (Sorscher et al., 2022;
Xia et al., 2023b), influence function scores (Pooladzandi
et al., 2022; Yang et al., 2023), etc. As a comparison, in
the second group, the methods do not design any specific
score criteria (Feldman & Langberg, 2011; Lucic et al.,
2017; Huang et al., 2023a). The coreset is commonly con-
structed in an optimization manner to satisfy an approxima-
tion error (Huang et al., 2018). Compared with the methods

in the first group, the methods in the second group often
enjoy more promising theoretical properties and guaran-
tees (Huang et al., 2018; 2023a).

Recently, due to the power to handle hierarchical decision-
making problems, bilevel optimization (Bard, 2013; Eich-
felder, 2010; Sinha et al., 2017) is introduced to improve the
methods in the second group (Borsos et al., 2020). Specifi-
cally, the motivation for bilevel coreset selection is that the
only thing we really care about is the performance of the
model trained on the coreset, instead of a small approxi-
mation error for the loss function in the whole parameter
space (Zhou et al., 2022). Therefore, the approximation
error is discarded in optimization. We choose to evaluate
the performance (e.g., the loss) of parameters achieved by
training with the selected coreset, on full data. The evalu-
ations are used to guide subsequent coreset selection. The
proposed method in this paper is inspired by bilevel core-
set selection. Nevertheless, there are prioritized multiple
objectives when evaluating performance, which is more
challenging both intuitively and technically.

Bilevel multi-objective optimization (Deb & Sinha, 2010;
Sinha et al., 2015; Gu et al., 2023) imposes multiple objec-
tives in each loop of a bilevel optimization problem. Our
algorithm design is related to bilevel multi-objective opti-
mization (Deb & Sinha, 2010), in the sense that there are
two evaluation objectives in the outer loop of bilevel op-
timization. However, to the best of our knowledge, there
is no study exploring coreset selection with bilevel multi-
objective optimization. Therefore, from this perspective,
this paper benefits the community in two folds: (1). we
investigate coreset selection with bilevel multi-objective
optimization and discuss the issues of this paradigm; (2).
we present the algorithm of bilevel coreset selection with
priority structures to address the issues, which can inspire
follow-up research.

2. Preliminaries

Notations. In the sequel, vectors, matrices, and tuples are
denoted by bold-faced letters. We use ∥ · ∥p to denote the
Lp norm of vectors or matrices and ℓ(·) to denote the cross-
entropy loss if there is no confusion. Let [n] = {1, . . . , n}.

Problem definition. We define the problem of RCS
as follows. Formally, given a large-scale dataset D =
{(xi, yi)}ni=1 with a sample size n, where xi denotes the
instance and yi denotes the label. The problem of RCS is
to find a subset of D for follow-up tasks, which reduces
both storage and training consumption while maintaining
the utility. The subset is called the coreset that is expected
to satisfy two objectives by priority: (O1) the coreset should
practically perform on par with full dataD; (O2) the sample
size of the coreset should be as small as possible. Note
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that objective (O1) has a higher priority than (O2), since
a smaller coreset size is pointless if the network with this
small coreset does not perform satisfactorily.

Objective formulations. We formulate the two optimiza-
tion objectives that we are concerned with. Without loss
of generality, we consider the minimization mode across
the paper. The formulation is based on a bilevel optimiza-
tion framework (Borsos et al., 2020; Zhou et al., 2022).
Specifically, the 0-1 masks m ∈ {0, 1}n are introduced
with mi = 1 indicating the data point (xi, yi) is selected
into the coreset and otherwise excluded. We use h(x;θ) to
denote the deep network with the learnable parameters θ.
The objective (O1) can be formulated as

f1(m) :=
1

n

n∑
i=1

ℓ(h(xi;θ(m)), yi), (1)

s.t. θ(m) ∈ argmin
θ
L(m,θ),

where θ(m) denotes the network parameters obtained by
training the network to converge on the selected coreset with
mask m. That L(m,θ) represents the loss on the selected
coreset with L(m,θ) = 1

∥m∥0

∑n
i=1miℓ(h(xi;θ), yi).

The intuition of (O1) is that a good coreset ensures op-
timizing on L(m,θ) over θ yields good solutions when
evaluated on f1(m) (Borsos et al., 2020). Also, we define
the objective (O2) as

f2(m) := ∥m∥0, (2)

which explicitly controls the coreset size using L0 norm.
In this work, we aim to minimize f1(m) and f2(m) in
order of priority, where f1(m) is primary and f2(m) is sec-
ondary. That f2(m) should be optimized under the premise
of f1(m).

2.1. RCS Solutions are Non-trivial

Solving RCS is non-trivial since previous methods on core-
set selection can not be applied directly. Moreover, simple
modifications to these methods may not be sufficient to
achieve good solutions. For the attempt of direct applica-
tions, it is somewhat easy to know this is infeasible. Most
works fix the coreset size for coreset selection (Paul et al.,
2021; Xia et al., 2023b; Sorscher et al., 2022; Toneva et al.,
2019). Also, the methods (Borsos et al., 2020; Zhou et al.,
2022) in bilevel optimization specify a predefined upper
bound of the coreset size, and only consider the objective
(O1) in optimization:

min
m

f1(m), s.t. θ(m) ∈ argmin
θ
L(m,θ). (3)

In (3), the minimization of f1(m) is in the outer loop, while
the minimization of L(m,θ) lies in the inner loop. Without
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Figure 1: Illustrations of phenomena of several trivial solu-
tions discussed in §2.1. The experiment is based on (Zhou
et al., 2022). The setup is provided in Appendix C.3. Here,
k denotes the predefined coreset size before optimization.
(a) f1(m) vs. outer iterations with (3); (b) f2(m) vs. outer
iterations with (3); (c) f1(m) vs. outer iterations with (4);
(d) f2(m) vs. outer iterations with (4).

optimizations about the coreset size, f1(m) can be mini-
mized effectively (see Figure 1(a)). As a comparison, the
coreset size remains close to the predefined one (see Fig-
ure 1(b)), which is not our desideratum in RCS.

In an attempt to modify previous methods to tackle RCS,
we discuss two simple-to-conceive cases. To begin with, for
the methods that fix the coreset size for subsequent core-
set selection, we can borrow them to run many experiment
attempts under different coreset sizes. The attempts with
comparable f1(m) and small f2(m) can be employed as
a solution. However, this way needs expert assistance for
lower attempt budgets (Yao et al., 2018). Also, its perfor-
mance is not very competitive (see evaluations in §5).

In addition, for the methods in bilevel coreset selection, by
introducing the objective (O2) to (3), we can minimize two
objectives in the form of a weighted combination:

min
m

(1−λ)f1(m)+λf2(m), s.t. θ(m) ∈ argmin
θ
L(m,θ),

(4)
where λ ∈ (0, 1) is a hyper-parameter to balance the two
objectives in (4). First, intuitively, as f2(m) has lower pri-
ority than f1(m) in RCS, we can tune a smaller weight
for f2(m), i.e., λ < 1/2. Unfortunately, it is intractable,
since the two objectives have different magnitudes that are
related to data, networks, optimization algorithms, and spe-
cific tasks simultaneously (Gong et al., 2021). Second, if
f1(m) and f2(m) share the same weights, i.e., λ = 1/2,
optimization does not implicitly favor f1(m). Instead, the
minimization of f2(m) is salient, where after all iterations
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f2(m) is too small and f1(m) is still large (see Figures 1(c)
and 1(d)). This contradicts our aim in RCS, since satisfac-
tory network performance achieved by the coreset has a
higher priority order. With the work (Zhou et al., 2022),
to explain the experimental phenomenon, we provide the
analysis with gradient norms of objectives. The gradient
derivations are presented mathematically in Appendix C.

Therefore, based on the above discussions, we can know
that RCS solutions are non-trivial. This demonstrates the
urgency of developing more advanced algorithms.

3. Methodology
3.1. Lexicographic Bilevel Coreset Selection

Although both (O1) and (O2) are optimization objectives
we care about, in optimization, there is a priority order
between them. As analyzed above, (O1) has a higher priority
than (O2), since a smaller coreset size is meaningless if
the network with such a small coreset does not perform
satisfactorily. We formalize a general notion of priority
order rigorously as a lexicographic preference (Fishburn,
1975) over two objectives. The general notion helps specify
a clear optimization target across multiple objectives before
optimization and avoids manual post hoc selection.

Specifically, we use the order list F (m) = [f1(m), f2(m)]
to represent the objectives with a lexicographic structure,
in which f1 is the objective with higher priority and f2 is
the one with lower priority. The optimization of f2 only
matters on the condition that the more important objective
f1 is well-optimized. Afterward, our lexicographic bilevel
coreset selection can be formulated as

m⃗inm∈MF (m), s.t. θ(m) ∈ argmin
θ
L(m,θ), (5)

where m⃗in represents the lexicographic optimization proce-
dure over the ordered list F (m) (Zhang et al., 2023b) and
M denotes the search space of the mask m. It is worth
mentioning that the outer loop is not reflected by a single
utility function enclosing both f1 and f2. The reason is
that, mathematically, it is impossible to construct a single
utility function that represents lexicographic preferences as
weighted objectives (c.f., (Shi et al., 2020)).

Remark 1. Compared with the trivial solution, i.e., the form
of weighted combination in (4), our lexicographic bilevel
coreset selection enjoys several advantages. (i). Our method
does not need to determine the combination weight, which
is helpful for optimization when the two objectives are of
different scales. (ii). Our method can reach Pareto opti-
mality, where the weighted combination falls short (Zhang
et al., 2023b). (iii). When a research problem has a clear hi-
erarchy of objectives where some objectives are definitively
more important than others, lexicographic preference aligns

Algorithm 1 Lexicographic bilevel coreset selec-
tion (LBCS) for RCS.
1: Require: a network θ, a dataset D, a predefined size k,
and voluntary performance compromise ϵ;
2: Initialize masks m randomly with ∥m∥0 = k;
for training iteration t = 1, 2, . . . , T do

3: Train the inner loop with D to converge satisfies:
θ(m)← argminθ L(m,θ);
4: Update masks m with θ(m) by lexicographic opti-
mization as discussed in §3.2;

5: Output: masks m after all training iterations.

with the decision-making process more naturally than the
weighted combination. These advantages explain why the
proposed way is better than the trivial method in solving the
trade-off between f1 and f2.

3.2. Optimization Algorithm

Challenges. We discuss the optimization details of lexico-
graphic bilevel coreset selection that is formulated in (5).
The optimization of the inner loop is simple by directly
minimizing L(m,θ). It is challenging to optimize the outer
loop that has a priority structure. As under lexicographic
optimization, it is inaccessible to the gradients of f1(m)
and f2(m) with respect to m, the methods that require ana-
lytic forms of gradients (Gong et al., 2021) are inapplicable.
Also, it is inefficient to borrow multi-objective optimization
methods (Gunantara, 2018) to find Pareto frontiers (Lotov
& Miettinen, 2008), since the found Pareto frontiers are
widespread. Actually, we are only interested in a subset of
them in a specific region.

Black-box optimization. Given these considerations, we
propose to treat the optimization of the outer loop as a black-
box optimization problem and leverage a randomized direct
search algorithm to solve it. The optimization algorithm
only needs a set of binary relations used to compare any two
masks with their evaluation values for the two objectives
f1 and f2. The evaluation results of different masks are
iteratively queried, leading to the best mask to solve the
RCS problem. The core of the optimization is lexicographic
relations (Zhang et al., 2023b) that are used to compare the
performance of different masks with respect to F (m). We
define the lexicographic relations for RCS below.

Definition 1 (Lexicographic relations in RCS). With two
masks for coreset selection, denoted by m and m′ respec-
tively, the lexicographic relations for RCS are defined as

F (m) =⃗ F (m′)⇔ fi(m) = fi(m
′) ∀i ∈ [2], (6)

F (m) ≺⃗ F (m′)⇔
∃i ∈ [2] : fi(m) < fi(m

′) ∧ (∀i′ < i, fi′(m) = fi′(m
′)) ,

F (m) ⪯⃗ F (m′)⇔ F (m) =⃗ F (m′) ∨ F (m) ≺⃗ F (m′).
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It should be noted that the lexicographic relation “⪯⃗” has
been verified to be both reflexive and transitive (Zhang et al.,
2023b). Therefore, leveraging the defined lexicographic re-
lations, the comparisons between any two feasible masks are
always conclusive. The optimal point of the outer loop under
lexicographic optimization is any one element in the opti-
mum setM∗ = {m ∈M∗

2 | ∀m ̸= m′, F (m) ⪯⃗ F (m′)}.
HereM∗

2 is defined recursively as

M∗
1 := {m ∈M | f1(m) ≤ f∗

1 ∗ (1 + ϵ)}, f∗
1 := inf

m∈M
f1(m),

M∗
2 := {m ∈M∗

1 | f2(m) ≤ f∗
2 }, and f∗

2 := inf
m∈M∗

1

f2(m),

where ϵ represents the percentage of voluntary performance
compromise of f1(m) to find choices with better perfor-
mance on f2(m). In RCS, it is a non-negative number.

Remark 2 (On the compromise of f1(m)). A relatively
small compromise of f1(m) does not necessarily degrade
the model performance by the coreset when generalizing to
test data. Instead, the compromise saves f1(m) from having
to be optimized to the minimum, which reduces the model
overfitting in coreset selection. This can help the model
generalization, especially when training data for coreset
selection are polluted, e.g., corrupted by mislabeled data.
The previous method such as Zhou et al. (2022) did not
take the issue of overfitting into consideration, but moved
towards the minimum in optimization. Its performance
would be degraded in a series of cases. More details and
evidence can be found in §5.2 and §5.3.

Algorithm flow and tricks for acceleration. The lexico-
graphic optimization flow of the outer loop of (5) is provided
in Appendix A. Besides, the overall algorithm flow of the
proposed lexicographic bilevel coreset selection (LBCS)
for RCS is shown in Algorithm 1. The computational con-
sumption of Algorithm 1 originates from the model training
in the inner loop (Step 3) and mask updates in the outer
loop (Step 4). To speed up the inner loop, we can first
train a model with random masks and then finetune it with
other different masks in Step 3. Also, we can employ model
sparsity and make the trained model smaller for faster train-
ing. To accelerate the outer loop, the mask search space
can be narrowed by treating several examples as a group.
The examples in the same group share the same mask in
coreset selection. These tricks make our method applicable
to large-scale datasets.

4. Theoretical Analysis
We begin by introducing notations and notions. Specifically,
for an objective function f , its infimum value in the search
space M is denoted by f∗. We employ mt to represent
the mask at the t-th iteration generated by our algorithm.
That {mt}Tt=0 denotes the sequence of masks generated

by the proposed algorithm upon the step T from the start
time (t = 0). Also, ψt represents the probability measure
in the step t, which is defined on the search spaceM. In
the following, we present progressable and stable moving
conditions to facilitate theoretical analysis of our LBCS.

Condition 1 (Progressable condition). LBCS can optimize
objectives f1 and f2 lexicographically. Namely, at any step
t ≥ 0, the masks mt and mt+1 satisfy:{
f1(m

t+1) < f1(m
t) if mt /∈M∗

1;

(f2(m
t+1) < f2(m

t)) ∧ (mt+1 ∈M∗
1) if mt ∈M∗

1.
(7)

Remark 3. According to lexicographic relations used for
mask updates (c.f., Line 10 of Algorithm 2 in Appendix A),
Condition 1 holds at all time steps in LBCS. Specifically,
when f1 is not well-optimized, LBCS updates the incumbent
mask only if the current evaluating mask has a better value
on f1. On the other hand, when f1 reaches the optimal
regionM∗

1, LBCS will update the incumbent mask only if
the current evaluating mask has a better value on the second
objective f2, while f1 remains inM∗

1.

Condition 2 (Stable moving condition). At any step t ≥ 0,
(i) if mt /∈M∗

1, for all possible mt in the set S1 := {mt ∈
M|f(mt) ≤ f(m0)}, there exists γ1 > 0 and 0 < η1 ≤ 1
so that the algorithm satisfies:

ψt+1[f1(m
t)−f1(mt+1) > γ1 or mt ∈M∗

1] ≥ η1, (8)

and (ii) if mt ∈ M∗
1, for all possible mt in the set S2 :=

{mt ∈ M|f(mt) ≤ f(mt̂)}, there exists γ2 > 0 and
0 < η2 ≤ 1 so that the algorithm satisfies:

ψt+1[f2(m
t)−f2(mt+1) > γ2 or mt ∈M∗

2] ≥ η2, (9)

where t̂ represents the earliest time step that the incumbent
mask reaches the optimal region in the objective f1, i.e.,
t̂ := min{t ∈ {mt}Tt=0|mt ∈M∗

1}.

Remark 4. Condition 2 is an assumption that applies to
both optimization objectives f1 and f2, the search space
M, and the search algorithm. This condition is commonly
used in the convergence analysis of local randomized search
algorithms (Dolan et al., 2003; Solis & Wets, 1981). In
essence, Condition 2 imposes an improvement lower bound
on each step of the local randomized search algorithm. This
ensures that progress is made stably in each step of the
algorithm, and is essential for proving convergence to a
globally optimal solution.

With these notations, notions, and conditions, we are ready
to exhibit the convergence analysis of our LBCS. Notice that
the algorithm convergence in the RCS problem differs from
the convergence in traditional multiple objective optimiza-
tion problems (Morales-Hernández et al., 2022; Karl et al.,
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2022). In RCS, with two optimization objectives f1 and f2,
we say an algorithm is converged if (i) the primary objec-
tive f1 reaches the optimum considering the user-provided
compromise ϵ; (ii) the secondary objective f2 reaches the
optimum under that (i) is satisfied. The theoretical result is
formally presented below.

Theorem 2 (ϵ-convergence). Under Condition 1 and Condi-
tion 2 (sufficient conditions), the algorithm is ϵ-convergence
in the RCS problem:

Pt→∞[f2(m
t) ≤ f∗2 ] = 1 (10)

s.t. f∗2 = min
m∈M

{f2(m)|f1(m) ≤ f∗1 ∗ (1 + ϵ)},

where P[f2(mt) ≤ f∗2 ] represents the probability that the
mask mt generated at time t is the converged solution as
described above.

The proof of Theorem 2 can be checked in Appendix B.

5. Experiments
5.1. Preliminary Presentation of Algorithm’s

Superiority

k Objectives Initial ϵ = 0.2 ϵ = 0.3 ϵ = 0.4

200 f1(m) 3.21 1.92±0.33 2.26±0.35 2.48±0.30
f2(m) 200 190.7±3.9 185.0±4.6 175.5±7.7

400 f1(m) 2.16 1.05±0.26 1.29±0.33 1.82±0.41
f2(m) 400 384.1±4.4 373.0±6.0 366.2±8.1

Table 1: Results (mean±std.) to illustrate the utility of our
method in optimizing the objectives f1(m) and f2(m).

As discussed, there is no previous study specializing in
RCS. We therefore only discuss the results achieved by our
method. We show that the proposed method can effectively
optimize two objectives f1(m) (the network performance
achieved by the coreset) and f2(m) (the coreset size). We
conduct experiments on MNIST-S which is constructed by
random sampling 1,000 examples from original MNIST (Le-
Cun et al., 1998). Staying with previous work (Borsos et al.,
2020), we use a convolutional neural network stacked with
two blocks of convolution, dropout, max-pooling, and ReLU
activation. The predefined coreset size k is set to 200 and
400 respectively. The voluntary performance compromise
of f1(m) denoted by ϵ varies in 0.2, 0.3, and 0.4. All exper-
iments are repeated 20 times on NVIDIA GTX3090 GPUs
with PyTorch. The mean and standard deviation (std.) of
results are reported.

We provide results in Table 1. First, as can be seen, com-
pared with initialized f1(m) and f2(m), both achieved
f1(m) and f2(m) after lexicographic bilevel coreset selec-
tion are lower. This demonstrates that our method can con-
struct a high-quality coreset with a size that is smaller than
the predefined one. Second, we observe that a larger ϵ will

lead to a smaller f2(m) under multiple experiments. The
phenomenon justifies our previous statements well. Note
that here we stress, in one experiment, that a larger ϵ does
not necessarily produce a larger f1(m). It is because we
only restrict the upper bound of f1(m) by ϵ, but not its
exact value (see (7)). Nevertheless, when the number of
experiments becomes relatively large, on average, achieved
f1(m) increases accordingly if we increase ϵ.

5.2. Comparison with the Competitors

Competitors. Multiple coreset selection methods act as
baselines for comparison. To our best knowledge, before
that, there was no study working on the RCS problem.
Therefore, the baselines are the methods that construct the
coreset with a predetermined coreset size, where the size is
not further minimized by optimization. Specifically, we em-
ploy (i). Uniform sampling (abbreviated as Uniform); (ii).
EL2N (Paul et al., 2021); (iii). GraNd (Paul et al., 2021);
(iv). Influential coreset (Yang et al., 2023) (abbreviated as
Influential); (v). Moderate coreset (Xia et al., 2023b) (ab-
breviated as Moderate). (vi). CCS (Zheng et al., 2023).
(vii). Probabilistic coreset (Zhou et al., 2022) (abbreviated
as Probabilistic). Note that we do not compare our LBCS
with the method (Borsos et al., 2020) that also works in
bilevel coreset selection, since it suffers from huge time
consumption (Zhou et al., 2022). For every newly added
example, the consumption increases rapidly with the coreset
size. Also, as reported in (Zhou et al., 2022), its perfor-
mance is not very competitive compared with “Probabilistic
coreset”. Technical details of employed baselines are pro-
vided in Appendix D.1. For fair comparisons, we reproduce
the baselines based on their code repositories. All experi-
ments are repeated ten times on NVIDIA GTX3090 GPUs
with PyTorch.

Datasets and implementation. We employ Fashion-
MNIST (abbreviated as F-MNIST) (Xiao et al., 2017),
SVHN (Netzer et al., 2011), and CIFAR-10 (Krizhevsky
et al., 2009) to evaluate our method. The three benchmarks
are popularly used (Killamsetty et al., 2021; Yang et al.,
2023). In the procedure of coreset selection, we employ a
LeNet for F-MNIST and simple convolutional neural net-
works (CNNs) for SVHN and CIFAR-10. An Adam opti-
mizer (Kingma & Ba, 2015) is used with a learning rate of
0.001 for the inner loop. The parameters ϵ and T are set
to 0.2 and 500. After coreset selection, for training on the
constructed coreset, we utilize a LeNet (LeCun et al., 1998)
for F-MNIST, a CNN for SVHN, and a ResNet-18 network
for CIFAR-10 respectively. In addition, for F-MNIST and
SVHN, an Adam optimizer (Kingma & Ba, 2015) is used
with a learning rate of 0.001 and 100 epochs. For CIFAR-10,
an SGD optimizer is exploited with an initial learning rate
of 0.1 and a cosine rate scheduler. 200 epochs are set totally.
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k Uniform EL2N GraNd Influential Moderate CCS Probabilistic LBCS (ours) Coreset size (ours)
F-

M
N

IS
T 1000 76.9±2.5 71.8±2.9 70.7±4.0 78.9±2.0 77.0±0.6 76.7±3.5 80.3±0.6 79.7±0.7 956.7±3.5

2000 80.0±2.4 73.7±1.6 71.7±2.3 80.4±0.8 80.3±0.4 81.4±0.6 82.6±0.2 82.8±0.6 1915.3±6.6
3000 81.7±1.7 75.3±2.3 73.3±1.8 81.5±1.2 81.7±0.5 82.6±1.2 83.7±0.9 84.0±0.6 2831.6±10.9
4000 83.0±1.7 77.0±1.0 75.9±2.1 82.4±1.3 82.4±0.3 84.1±0.6 84.2±0.7 84.5±0.4 3745.4±15.6

SV
H

N

1000 67.1±3.3 56.8±1.3 60.7±1.1 70.3±0.8 68.4±2.0 66.9±1.9 67.8±0.4 70.6±0.3 970.0±4.8
2000 75.9±1.0 64.8±0.6 67.3±2.0 76.2±1.3 77.9±0.7 77.3±0.8 76.6±1.3 78.3±0.7 1902.3±10.3
3000 80.3±1.2 72.1±2.8 75.2±1.6 80.8±1.5 81.8±0.7 81.9±0.6 80.9±1.1 82.3±0.7 2712.6±15.0
4000 83.9±0.8 75.8±1.9 79.1±2.4 83.6±1.8 83.9±0.6 84.1±0.3 84.3±1.4 84.6±0.6 3804.2±16.4

C
IF

A
R

-1
0 1000 46.9±1.8 36.8±1.2 41.6±2.0 45.7±1.1 48.1±2.2 47.6±1.6 48.2±0.9 48.3±1.2 970.4±2.9

2000 58.1±2.0 47.9±0.7 52.3±2.4 57.7±1.3 58.5±1.3 59.3±1.4 60.1±0.8 60.4±1.0 1955.2±5.3
3000 65.7±2.3 56.1±1.9 61.9±1.7 67.5±1.6 69.2±2.6 67.6±1.6 68.7±1.1 69.5±0.9 2913.8±9.6
4000 70.9±2.5 63.0±2.0 67.9±1.3 71.7±2.4 73.9±0.4 73.0±0.9 73.6±0.2 73.4±0.5 3736.0±14.2

Table 2: Mean and standard deviation of test accuracy (%) on different benchmarks with various predefined coreset sizes.
The best mean test accuracy and optimized coreset size by our method in each case are in bold.

k Uniform EL2N GraNd Influential Moderate CCS Probabilistic LBCS (ours)

F-
M

N
IS

T 956 76.5±1.8 71.3±3.1 70.8±1.1 78.2±0.9 76.3±0.5 75.4±1.1 79.2±0.9 79.7±0.5
1935 79.8±2.1 73.2±1.3 71.2±1.5 80.0±1.9 79.7±0.5 80.3±0.6 81.7±0.7 82.8±0.4
2832 81.2±1.3 75.0±1.6 73.2±1.1 81.0±0.7 81.4±0.3 82.5±0.7 83.4±0.6 84.0±0.4
3746 82.8±1.5 77.0±2.2 75.1±1.6 82.1±1.0 82.2±0.4 83.6±1.0 83.8±0.5 84.5±0.3

SV
H

N

970 66.7±2.6 57.2±0.5 60.6±1.7 70.3±1.2 68.4±1.8 65.1±1.1 67.6±1.3 70.6±0.3
1902 75.7±1.8 65.0±0.7 67.0±1.2 75.5±0.9 77.7±1.2 75.9±1.4 76.1±0.7 78.3±0.7
2713 79.5±2.6 72.3±0.5 74.8±1.1 80.0±1.9 81.4±1.1 81.1±1.0 80.5±0.4 82.3±0.8
3805 83.6±1.2 75.5±1.8 78.2±1.3 82.8±1.6 83.6±0.6 84.2±0.3 83.5±1.2 84.6±0.6

C
IF

A
R

-1
0 970 46.8±1.2 36.7±1.1 41.4±1.9 44.8±1.5 46.2±1.9 45.4±1.0 47.8±1.1 48.3±1.2

1955 58.0±1.3 48.3±1.9 52.5±1.2 57.6±1.9 57.4±0.8 58.6±1.4 59.4±1.2 60.4±1.0
2914 65.5±1.9 55.0±3.2 67.7±1.8 67.2±1.0 68.2±2.1 66.5±1.0 68.0±0.8 69.5±0.9
3736 70.6±2.4 58.8±1.9 72.8±1.1 70.2±3.5 73.0±1.2 72.8±0.9 73.4±0.5 73.4±0.5

Table 3: Mean and standard deviation of test accuracy (%) on different benchmarks with coreset sizes achieved by the
proposed LBCS.

Details of network architectures are given in Appendix D.2.

Measurements. We consider two kinds of comparisons
with the above baselines. (i). The same predefined coreset
size is applied in the beginning. After coreset selection and
model training on the constructed coreset, measurements
are both the model accuracy on test data and coreset size.
A higher accuracy and smaller coreset size indicate better
coreset selection. Comparing different methods of coreset
selection, the average accuracy brought by per data point
within the coreset is also provided. (ii). We apply the coreset
size obtained by our method to the baselines. Their coreset
selection and model training are then based on this coreset
size. Measurements are the model accuracy on test data
under the same coreset size. Here a higher accuracy means
superior coreset selection.

Discussions on experimental results. Results about the
first kind of comparison are provided in Table 2. As can be
seen, for SVHN, our method always achieves the best test
accuracy meanwhile with smaller coreset sizes compared
with predefined ones. For F-MNIST and CIFAR-10, our
LBCS obtains the best accuracy with the smaller coreset

sizes most of the time. When k = 1000 on F-MNIST and
k = 4000 on CIFAR-10, our performance is competitive
(80.3±0.6 vs. 79.7±0.5 and 73.9±0.4 vs. 73.4±0.5). Also,
based on the results of the first kind of comparison, we pro-
vide the average accuracy brought by per data point within
the coreset in Appendix E.1, which shows that our LBCS
always enjoys higher average accuracy. In addition, results
of the second kind of comparison are provided in Table 3.
Clearly, our LBCS consistently outperforms all competitors.
Based on these observations, we can safely conclude that
our method can reach competitive model performance with
smaller coreset sizes, or better model performance with the
same coreset sizes.

5.3. Robustness against Imperfect Supervision

Coreset selection with corrupted labels. We employ F-
MNIST here. We inject 30% symmetric label noise (Ma
et al., 2020; Kim et al., 2021; Park et al., 2023; Xia et al.,
2023a; Yong et al., 2023) into the original clean F-MNIST to
generate the noisy version of F-MNIST. Namely, the labels
of 30% training data are flipped. The predefined coreset
size k is set to 1000, 2000, 3000, and 4000 respectively. Ex-
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Figure 2: Illustrations of coreset selection under imperfect
supervision. (a) Test accuracy (%) in coreset selection with
30% corrupted labels; (b) Test accuracy (%) in coreset se-
lection with class-imbalanced data. The optimized coreset
sizes by LBCS in these cases are provided in Appendix E.3.

perimental results are provided in Figures 2(a). The results
support our claims made in Remark 2, which demonstrate
that LBCS can reduce the model overfitting in coreset selec-
tion and help model generalization. We also evaluate LBCS
when the noise level is higher, i.e., 50%. Results can be
found in Appendix E.2.

Coreset selection with class-imbalanced data. For the
class-imbalanced experiment, we adopt a similar setting as
in (Xu et al., 2021). The exponential type of class imbal-
ance (Cao et al., 2019) is used. The imbalanced ratio is set
to 0.01. Experimental results are provided in Figure 2(b),
which confirms the validity of our method in coreset selec-
tion with class-imbalanced cases.

5.4. Evaluations on ImageNet-1k

We evaluate the performance of LBCS on ImageNet-
1k (Deng et al., 2009). The network structures for the inner
loop and training on the coreset after coreset selection are
ResNet-50. As the size of ImageNet-1k is huge, to accel-
erate coreset selection, the tricks discussed previously are
employed. We regard 100 examples as a group, where they
share the same mask. The same tricks are applied to the
baseline Probabilistic. Staying with precedent (Sorscher
et al., 2022), the VISSL library (Goyal et al., 2021) is used.
Besides, for model training after coreset selection, we adopt
a base learning rate of 0.01, a batch size of 256, an SGD
optimizer with a momentum of 0.9, and a weight decay of
0.001. 100 epochs are set in total. The experiment in each
case is performed once, considering calculation costs. We
set the predefined ratio of coreset selection, i.e., k/n, to 70%
and 80% respectively. Experimental results are provided in
Table 4, which confirm the validity of our LBCS.

6. More Justifications and Analyses

The influence of the number of search times. Here we
investigate the number of search times during coreset se-

k/n 70% 80%

Uniform 88.63 89.52
EL2N 89.82 90.34
GraNd 89.30 89.94
Influential - -
Moderate 89.94 90.65
CCS 89.45 90.51
Probabilistic 88.20 89.35

LBCS (ours) 89.98 (68.53%) 90.84 (77.82%)

Table 4: Top-5 test accuracy (%) on ImageNet-1k. Partial
results are from previous work (Xia et al., 2023b). The
best test accuracy in each case is in bold. For LBCS, we
additionally report the optimized ratio of coreset selection.

k LBCS LBCS+Moderate

1000 79.7±0.7 79.8±0.5
2000 82.8±0.6 83.6±0.7
3000 84.0±0.6 84.3±0.4
4000 84.5±0.4 85.1±0.3

Table 5: Mean and standard deviation of test accuracy
(%) on F-MNIST with various predefined coreset sizes.
“LBCS+Moderate” means the mask is initialized by “Moder-
ate” and then is refined by our LBCS. The best test accuracy
in each case is in bold.

lection, i.e., the value of T . We conduct experiments on F-
MNIST. Experimental results are provided in Appendix E.4.
The main observation is that, at the beginning, with the in-
creased search times, the test accuracy increases, and the
coreset size decreases. As the search proceeds, the test ac-
curacy gradually stabilizes. The coreset size continues to be
smaller. Afterward, when the number of searches is large,
the search results are not changed obviously, as the search
approaches convergence empirically. In practice, we can
pick a suitable T based on the need for coresets and the
budget of search in coreset selection.

Time complexity analysis. We compare the time complex-
ity between Probabilistic (Zhou et al., 2022) and our LBCS
because both the two methods are based on the bilevel frame-
work for coreset selection. Specifically, suppose that the
number of training epochs of one inner loop is denoted asK.
The time complexity of our LBCS is O(TK). As a compar-
ison, the time complexity of Probabilistic (Zhou et al., 2022)
is O(TKC), where C is the number of sampling times re-
quired by its policy gradient estimator. As the value of C is
generally greater than 1 (Zhou et al., 2022), our LBCS en-
joys less time complexity than Probabilistic. Note that due
to the bilevel strategy, at the current stage, LBCS still takes
a relatively long time for coreset selection. However, the
coreset selection only needs to be performed once. The se-
lected coreset can be used for subsequent unlimited rounds

8



Refined Coreset Selection: Towards Minimal Coreset Size under Model Performance Constraints

k Uniform EL2N GraNd Influential Moderate CCS Probablistic LBCS (ours)
V

iT

1000 28.5±3.1 22.7±3.5 24.0±2.2 31.5±1.8 32.8±1.5 31.7±1.6 29.6±0.3 33.9±0.8
2000 46.6±2.7 40.9±2.6 38.8±0.6 42.2±1.7 45.5±2.3 46.1±1.8 46.6±2.0 47.5±2.2
3000 50.0±2.2 46.7±3.0 47.9±2.4 50.8±0.7 51.0±2.9 50.4±1.6 50.5±1.9 51.3±0.6
4000 54.0±3.3 49.9±2.8 50.8±0.9 53.3±0.9 54.9±1.9 56.2±2.1 55.3±1.5 57.7±0.4

W
-N

E
T

1000 78.8±1.5 67.9±2.7 70.5±3.0 79.3±2.8 80.0±0.4 79.8±0.9 80.1±1.3 80.3±1.2
2000 87.2±1.2 69.5±3.3 73.4±2.6 87.1±0.8 88.0±0.3 88.7±0.6 87.0±1.0 87.8±1.1
3000 89.1±0.9 76.6±1.2 78.8±3.2 90.3±0.7 90.3±0.4 90.2±0.4 89.3±0.6 90.7±0.5
4000 90.2±1.9 80.3±1.9 83.4±1.7 90.9±1.1 90.8±0.5 91.1±1.0 90.6±0.5 91.4±0.9

Table 6: Mean and standard deviation (std.) of test accuracy (%) on SVHN with various predefined coreset sizes and
networks. The best mean test accuracy in each case is in bold.

of model training, parameter tuning, and model architecture
search, to reduce computational and storage consumption.

The influence of mask initialization. If the search space is
large and the search time is limited, a suitable mask initial-
ization will be beneficial to the final performance. Prior to
this, we use random mask initialization for fair comparison.
Here we show that with mask initialization by other meth-
ods, the final performance will be enhanced. Experimental
results are shown in Table 5.

Cross network architecture evaluation. Here we demon-
strate that the proposed method is not limited to specific
network architectures. We employ SVHN and use ViT-
small (Dosovitskiy et al., 2021) and WideResNet (abbre-
viated as W-NET) (Zagoruyko & Komodakis, 2016) for
training on the constructed coreset. The other experimental
settings are not changed. Results are provided in Table 6. As
can be seen, with ViT, our method is still superior to the com-
petitors with respect to test accuracy and coreset sizes (the
exact coreset sizes of our method can be checked in Table 2).
With W-NET, our LBCS gets the best test accuracy when
k = 1000, k = 3000, and k = 4000 with smaller coreset
sizes. In other cases, i.e., k = 2000, LBCS can achieve
competitive test accuracy compared with baselines but with
a smaller coreset size.

In addition to the above analysis, the evaluations about
two applications of coreset selection, i.e., continual learn-
ing (Kim et al., 2022) and streaming (Hayes et al., 2019),
can be found in Appendix E.5 and Appendix E.6.

7. Conclusion
In this paper, we propose and delve into the problem of
refined coreset selection. An advanced method named lex-
icographic bilevel coreset selection is presented. We theo-
retically prove its convergence and conduct comprehensive
experiments to demonstrate its superiority. For future work,
we are interested in adapting the proposed method to other
fields such as image and motion generation (Song et al.,
2023; Chen et al., 2023), and in accelerating the pre-training
of large vision and language models (Touvron et al., 2023;

Liu et al., 2023; Wang et al., 2024; Zhou et al., 2024; Huang
et al., 2023c; Luo et al., 2024) with our method.

Limitations. The proposed method is based on bilevel op-
timization coreset selection. At present, some advanced
methods do not need bilevel optimization. This work does
not discuss an effective way to involve the minimization of
the coreset size in those methods. Also, although theoreti-
cal analysis provides convergence guarantees, the optimal
convergence rate remains mysterious. We regard addressing
the limitations as future research directions.

Impact Statement
This paper presents work on the problem of refined coreset
selection (RCS), which is significant in this big data era.
A framework of lexicographic bilevel coreset selection is
proposed for the problem, with both theoretical guarantees
and superior performance. The outcome of this paper has
several broader impacts as follows. For example, due to
data privacy and security, data sharing is often challenging.
With the outcome of the coreset selection by this paper, data
sharing can be promoted by only sharing representative data
in the constructed coreset, but not full data. Besides, the
outcome of this paper helps sustainable development, since
it can lower the energy and physical resource requirements
of machine learning algorithms, which reduces their impact
on the environment. The RCS problem is realistic and im-
portant. The solution for it is non-trivial. Therefore, the
development and realization of the algorithm for RCS re-
quire advanced technology and expertise, which may result
in the emergence of technical barriers.
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A. Details of the Black-box Optimization Algorithm

Technical details. For the black-box optimization of f1 and f2 in order of priority, we make use of a randomized direct
search algorithm named LexiFlow (Zhang et al., 2023b;c) and make necessary modifications to it1. In RCS, LexiFlow is
designed to iteratively direct the search to the optimal solution based on lexicographic comparisons over pairs of masks.
Technically, at the i-th iteration, LexiFlow maintains an incumbent point that represents the optimal mask up to the i-th
iteration. The algorithm will sample two new masks near the incumbent point and update the incumbent point by making
lexicographic comparisons between the incumbent point and sampled masks. During the iterative optimization process,
LexiFlow will gradually move toward the optimal solution. To free the algorithm from local optima and manual configuration
of the step size, LexiFlow includes restart and dynamic step size techniques. These techniques are similar to those used in
an existing randomized direct search-based method (Wu et al., 2021). The details are provided in Algorithm 2.

Note that in experiments, when updating as did in Algorithm 2, the value of m less than -1 becomes -1 and the value greater
than 1 becomes 1. Then during discretization, m in [−1, 0) will be projected to 0, and m in [0, 1] will be projected to 1.

Algorithm 2 Lexicographic Optimization for f1 and f2.
Input: Objectives F (·), compromise ϵ.

1 Initialization: Initial mask m0, t′ = r = e = 0, and δ = δinit;
m∗ ←m0,H ← {m0}, and FH ← F (m0).
while t = 0, 1, ... do

2 Sample u uniformly from unit sphere S;
3 if update (F (mt + δu), F (mt), FH) then mt+1 ←mt + δu, t′ ← t;
4 else if update (F (mt − δu), F (mt), FH) then mt+1 ←mt − δu, t′ ← t;
5 else mt+1 ←mt, e← e+ 1;
6 H ← H∪ {mt+1}, and update FH according to (14) if e = 2n−1 then e← 0, δ ← δ

√
(t′ + 1)/(t+ 1);

7 if δ < δlower then
// Random restart;

8 r ← r + 1, mt+1 ← N (m0, I), δ ← δinit + r;
9 Procedure update (F (m′), F (m), FH):

if F (m′)≺⃗(FH)F (m) or
(
F (m′)=⃗(FH)F (m) and F (m′)≺⃗F (m)

)
then

10 if F (m′)≺⃗(FH)F (m∗) or
(
F (m′)=⃗(FH)F (m∗) and F (m′)≺⃗lF (m∗)

)
then

11 m∗ ←m′;
12 Return True
13 else
14 Return False
15 Output: The optimal mask m∗.

Practical lexicographic relations. We highlight that the notations of lexicographic relations in Algorithm 2 (i.e., =⃗(FH),
≺⃗(FH), and ⪯⃗(FH)) are a bit different from those in the main paper. It is because the optimization with the lexicographic
relations in Definition 1 relies on the infimums of f1(m) and f2(m). They are theoretically achievable but may be
inaccessible in practice. Therefore, in experiments, we use practical lexicographic relations that are defined with the
available minimum values of objectives.

Specifically, given any two masks m′ and m, the practical lexicographic relations =⃗(FH), ≺⃗(FH), and ⪯⃗(FH) in Algorithm 2
are defined as:

F (m)=⃗(FH)F (m
′)⇔ ∀i ∈ [2] : fi(m) = fi(m

′) ∨ (fi(m) ≤ f̃∗i ∧ fi(m′) ≤ f̃∗i ), (11)

F (m)≺⃗(FH)F (m
′)⇔ ∃i ∈ [2] : fi(m) < fi(m

′) ∧ fi(m′) > f̃∗i ∧ Fi−1(m)=⃗(FH)Fi−1(m
′), (12)

F (m)⪯⃗(FH)F (m
′)⇔ F (m)≺⃗(FH)F (m

′) ∨ F (m)=⃗(FH)F (m
′), (13)

where Fi−1(m) denotes the a vector with the first i − 1 dimensions of F (m), i.e., Fi−1(m) = [f1(m), ..., fi−1(m)].
The optimizing thresholds for each objective are represented by FH = [f̃∗1 , f̃

∗
2 ], signifying that any masks achieving these

thresholds can be considered equivalent with respect to the given objective. That f̃∗i is computed based on historically

1We remove optional input targets and adjust compromise from an absolute value to a relative value.

15



Refined Coreset Selection: Towards Minimal Coreset Size under Model Performance Constraints

evaluated pointsH. GivenM0
H = H, we further have:

M1
H := {m ∈M0

H | f1(m) ≤ f̃∗1 }, f̂∗1 := inf
m∈M0

H

f1(m), f̃∗1 = f̂∗1 ∗ (1 + ϵ), (14)

M2
H := {m ∈M1

H | f2(m) ≤ f̃∗2 }, f̂∗2 := inf
m∈M1

H

f2(m), and f̃∗2 = f̂∗2 .

B. Proofs of Theoretical Results
The proof of Theorem 1 is detailed as follows.

Proof. We use m0 to denote the mask generated at the step 0, where the mask m0 /∈M∗
1 and m0 /∈M∗

2. We use dfi(a, b)
to denote the difference between the mask a and the mask b on the optimization objective fi, i.e.,

dfi(a, b) = |fi(a)− fi(b)| ∀a, b ∈M. (15)

Given Condition 2, there exists n1 ∈ R+, n2 ∈ R+ for f1 and f2 such that:

df1(a, b) < n1γ1 ∀a, b ∈ S1, (16)
df2(a, b) < n2γ2 ∀a, b ∈ S2, (17)

in which S1 = {mt ∈M|f(mt) ≤ f(m0)} and S2 = {mt ∈M|f(mt) ≤ f(mt̂)} as stated in Condition 2. Intuitively
speaking, (16) and (17) imply that it needs at most n1 and n2 time steps for the mask a to surpass the mask b in optimization
objectives f1 and f2, respectively.

LBCS consists of two types of optimization stages, including a stage where the first objective f1 is optimized, and a stage
where the second objective f2 is optimized while ensuring that f1 remains within the optimal region with the compromise ϵ.
We thus analyze the convergence behavior of LBCS according to these two stages.

f1 optimization stage:

We define m∗
1 := argmax

m∈M∗
1

{f1(m)}. By substituting m0 and m∗
1 into a and b in Eq. (16), we have:

df1(m
0,m∗

1) < n1γ1. (18)

According to Condition 2, we have n1 ∈ R+ and 0 < η1 ≤ 1 such that,

P(f1(m
n1) ≤ f1(m∗

1)) = P(f1(m
n1) ≤ f∗1 ∗ (1 + ϵ)) (19)

= P(mn1 ∈M∗
1)

≥ ηn1
1 .

For j = 1, 2, ..., we have:

P(f1(m
jn1) ≤ f1(m∗

1)) = P(m
jn1 ∈M∗

1) (20)

= 1−P(mjn1 /∈M∗
1)

≥ 1− (1− ηn1
1 )j .

According to Condition 1, m1, ...,mn1−1 all belong to S1, ∀i ∈ [n1 − 1],

P(f1(m
jn1+i) ≤ f1(m∗

1)) = P(m
jn1+i ∈M∗

1) (21)

= 1−P(mjn1+i /∈M∗
1)

≥ 1− (1− ηn1
1 )j .

When j tends to +∞, 1− (1− ηn1
1 )j tends to 1. Then, combining (20) and (21), the algorithm will reachM∗

1.

The optimization of f2 in the setM∗
1:
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We use t̂ to denote the time step that the algorithm reachesM∗
1. Also, we define m∗

2 := argmaxm∈M∗
2
{f2(m)}. By

substituting mt̂ and m∗
2 into a and b in (17), we have:

df2(m
t̂,m∗

2) < n2γ2. (22)

According to Condition 2, we have n2 ∈ R+, and 0 < η2 ≤ 1 such that:

P(mt̂+n2 ∈M∗
2) ≥ η

n2
2 , (23)

while the mask sequence {mt}t=t̂+n2

t=t̂+1
satisfies:

∀m ∈ {mt}t=t̂+n2

t=t̂+1
: f1(m) ∈M∗

1. (24)

For j = 1, 2, ..., we have:

P(f2(m
j(t̂+n2)) ≤ f2(m∗

2)) = P(f2(m
j(t̂+n2)) ≤ f∗2 ) (25)

= P(mj(t̂+n2) ∈M∗
2)

= 1−P(mj(t̂+n2) /∈M∗
2)

≥ 1− (1− ηn2
2 )j .

According to Condition 1, mt̂+1, ...,mt̂+n2−1 all belongs to S2, ∀i ∈ [n2 − 1],

P(f2(m
j(t̂+n2)+i) ≤ f2(m∗

2)) = P(f2(m
j(t̂+n2)+i) ≤ f∗2 ) (26)

= P(mj(t̂+n2)+i ∈M∗
2)

= 1−P(mj(t̂+n2)+i /∈M∗
2)

≥ 1− (1− ηn2
2 )j .

When j tends to +∞, 1− (1− ηn2
2 )j tends to 1. Afterward, combining (25) and (26), the algorithm will reachM∗

2. Proof
complete.

C. Supplementary Notes of Probabilistic Bilevel Coreset Selection
C.1. Method Description

Previous work (Zhou et al., 2022) proposes probabilistic bilevel coreset selection, which continualizes weights by probabilis-
tic reparameterization for ease of optimization. Specifically, the mask mi is reparameterized as a Bernoulli random variable
with probability si to be 1 and 1− si to be 0. Namely, mi ∼ Bern(si), where si ∈ [0, 1]. If we assume that the variables
mi are independent, the distribution function of m can be denoted as p(m|s) =

∏n
i=1(si)

mi(1 − si)(1−mi). Besides,
the coreset size can be controlled by the sum of the probabilities si, as Em∼p(m|s)∥m∥0 =

∑n
i=1 si = 1⊤s. Afterward,

combining the definition of f1(m), the original probabilistic bilevel coreset selection (Zhou et al., 2022) can be formulated
as

min
s
Ep(m|s)f1(m), s.t. θ(m) ∈ argmin

θ
L(m,θ). (27)

By introducing f2(m), the probabilistic bilevel coreset selection is modified to

min
s
Ep(m|s)f1(m) +Ep(m|s)f2(m), s.t. θ(m) ∈ argmin

θ
L(m,θ). (28)
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C.2. Gradient Analysis

We derive the gradients of the outer loop of (4) as

∇s

[
Ep(m|s)f1(m) +Ep(m|s)f2(m)

]
= ∇s

∫
f1(m)p(m|s)dm+∇sEp(m|s)∥m∥0 (29)

=

∫
f1(m)

∇sp(m|s)
p(m|s)

p(m|s)dm+∇s1
⊤s

=

∫
f1(m)∇s ln p(m|s)p(m|s)dm+∇s1

⊤s

= Ep(m|s)f1(m)∇s ln p(m|s) + 1.

In the last line of (29), the first term denotes the gradient of Ep(m|s)f1(m) and the second term denotes the gradient of
Ep(m|s)f2(m). In optimization, we directly employ f1(m)∇s ln p(m|s), since it is an unbiased stochastic gradient of
∇sEp(m|s)f1(m) (Zhou et al., 2022). We further derive that

f1(m)∇s ln p(m|s) = f1(m) ·
(
m

s
− 1−m

1− s

)
(30)

= f1(m) · m(1− s)− s(1−m)

s(1− s)

= f1(m) · m− s

s(1− s)
.

The gradient norms of two terms hence are ∥f1(m) · m−s
s(1−s)∥2 and ∥1∥2 =

√
n respectively. Therefore, the gradient forms

of (1 − λ)Ep(m|s)f1(m) and λEp(m|s)f2(m) are (1 − λ)∥f1(m) · m−s
s(1−s)∥2 and λ∥1∥2 = λ

√
n respectively. In the

following, for simplicity, we denote

ζ1(λ) := (1− λ)∥f1(m) · m− s

s(1− s)
∥2 and ζ2(λ) := λ

√
n. (31)

Clearly, the value of ζ1(λ) depends on f1(m), m, and s, which is related to data, networks, optimization algorithms, and
specific tasks simultaneously. The value of ζ2(λ) is also related to data. This causes it to be hard to tune a suitable weight in
practice. When λ is set to 1

2 , ζ2( 12 ) is large for the full optimization of f2, since ζ2( 12 ) =
√
n
2 and n is usually large in the

task of coreset selection. Therefore, the coreset size will be minimized too much.

C.3. Settings for Experiments in Figure 1

For the experiments in Figure 1, we employ a subset of MNIST. A convolutional neural network stacked with two blocks of
convolution, dropout, max-pooling, and ReLU activation is used. Following (Zhou et al., 2022), for the inner loop, the model
is trained for 100 epochs using SGD with a learning rate of 0.1 and momentum of 0.9. For the outer loop, the probabilities
are optimized by Adam with a learning rate of 2.5 and a cosine scheduler.

D. Supplementary Descriptions of Baselines and Network Structures
D.1. Details of Baselines

Below, we detail the used baselines in this paper.

• Uniform sampling. For this baseline, we randomly select partial data from full data to construct a coreset.

• EL2N (NeurIPS 2021) (Paul et al., 2021)2. The method involves the data points with larger norms of the error vector
that is the predicted class probabilities minus one-hot label encoding.

2https://github.com/mansheej/data_diet
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CNN for SVHN (inner loop) CNN for SVHN (trained on coresets) CNN for CIFAR-10 (inner loop)
32×32 RGB Images 32×32 RGB Images 32×32 RGB Images
3×3 Conv2d, ReLU 3×3 Conv2d, ReLU 5×5 Conv2d, ReLU
3×3 Conv2d, ReLU 3×3 Conv2d, ReLU 2×2 Max-pool

2×2 Max-pool 2×2 Max-pool
3×3 Conv2d, ReLU 3×3 Conv2d, ReLU 3×3 Conv2d, ReLU

2×2 Max-pool 3×3 Conv2d, ReLU 2×2 Max-pool
2×2 Max-pool

Dense 8192→1024, ReLU 3×3 Conv2d, ReLU 3×3 Conv2d, ReLU
Dense 1024→256, ReLU 3×3 Conv2d, ReLU 2×2 Max-pool

2×2 Max-pool

Dense 256→10
Dense 2048→1024, ReLU Dense 512→64
Dense 1024→512, ReLU Dense 64→10

Dense 512→10

Table 7: The network structures of the models used in our experiments.

Imperfect supervision k = 1000 k = 2000 k = 3000 k = 4000

With 30% corrupted labels 951.2±4.9 1866.1±8.3 2713.7±10.8 3675.6±17.0

With 50% corrupted labels 934.5±5.6 1856.5±9.1 2708.8±11.2 3668.4±14.6

With class-imbalanced data 988.4±6.7 1893.8±10.0 2762.7±14.2 3757.4±17.8

Table 8: Mean and standard deviation of optimized coreset sizes by our method under imperfect supervision.

• GraNd (NeurIPS 2021) (Paul et al., 2021)3. The method builds a coreset by involving the data points with larger loss
gradient norms during training.

• Influential coreset (ICLR 2023) (Yang et al., 2023)4. This algorithm utilizes the influence function (Hampel, 1974).
The examples that yield strictly constrained generalization gaps are included in the coreset.

• Moderate coreset (ICLR 2023) (Xia et al., 2023b)5. This method chooses the examples with the scores close to the
score median in coreset selection. The score is about the distance of an example to its class center.

• CCS (ICLR 2023) (Zheng et al., 2023)6. The method proposes a novel one-shot coreset selection method that jointly
considers overall data coverage upon a distribution as well as the importance of each example.

• Probabilistic coreset (ICML 2022) (Zhou et al., 2022)7. The method proposes continuous probabilistic bilevel
optimization for coreset selection. A solver is developed for the bilevel optimization problem via unbiased policy
gradient without the trouble of implicit differentiation.

D.2. Details of Network Structures

We provide the detailed network structures of the used models in our main paper, which can be checked in Table 7.

E. Supplementary Experimental Results
E.1. The Average Accuracy Brought by Per Data Point

In Figure 3, we report the average accuracy brought by per data point within the selected coreset. As can be seen, the
proposed LBCS always enjoys higher average accuracy.

3https://github.com/mansheej/data_diet
4https://shuoyang-1998.github.io/assets/code/code_datasetptuning.zip
5https://github.com/tmllab/Moderate-DS
6https://github.com/haizhongzheng/Coverage-centric-coreset-selection
7https://github.com/x-zho14/Probabilistic-Bilevel-Coreset-Selection
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Figure 3: The illustration of the average accuracy (%) brought by per data point within the selected coreset.
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Figure 4: Illustrations of coreset selection with with 50% corrupted labels. The optimized coreset size by LBCS is provided
in Appendix E.3.

E.2. Results with 50% Label Noise

In the main paper, we evaluate the effectiveness of the proposed method when the noise rate is 30%. Here, we consider a
more challenging case, where the noise rate is increased to 50%. Experimental results are provided in Figure 4. As can be
seen, even though the noise level is high, the proposed method still achieves the best performance.

E.3. Optimized Coreset Sizes with Imperfect Supervision

In the main paper (§5.3), we have shown the strength of the proposed method in coreset selection under imperfect supervision.
Here we supplement the optimized coreset sizes by our method in these cases, which are provided in Table 8.
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T
k = 1000 k = 2000

Test acc. Coreset size (ours) Test acc. Coreset size (ours)

100 77.0±1.8 998.0±1.9 80.2±1.9 1995.6±2.5
200 77.7±1.5 990.3±2.3 80.9±1.0 1976.3±4.7
300 78.5±1.2 975.6±2.7 81.7±0.7 1945.5±3.9
500 79.7±0.7 956.7±3.5 82.8±0.6 1915.3±6.6
800 79.2±0.8 940.7±4.7 82.5±0.5 1905.7±5.4

1500 79.5±0.5 935.4±4.9 82.7±0.6 1894.1±4.1
2000 79.8±0.6 935.8±3.8 82.8±0.8 1893.9±4.3

Table 9: Ablation study of the number of search times.

Method Uniform EL2N GraNd Influential Moderate CCS Probabilistic LBCS

PermMNIST 78.1 75.9 77.3 78.8 78.4 79.4 79.3 79.9

Noisy PermMNIST 65.0 52.8 61.8 64.0 63.9 64.6 65.5 65.9

Table 10: Experimental results of continual learning with constructed coresets. “Noisy PermMNIST” indicates the label-
noise version of PermMNIST. The best result in each case is in bold.

Method Uniform EL2N GraNd Influential Moderate CCS Probabilistic LBCS

PermMNIST 69.0 70.2 71.7 70.9 68.0 71.7 72.1 73.2

Noisy PermMNIST 59.4 58.4 63.3 62.4 60.0 65.3 64.6 66.1

Table 11: Experimental results of streaming with constructed coresets. “Noisy PermMNIST” indicates the label-noise
version of PermMNIST. The best result in each case is in bold.

E.4. Ablation on Search Times

We provide the ablation study on the search time T in Table 9. Initially, as the search times increase, there is a noticeable
upward trend in test accuracy accompanied by a decrease in coreset size. As the search progresses, the test accuracy
gradually stabilizes, and the coreset size maintains a consistently smaller value. Subsequently, with a large number of
searches, the search results exhibit limited changes, indicating empirical convergence in the search process. In practical
terms, selecting an appropriate value for T can be tailored to specific requirements for coresets and the allocated budget for
coreset selection.

E.5. Setups and Results of Continual Learning with Constructed Coresets

Continual learning targets non-stationary or changing environments, where a set of tasks needs to be completed sequen-
tially (Wang et al., 2023; Kim et al., 2022; Peng & Risteski, 2022). The constructed coresets can be used to keep a subset of
data related to previous tasks, which alleviates the catastrophic forgetting of early knowledge.

For experimental setups, as did in (Borsos et al., 2020), we exploit PermMNIST (Goodfellow et al., 2013), which consists
of 10 tasks, where in each task the pixels of all images undergo the same fixed random permutation. The memory size is
set to 100. As previous work (Zhou et al., 2022) did not provide the code about this part, we employ the implementation
of (Borsos et al., 2020) for continual learning with coresets8. The weight for previous memory is set to 0.01. In addition, we
inject 10% symmetric label noise into training data to evaluate the robustness of our method in this case. We provide the
experimental results in Table 10. As can be seen, our LBCS consistently works better than all baselines.

8https://github.com/zalanborsos/bilevel_coresets
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E.6. Setups and Results of Streaming with Constructed Coresets

Streaming is similar to continual learning but is more challenging (Aljundi et al., 2019; Hayes et al., 2019; Chrysakis &
Moens, 2020). In streaming, there is no explicit concept of tasks. Data is sequentially provided to the model. In these
circumstances, coresets can be employed to build the replay memory, where selected data points represent each task.

For experimental setups about streaming with constructed coresets, we follow the implementation in (Borsos et al., 2020).
For this experiment, we modify PermMNIST by first concatenating all tasks for the dataset and then streaming them in
batches of size 125. The replay memory size and the number of slots are set to 100 and 0.0005 respectively. Networks are
trained for 40 gradient descent steps using Adam with step size 0.0005 after each batch. We provide the experimental results
in Table 11, which demonstrates the effectiveness of our method in streaming with built coresets. Note that the results are
somewhat different from the report in (Zhou et al., 2022). It is because (Zhou et al., 2022) did not provide the code of
streaming with constructed coresets in the GitHub repository. We hence use the implementation of (Borsos et al., 2020).

F. More Related Work
F.1. Data Distillation

Data distillation (Wang et al., 2018; Lee et al., 2022; Wang et al., 2022; Deng & Russakovsky, 2022; Loo et al., 2022; Zhang
et al., 2023a) is an alternative approach for dataset compression, which is inspired by knowledge distillation. Different from
coreset selection, this series of works focuses on synthesizing a small but informative dataset as an alternative to the original
dataset. However, data distillation is criticized for only synthesizing a small number of data points (e.g., 1/10 images per
class) due to computational source limitations (Yang et al., 2023). Its performance is far from satisfactory. In addition, from
the perspective of human perception, the distillation often destroys the semantic information of original data. Therefore, this
paper is consistent with previous works (Zhou et al., 2022; Sorscher et al., 2022; Yang et al., 2023; Xia et al., 2023b). The
performances of data distillation and coreset selection are not compared directly.
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