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Abstract
This paper describes a differentially private post-
processing algorithm for learning fair regressors
satisfying statistical parity, addressing privacy
concerns of machine learning models trained on
sensitive data, as well as fairness concerns of their
potential to propagate historical biases. Our al-
gorithm can be applied to post-process any given
regressor to improve fairness by remapping its
outputs. It consists of three steps: first, the output
distributions are estimated privately via histogram
density estimation and the Laplace mechanism,
then their Wasserstein barycenter is computed,
and the optimal transports to the barycenter are
used for post-processing to satisfy fairness. We
analyze the sample complexity of our algorithm
and provide fairness guarantee, revealing a trade-
off between the statistical bias and variance in-
duced from the choice of the number of bins in
the histogram, in which using less bins always
favors fairness at the expense of error.

1. Introduction
Prediction and forecasting models trained from machine
learning algorithms are ubiquitous in real-world applica-
tions, whose performance hinges on the availability and
quality of training data, often collected from end-users or
customers. This reliance on data has raised ethical con-
cerns including fairness and privacy. Models trained on
past data may propagate and exacerbate historical biases
against disadvantaged demographics, and producing less
favorable predictions (Bolukbasi et al., 2016; Buolamwini
& Gebru, 2018), resulting in unfair treatments and outcomes
especially in areas such as criminal justice, healthcare, and
finance (Barocas & Selbst, 2016; Berk et al., 2021). Mod-
els also have the risk of leaking highly sensitive private
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information in the training data collected for these applica-
tions (Dwork & Roth, 2014).

While there has been significant effort at addressing these
concerns, few treats them in combination, i.e., designing
algorithms that train fair models in a privacy-preserving
manner. A difficulty is that privacy and fairness may not
be compatible: exactly achieving group fairness criterion
such as statistical parity or equalized odds requires precise
(estimates of) group-level statistics, but for ensuring privacy,
only noisy statistics are allowed under the notion of dif-
ferential privacy. Resorting to approximate fairness, prior
work has proposed private learning algorithms for reducing
disparity, but the focus has been on the classification set-
ting (Jagielski et al., 2019; Xu et al., 2019; Mozannar et al.,
2020; Tran et al., 2021).

In this paper, we propose and analyze a differentially pri-
vate post-processing algorithm for learning attribute-aware
fair regressors under the squared loss, with respect to the
fairness notion of statistical parity. It can take any (pri-
vately pre-trained) regressor and remaps its outputs (with
minimum deviations) to improve fairness. At a high-level,
our algorithm consists of three steps: estimating the output
distributions of the regressor from data, computing their
Wasserstein barycenter, and the optimal transports (Chzhen
et al., 2020; Le Gouic et al., 2020; Xian et al., 2023). To
make this process differentially private, we use private his-
togram density estimates (HDE) for the distributions via the
Laplace mechanism (Diakonikolas et al., 2015; Xu et al.,
2012), followed by re-normalization, which introduces addi-
tional complexity in our analysis. The choice of the number
of bins in the HDE induces a trade-off between the statistical
bias and variance for the cost of privacy and fairness. Our
theoretical analysis and experiments show that using less
bins always improves fairness at the expense of higher error.

Paper Organization. In Section 2, we introduce defini-
tions, notation, and the problem setup. Section 3 describes
our private post-processing algorithm for learning fair re-
gressors, with finite sample analysis of the accuracy-privacy-
fairness trade-offs in Section 3.4. Finally in Section 4, we
empirically explore the trade-offs achieved by our post-
processing algorithm on Law School and Communities &
Crime datasets.
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1.1. Related Work

Differential Privacy. Under the notion of differential pri-
vacy (Dwork et al., 2006) and subsequent refinements such
as Rényi DP (Mironov, 2017), a variety of private learning
algorithms are proposed for settings including regression,
classification, and distribution learning. There are private
variants of logistic regression (Papernot et al., 2017), de-
cision trees (Fletcher & Islam, 2019), and linear regres-
sion (Wang, 2018; Covington et al., 2021; Alabi et al.,
2022). The problem of private distribution learning has
been studied for finite-support distributions (Xu et al., 2012;
Diakonikolas et al., 2015) and parameterized families (Bun
et al., 2019; Aden-Ali et al., 2021). Lastly, private opti-
mization algorithms including those based on objective per-
turbation (Chaudhuri et al., 2011; Kifer et al., 2012) and
DP-SGD (Song et al., 2013; Bassily et al., 2014; Abadi
et al., 2016) are proposed for solving convex and general
optimization problems.

Algorithmic Fairness. In parallel, the study of algorith-
mic fairness revolves around the formalization of fairness no-
tions and design of bias mitigation methods (Barocas et al.,
2023). Fairness criteria include those that focus on disparate
impact of the model, such as individual fairness (Dwork
et al., 2012), which asks the model to treat similar inputs
similarly, or group-level statistical parity (Calders et al.,
2009) and equalized odds (Hardt et al., 2016); and, those on
performance inequality, e.g., accuracy parity (Buolamwini
& Gebru, 2018; Chi et al., 2021), predictive parity (Choulde-
chova, 2017), and multi-calibration (Hébert-Johnson et al.,
2018). Fair algorithms are categorized into pre-processing,
by removing biased correlation in the training data (Calmon
et al., 2017); in-processing, that turns the original learning
problem into a constrained one (Kamishima et al., 2012;
Zemel et al., 2013; Agarwal et al., 2018; 2019); and post-
processing, which remaps the predictions of a trained model
post-hoc to meet the fairness criteria (Hardt et al., 2016;
Pleiss et al., 2017; Chzhen et al., 2020; Zhao & Gordon,
2022; Xian et al., 2023).

Fairness and Privacy. Private fair learning and bias
mitigation algorithm are proposed and studied in prior
work (Jagielski et al., 2019; Xu et al., 2019; Mozannar et al.,
2020; Tran et al., 2021), but they have so far been focused
on the classification setting. It remains an open question
on how to achieve private fair regression, and what are the
trade-offs between privacy, fairness, and accuracy.

Cummings et al. (2019) and Agarwal (2020) showed that
fairness and privacy are incompatible in the sense that no
ε-DP algorithm can generally guarantee group fairness on
the training set (from which population-level guarantees can
be derived via generalization), unless the hypothesis class
is restricted to constant predictors. The argument is that a

predictor f that is fair on S may not be fair on its neighbor
S′, so an ε-DP algorithm that outputs f on S with nonzero
probability may also output f on S′, which is unfair. Work
on private fair algorithms circumvent this incompatibility
by relaxing to high probability guarantees for fairness. Bag-
dasaryan et al. (2019) showed that the performance impact
of privacy may be more severe on underrepresented groups,
resulting in accuracy disparity.

2. Preliminaries
A regression problem is defined by a joint distribution µ of
the observations X ∈ X , sensitive attribute A ∈ A (which
has finite support), and the response Y ∈ R. We will use up-
per case X,A, Y to denote the random variables, and lower
case x, a, y instances of them. The goal of this paper is
to develop a privacy-preserving post-processing algorithm
for learning (randomized) fair regressors. We consider the
attribute-aware setting, i.e., the sensitive attribute A is avail-
able explicitly during both training and prediction and can
be taken as input by the regressor, f : X ×A → R.

The risk of a regressor is defined to be mean squared error,
and its excess risk is defined with respect to the Bayes
regressor, f∗(x, a) := E[Y | X = x,A = a]:

R(f) := E[(f(X,A)− Y )2],

ER(f) := R(f)−R(f∗) = E[(f(X,A)− f∗(X,A))2]

by the orthogonality principle, where E is taken with respect
to µ (and the randomness of f ).

Given a (training) dataset S consisting of n i.i.d. samples
of (X,A, Y ), a private learning algorithm minimizes the
leakage of any individual’s information in its output. We
use the notion of differential privacy (Dwork et al., 2006),
which limits the influence of any single training sample:
Definition 2.1 (Differential Privacy). A randomized (learn-
ing) algorithm A is ε-differentially private (DP) if for all
pairs of nonempty neighboring datasets S, S′,

P(A (S) ∈ O) ≤ eε P(A (S′) ∈ O), ∀O ⊆ range(A ),

where P is taken with respect to the randomness of A .

We say two datasets are neighboring if they differ in one en-
try by substitution (our result also covers insertion and dele-
tion operations, which may have lower sensitivity). Note
that privacy is guaranteed with respect to both A and X .

For fairness, we consider statistical parity (Calders et al.,
2009), which requires the output distributions of f condi-
tioned on each group to be similar. The similarity between
distributions is measured in Kolmogorov–Smirnov distance,
defined for probability measures p, q supported on R by

DKS(p, q) = sup
t∈R

∣∣∣∣∫ t

−∞
(p(x)− q(x)) dx

∣∣∣∣.
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Definition 2.2 (Statistical Parity). A (randomized) regres-
sor f : X × A → R satisfies α-approximate statistical
parity (SP) if

∆SP(f) := max
a,a′∈A

DKS(ra, ra′) ≤ α,

where ra is the distribution of regressor output f(X,A)
conditioned on A = a.

3. Fair and Private Post-Processing
We describe a private post-processing algorithm such that,
given an unlabeled training dataset S = {(xi, ai)}i∈[n]

sampled from µ, and a (privately) pre-trained regressor f
(e.g., learned using the algorithms mentioned in Section 1.1),
the algorithm learns a mapping g that transforms the output
of f (a.k.a. post-processing) so that f̄ := g ◦ f is fair, while
preserving differential privacy with respect to S.

Compared to in-processing approaches for fairness, post-
processing decouples the conflicting goals of fairness and
error minimization, since the regressor f can be trained to
optimality without any constraint, and then post-processed
to satisfy fairness. We show that this decoupling does not
affect the optimality of the resulting fair regressor f̄—the
optimal fair regressor can be recovered via post-processing
if the algorithm in the pre-training stage learns the Bayes
regressor f∗ (Theorem 3.1). Moreover, post-processing has
low sample complexity and only requires unlabeled data
(Theorem 3.3), so labeled data (that may be scarce in some
domains) can be dedicated entirely to error minimization,
which is typically a more difficult problem.

3.1. Fair Post-Processing with Wasserstein-Barycenters

Exact statistical parity (α = 0) requires all groups to
have identical output distributions, so finding the fair post-
processing mapping g that incurs minimum deviations
from the original outputs of f amounts to the following
steps (Chzhen et al., 2020; Le Gouic et al., 2020):

1. Learn the output distributions of f conditioned on each
group, ra, for all a ∈ A.

2. Find a common (fair) distribution q that is close to the
original distributions (i.e., their barycenter).

3. Compute the optimal transports ga from ra to the
barycenter q.

The (randomized) transports are then applied to post-process
f to obtain a fair attribute-aware regressor f̄(x, a) = ga ◦
f(x), so that every group has the same output distribution
equal to q.

Formally, q is called the Wasserstein barycenter of the ra’s,
which is a distribution supported on R with minimum total

distances to the ra’s as measured in Wasserstein distance:

q ∈ argmin
q′:supp(q′)⊆R

∑
a∈A

waW
2
2 (ra, q

′), (1)

where wa := P(A = a),

W 2
2 (ra, q) = min

πa∈Π(ra,q)

∫
R×R

(y − y′)2 dπa(y, y
′), (2)

and Π(p, q) = {π : supp(π) ⊆ R × R,
∫
π(x, y′) dy′ =

p(x),
∫
π(x′, y) dx′ = q(y),∀x, y} is the collection of

probability couplings of p, q. The value of W 2
2 (ra, q) natu-

rally represents the squared cost of transforming ra into q,
i.e., the minimum amount of output deviations (in squared
distance) required to post-process f for group a so that
its output distribution is transformed to q (which is a con-
sequence of Lemma A.4); specifically, this optimal post-
processor is given by the optimal transport from ra to q.

3.2. Generalization to Approximate Statistical Parity

To handle approximate statistical parity (α > 0), in step 2,
we first replace the barycenter in Equation (1) by a KS ball
of radius α/2 and relax the problem to finding target output
distributions qa for each group a inside the ball with mini-
mum W 2

2 distance to the original distribution ra. Then in
step 3, we find the optimal transports ga from ra to qa. So,
the problem in Equation (1) is generalized to the approxi-
mate SP case with

P({ra}a∈A, {wa}a∈A, α) :

argmin
q:supp(q)⊆R

{qa}a∈A⊂BKS(q,α/2)

∑
a∈A

waW
2
2 (ra, qa),

where BKS(q, α/2) = {p : DKS(p, q) ≤ α/2} is a KS ball
centered at q on the space of probability distributions sup-
ported on R.

When learning from finite samples S (non-privately), we
replace ra, wa in P with the respective empirical distribu-
tions/estimates. Computationally, solving P on the empiri-
cal distributions is as hard as the finite-support Wasserstein
barycenter problem (α = 0), which can be formulated by
a linear program of exponential size in |A| (Anderes et al.,
2016; Altschuler & Boix-Adserà, 2021). To reduce the
complexity, we restrict the support of the barycenter q via
discretization; this fixed-support approximation is common
in prior work (Cuturi & Doucet, 2014; Staib et al., 2017).

The validity of the post-processing algorithm described
above is supported by the fact that, if the regressor being
post-processed is Bayes optimal, then the resulting fair re-
gressor is also optimal. This has been established for the
exact SP case in prior work (e.g., Le Gouic et al., 2020,
Theorem 3), and here we provide a more general result for
approximate SP:
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1b. Add noise & re-normalize 2. Compute barycenter 3. Optimal transports1a. Discretize & histogram

Figure 1. Illustration of the private fair post-processing steps 1–3 performed in Algorithm 1. The (randomized) transports to the barycenter
are represented by (sparse) k × k matrices, and the value at the (i, j)-th entry is the probability of transporting to bin j given bin i.

Theorem 3.1. Let a regression problem be given by a joint
distribution µ of (X,A, Y ), denote wa = P(A = a), the
Bayes regressor by f∗(x, a) = E[Y | X = x,A = a], and
its output distribution conditioned on group a by r∗a. Then

min
f :∆SP(f)≤α

ER(f) = min
q:supp(q)⊆R

{qa}a∈A⊂BKS(q,α/2)

∑
a∈A

waW
2
2 (r

∗
a, qa).

This shows that the excess risk of the optimal fair regres-
sor is indeed the value of the Wasserstein barycenter prob-
lem (P) discussed above, and can be achieved by f∗ post-
processed using the optimal transports to the barycenter.
All proofs are deferred to Appendices A and B; this result
follows from an equivalence between learning regressors
and learning post-processings of f∗.

3.3. Privacy via Discretization and Private PMF
Estimation

To make the fair post-processing algorithm in Section 3.1
private with respect to S, it suffices to perform step 1 of
estimating the output distributions privately. This is because
the subsequent steps 2 and 3 of computing the barycenter
(including the target distributions) and the optimal transports
only depend on the estimated distributions, so privacy is
preserved by the post-processing immunity of DP.

To estimate the distributions, one could construct a family
of distributions (a.k.a. hypotheses) and (privately) choose
the most likely one (Bun et al., 2019; Aden-Ali et al., 2021),
or use non-parametric estimators. For generality, we adopt
the latter approach and use (private) histogram density esti-
mator (Diakonikolas et al., 2015; Xu et al., 2012).

Altogether, our fair and private post-processing algorithm is
detailed in Algorithm 1 and illustrated in Figure 1. It takes
as inputs the regressor f being post-processed, the samples
S, the fairness tolerance α, and the privacy budget ε. For
performing HDE, it also requires specifying an interval1

1This is necessary for pure (ε, 0)-DP, due to a lower bound by
Hardt & Talwar (2010) using a packing argument.

(using prior/domain knowledge) that contains the image of
the regressor [s, t] ⊇ f [supp(µX,A)], and the number of
bins k. We describe the algorithm in details below:

Step 1 (Estimate Output Distributions). On line 3, we
compute the empirical joint distribution of A and h ◦
f(X,A), the discretized regressor output (the support is
v := ({(j−1/2)(t−s)/k}j∈[k])). Then, we make this statistics
private via the Laplace mechanism on line 4, noting that the
L1-sensitivity to p̂ is at most 2/n (Remark B.1).2

With the private joint distribution, we get a private estimate
of the group marginal distribution w̃a’s (clipping negative
values to zero) on line 6, and the private group conditional
discretized output distribution p̃a’s (with re-normalization)
on lines 7–9. The re-normalization on p̃a (could also be
applied to w̃a), required for defining the optimal transport
problem in the subsequent step, is done by performing iso-
tonic regression on the partial sums (so that its values are
non-decreasing) with clipping to get a valid CDF.

We analyze the accuracy of the private estimates:
Theorem 3.2. Let pa(vj) = P(h ◦ f(X,A) = vj | A = a)
and wa = P(A = a) for all a ∈ A, j ∈ [k], and let p̃a, w̃a

denote their privately estimated counterparts in Algorithm 1.
Then for all n ≥ Ω(maxa 1/wa ln 1/β), with probability at
least 1− β, for all a ∈ A,

|wa − w̃a| ≤ O

(√
k

nε
ln

k|A|
β

)
,

and

∥pa − p̃a∥1 ≤ O

(√
k

nwa
ln

k|A|
β

+
k

nwaε
ln

k|A|
β

)
,

∥pa − p̃a∥∞ ≤ O

(√
1

nwa
ln
|A|
β

+

√
k

nwaε
ln

k|A|
β

)
,

2The Laplace mechanism could be replaced by, e.g., the Gaus-
sian mechanism, to relax the pure (ε, 0)-DP guarantee to approxi-
mate (ε, δ)-DP.
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Algorithm 1 Fair and Private Post-Processing (Attribute-Aware)
Require: Regressor f : X ×A → R, samples {xi, ai}i∈[n], interval [s, t], number of bins k, fairness tolerance α, privacy

budget ε
1: Let vj = (j−1/2)(t−s)/k for all j ∈ [k] ▷ midpoints of the bins
2: Define h(y) = argminj∈[k] |y − vj | ▷ discretizer
3: Define p̂(a, vj) = 1/n

∑
i∈[n] 1[h ◦ f(xi, ai) = vj ] ▷ empirical joint distribution

4: Define p̌(a, vj) = p̂(a, vj) + Laplace(0, 2/nε) ▷ Laplace mechanism to get private joint distribution
5: for a ∈ A do
6: w̃a ← max(

∑k
j=1 p̌(a, vj), 0) ▷ private group marginal distribution

7: Define qFa(vj) = 1/w̃a

∑j
ℓ=1 p̌(a, vℓ) ▷ scaled partial sums

8: Define F̃a(vj) =

{
proj[0,1](1/2( qFa(vlj ) +

qFa(vrj ))) if j < k

1 else
where (lj , rj) = argmaxl≤j≤r( qFa(vl)− qFa(vr))

▷ L∞ isotonic regression and clipping to get private CDF
9: Define p̃a(vj) = F̃a(vj)− F̃a(vj−1) ▷ private group conditional PMF

10: ({πa}a∈A, q̃, {q̃a}a∈A)← LP({p̃a}a∈A, {w̃a}a∈A, α) ▷ compute barycenter and get optimal transports
11: for a ∈ A do

12: Define ga(vj) =

{
vℓ w.p. πa(vj ,vℓ)/p̃a(vj), ∀ℓ ∈ [k] if p̃a(vj) > 0

vj else
▷ post-processing mappings

13: return (x, a) 7→ ga ◦ h ◦ f(x, a) ▷ privately post-processed fair regressor

DKS(pa, p̃a) ≤ O

(√
k

nwa
ln

k|A|
β

+

√
k

nwaε
ln

k|A|
β

)
.

The private estimation of PMFs with the Laplace mecha-
nism has been analyzed in prior work (Diakonikolas et al.,
2015; Vadhan, 2017), but our algorithm performs an extra
re-normalization (lines 7–9) after adding Laplace noise to
ensure that the PMF returned is valid. This makes the analy-
sis of Theorem 3.2 more involved, because the noise added
to each bin can interact during re-normalization.

The rate of Õ(
√

k/n + k/nε) for TV distance is consistent
with existing results (Diakonikolas et al., 2015). For KS
distance, the rate is improved by a

√
k factor, which is not

surprising as KS is a weaker metric than TV. We note
that our analysis in attaining this improvement is made eas-
ier with the L∞ isotonic regression CDF re-normalization
scheme, because KS distance is also defined via the CDF.

Steps 2 and 3 (Compute Barycenter and Optimal Trans-
ports). With the output distributions p̃a estimated privately,
we now compute their barycenter and the optimal transports
to obtain the fair post-processing mappings ga, i.e., solving
P({p̃a}a∈A, {w̃a}a∈A, α). Since the p̃a’s are distributions
supported on v, by restricting the support of the barycenter
to v,3 the barycenter and the optimal transports can be com-
puted by solving a linear program with O(k2|A|) variables

3This approximation reduces the size of the barycenter prob-
lem to polynomial, at O(t−s/k) error, the same as that from dis-
cretizing the outputs.

and constraints (cf. P and Equation (2)):

LP({pa}a∈A, {wa}a∈A, α) :

argmin
{πa}a∈A≥0
q,{qa}a∈A≥0

∑
a∈A

wa

∑
j,ℓ∈[k]

(vj − vℓ)
2 πa(vj , vℓ)

s.t.
∑
ℓ∈[k]

πa(vj , vℓ) = pa(vj), ∀a ∈ A, j ∈ [k],

∑
j∈[k]

πa(vj , vℓ) = qa(vℓ), ∀a ∈ A, ℓ ∈ [k],

∣∣∣∣∣∣
∑
j≤ℓ

(qa(vj)− q(vj))

∣∣∣∣∣∣ ≤ α

2
, ∀a ∈ A, ℓ ∈ [k].

The constraints enforce that the πa’s are couplings, and the
target output distributions q̃a’s are valid PMFs satisfying the
fairness constraint of maxa,a′ DKS(q̃a, q̃a′) ≤ α.

Post-Processed Fair Regressor. On Lines 11 to 13, the
(randomized) optimal transports ga from p̃a to q̃a are ex-
tracted by reading off from the optimal couplings πa (repre-
sented by k × k matrices), and are used to construct the fair
regressor, f̄(x, a) = ga ◦ h ◦ f(x, a).

Given an input (x, a), the fair regressor f̄ obtained from
Algorithm 1 calls f to make a prediction y = f(x, a), dis-
cretizes it to get ỹ = h(y), and then uses the optimal trans-
port ga of the respective group to post-process and return a
fair prediction, ȳ = ga(ỹ).

5
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3.4. Statistical Analysis

Algorithm 1 is ε-DP by the post-processing theorem of
DP (Dwork & Roth, 2014, Proposition 2.1), because its
output depends on S only via the private statistics p̃ on
line 4 that is ε-DP.2

We analyze the suboptimality (or fair excess risk) of the post-
processed fair regressor and provide fairness guarantee:
Theorem 3.3. Let regressor f be given along with sam-
ples S = {(xi, ai)}i∈[n] of µX,A. Denote L = t −
s, assume L ≤ 1, and Y, f(X,A) ∈ [s, t] almost
surely. Let f̄ denote the fair regressor returned from
Algorithm 1 on (f, S, [s, t], k, α, ε). Then for all n ≥
Ω(maxa 1/wa ln |A|/β), with probability at least 1− β,

R(f̄)−R(f̄∗) ≤ O

(√
k|A|
n

ln
k|A|
β

+
k|A|
nε

ln
k|A|
β

)

+
8

k
+ 5E[|f(X,A)− f∗(X,A)|]

where f̄∗ = argminf ′:∆SP(f ′)≤α R(f ′) is the optimal fair
regressor, f∗ is the (unconstrained) Bayes regressor, and

∆SP(f̄) ≤ α+max
a∈A

O

( √
k

nwaε
ln

k|A|
β

+

√
k

nwa
ln

k|A|
β

)
.

The risk bound reflects four potential sources of error: the
first term is finite sample estimation error, the second term
is due to the noise added for ε-DP, the third term is the
error introduced by discretization, and the last term is the L1

excess risk of the regressor f being post-processed (carrying
over the error of the pre-trained regressor).

The first three terms of the risk bound (and last two in
the fairness bound) are attributed to the accuracy of the
private distribution estimate using HDE (cf. Theorem 3.2).
In particular, a trade-off between the statistical bias and
variance is incurred by the choice of k, the number of bins:

Õ

(√
k

n
+

k

nε︸ ︷︷ ︸
variance

+
1

k︸︷︷︸
bias

)
.

Using too few bins leads to a large discretization error (sta-
tistical bias), whereas using too many suffers from large
variance due to data sampling and the noise added for pri-
vacy.

The cost of privacy is dominated by the estimation error
as long as n ≳ maxa k/waε

2 ≥ k|A|/ε2. In which case,
the choice of k = Θ̃(n1/3) is optimal for MSE, which is
consistent with classical non-parametric estimation results
of HDE (Rudemo, 1982).

The fairness bound, on the other hand, only contains vari-
ance terms but not the statistical bias, therefore using fewer

bins is always more favorable for fairness at the expense of
MSE (e.g., in the extreme case of k = 1, the post-processor
outputs a constant value, which is exactly fair). This sug-
gests that when n is small, k can be decreased to reduce
variance for higher levels of fairness.

The optimal choice of k (in combination with α) is data-
dependent, and is typically tuned on a validation split, how-
ever; extra care should be taken as this practice could, in
principle, violate differential privacy. In our experiments,
we sweep α and k to empirically explore the trade-offs
between error, privacy and fairness attainable with our Al-
gorithm 1. This is common practice in differential privacy
research (Mohapatra et al., 2022). Regarding the selection
of hyperparameters while preserving privacy, we refer read-
ers to Liu & Talwar (2019); Papernot & Steinke (2022).

4. Experiments
In this section, we evaluate the private and fair post-
processing algorithm described in Algorithm 1.

We do not compare to other algorithms because we are
not aware of any existing private algorithms for learning
fair regressors. Although it may be possible to adopt some
existing algorithms to this setting, e.g., using DP-SGD as
in (Tran et al., 2021), making them practical and competitive
requires care, and is hence left to future work. Our post-
processing algorithm is based on (Chzhen et al., 2020);
their paper is referred to for empirical comparisons to in-
processing algorithms under the non-private setting (ε =
∞).

Setup. Since the excess risk can be decomposed according
to the pre-training and post-processing stages (Theorem 3.3,
where E[|f − f∗|] is carried over from the suboptimality
of the regressor f trained in the pre-training stage), we
will simplify our experiment setup to isolate and focus on
the performance and trade-offs induced by post-processing
alone. This means we will access the ground-truth responses
and directly apply Algorithm 1 (i.e., X = Y and f = Id,
whereby E[|f − f∗|] = 0).4

Datasets. The datasets are randomly split 70-30 for train-
ing (i.e., post-processing) and testing.

Communities & Crime (Redmond & Baveja, 2002). It con-
tains the socioeconomic and crime data of communities in
US, and the task is to predict the rate of violent crimes per
100k population (Y ∈ [0, 1]). The sensitive attribute is an
indicator for whether the community has a significant pres-
ence of a minority population (|A| = 2). The total size of
the dataset is 1,994, and the number of training examples
for the smallest group is 679 (≈ nwa).

4Code is available at https://github.com/rxian/fair-regression.
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Figure 2. Error-privacy-fairness trade-offs achieved by Algorithm 1 by sweeping α under the indicated number of bins k, with different
privacy budgets ε. Fairness violation is measured in KS distance as defined in Definition 2.2 (∆SP). Average of 50 random seeds (also for
Figures 3 and 4).

Law School (Wightman, 1998). This dataset contains the
academic performance of law school applicants, and the task
is to predict the student’s undergraduate GPA (Y ∈ [1, 4]).
The sensitive attribute is race (|A| = 4), and the dataset has
size 21,983. The smallest group has 628 training examples.

4.1. Results

In Figure 2, we show the MSE and fairness trade-offs (in
KS distance; ∆SP, Definition 2.2) attained with Algorithm 1
under various settings of α. The main observations are:

1. The cost of discretization (indicated by the horizontal
distance from 0 to the top-left starting points of the
curves) can be expected to be insignificant compared
to fairness, unless the model is already very fair without
post-processing.

2. Although the amount of data available for post-
processing is small by modern standards, the results are
very insensitive to the privacy budget until the highest
levels of DP are demanded or very large k is used.

This is because according to Theorem 3.3, the error
attributed to DP noise is dominated by estimation error
when n ≳ maxa k/waε

2. Note that in our experiments,
we have n ≫ k|A|/ε2 on both datasets except for ε =

0.1, and ε = 0.5 when k = 180. Using more bins
increases the cost of privacy due to variance, as we will
show in Figure 3.

3. The right end of each line is obtained with setting α =
0. Relaxing it to larger values could give better trade-
offs, especially when n, ε are small, because in these
cases the estimated distributions can be inaccurate due
to estimation error and the noise added, so aiming for
exact SP may fit to data artifacts or the noise rather
than the true signal, causing MSE to increase without
actual improvements to fairness.

Trade-off Between Statistical Bias and Variance. Re-
call from the analysis and discussion in Section 3.4 that
the MSE of Algorithm 1 exhibits a trade-off between the
statistical bias and variance from the choice of k: using
more bins lowers discretization error but suffers from larger
estimation error and more noise added for DP, and vice
versa. On the other hand, the fairness only depends on the
variance. Hence, one can decrease k to achieve higher levels
of fairness at the expense of MSE.

In Figure 3, we plot the trade-offs on the Law School dataset
for ε = 0.1 under different settings of k. On the right
extreme, exact SP (∆SP = 0) is achieved by setting k = 1,
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Figure 3. Error-fairness trade-offs achieved by Algorithm 1 on
the Law School dataset by sweeping α and k for ε = 0.1.
The black line is the lower envelope, and ends on the right at
(0.6772, 0) (outside the cropped figure).
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Figure 4. Error-privacy-fairness trade-offs achieved by Algo-
rithm 1 on the Law School dataset by sweeping α and k and
taking the lower envelope. The line for ε = 0.1 is the black line
in Figure 3. All lines meet and end on the right at (0.6772, 0).

but with a high 0.6772 MSE. As expected:

1. Smaller settings of k lead to smaller ∆SP, but it comes
with higher discretization error, as reflected in the
rightward-shifting starting points (i.e., results with
α =∞, i.e., not post-processed for fairness).

2. Using more bins may result in worse trade-offs com-
pared to less bins due to large variance. Note that the
trade-offs with k = 60 bins are almost completely
dominated by those with k = 36 bins.

3. The general trend is that, to achieve the best trade-
offs (i.e., the lower envelope), use smaller (α, k) when
aiming for higher levels of fairness, and larger (α, k)
for smaller MSE (but less fairness).

Error-Privacy-Fairness Trade-Off. The black line in
Figure 3 shows the optimal error-fairness trade-offs attain-
able with Algorithm 1 for ε = 0.1 from sweeping α and
k and taking the lower envelope (segments of the line not
reached by any k can be achieved by combining two re-
gressors via randomization, although obtaining them via
post-processing requires double the privacy budget).

We repeat this experiment for all settings of ε on the Law
School dataset, and plot their lower envelopes in Figure 4.
This illustrates the Pareto front of the error-privacy-fairness
trade-offs achieved by Algorithm 1. Demanding stricter
privacy degrades the trade-offs between error and fairness.

Lastly, we remark that while Figures 2 to 4 illustrate
the trade-offs that can be possibly attained with our post-
processing algorithm from varying the hyperparameters α
and k, selecting the desired trade-off requires tuning them
(privately) on a validation set. Readers are referred to (Liu
& Talwar, 2019; Papernot & Steinke, 2022) on the topic of
differentially private hyperparameter tuning.

5. Conclusion and Future Work
In this paper, we described and analyzed a private post-
processing algorithm for learning attribute-aware fair regres-
sors, in which privacy is achieved by performing histogram
density estimates of the distributions privately, and fairness
by computing the optimal transports to their Wasserstein
barycenter. We evaluated the error-privacy-fairness trade-
offs attained by our algorithm on two datasets.

Although we only studied the attribute-aware setting, that
is, we have explicit access to A during training and when
making predictions, our post-processing algorithm could
be extended to the attribute-blind setting, where A is only
available in the training data. This requires training an extra
predictor for the sensitive attribute, P̂A = P̂(A | X) ∈
∆|A|−1, to estimate the joint distribution of (Ŷ , P̂A) (vs. the
joint of (Ŷ , A) estimated in Algorithm 1 for the attribute-
aware setting), and modifying P (and LP) to use predicted
group membership P̂A rather than the true A. This has
a higher sample complexity, and the fairness of the post-
processed regressor will additionally depend on the accuracy
of P̂A. We leave the implementation and analysis of this
extension to future work.

Acknowledgements
GK is supported by a Canada CIFAR AI Grant, an NSERC
Discovery Grant, and an unrestricted gift from Google. HZ
is partially supported by a research grant from the Amazon-
Illinois Center on AI for Interactive Conversational Experi-
ences (AICE) and a Google Research Scholar Award.

8



Differentially Private Post-Processing for Fair Regression

Broader Impacts
This paper continues the study of privacy and fairness in ma-
chine learning, and fills the gap in prior work on private and
fair regression. Since the setting is well-established, and we
have theoretically analyzed the risk of our algorithm, we do
not find outstanding societal consequences for discussion.
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A. Excess Risk of the Optimal Fair Regressor
This section proves Theorem 3.1, that the excess risk of the optimal attribute-aware fair regressor can be expressed as the
sum of Wasserstein distances from the output distributions r∗a of the Bayes regressor f∗ conditioned on each group a ∈ A to
their barycenter q. We will cover the approximate fairness setting using the same analysis in (Xian et al., 2023).

The result is a direct consequence of Lemma A.4—but before stating which, because the fair regressor is randomized, to
make the discussions involving randomized functions rigorous, we provide a formal definition for them with the Markov
kernel.

Definition A.1 (Markov Kernel). A Markov kernel from a measurable space (X ,S) to (Y, T ) is a mapping K : X × T →
[0, 1], such that K(·, T ) is S-measurable, ∀T ∈ T , and K(x, ·) is a probability measure on (Y, T ), ∀x ∈ X .

Definition A.2 (Randomized Function). A randomized function f : (X ,S)→ (Y, T ) is associated with a Markov kernel
K : X × T → [0, 1], such that ∀x ∈ X , T ∈ T , P(f(x) ∈ T ) = K(x, T ).
Definition A.3 (Push-Forward Distribution). Let p be a measure on (X ,S) and f : (X ,S) → (Y, T ) a randomized
function with Markov kernel K. The push-forward of p under f , denoted by f♯p, is a measure on Y given by f♯p(T ) =∫
X K(x, T ) dp(x), ∀T ∈ T .

Now, we state the lemma of which Theorem 3.1 is a direct consequence; it says that given any (randomized) regressor f
with a particular shape q, one can derive a regressor g ◦ f∗ from the Bayes regressor f∗ that has the same shape and excess
risk (g is a randomized function with Markov kernel K(y, T ) = π(y,T )/π(y,R) where π is given in Equation (3)):

Lemma A.4. Let a regression problem be given by a joint distribution µ of (X,Y ), denote the Bayes regressor by
f∗ : X → R and r∗ = f∗♯µX , and let q be an arbitrary distribution on R. Then, for any randomized regressor f with
Markov kernel K satisfying f♯µX = q,

π(y∗, y) =

∫
f∗−1(y∗)

K(x, y) dµX(x) (3)

(where f∗−1(y∗) := {x ∈ X : f∗(x) = y∗}) is a coupling π ∈ Π(r∗, q) that satisfies

ER(f) =

∫
(y∗ − y)2 dπ(y∗, y). (4)

Conversely, for any π ∈ Π(r∗, q), the randomized regressor f with Markov kernel

K(x, T ) = π(f∗(x), T )

π(f∗(x),R)

satisfies f♯µX = q and Equation (4).

Proof. For the first direction, note that

ER(f) = E[(f∗(X)− f(X))2]

=

∫
R×R

(y∗ − y)2 P(f∗(X) = y∗, f(X) = y) d(y∗, y)

=

∫
R×R

(y∗ − y)2
(∫

X
P(f∗(X) = y∗, f(X) = y,X = x) dx

)
d(y∗, y)

=

∫
R×R

(y∗ − y)2

(∫
f∗−1(y∗)

P(f(X) = y,X = x) dx

)
d(y∗, y)

=

∫
R×R

(y∗ − y)2

(∫
f∗−1(y∗)

P(f(X) = y | X = x) dµX(x)

)
d(y∗, y)

=

∫
R×R

(y∗ − y)2π(y∗, y) d(y∗, y) (5)
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as desired, where line 4 is because P(f∗(X) = y∗, f(X) = y,X = x) = 1[f∗(x) = y∗]P(f(X) = y,X = x) as f∗ is
deterministic. We also verify that the constructed π is a coupling:∫

R
π(y∗, y) dy =

∫
R

∫
f∗−1(y∗)

K(x, y) dµX(x) dy

=

∫
f∗−1(y∗)

∫
R
K(x, y) dy dµX(x)

=

∫
f∗−1(y∗)

dµX(x)

= P(f∗(X) = y∗)

= r∗(y∗)

by Definitions A.1 and A.3, and ∫
R
π(y∗, y) dy∗ =

∫
R

∫
f∗−1(y∗)

K(x, y) dµX(x) dy∗

=

∫
X
K(x, y) dµX(x)

=

∫
X
P(f(X) = y | X = x) dµX(x)

= P(f(X) = y)

= q(y)

by Definition A.2 and the assumption that f♯µX = q.

For the converse direction, it suffices to show that the Markov kernel constructed for f satisfies the equality in Equation (3),
which would immediately imply f♯µX = q, and Equation (4) with the same arguments in Equation (5). Let y, y ∈ R and
z ∈ f∗−1(y∗) be arbitrary, then

π(y∗, y) =
π(y∗, y)

π(y∗,R)
π(y∗,R)

=
π(f∗(z), y)

π(f∗(z),R)
π(y∗,R)

= K(z, y)π(y∗,R)
= K(z, y)r∗(y∗)

= K(z, y)
∫
f∗−1(y∗)

dµX(x)

=

∫
f∗−1(y∗)

K(z, y) dµX(x)

=

∫
f∗−1(y∗)

K(x, y) dµX(x),

where line 3 is by construction ofK, line 4 by the assumption that π ∈ Π(r∗, q), and the last line is becauseK(x, y) = K(z, y)
for all x ∈ f∗−1(y∗), also by construction.

This lemma allows us to formulate the problem of finding the optimal regressor under a shape constraint q as that of finding
the optimal coupling π ∈ Π(r∗, q) with the squared cost (and π can be used to derive the regressor g ◦ f∗ that achieves the
minimum of the original problem). Because statistical parity is a shape constraint on the regressors, we can leverage this
lemma to prove Theorem 3.1:

Proof of Theorem 3.1. Because we are finding an attribute-aware fair regressor, f : X × A → R, we can optimize the
components corresponding to each group independently, i.e., fa := f(·, a), ∀a ∈ A. Denote the excess risk conditioned on
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group a by ERa(fa) = E[(fa(X)− Y )2 | A = a], and the marginal distribution of X conditioned on A = a by µX|a, then

min
f :∆SP(f)≤α

ER(f) = min
f :DKS(fa♯µX|a,fa′ ♯µX|a)≤α

ER(f)

= min
f :DKS(ra(f),ra′ (f))≤α

∑
a∈A

wa ERa(fa)

= min
{fa}a∈A:DKS(fa♯µX|a,fa′ ♯µX|a′ )≤α

∑
a∈A

wa ERa(fa)

= min
{qa}a∈A:DKS(qa,qa′ )≤α

∑
a∈A

wa min
fa:fa♯µX|a=qa

ERa(fa)

= min
q:supp(q)⊆R

{qa}a∈A⊂BKS(q,α/2)

∑
a∈A

wa min
fa:fa♯µX|a=qa

ERa(fa)

(the proof that DKS(µ, ν) ≤ α ⇐⇒ ∃q s.t. µ, ν ∈ BKS(q, α/2) is omitted; a hint for the forward direction is that such a q
can be constructed by averaging the CDFs of µ, ν), where, by Lemma A.4 and the definition of Wasserstein distance,

min
fa:fa♯µX|a=qa

ERa(fa) = min
πa∈Π(r∗a,qa)

∫
(y∗ − y)2 dπa(y

∗, y) = W 2
2 (r

∗
a, qa),

and the theorem follows by plugging this back into the previous equation.

B. Proofs for Section 3
We analyze the L1 sensitivity for our notion of neighboring datasets described in Section 2, and provide the proofs to
Theorems 3.2 and 3.3, in that order.
Remark B.1. For nonempty neighboring datasets S, S′ that differ in at most one entry by insertion, deletion or substitution,
the L1 sensitivity to the empirical PMF is at most 2/n.

Let p̂, p̂′ denote the empirical PMFs of S and S′, respectively, assume w.l.o.g. that they have two coordinate, and the
insertion/deletion takes place in the first coordinate. Denote n = |S|, n1 = np̂1, and n2 = np̂2.

• (Insertion). The sensitivity is

∥p̂− p̂′∥1 =

∣∣∣∣n1

n
− n1 + 1

n+ 1

∣∣∣∣+ ∣∣∣∣n2

n
− n2

n+ 1

∣∣∣∣
=

∣∣∣∣n1(n+ 1)− (n1 + 1)n

n(n+ 1)

∣∣∣∣+ ∣∣∣∣n2(n+ 1)− n2n

n(n+ 1)

∣∣∣∣
=

∣∣∣∣ n1 − n

n(n+ 1)

∣∣∣∣+ ∣∣∣∣ n2

n(n+ 1)

∣∣∣∣
= 2

∣∣∣∣ n2

n(n+ 1)

∣∣∣∣
≤ 2

n
.

• (Deletion). Similarly, ∥p̂− p̂′∥1 = |n1/n− n1−1/n−1|+ |n2/n− n2/n−1| = 2|n2/n(n−1)| ≤ 2/n, because n2 ≤ n− 1.

• (Substitution). ∥p̂− p̂′∥1 = |n1/n− n1−1/n|+ |n2/n− n2+1/n| = |1/n|+ |1/n| = 2/n.

For the proofs of the theorems, several technical results are required. First, a concentration bound of i.i.d. sum of
Laplace random variables based on the following fact (Li & Tkocz, 2023), which is due to

√
2YjZ ∼ Laplace(0, 1) and∑k

j=1 ajZj ∼ N (0,
∑k

j=1 a
2
j ) for Z1, . . . , Zk ∼ N (0, 1) and a1, . . . , ak ≥ 0:

Proposition B.2. Let X1, . . . , Xk ∼ Laplace(0, 1), Y1, . . . , Yk ∼ Exponential(1), and Z ∼ N (0, 1) all be independent,
then

∑k
j=1 Xj has the same distribution as (2

∑k
j=1 Yj)

1/2Z.

Lemma B.3. Let independent X1, . . . , Xk ∼ Laplace(0, 1), then for all t ≥ 0, with probability at least 1−β, |
∑k

j=1 Xj | ≤
2
√
k ln 2k/β.
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Proof. Using Proposition B.2, we bound
∑k

j=1 Xj by analyzing
√∑k

j=1 Yj |Z|. For all t ≥ 0,

P

 k∑
j=1

Yj ≥ t

 ≤ P
(
∃j s.t. Yj ≥

t

k

)
≤ k P

(
Y1 ≥

t

k

)
≤ k exp

(
− t

k

)
.

On the other hand, the Chernoff bound implies that P(|Z| ≥ t) ≤ 2 exp(−t2/2). With a union bound, with probability at
least 1− β, ∣∣∣∣∣∣

√√√√2

k∑
j=1

YjZ

∣∣∣∣∣∣ =
√√√√2

k∑
j=1

Yj |Z| ≤ 2
√
k ln

2k

β
.

Next, an L1 (TV) convergence result of empirical distributions with finite support, which follows from the concentration of
i.i.d. sum of Multinoulli random variables:

Theorem B.4 (Weissman et al., 2003). Let p ∈ ∆d−1 the (d − 1) simplex and p̂n ∼ 1/nMultinomial(n, p), then with
probability at least 1− β, ∥p− p̂n∥1 ≤

√
2d/n ln 2/β.

Lemma B.5. Let independent x1, . . . , xn ∼ p with finite support X , and denote the empirical distribution by p̂n =
1/n
∑n

i=1 βxi
, then with probability at least 1− β, ∥p− p̂n∥1 ≤

√
2|X |/n ln 2/β.

For the proof of Theorem 3.2, we need two technical results:

Lemma B.6. Let independent x1, . . . , xn ∼ p supported on [k], and denote the empirical PMF by p̂j = 1/n
∑

i 1[xi = j],
for all j ∈ [k]. Let E ⊆ [k] be a subset of size ℓ, denote wE = P(x ∈ E), the PMF conditioned on the event x ∈ E by p|E ,
and its empirical counterpart by p̂j|E = 1/nE

∑
i 1[xi = j], where nE =

∑
i 1[xj ∈ E]. Then for all n ≥ 8/wE ln 8/β, with

probability at least 1− β,

∥p|E − p̂|E∥∞ ≤

√
1

nwE
ln

8ℓ

β
,

DTV(p|E , p̂|E) =
1

2
∥p|E − p̂|E∥1 ≤

√
ℓ

4nwE
ln

8

β
,

DKS(p|E , p̂|E) ≤

√
1

nwE
ln

8ℓ

β
.

Proof. By Chernoff bound on the Binomial distribution, for all n ≥ 8/wE ln 2/β, with probability at least 1− β,

nwE

2
≤ nE ≤ 2nwE . (6)

Order the samples so that the ones with xi ∈ E are at the front (or, consider first sample nE , then sample the first nE samples
from p|E). Conditioned on Equation (6), by Hoeffding’s inequality and a union bound, for all j ∈ E, with probability at
least 1− β,

|pj|E − p̂j|E | =

∣∣∣∣∣ 1

wE
P(X = j)− 1

nE

nE∑
i=1

1[xi = j]

∣∣∣∣∣
=

1

wE

∣∣∣∣∣P(X = j)− 1

nE

nE∑
i=1

wE 1[xi = j]

∣∣∣∣∣
≤ 1

wE

√
w2

E

2nE
ln

2ℓ

β

≤

√
1

nwE
ln

2ℓ

β
.
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Next, by Lemma B.5, with probability at least 1− β,

DTV(p|E , p̂|E) =
1

2

∑
j∈E

∣∣pj|E − p̂j|E
∣∣

=
1

2

∑
j∈E

∣∣∣∣∣ 1

wE
P (X = j)− 1

nE

nE∑
i=1

1[xi = j]

∣∣∣∣∣
≤ 1

2

√
ℓ

2nE
ln

2

β

≤

√
ℓ

4nwE
ln

2

β
.

Lastly, DKS computes the L∞-distance between two CDFs, so similar to the ℓ∞ bound, by Hoeffding’s inequality and a
union bound, with probability at least 1− β,

DKS(p|E , p̂|E) = max
j∈E

∣∣∣∣∣ 1

wE
P(X ≤ j)− 1

nE

nE∑
i=1

1[xi ≤ j]

∣∣∣∣∣
=

1

wE

∣∣∣∣∣P(X ≤ j)− 1

nE

nE∑
i=1

wE 1[xi ≤ j]

∣∣∣∣∣
≤ 1

wE

√
w2

E

2nE
ln

2ℓ

β

≤

√
1

nwE
ln

2ℓ

β
.

The result follows by taking a final union bound over the four events during the analysis and rescaling β ← β/4.

Lemma B.7. Let constants a1, . . . , ak ≥ 0, and independent ξ1, . . . , ξk ∼ Laplace(0, b). Denote Sj =
∑j

ℓ=1 aj , s = Sk,
and let t ≥ 0. Define for all j ∈ [k],

(add noise) xj := aj + ξj , Fj =

j∑
k=1

xk,

(isotonic regression) yj = Gj −Gj−1, Gj :=
1

2

(
Flj + Frj

)
,

(clipping) zj = Hj −Hj−1, Hj :=

{
proj[0,t] Gj if j < k

t else,

where
(lj , rj) = argmax

l≤j≤r
(Fl − Fr).

Then with probability at least 1− β,

∥a− z∥1 ≤ 3|s− t|+ 74bk ln
4k

β
,

∥a− z∥∞ ≤ 2|s− t|+ 32b
√
k ln

4k

β
,

∥S −H∥∞ ≤ |s− t|+ 12b
√
k ln

4k

β
.
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Proof. Our analysis for proceeds by using the triangle inequality to decompose into and bounding each of the following
terms (shown here for ∥ · ∥1, analogously for ∥ · ∥∞ and the partial sums):

∥a− z∥1 ≤ ∥a− x∥1 + ∥x− y∥1 + ∥y − z∥1. (7)

We will use the following concentration result of Laplace random variables: by Lemma B.3, with probability at least 1− β,
for all 0 ≤ ℓ ≤ m ≤ k, ∣∣∣∣∣∣

m∑
j=ℓ+1

ξj

∣∣∣∣∣∣ ≤ 4b
√
m− ℓ ln

2(m− ℓ)k2

β
≤ 12b

√
m− ℓ ln

2k

β
. (8)

First Term in Equation (7). By the CDF of the exponential distribution (of which the Laplace distribution is the two-sided
version), with a union bound, with probability at least 1− β,

|aj − xj | = |ξj | ≤ 2b ln
k

β
, ∀j ∈ [k],

and it follows that

∥a− x∥1 =

k∑
j=1

|aj − xj | ≤ 2bk ln
k

β
.

For the partial sums, by Equation (8),

∥S −H∥∞ = max
j
|Sj − Fj | = max

j

∣∣∣∣∣
j∑

ℓ=1

ξℓ

∣∣∣∣∣ ≤ max
j

12b
√
j ln

2k

β
= 12b

√
k ln

2k

β
.

Second Term in Equation (7). Note that for any ℓ ≤ m such that Fℓ ≥ Fm (i.e., a violating pair for isotonic regression),

Gℓ −Gm = Fℓ − Fℓ −
m∑

j=ℓ+1

aℓ −
m∑

j=ℓ+1

ξℓ ≤ −
m∑

j=ℓ+1

ξℓ ≤ 12b
√
m− ℓ ln

2k

β
, (9)

because aj ≥ 0. So for all j ∈ [k],

0 ≤ |xj − yj | = |Gj −Gj−1 − (Fj − Fj−1)|
≤ |Gj − Fj |+ |Gj−1 − Fj−1|

=

{
Gj − Fj if Gj > Fj

Fj −Gj else

}
+

{
Gj−1 − Fj−1 if Gj−1 > Fj−1

Fj−1 −Gj−1 else

}

=


Gj −

Glj +Grj

2
if Gj > Fj

Glj +Grj

2
−Gj else

+


Gj−1 −

Glj−1
+Grj−1

2
if Gj−1 > Fj−1

Glj−1 +Grj−1

2
−Gj−1 else


≤


Gj −

Gj +Grj

2
if Gj > Fj

Glj +Gj

2
−Gj else

+


Gj−1 −

Gj−1 +Grj−1

2
if Gj−1 > Fj−1

Glj−1
+Gj−1

2
−Gj−1 else


=

1

2

{
Gj −Grj if Gj > Fj

Glj −Gj else

}
+

1

2

{
Gj−1 −Grj−1

if Gj−1 > Fj−1

Glj−1
−Gj−1 else

}

≤ 12b
√
max(rj − j, j − lj) ln

2k

β
≤ 12b

√
max(k − j, j) ln

2k

β
,

where line 5 is because Grm ≤ Gm ≤ Glm for all j, and line 7 by Equation (9). It then follows that

∥x− y∥1 =

k∑
j=1

|xj − yj | ≤ 24bk ln
2k

β
.
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Lastly, using the fact that the L∞ error of L∞ isotonic regression is 1/2maxℓ≤m(Gℓ−Gm) (Stout, 2017), and by Equation (9)
again,

0 ≤ ∥F −G∥∞ =
1

2
max
ℓ≤m

(Gℓ −Gm) ≤ 6b
√
k ln

2k

β
.

Third Term in Equation (7). Note that because aj ∈ [0, s], by Equation (8),

min
j

Gj = min
j

1

2
(Flj +Frj ) ≥ min

j
Fj = min

j

j∑
m=1

(am + ξm) ≥ min
j

j∑
m=1

ξm ≥ −max
j

∣∣∣∣∣∣
k∑

j=1

ξj

∣∣∣∣∣∣ ≥ −12b√k ln 2k

β
, (10)

and similarly,

max
j

Gj ≤ max
j

j∑
m=1

(am + ξm) ≤ s+ 12b
√
k ln

2k

β
. (11)

Since G is nondecreasing after isotonic regression, clipping only affects its prefix and/or suffix. For the prefix, let
l = max{j ∈ [k] : Hj = 0}. If l does not exist, then no clipping to zero has occurred. Otherwise, for all j ≤ l, by
Equation (10),

|Gj −Hj | = max(−Gj , 0) ≤ 12b
√
k ln

2k

β
,

and

|yj − zj | = |Gj −Gj−1 − (Hj −Hj−1)| ≤ −Gj −Gj−1 ≤ 2max

(
−min

j
Gj , 0

)
≤ 24b

√
k ln

2k

β
.

For the suffix, let r = min{j ∈ [k] : Hj = t}, then for all r ≤ j < k, by Equation (11),

|Gj −Hj | = Gj − t ≤ |s− t|+ 12b
√
k ln

2k

β
,

and

|yj − zj | ≤ (Gj − t) + max(Gj−1 − t, 0) ≤ 2max

(
max

j
Gj − t, 0

)
≤ 2|s− t|+ 24b

√
k ln

2k

β
;

for j = k,

|Gk −Hk| ≤

{
Gk − t if Gk ≥ t

t−Gk else
=

{
Gk − t if Gk ≥ t

t−
(
s+

∑k
m=1 ξm

)
else

≤ |s− t|+ 12b
√
k ln

2k

β
,

and

|yj − zj | ≤ |Gj − t|+max(Gj−1 − t, 0) ≤ 2|s− t|+ 24b
√
k ln

2k

β
.

Finally, for ∥ · ∥1,

∥y − z∥1 =

l∑
j=1

|Gj −Gj−1 − (Hj −Hj−1)|+
k∑

j=r

|Gj −Gj−1 − (Hj −Hj−1)|

=

l∑
j=1

(Gj −Gj−1) + |yr − zr|+
k−1∑

j=r+1

(Gj −Gj−1) + |yk − zk|

= Gl −G1 + |yr − zr|+Gk−1 −Gr + |yk − zk|
≤ −G1 + |yr − zr|+Gk−1 − t+ |yk − zk|

≤ 12b
√
k ln

2k

β
+ 2

(
|s− t|+ 12b

√
k ln

2k

β

)
+

(
s+ 12b

√
k ln

2k

β

)
− t
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≤ 3|s− t|+ 48b
√
k ln

2k

β
,

keep in mind that 1 ≤ l and r ≤ k − 1, k on line 3 and onward.

The result follows by taking a final union bound over the two events above and rescaling β ← β/2.

Proof of Theorem 3.2. Because wa ≥ 0, by Lemma B.3, with probability at least 1− β,

|wa − w̃a| =

∣∣∣∣∣∣wa −max

wa +

k∑
j=1

Laplace(0, 2/nε), 0

∣∣∣∣∣∣
=

∣∣∣∣∣∣max

 k∑
j=1

Laplace(0, 2/nε),−wa

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
k∑

j=1

Laplace(0, 2/nε)

∣∣∣∣∣∣
≤ O

(√
k

nε
ln

k|A|
β

)
. (12)

Next, define

p̂a(vj) =
1

na

n∑
i=1

1[h ◦ f(xi, ai), ai = a], p̌a(vj) =
1

w̃a
p̃(a, vj),

where na = 1/n
∑n

i=1 1[ai = a]. Note that qFa(vj) =
∑j

ℓ=1 p̌a(vℓ). By triangle inequality,

∥pa − p̃a∥∞
≤ ∥p̃a − p̌a∥∞ + ∥p̌a − p̂a∥∞ + ∥p̂a − pa∥∞

=

∥∥∥∥p̃a − 1

w̃a
p̌(a, ·)

∥∥∥∥
∞

+

∥∥∥∥ 1

w̃a
p̌(a, ·)− 1

ŵa
p̂(a, ·)

∥∥∥∥
∞

+ ∥p̂a − pa∥∞

≤
∥∥∥∥p̃a − 1

ŵa
p̌(a, ·)

∥∥∥∥
∞

+ 2

∥∥∥∥ 1

w̃a
p̌(a, ·)− 1

ŵa
p̌(a, ·)

∥∥∥∥
∞

+

∥∥∥∥ 1

ŵa
p̌(a, ·)− 1

ŵa
p̂(a, ·)

∥∥∥∥
∞

+ ∥p̂a − pa∥∞

=
1

ŵa
∥ŵap̃a − p̌(a, ·)∥∞ +

2

ŵa
|ŵa − w̃a|+

1

ŵa
∥p̌(a, ·)− p̂(a, ·)∥∞ + ∥p̂a − pa∥∞

≤ 1

ŵa
∥w̃ap̃a − ŵap̃a∥∞ +

1

ŵa
∥w̃ap̃a − p̌(a, ·)∥∞ +

2

ŵa
|ŵa − w̃a|+

1

ŵa
∥p̌(a, ·)− p̂(a, ·)∥∞ + ∥p̂a − pa∥∞

≤ 1

ŵa
∥w̃ap̃a − p̌(a, ·)∥∞ +

3

ŵa
|ŵa − w̃a|+

1

ŵa
∥p̌(a, ·)− p̂(a, ·)∥∞ + ∥p̂a − pa∥∞

≤ O

(
1

ŵa

(
|ŵa − w̃a|+

√
k

nε
ln

k|A|
β

+
1

nε
ln

k|A|
β

)
+

√
1

nwa
ln

k|A|
β

)

≤ O

(
1

ŵa

(√
k

nε
ln

k|A|
β

+

√
k

nε
ln

k|A|
β

+
1

nε
ln

k|A|
β

)
+

√
1

nwa
ln

k|A|
β

)

≤ O

( √
k

nŵaε
ln

k|A|
β

+

√
1

nwa
ln

k|A|
β

)

≤ O

( √
k

nwaε
ln

k|A|
β

+

√
1

nwa
ln

k|A|
β

)
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by Equation (12) and Lemmas B.6 and B.7; the bound on the ∥p̌(a, ·)− p̂(a, ·)∥∞ follows the same analysis in the proof of
Lemma B.7 for the first term.

Similarly,

∥pa − p̃a∥1 ≤
1

ŵa
∥w̃ap̃a − p̌(a, ·)∥1 +

3

ŵa
|ŵa − w̃a|+

1

ŵa
∥p̌(a, ·)− p̂(a, ·)∥1 + ∥p̂a − pa∥1

≤ O

(
k

nwaε
ln

k|A|
β

+

√
k

nwa
ln
|A|
β

)
,

and

DKS(pa, p̃a)

≤ 1

ŵa
max

j

∣∣∣∣∣
j∑

ℓ=1

(w̃ap̃a(vℓ)− p̌(a, vℓ))

∣∣∣∣∣+ 3

ŵa
|ŵa − w̃a|+

1

ŵa
max

j

∣∣∣∣∣
j∑

ℓ=1

(p̌(a, ·)− p̂(a, ·))

∣∣∣∣∣+DKS(p̂a, pa)

≤ O

( √
k

nwaε
ln

k|A|
β

+

√
k

nwa
ln

k|A|
β

)
.

For the proof of Theorem 3.3, we need the following technical result for the difference of W 2
2 distances:

Lemma B.8 (Chizat et al., 2020). Let µ, µ′, ν, ν′ be distributions whose supports are contained in the centered ball of
radius R in Rd, then∣∣W 2

2 (µ, ν)−W 2
2 (µ

′, ν′)
∣∣ ≤ ∣∣∣∣∫ ∥x∥22 d(µ− µ′)(x)

∣∣∣∣+ ∣∣∣∣∫ ∥x∥22 d(ν − ν′)(x)

∣∣∣∣
+ 2R sup

convex f∈Lip(1)

∣∣∣∣∫ f(x) d(µ− µ′)(x)

∣∣∣∣+ 2R sup
convex g∈Lip(1)

∣∣∣∣∫ g(x) d(ν − ν′)(x)

∣∣∣∣
≤ 4RW1(µ, µ

′) + 4RW1(ν, ν
′).

The last line follows from the dual representation of W1 distance for distributions with bounded support:

W1(µ, ν) = sup
f∈Lip(1)

∣∣∣∣∫ f(x) d(µ− ν)(x)

∣∣∣∣,
and the fact that x 7→ ∥x∥22 is 2R-Lipschitz on the centered ball of radius R.

Also, recall the fact that the W1 distance of distributions supported on a ball of radius R can be upper bounded by total
variation distance:

W1(µ, ν) = inf
π∈Π(µ,ν)

∫
d(x, y) dπ(x, y)

≤ 2R inf
π∈Π(µ,ν)

∫
1[x ̸= y] dπ(x, y)

= 2R

(
1− sup

π∈Π(µ,ν)

∫
1[x = y] dπ(x, y)

)

= 2R

(
1−

∫
min(µ(x), ν(x)) dx

)
= 2R

∫
max(0, ν(x)− µ(x)) dx

= R

∫
|ν(x)− µ(x)|dx

=: R∥µ− ν∥1
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=: 2RDTV(µ, ν), (13)

where line 6 is because
∫
(µ(x)− ν(x)) dx = 0.

And, note the following simple fact regarding optimal transports T ∗ : R→ R under the squared cost; in the special case
where T ∗ is a Monge transportation plan, the lemma is equivalent to saying that T ∗ is a nondecreasing function (see the last
panel of Figure 1 for a picture):

Lemma B.9. Let p, q be two distributions supported on [k], and π ∈ argminπ′∈Π(p,q)

∑
m,ℓ(m− ℓ)2π(m, ℓ), then for all

j ∈ [k],

f(m) :=

j∑
ℓ=1

π(m, ℓ)

p(m)


= 1 if m < lj

∈ [0, 1] if m = lj

= 0 if m > lj ,

∀m s.t. p(m) > 0, (14)

for some l1, . . . , lk ∈ [k].

Proof. Let j ∈ [k] be arbitrary. Suppose to the contrary that ∄lj such that Equation (14) holds, then either f as a function of
m is not non-increasing, i.e., f(m+ 1) > f(m) for some m, or 0 < f(m+ 1) ≤ f(m) < 1. We show that either of these
contradicts the optimality of π.

In both cases, there must exists l ≤ j < r such that π(m, r), π(m+1, l) ≥ q for some q > 0, because
∑j

ℓ=1 π(m+1, ℓ) =

p(m + 1)f(m + 1) > 0 and
∑k

ℓ=j+1 π(m, ℓ) = p(m)(1 − f(m)) > 0. Then a coupling γ with a lower cost can be
constructed by (partially) exchanging the two entries:

γ(i, ℓ) =



π(m, r)− q if i = m, ℓ = r

π(m, l) + q if i = m, ℓ = l

π(m+ 1, r) + q if i = m+ 1, ℓ = r

π(m+ 1, l)− q if i = m+ 1, ℓ = l

π(i, ℓ) else.

We verify that it has a lower cost than π:∑
i,ℓ

(i− ℓ)2(γ − π)(i, ℓ) = −q(m− r)2 + q(m− l)2 + q(m+ 1− r)2 − q(m+ 1− l)2 = 2q(l − r) < 0.

Proof of Theorem 3.3. This proof also relies on properly applying the triangle inequality to decompose into comparable
terms. We list the terms that will be compared here:

• Denote the Bayes regressor by f∗, and recall that f is the regressor being post-processed. Denote the output distribution
of f∗ conditioned on group a by r∗a := f∗(·, a)♯µX|a, which will be compared to that of f , ra := f(·, a)♯µX|a.

• Given a discretizer h, the discretized conditional output distribution of f∗ is denoted by p∗a := h♯r∗a, and that of f by
pa := h♯ra. We will compare r∗a to its discretized version p∗a, and pa to p̃a, the empirical conditional discretized output
distributions of f estimated privately.

• Denote the private group marginal distribution estimated from the samples by w̃a, which will be compared to the
ground-truth wa := P(A = a).

• Let (·, {q̃′a}a∈A) ← P({p̃a}a∈A, {w̃a}a∈A, α) and (·, ·, {q̃a}a∈A) ← LP({p̃a}a∈A, {w̃a}a∈A, α). The difference
between q̃′a, q̃a is that the support of the latter is restricted to v.

Recall that the fair regressor returned from Algorithm 1 has the form f̄ = ga ◦ h ◦ f , where ga is the optimal transport
from p̃a to q̃a. The q̃a’s will be compared to the q̃′a’s, which are in turn compared to the output distributions q∗a of an
optimal α-fair regressor, denoted by f̄∗ (note that (·, {q∗a}a∈A)← P({r∗a}a∈A, {wa}a∈A, α)).

Error Bound. Note that R(f̄)−R(f̄∗) = ER(f̄)−ER(f̄∗). We begin with analyzing the first term. By the orthogonality
principle,

ER(f̄) = E
[(
f̄(X,A)− f∗(X,A)

)2]
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=
∑
a∈A

wa EX∼µX|a

[(
f̄(X, a)− f∗(X, a)

)2]
=
∑
a∈A

wa EX∼µX|a

[(
f̄(X, a)− f(X, a) + (f(X, a)− f∗(X, a))

)2]
=
∑
a∈A

wa

(
EX∼µX|a

[(
f̄(X, a)− f(X, a)

)2
+ (f(X, a)− f∗(X, a))

2

+ 2
(
f̄(X, a)− f(X, a)

)
(f(X, a)− f∗(X, a))

])
≤
∑
a∈A

wa EX∼µX|a

[(
f̄(X, a)− f(X, a)

)2]
+ 3E[|f(X,A)− f∗(X,A)|]︸ ︷︷ ︸

E1

,

where line 5 is because of the assumption that the images of f̄ , f are contained in [0, 1]. The second term on the last line is
the L1 excess risk of f ; for the first term,

EX∼µX|a

[(
f̄(X, a)− f(X, a)

)2]
= EX∼µX|a

[
(ga ◦ h ◦ f(X, a)− f(X, a))

2
]

= EX∼µX|a

[
(ga ◦ h ◦ f(X, a)− h ◦ f(X, a) + (h ◦ f(X, a)− f(X, a)))

2
]

≤ EX∼µX|a

[
(ga ◦ h ◦ f(X, a)− h ◦ f(X, a))

2
+ 3|h ◦ f(X, a)− f(X, a)|

]
≤ EX∼µX|a

[
(ga ◦ h ◦ f(X, a)− h ◦ f(X, a))

2
]
+

3

2k

=

k∑
j=1

pa(vj)E
[
(ga(vj)− vj)

2
]
+

3

2k

=

k∑
j=1

p̃a(vj)E
[
(ga(vj)− vj)

2
]
+

k∑
j=1

(pa(vj)− p̃a(vj))E
[
(ga(vj)− vj)

2
]
+

3

2k

≤W 2
2 (p̃a, q̃a) + ∥pa − p̃a∥1 +

3

2k

≤W 2
2 (p̃a, q̃a) +O

(√
k

nwa
ln

k|A|
β

+
k

nwaε
ln

k|A|
β

)
+

3

2k
,

where line 4 is because h discretizes the input to the midpoint of the bin that it falls in, which displaces it by up to L/2k = 1/2k;
line 5 is because pa(vj) = P(h ◦ f(X, a) = vj); the first term on line 7 is because ga is the optimal transport from p̃a to q̃a.
Then, combining the above, by Theorem 3.2, with probability at least 1− β,

ER(f̄) ≤
∑
a∈A

(
waW

2
2 (p̃a, q̃a) +O

(√
kwa

n
ln

k|A|
β

+
k

nε
ln

k|A|
β

))
+ E1 +

3

2k

≤
∑
a∈A

waW
2
2 (p̃a, q̃a) + E1 +O

(√
k|A|
n

ln
k|A|
β

+
k|A|
nε

ln
k|A|
β

)
︸ ︷︷ ︸

E2

+
3

2k

≤
∑
a∈A

(
w̃aW

2
2 (p̃a, q̃a) + |w̃a − wa|W 2

2 (p̃a, q̃a)
)
+ E1 + E2 +

3

2k

≤
∑
a∈A

(
w̃aW

2
2 (p̃a, q̃a) + |w̃a − wa|

)
+ E1 + E2 +

3

2k

≤
∑
a∈A

w̃aW
2
2 (p̃a, q̃a) + E1 + E2 +

3

2k
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≤
∑
a∈A

w̃aW
2
2 (p̃a, h♯q̃

′
a) + E1 + E2 +

3

2k

≤
∑
a∈A

w̃a(W2(p̃a, q̃
′
a) +W2(q̃

′
a, h♯q̃

′
a))

2
+ E1 + E2 +

3

2k

=
∑
a∈A

w̃a

(
W 2

2 (p̃a, q̃
′
a) + 2W2(p̃a, q̃

′
a)W2(q̃

′
a, h♯q̃

′
a) +W 2

2 (q̃
′
a, h♯q̃

′
a)
)
+ E1 + E2 +

3

2k

≤
∑
a∈A

w̃aW
2
2 (p̃a, q̃

′
a) + E1 + E2 +

3

k

≤
∑
a∈A

w̃aW
2
2 (p̃a, q

∗
a) + E1 + E2 +

3

k
,

where line 6 follows by noting that {h♯q̃′a}a∈A is a feasible solution to LP, as it can be verified that DKS(h♯q̃
′
a, h♯q̃

′
a′) ≤ α

given that DKS(q̃
′
a, q̃

′
a′) ≤ α, ∀a, a′ ∈ A (hence restricting the support of the barycenter to v introduces an additional error

of 3/2k as discussed in footnote 3), and the last line is because {q̃′a}a∈A is a minimizer of P({p̃a}a∈A, {w̃a}a∈A, α).

So for the suboptimality of h̄, by Theorem 3.1,

ER(f̄)− ER(f̄∗) ≤
∑
a∈A

w̃a

(
W 2

2 (p̃a, q
∗
a)−W 2

2 (r
∗
a, q

∗
a)
)
+ E1 + E2 +

3

k

≤
∑
a∈A

w̃a

(
W 2

2 (p̃a, q
∗
a)− (W2(q

∗
a, p

∗
a)−W2(r

∗
a, p

∗
a))
)2

+ E1 + E2 +
3

k

≤
∑
a∈A

w̃a

(
W 2

2 (p̃a, q
∗
a)−W 2

2 (p
∗
a, q

∗
a) + 2W2(p

∗
a, q

∗
a)W2(p

∗
a, r

∗
a)
)
+ E1 + E2 +

3

k

≤
∑
a∈A

w̃a

(
W 2

2 (p̃a, q
∗
a)−W 2

2 (p
∗
a, q

∗
a)
)
+

1

k
+ E1 + E2 +

3

k
,

where the last line is because h is a transport from r∗a to p∗a with displacements of at most 1/2k; for the first term, by
Lemma B.8 and Equation (13),∑

a∈A
w̃a

(
W 2

2 (p̃a, q
∗
a)−W 2

2 (p
∗
a, q

∗
a)
)
≤ 4

∑
a∈A

w̃aW1(p̃a, p
∗
a)

≤ 4
∑
a∈A

w̃a(W1(p̃a, pa) +W1(pa, ra) +W1(ra, r
∗
a) +W1(r

∗
a, p

∗
a))

≤ 4
∑
a∈A

w̃a

(
∥p̃a − pa∥1 +

1

2k
+ EX∼µX|a [|f

∗(X, a)− f(X, a)|] + 1

2k

)
≤ 4

∑
a∈A

w̃a EX∼µX|a [|f
∗(X, a)− f(X, a)|] + E2 +

4

k

≤ 4
∑
a∈A

(wa − wa + w̃a)EX∼µX|a [|f
∗(X, a)− f(X, a)|] + E2 +

4

k

≤ 4
∑
a∈A

wa EX∼µX|a [|f
∗(X, a)− f(X, a)|] + 4

∑
a∈A
|w̃a − wa|+ 4E2 +

4

k

≤ 4E1 + E2 +
4

k
,

the third inequality is because the joint distribution of (f(X, a), f∗(X, a)) is a valid coupling belonging to Π(ra, r
∗
a) that

incurs a transportation cost of

E[|f∗(X, a)− f(X, a)|] =
∫
|y − y∗|dP(f(X, a) = y, f∗(X, a) = y∗) ≥W1(ra, r

∗
a).

Putting everything together, and with a union bound over the two events above, gives the result in the theorem statement.
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Fairness Guarantee. Let p̄a denote the output distribution of the post-processed regressor f̄ conditioned on group a.
Using triangle inequality, for any a, a′ ∈ A,

DKS(p̄a, p̄a′) ≤ DKS(q̃a, q̃a′) +DKS(p̄a, q̃a) +DKS(p̄a′ , q̃a′) ≤ α+DKS(p̄a, q̃a) +DKS(p̄a′ , q̃a′),

where

DKS(p̄a, q̃a) = max
j

∣∣∣∣∣
j∑

ℓ=1

(p̄a(vℓ)− q̃a(vℓ))

∣∣∣∣∣
= max

j

∣∣∣∣∣
j∑

ℓ=1

(
P(f̄(X, a) = vℓ | A = a)− q̃a(ℓ)

)∣∣∣∣∣
= max

j

∣∣∣∣∣
j∑

ℓ=1

(
k∑

m=1

pa(vm)P(ga(vm) = vℓ | A = a)−
k∑

m=1

p̃a(vm)P(ga(vm) = vℓ | A = a)

)∣∣∣∣∣
= max

j

∣∣∣∣∣
k∑

m=1

(pa(vm)− p̃a(vm))

j∑
ℓ=1

P(ga(vm) = vℓ | A = a)

∣∣∣∣∣
≤ max

j

∣∣∣∣∣∣
vιj−1∑
m=1

(pa(vm)− p̃a(vm))

∣∣∣∣∣∣+ ∣∣(pa(vιj )− p̃a(vιj )
)
P(ga(vιj ) ≤ vj)

∣∣
≤ DKS(pa, p̃a) + max

j

∣∣pa(vιj )− p̃a(vιj )
∣∣

≤ O

( √
k

nwaε
ln

k|A|
β

+

√
k

nwa
ln

k|A|
β

)
;

line 3 is because ga is a transport from p̃a to q̃a, line 5 uses Lemma B.9 and the fact that
∑j

ℓ=1
πa(vm,vℓ)/p̃a(vm) =

P(ga(vm) ≤ vj), and line 7 is by Theorem 3.2.
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