
Towards a Self-contained Data-driven Global Weather Forecasting Framework

Yi Xiao 1 2 Lei Bai 2 Wei Xue 1 3 Hao Chen 2 Kun Chen 2 4 Kang Chen 2 Tao Han 2 Wanli Ouyang 2

Abstract

Data-driven weather forecasting models are ad-
vancing rapidly, yet they rely on initial states (i.e.,
analysis states) typically produced by traditional
data assimilation algorithms. Four-dimensional
variational assimilation (4DVar) is one of the most
widely adopted data assimilation algorithms in
numerical weather prediction centers; it is accu-
rate but computationally expensive. In this pa-
per, we aim to couple the AI forecasting model,
FengWu, with 4DVar to build a self-contained
data-driven global weather forecasting frame-
work, FengWu-4DVar. To achieve this, we pro-
pose an AI-embedded 4DVar algorithm that in-
cludes three components: (1) a 4DVar objective
function embedded with the FengWu forecast-
ing model and its error representation to enhance
efficiency and accuracy; (2) a spherical-harmonic-
transform-based (SHT-based) approximation strat-
egy for capturing the horizontal correlation of
background error; and (3) an auto-differentiation
(AD) scheme for determining the optimal anal-
ysis fields. Experimental results show that un-
der the ERA5 simulated observational data with
varying proportions and noise levels, FengWu-
4DVar can generate accurate analysis fields; re-
markably, it has achieved stable self-contained
global weather forecasts for an entire year for
the first time, demonstrating its potential for real-
world applications. Additionally, our framework
is approximately 100 times faster than the tradi-
tional 4DVar algorithm under similar experimen-
tal conditions, highlighting its significant compu-
tational efficiency.
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1. Introduction
Weather forecasting is the cornerstone of human society and
profoundly impacts all aspects of our daily lives and eco-
nomic activities. Accurately predicting weather conditions
in advance is beneficial to various sectors, ranging from
agricultural planning to renewable energy generation and
disaster preparedness.

Traditional numerical weather forecasting methods rely
on building partial differential equations based on physi-
cal rules and solving these equations for accurate predic-
tions (Kalnay, 2003). However, it is difficult to accurately
resolve complex physical processes like clouds and con-
vection, which makes medium-range forecasts less accu-
rate (Hourdin et al., 2017; Donner et al., 2011). Moreover,
solving these equations is computationally expensive, lead-
ing to significant investment in supercomputers for weather
forecasting (Bauer et al., 2015). In the past few years, a
multitude of Artificial Intelligence (AI) weather forecast-
ing models have emerged as a promising alternative, such
as FourCastNet (Pathak et al., 2022), Pangu Weather (Bi
et al., 2023), GraphCast (Lam et al., 2022), FengWu (Chen
et al., 2023a), FuXi (Chen et al., 2023b), etc. These data-
driven models are informed by modern neural network
structures (Vaswani et al., 2017; Liu et al., 2021; Zhao
et al., 2023; Wang et al., 2023), and their forecast accu-
racy rivals or even surpasses traditional methods like Inte-
grated Forecasting System (IFS) developed by European
Centre for Medium-Range Weather Forecasts (ECMWF).
Notably, they exhibit forecasting efficiency orders of magni-
tude higher than that of traditional algorithms.

Despite the potential success of AI forecasting models, most
previous works have overlooked a crucial component of
weather forecasting systems: data assimilation. Data assim-
ilation is a statistical technique that combines observational
information with numerical models to achieve an optimal
estimate of the current state (also known as the analysis
state), which then serves as the initial value for predicting
future states. In previous studies, the establishment of ini-
tial states is usually achieved by assimilating the forecast
fields of physics-based forecasting models, as shown in
Figure 1(a). However, these initial states often face issues
such as inconsistency with AI forecasting models and high
computational complexity, which hinder the accuracy and
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Figure 1. (a) Previous works. The physics-based weather fore-
casting model is required to provide initial states. (b) Our work.
The data-driven weather forecasting model can operate in a self-
contained manner.

efficiency of the entire data-driven weather prediction sys-
tem. The approach to resolving this issue is to couple the
AI weather forecasting model with data assimilation and
build a data-driven weather forecasting framework capable
of realizing continuous forecasts in a self-contained manner,
as shown in Figure 1(b).

Four-dimensional variational assimilation (4DVar) is one
of the most popular data assimilation algorithms and has
been successfully adopted in numerical weather prediction
centers worldwide (Rabier et al., 1998; 2000). The main
problem of 4DVar lies in its high computational cost. In the
traditional 4DVar algorithm, the physics-based forecasting
model is involved in its objective function to represent the
so-called flow dependency (Rabier et al., 1998). Due to
the high computational complexity of the physics-based
model itself, the computational cost of the entire algorithm
is also very high. For example, in the China Meteorological
Administration, realizing 4DVar on the 1° flow dependency
resolution takes about 50 minutes on 256 processors of
the PI-SUGON high-performance computer (Zhang et al.,
2019). Therefore, directly coupling the traditional 4DVar
algorithm with the AI forecasting model will greatly hinder
the efficiency gain of the AI forecasting model.

Geer (2021) suggests that by introducing AI forecasting
models to 4DVar as the flow dependency and solving the
optimal analysis field with the aid of auto-differentiation,

it is possible to reduce the computational cost. Although
this method has achieved some success on simple dynami-
cal systems (Dong et al., 2022), several challenges remain
when scaling to the real-world global weather forecasting
system. First, in a high-dimensional forecasting system,
the correlation of the background error is very complex,
and if we follow the convention of AI data assimilation on
low-dimensional systems and use the diagonal matrix to
approximate the error covariance, a lot of information will
be lost and the assimilation will not work (Kalnay, 2003;
Fisher, 2003). Second, compared with low-dimensional dy-
namical systems, the errors of global AI forecasting models
grow relatively quickly (Bi et al., 2023), which will greatly
reduce the representative accuracy of flow dependencies in
the 4DVar objective function, thereby hindering the final
assimilation accuracy.

In this paper, we aim to resolve these issues and design an
AI-embedded 4DVar algorithm on the global weather sys-
tem. For the first time, the 4DVar algorithm is coupled with
a global AI forecasting model to achieve a self-contained
data-driven weather forecasting framework. We leverage
three techniques to achieve this goal. First, inspired by Geer
(2021), we embed the AI forecasting model into the flow
dependency of 4DVar to reduce the computational cost of
physics-based models. Considering that the error accumu-
lation of AI forecasting models is relatively faster than the
traditional model, we go one step further and add the er-
ror covariance term to the objective function to improve
the assimilation accuracy. Second, we take advantage of
the spherical harmonic transform to implement the differ-
entiable spherical convolution for approximating horizontal
correlations of the background error. Third, we utilize the
auto-differentiation technique to solve the data assimilation
problem and find the optimal analysis states, eliminating the
need of manually coding adjoint models, which is required
by the traditional 4DVar.

We conduct this research on the global AI weather fore-
casting model, FengWu, and couple it with AI-embedded
4DVar to implement an AI weather forecasting framework,
FengWu-4DVar1. Our experiments are conducted with the
FengWu forecasting model at a 1.4° resolution and the ob-
servations simulated from the ERA5 reanalysis data. When
the observation proportion is between 5% and 15% and
the assimilation window is set to 6 hours, FengWu-4DVar
is able to generate reasonable analysis fields and achieve
stable and efficient cyclic assimilation and forecasting for
at least one year. With an observation proportion of 15%,
the accuracy of the analysis fields is comparable to that of
the 6-hour forecast of IFS. Moreover, assimilating obser-
vations in a 6-hour window can be realized in less than 30

1The code of FengWu-4DVar is available at
https://github.com/OpenEarthLab/FengWu-4DVar.
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seconds on one NVIDIA A100 GPU, 100 times faster than
the traditional 4DVar on 256 processors of the PI-SUGON
high-performance computer.

2. Fundamentals of 4DVar
Denote xt the physical states and yt the observations at time
t. Then, the 4DVar algorithm estimates the optimal physical
state at time t = 0 by minimizing the following objective
function:

J(x0) =
1

2

(
x0 − xb

)T
B−1

(
x0 − xb

)
+

1

2

T−1∑
τ=0

(H (xτ )− yτ )
T
R−1

τ (H (xτ )− yτ )

xτ =M0→τ (x0)

(1)

The objective is to compute a maximum likelihood esti-
mate for the initial state x0 of a trajectory (x0, . . . ,xT−1)
evolved through a physical modelM, given a sequence of
observations {yτ}T−1

τ=0 and a prior estimate xb. We note
here that the subscript 0 → τ ofM stands for integration
from time 0 to time τ . Since we only consider autonomous
systems (Strogatz, 2018) in this paper,M0→τ =Mt→t+τ

holds for any t, thus we may also rewrite it asMτ . The
observation operatorH maps physical states into the obser-
vation space. For example, physical fields are often modeled
on a regular grid, while the positions of observation stations
are typically distributed irregularly. Observation operators
can map the values of the physical field at regular grid points
to the positions of observation stations.

The loss function J(x0) characterizes both the initial condi-
tion and the conditional distribution of observations as mul-
tivariate normal distributions. The first term incorporates a
guess for the initial state x0 (referred to as the background
field xb), where B is a background covariance matrix rep-
resenting the uncertainty associated with this assumption.
The second term incorporates the observations at different
time steps, and the error variance of observations at time
τ is represented by the matrix Rτ . The flow dependency
refers to the feature of the 4DVar objective that the initial
state is integrated (by the forecasting modelM) to generate
a sequence of states to evaluate its deviation from the obser-
vation sequence over the entire time interval. In Equation 1,
the interval [0, T −1] is often referred to as the assimilation
window (Trémolet, 2006).

Function Optimization In 4DVar, the objective function
is minimized via gradient-based optimization algorithms
like L-BFGS (Jorge & Stephen, 2006). The gradient of

J(x0) can be formulated as

∂J

∂x0
= B−1

(
x0 − xb

)
+

T−1∑
τ=0

MT
τ→0H

TR−1
τ (H (xτ )− yτ ) ,

(2)

where MT
τ→0 =

(
∂M0→τ (x)

∂x

)T
is the adjoint model (Rabier

& Liu, 2003) ofM0→τ and H = ∂H(x)
∂x is the linearized ob-

servation operator. In the traditional 4DVar,M corresponds
to the physics-based forecasting model and its adjoint model
MT

τ→0 is coded manually (Trémolet, 2006). Due to the high
computational complexity of the forward forecasting model,
the adjoint model also bears a substantial computational
burden. This load is further amplified in optimization algo-
rithms, which require multiple gradient calculations through
iterative processes.

Cyclic Forecasting In operational weather forecasting
centers, establishing a self-contained forecasting system is
achievable through alternatively operating model forecasts
and data assimilation. In the data assimilation stage, the
observational data is utilized to correct the prediction field
at the current moment (i.e., background field) to obtain
more accurate analysis field. In the prediction stage, starting
from the analysis field at the current moment, the numerical
prediction model is applied to integrate to obtain the forecast
field (background field) at the subsequent moment. As time
goes by, new observations at the subsequent moment can
be obtained, starting a new round of ”analysis-prediction”
cycle. This process is called cyclic forecasting.

3. AI-embedded 4DVar on a Global
Forecasting Model

3.1. AI-embedded 4DVar Objective Function

The major computational cost of 4DVar lies in the calcu-
lation of M and its adjoint MT. Inspired by Dong et al.
(2022) and Geer (2021), we substitute the physics-based
forecasting modelM in the objective function with a data
driven modelMml to reduce the computational cost of the
4DVar algorithm. Another advantage of the AI-embedded
4DVar objective function is that the flow dependencies are
consistent with the AI forecasting model, which will lead to
better cyclic forecasting results.

Moreover, considering that the errors of global AI forecast-
ing models grow relatively quickly (Bi et al., 2023), the
flow dependency in the objective function is inaccurate,
which hinders the final assimilation accuracy. To deal with
this issue, we explicitly take model error into account in
the 4DVar objective function to improve assimilation accu-
racy. Specifically, assuming that the error of the forecasting
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model for integrating τ steps follows a Gaussian distribu-
tionN (0,Qτ ) (Howes et al., 2017) and that the observation
operator is linear, i.e., H(x) = Hx, we can re-derive the
objective function according to the Bayes’ theorem. We
let readers refer to the Appendix for the detailed derivation.
The form of the new objective function is almost identical
to the original one, except that the model error covariance
matrices are added to the observation covariance matrices to
give smaller confidence to the future observations. That is,

J(x0) =
1

2

(
x0 − xb

)T
B−1

(
x0 − xb

)
+

1

2

T−1∑
τ=0

dT
τ

(
Rτ +HQτH

T)−1
dτ

dτ = H
(
Mml

0→τ (x0)
)
− yτ .

(3)

3.2. SHT-based Horizontal Correlation Approximation

The background covariance matrix B describes the uncer-
tainty of the forecasting model. In most previous works of
AI data assimilation (Fablet et al., 2021; Frerix et al., 2021;
Dong et al., 2022), the covariance matrix is assumed to be
diagonal, that is, only the variance is taken into consider-
ation and the correlational information is ignored. Such
an assumption simplifies the algorithm implementation, yet
compromises assimilation accuracy as how observations at
a single point affect the estimate of its neighbourhood is not
encoded into the B matrix. In the global weather forecasting
system, the observations are sparse; therefore, it’s infeasible
to make such a simplification.

To address this issue, we introduce the horizontal correlation
into the B matrix. Due to the large horizontal spacing, the
vertical correlation is relatively weak and is not considered
in this work. Inspired by Bannister (2008), Barker et al.
(2004) and Descombes et al. (2015), instead of assuming
B to be diagonal, we assume that B can be decomposed
as B = UUT, where U is a sparse matrix for representing
horizontal correlations. By defining the control variable
u0 = U−1

(
x0 − xb

)
, we can transform the original ob-

jective function, where x0 serves as the variable, into an
objective function, where u0 is the variable:

J̃(u0) =
1

2
uT
0u0 +

1

2

T−1∑
τ=0

dT
τ

(
Rτ +HQτH

T)−1
dτ

dτ = H
(
Mml

0→τ

(
Uu0 + xb

))
− yτ .

(4)
The key problem lies in the calculation of Uu0. Related
works suggest that the matrix multiplication of Uu0 can be
approximated by convolving u0 with a Gaussian distribution
kernel, the parameters of which are obtained by the NMC
method (Descombes et al., 2015). Since we represent the
horizontal correlation on the sphere, the convolution needs
to be a spherical one. According to the convolution theorem,

the convolution operation in the physical domain can be
equivalently converted to the multiplication operation in
the spectral domain (Driscoll & Healy, 1994). Denoting F
the spherical harmonic transform (SHT), κ the convolution
kernel and u the field to be convolved, the convolution can
be achieved according to the following formula:

F [κ ⋆ u](l,m) = 2π

√
4π

2l + 1
F [u](l,m) · F [κ](l, 0). (5)

In our work, the ”torch-harmonics” package developed by
NVIDIA is applied to efficiently implement the differen-
tiable SHT (Bonev et al., 2023).

3.3. AD Scheme for Solving the Analysis Field

To optimize the 4DVar objective function, we construct a
new “neural network” with u0 (the control variable of the
analysis fields to be optimized) as the input, and use this
“neural network” to calculate the “loss” J̃(u0). Noting that
Mml is a differentiable AI model and other calculations like
matrix multiplication and addition are also differentiable,
if we fix the parameters of the AI modelM and regard the
input u0 as the “parameters” of our “neural network”, the
back-propagation algorithm can be implemented through
auto-differentiation and thereafter the gradient ∂J̃

∂u0
can be

directly obtained. With this approach, we no longer need
to build the adjoint model manually, which saves substan-
tial engineering effort. In the Appendix, we provide further
explanation on the equivalence between AD and manual cod-
ing. After calculating the gradient, the optimizer packages
in PyTorch can be applied to solve the function optimiza-
tion problem. Different from neural network training in
which a batch of samples are utilized for optimization, in
AI-embedded 4DVar, only one sample is involved. There-
fore, batch optimization algorithms like SGD and ADAM
are not feasible for this task. Quasi-Newton optimization
algorithms like L-BFGS are employed in this work instead.

3.4. Coupling with the Forecasting Model

Denoting J̃
(
·
∣∣xb, {yτ}T−1

τ=0

)
the objective function with re-

spect to observations {yτ}T−1
τ=0 and the background field

xb, the coupling of the AI-embedded 4DVar algorithm with
model forecasts is implemented as shown in Algorithm 1,
where the outputs {xb

lT }Ll=0 and {xa
lT }Ll=0 represent the

sequences of background fields and analysis fields, respec-
tively.

4. Results
4.1. Experimental Setup

Forecasting Model Setup Our experiments are conducted
with FengWu (Chen et al., 2023a), a data-driven global
medium-range weather forecasting model. We choose this
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Figure 2. Cyclic forecasting results of FengWu-4DVar. The x-axis in each sub-figure represents lead time, at a 6-hour interval over a
one-year lead time. The y-axis represents RMSE and Bias. The blue lines correspond to the analysis fields (xa in Algorithm 1); the black
lines correspond to the background fields (xb in Algorithm 1); the green dotted lines correspond to the average RMSE of the IFS six-hour
forecast fields.

Algorithm 1 Cyclic Forecasting with FengWu-4DVar
input Prior estimate of the initial state xb

0, AI forecasting
modelMml, observations, background covariance ma-
trix, observation covariance matrices, window size T ,
total steps L

1: t← 0 {Initialize the time stamp}
2: for step from 0 to L do
3: ua

t ← argminu J̃
(
u
∣∣xb

t , {yτ}t+T−1
τ=t

)
{Solve

4DVar to obtain the analysis field control variable.}
4: xa

t = Uua
t + xb {Recover the analysis field.}

5: xb
t+T ← Mml

t→t+T (x
a
t ) {A forecast is made to ob-

tain the background field for the next time step. The
lead time is equal to the assimilation window size.}

6: t← t+ T
7: end for

model because it is a classic AI weather forecasting model
known for its outstanding forecasting capabilities, extending
beyond ten days. We simulate five atmospheric variables
(each with 13 pressure levels) and four surface variables,
resulting in a total of 69 predictands. In this paper, the at-
mospheric variables are geopotential (z), specific humidity
(q), zonal component of wind (u), meridional component
of wind (v), and air temperature (t); the 13 sub-variables
at different vertical levels are presented by abbreviating

their short name and pressure levels (e.g., z500 denotes the
geopotential height at a pressure level of 500 hPa). The
four surface variables are 2-meter temperature (t2m), 10-
meter u wind component (u10), 10-meter v wind component
(v10), and mean sea level pressure (mslp). The spatial res-
olution we test is 128× 256. We have trained two models
using ERA5 dataset of year 1979-2015, including a 1-hour
forecasting modelM1, which is embedded into the 4DVar
algorithm for representing flow dependencies, and a 6-hour
forecasting modelM6, which is employed for making fore-
casts.

Observation Setup In this study, all observations are sim-
ulated observations generated from the ERA5 reanalysis
dataset (Hersbach et al., 2020). Two modifications are made
to the reanalysis fields to make them as close as possible to
the real-world observations. First, we introduce a random
mask into the reanalysis field and fix the random mask at
different time steps to simulate the sparse distribution of
observation stations in real scenarios. Additionally, we add
Gaussian noise to the reanalysis field to simulate measure-
ment errors at observation stations. Unless stated otherwise,
the mask proportion in our experiments is 15%, indicat-
ing that only 15% of the locations have observations. The
standard deviation of observation noise is 0.001 times the
standard deviation of the variable distribution.
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Figure 3. Visualization of z500 at time 2018-01-01 00:00. The ERA5 ground truth, the background field and the observation mask are
demonstrated in the first row; the error of the background field(background field minus ground truth), the analysis increment (analysis
field minus background field) and the error of the analysis field (analysis field minus ground truth) are shown in the second row. In the
image of the observation mask, a pixel with a value of 1 indicates that there is an observation at that location, and a pixel with a value of 0
indicates an absence of any observation at that location.

Cyclic Forecasting Setup The initial state for starting our
cyclic forecasting is obtained from the ERA5 dataset. In
our experiments, FengWu-4DVar is initiated from 00:00
on January 1, 2018. To obtain the background field xb

0,
we start from the ERA5 reanalysis field at 00:00 on De-
cember 30, 2017, integrate it using the 6-hour forecasting
model for eight steps, and use the resulting fields to start
the cyclic forecasting. We run FengWu-4DVar for one year,
concluding its operation at 23:00 on December 31, 2018.

4.2. Analysis Field Evaluation

Figure 2 demonstrates the cyclic forecasting results of
FengWu-4DVar. Four atmospheric variables at geopotential
height 500 hPa and four surface variables are reported on
two metrics (RMSE and Bias), which we let readers refer to
the Appendix for detailed definitions (Rasp et al., 2020). It
can be found that our AI-embedded 4DVar algorithm is ca-
pable of increasing the quality of the initial field. Take z500
as an example: the RMSE of z500 at the initial moment is
over 60m2/s2; after one step of assimilation, the RMSE
of the background field drops below 40m2/s2. The error
remains stable after convergence, proving that our cyclic
forecasting can operate stably in the long term. Further-
more, the RMSE of the analysis fields is smaller than the
average RMSE of the IFS six-hour forecast fields on most
variables, indicating that the analysis fields generated by

FengWu-4DVar are accurate. The Bias indicator of the anal-
ysis fields is also improved compared with the background
fields across all variables, showing that our AI-embedded
4DVar algorithm is capable of mitigating model bias in AI
forecasting models.

In Figure 3, we visualize the assimilation results at time
2018-01-01 00:00, when the background error is the largest,
corresponding to the most challenging case for data assim-
ilation algorithms. It can be seen that the pattern of the
z500 analysis increment resembles that of the background
error, indicating that our AI-embedded 4DVar is capable of
correcting the background error. Moreover, by comparing
the error of the analysis fields and the background fields,
it can be found that the error is significantly reduced after
assimilation, which further validates the effectiveness of the
assimilation process.

4.3. Evaluation Under Different Experimental Settings

In this section, we conduct experiments under different ex-
perimental settings to test the robustness of FengWu-4DVar.

Effect of Initial States We choose different initial states,
corresponding to xb

0 in Algorithm 1, to test the performance
of the cyclic forecasting framework under worse or better
initial conditions. To achieve this, we select reanalysis fields
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Figure 4. Evaluation under different experimental settings. The
RMSE and Bias of the z500 analysis field are reported for experi-
ments with (1) different initial states (in the first row), (2) different
observation proportions (in the second row) and (3) different ob-
servation noise levels (in the last row). We let readers refer to the
main text for the meanings of the labels.

from different timestamps and integrate them over different
time steps. Specifically, we integrate the reanalysis field
from 6 hours prior for one step, from 2 days prior for 8 steps,
from 4 days prior for 16 steps, and from 6 days prior for 24
steps, and use these resulting states as initial conditions for
assimilation experiments. These experiments are labeled
as ”init-1”, ”init-2”, ”init-3”, and ”init-4”, with the original
version of the experiment corresponding to ”init-2”.

The RMSE and Bias results on z500 variable are reported
in the first row of Figure 4. It is shown that regardless of
the magnitude of the initial state error, as we iterate the
cyclic forecasting for around 20 days, our data assimilation
framework consistently reduces the error to the same level
as the original experiment setting. This indicates that our
AI-embedded 4DVar algorithm is robust to the initial states.

Effect of Observation Proportions In this experiment,
we reduce the observation proportion from 15% to 5% and
evaluate the cyclic forecasting results. As shown in Fig-
ure 4, FengWu-4DVar adapt well to different observation
proportions: when the observation proportion is only 5%,
the error of z500 analysis field still converges. The RMSE
after convergence is about 40m2/s2, larger than the case
where the observation proportion is 15%, but it is still a
small value, equivalent to the 18-hour forecast error of IFS.

Effect of Observation Noise Levels This experiment eval-
uates the impact of observation noise intensity. We make
the observations noisier by increasing the standard deviation
of the observation noise from 0.001 to 0.01. The results
are shown in the last row of Figure 4. It can be found that
increasing the observation noise intensity has a negative
impact on the assimilation results, with the RMSE of z500
rising from around 20m2/s2 to over 70m2/s2. Despite this,
our FengWu-4DVar framework can still work stably in this
situation and will not crash.

4.4. Comparison with the 3DVar Baseline
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Figure 5. Comparison with the 3DVar baseline. The RMSE
of the z500 analysis field is reported for AI-embedded 4DVar
and 3DVar in experiments with different observation noise. The
observation proportion is fixed to 15% across all the experiments.

In this section, we compare the results of AI-embedded
4DVar with a traditional three-dimensional variational as-
similation (3DVar) baseline. In the 3DVar algorithm, only
observations at the same time as the background fields are
assimilated and no flow-dependencies are taken into consid-
eration. Its objective function is shown below:

J(x0) =
1

2

(
x0 − xb

)T
B−1

(
x0 − xb

)
+

1

2
(H (x0)− y0)

T
R−1

0 (H (x0)− y0)

(6)

As demonstrated in Figure 5, our AI-embedded 4DVar algo-
rithm consistently outperforms the 3DVar algorithm in terms
of assimilation accuracy. As the observation becomes nois-
ier, the accuracy gain of AI-embedded 4DVar gets greater.
This is because when the observation quality deteriorates,
AI-embedded 4DVar can use observations in the future to
compensate for the quality defects. This comparison demon-
strates the superiority of AI-embedded 4DVar over 3DVar.
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4.5. Ablation Study

Additional experiments have been conducted in this sec-
tion to demonstrate the effectiveness of our proposed AI-
embedded 4DVar algorithm.

Effect of Horizontal Correlation Two experiments are
conducted to evaluate the effect of our proposed horizontal
correlation approximation stragegy. In the first experiment,
horizontal correlation is considered, but we approximate the
horizontal correlation using ordinary convolutions instead
of spherical convolutions. In the second experiment, the
horizontal correlation is removed and the background co-
variance matrix is assumed to be diagonal, as done in most
previous AI data assimilation works.

Figure 6. Effect of horizontal correlation. The analysis incre-
ment of z500 at time 2018-01-01 00:00 for two control experiments
are demonstrated. In the first panel, the ordinary convolution is
employed for approximating the horizontal correlation; in the sec-
ond one, the horizontal correlation is removed. The observation
proportion is set to 15% and the standard deviation is set to 0.001
in both experiments.

The analysis increments of these two experiments are shown
in Figure 6. It can be found that when the ordinary convolu-
tion is used, the patterns of the analysis increment appear
more fragmented compared with the results of applying the
spherical convolution (as shown in the middle bottom panel
of Figure 3), and the situation in polar regions is more seri-
ous. This is because when spherical convolution is used, the
nonlinear equirectangular projection (ERP), which makes
the actual distance between adjacent grid points smaller as
it gets closer to the pole, is taken into account; whereas after
switching to the ordinary convolution, the spherical field
is treated as an ordinary two-dimensional image and the

nonlinear transformation is not considered, which leads to
worse assimilation results. When the horizontal correlation
is removed, the analysis increment patterns appear even
more discontinuous and most of the correction increments
are concentrated at or near the observation points. These
two experiments highlight the significance of our proposed
SHT-based horizontal correlation approximation strategy.
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200

250
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w/o error term
w/ error term

0 10 20 30
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0
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Figure 7. Effect of the model error term. The RMSE and Bias
of the z500 analysis field are reported in both scenarios: one with
the model error term (for a month) and another without it (for a
week). The observation proportion is set to 15% and the standard
deviation is set to 0.001 in both experiments.

Effect of the Model Error Term In this experiment, we
remove the model error term in the objective function and
demonstrate the assimilation results. As shown in Figure 7,
after removing the model error term in the objective func-
tion, the RMSE of z500 rises to above 200m2/s2 after a
week of cyclic forecasting. This is because the 4DVar algo-
rithm learns too much from observations at future moments,
which should have been given less weight during assimi-
lation. This ablation study indicates that the model error
term plays a crucial role in the effective assimilation of
AI-embedded 4DVar.

4.6. Computational Cost

FengWu-4DVar is implemented using auto-differentiation,
and no additional neural network training is required once
the forecasting model has been trained. The primary com-
putational expenses of the data assimilation algorithm arise
from the calculations involving auto-differentiation and the
updates to the analysis fields using the L-BFGS optimiza-
tion algorithm implemented by PyTorch. In our experiments,
both auto-differentiation and gradient optimization updates
are carried out on one GPU card of NVIDIA A100, with an
average runtime of 29.3 seconds for assimilating over 300
thousand observations within a 6-hour assimilation window.
As a comparison, realizing the traditional 4DVar algorithm
on the 1° flow dependency resolution costs about 50 minutes
on 256 processors of the PI-SUGON high-performance com-
puter. This proves that our AI-embedded 4DVar algorithm
achieves significant efficiency gain.
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5. Conclusion
In this paper, we propose an AI-embedded 4DVar data as-
similation algorithm, which consists of three components
to deal with the challenge of building an AI data assimila-
tion algorithm on a real-world weather forecasting system.
By coupling this algorithm with the FengWu forecasting
model, we build a self-contained data-driven global weather
forecasting framework, FengWu-4DVar. This framework is
evaluated with the forecasting model at 1.4° resolution and
the ERA5 simulation observations. Under different obser-
vational settings and different initial conditions, FengWu-
4DVar is capable of generating reasonable analysis fields
and achieving stable and efficient cyclic assimilation and
forecasting for at least one year, and the error of the anal-
ysis fields is smaller than both the 3DVar algorithm and
the 6-hour forecast error of IFS. In addition, the computa-
tional efficiency of our algorithm greatly exceeds that of the
traditional 4DVar algorithm.

We admit certain limitations of our current work. First, our
experiments are conducted on simulated observations based
on ERA5 and the effectiveness of our framework on real-
world observations is yet to be verified. Second, we have not
performed an end-to-end comparison between our proposed
AI-embedded 4DVar algorithm and an operational 4DVar
algorithm. We will address these limitations in future work.
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A. Constructing the Adjoint Model Through Auto-differentiation
Assuming thatM : Rd → Rd is a forecasting model (the physical field flattened into a one-dimensional vector), the adjoint

model ofM at state x0 is defined as
(

∂M(x)
∂x

∣∣∣x=x0

)T
. It is a d× d matrix.

Suppose y ∈ Rd×d is another arbitrary d-dimensional vector. Then we can build the following ”neural network”, as shown
in Figure 8. It only consists of two steps. In the first step, x0 is fed into the forecasting model and the predicted state x1 is
obtained. In the second step, we do a dot product between x1 and y and produce a scalar z as the output.

Dot
product

Figure 8. ”Neural Network” for calculating the adjoint model.

Through auto-differentiation, we can obtain the gradient at node x0, that is ∂z
∂x0

. On the other hand, we can do the
computational graph manually, and find out what the gradient stands for:

∂z

∂x1
= y

∂z

∂x0
=

(
∂x1

∂x0

)T
∂z

∂x1
=

(
∂M(x)

∂x

∣∣∣∣
x=x0

)T

y

(7)

According to Equation 7, it can be found that the gradient at node x0 precisely represents the result of the adjoint model
(defined at x0) acting on y. Since both x0 and y are arbitrary, through this approach, we can calculate the results of the
adjoint model, defined at any point, acting on any vectors. This concludes the proof that the adjoint of any differentiable
forecasting model can be constructed through auto-differentiation.

B. Equivalence Between Two Optimization Methods
Define g(x0,x

b) = 1
2 (x0 − xb)TB−1(x0 − xb), fi(x,y) = 1

2 (H(x) − y)TR−1
i (H(x) − y). LetM0→1 = M1→2 =

· · · =MT−2→T−1 =M. Then the computational graph of calculating the 4DVar objective function can be constructed,
as shown in Figure 9. For simplicity, Denote Hτ = ∂H(x)

∂x

∣∣∣
x=xτ

and Mτ = ∂M(x)
∂x

∣∣∣
x=xτ

= ∂xτ+1

∂xτ
. We can simulate the

computational graph back-propagation process and calculate the gradient sequentially:

∂J

∂xT−1
=

∂JRT−1

∂xT−1

∂J

∂JRT−1

=
∂JRT−1

∂xT−1
= HT

T−1R
−1
T−1(H(xT−1)− yT−1),

∂J

∂xT−2
=

∂JRT−2

∂xT−2

∂J

∂JRT−2

+

(
∂xT−1

∂xT−2

)T
∂J

∂xT−1
=

∂JRT−2

∂xT−2
+

(
∂xT−1

∂xT−2

)T
∂J

∂xT−1

= HT
T−2R

−1
T−2(H(xT−2)− yT−2) +MT

T−2

∂J

∂xT−1
,

(8)

Continuing in this manner, we can derive a general formula:

∂J

∂xτ
=

∂JRτ

∂xτ

∂L

∂JRτ

+

(
∂τk+1

∂xτ

)T
∂J

∂xτ+1
=

∂JRτ

∂xτ
+

(
∂xτ+1

∂xτ

)T
∂J

∂xτ+1

= HT
τR

−1
τ (H(xτ )− yτ ) +MT

τ

∂J

∂xτ+1
.

(9)
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……

……

Figure 9. ”Neural Network” for calculating the 4DVar objective function.

This corresponds to the gradient stored at the intermediate node xτ , which is calculated through auto-differentiation.

Equation 9 holds for 1 ≤ τ ≤ T − 2; when τ = 0, an additional background term should be included:

∂J

∂x0
=

∂JRB

∂x0

∂J

∂JB
+

∂JR0

∂x0

∂J

∂JR0

+

(
∂x1

∂x0

)T
∂J

∂x1
= B−1(x0 − xb) +HT

0R
−1
0 (H(x0)− y0) +MT

0

∂L

∂x1
. (10)

Up to this point, we have elucidated the mechanism through which auto-differentiation computes the gradient. By comparing
this process with the methodology employed by traditional adjoint model-based methods for gradient calculation (Rabier &
Liu, 2003), it becomes evident that these two processes are entirely identical.

C. Derivation of the Model Error Term in AI-embedded 4DVar
First, we assume that the error of the forecasting model follows a Gaussian distribution. It’s worth noting that this
assumption holds true only for linear models. For nonlinear models, the preservation of Gaussian distribution errors
cannot be guaranteed during model integration. However, this does not prevent us from making such an approximation
to make the problem manageable. Denote Qτ the error variance of the τ -step integration model, M0→τ orMτ , then
xτ |x0 ∼ N (Mτ (x0),Qτ ). In practice, Qτ can also be estimated by computing the sampling statistics in a manner similar
to the national meteorological center (NMC) method (Bannister, 2008). Since the observation at time τ follows the Gaussian
distribution yτ |xτ ∼ N (Hxτ ,Rτ ), through the compound rule of Gaussian distributions, yτ |x0 also follows the Gaussian
distribution:

yτ |x0 ∼ N (Mτ (x0),Rτ +HQτH
T) (11)

According to Bayesian Theorem, we have

argmax
x0

p(x0|y0, · · · ,yT−1) = argmax
x0

p(y0, · · · ,yT−1|x0)p(x0)

p(y0, · · · ,yT−1)
= argmax

x0

p(y0, · · · ,yT−1|x0)p(x0). (12)
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Since observations at different time steps are independent, the above formula can be simplified as follows:

p(y0, · · · ,yT−1|x0)p(x0) = p(x0)

T−1∏
τ=0

p(yτ |x0)

=C exp

(
−1

2

(
x0 − xb

)T
B−1

(
x0 − xb

)) T−1∏
τ=0

exp

(
−1

2
(Mτ (x0)− yτ )

T
(Rτ +HQτH

T)−1 (Mτ (x0)− yτ )

)
,

(13)
where C is a constant. Taking negative logarithm of this likelihood yields the objective function,

J(x0) =
1

2

(
x0 − xb

)T
B−1

(
x0 − xb

)
+

1

2

T−1∑
τ=0

(Mτ (x0)− yτ )
T
(Rτ +HQτH

T)−1 (Mτ (x0)− yτ ) , (14)

which concludes the proof.

D. Evaluation Metrics
To evaluate the performance of our FengWu-4DVar framework, we regard the ERA5 dataset as the ground truth and compare
the analysis fields sequence {xa

lT }Ll=0 and the background fields sequence {xb
lT }Ll=0 with it. The metrics we use are RMSE

and Bias.

RMSE corresponds to the latitude-weighted root mean square error. It is a statistical metric widely used to assess the
accuracy of a model’s predictions across different latitudes. Denote x̂l,c,w,h the predicted value of the l-th sample at channel
c (It can either be the surface variable or the atmospheric variable at a certain pressure level.), and w and h represents the
indices for each grid along the latitude and longitude indices. Denote xl,c,w,h the target value. Then the RMSE at channel c
is defined as

RMSE(c) =
1

L

L∑
l=1

√√√√ 1

W ·H

W∑
w=1

H∑
h=1

W · cos (αw,h)∑W
w′=1 cos (αw′,h)

(xl,c,w,h − x̂l,c,w,h)
2
, (15)

where αw,h is the latitude of point (w, h).

Bias corresponds to the latitude-weighted bias. It is widely used to assess the systematic bias of a model. Following the
denotation above, the Bias at channel c is defined as

Bias(c) =
1

L

L∑
l=1

1

W ·H

W∑
w=1

H∑
h=1

W · cos (αw,h)∑W
w′=1 cos (αw′,h)

(x̂l,c,w,h − xl,c,w,h) . (16)

E. Additional Results
Figure 10, 11 and 12 demonstrate the cyclic forecasting results of FengWu-4DVar under different observation proportions on
12 variables, with the observation standard deviation fixed to 0.001. Figure 13, 14 and 15 demonstrate the cyclic forecasting
results of FengWu-4DVar under different observation standard deviations on 12 variables, with the observation proportions
fixed to 15%.

F. Comparison with Traditional 4DVar
We also conducted experiments to compare the forecasting skills of the analysis fields generated by FengWu-4DVar with
those of the IFS analysis fields. Using the analysis fields obtained from FengWu-4DVar, we performed forecasts with
FengWu and calculated the RMSE (relative to ERA5 ground truth) at different lead times (up to 7 days). Similarly, we
calculated the RMSE for the IFS forecast results and compared the errors. The results are presented in Figure 16. This
comparison visually demonstrates the forecasting skills of the analysis fields generated by FengWu-4DVar. However, it does
not establish that our algorithm is superior to the traditional 4DVar algorithm, as IFS utilizes real observational data for
assimilation, whereas our system incorporates simulated observations.
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Figure 10. Cyclic forecasting results of FengWu-4DVar with an observation proportion of 15% and an observation standard
deviation of 0.001. The x-axis in each sub-figure represents lead time, at a 6-hour interval over a one-year lead time. The y-axis represents
RMSE and Bias.
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Figure 11. Cyclic forecasting results of FengWu-4DVar with an observation proportion of 10% and an observation standard
deviation of 0.001. The x-axis in each sub-figure represents lead time, at a 6-hour interval over a one-year lead time. The y-axis represents
RMSE and Bias.

16



Towards a Self-contained Data-driven Global Weather Forecasting Framework

40

60

80

R
M

SE

z500 (m2/s2)
Background
Analysis

0.5

0.6

0.7
t500 (K)

1.75

2.00

2.25

u500 (m/s)

1.75

2.00

2.25

v500 (m/s)

0 100 200 300
Lead Time (Days)

20

0

B
ia

s

0 100 200 300
Lead Time (Days)

0.15

0.10

0.05

0.00

0 100 200 300
Lead Time (Days)

0.2

0.0

0 100 200 300
Lead Time (Days)

0.1

0.0

0.1

40

60

R
M

SE

z850 (m2/s2)

0.8

0.9

t850 (K)

1.6

1.8

u850 (m/s)

1.4

1.6

1.8

v850 (m/s)

0 100 200 300
Lead Time (Days)

20

0

20

B
ia

s

0 100 200 300
Lead Time (Days)

0.2

0.1

0 100 200 300
Lead Time (Days)

0.1

0.0

0.1

0 100 200 300
Lead Time (Days)

0.2

0.1

0.0

0.1

1.0

1.2

R
M

SE

u10 (m/s)

1.0

1.2

1.4
v10 (m/s)

0.8

1.0

t2m (K)

60

80

100

mslp (Pa)

0 100 200 300
Lead Time (Days)

0.05

0.00

0.05

B
ia

s

0 100 200 300
Lead Time (Days)

0.05

0.00

0 100 200 300
Lead Time (Days)

0.3

0.2

0.1

0 100 200 300
Lead Time (Days)

20

0

20

40

Figure 12. Cyclic forecasting results of FengWu-4DVar with an observation proportion of 5% and an observation standard
deviation of 0.001. The x-axis in each sub-figure represents lead time, at a 6-hour interval over a one-year lead time. The y-axis represents
RMSE and Bias.
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Figure 13. Cyclic forecasting results of FengWu-4DVar with an observation proportion of 15% and an observation standard
deviation of 0.003. The x-axis in each sub-figure represents lead time, at a 6-hour interval over a one-year lead time. The y-axis represents
RMSE and Bias.
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Figure 14. Cyclic forecasting results of FengWu-4DVar with an observation proportion of 15% and an observation standard
deviation of 0.005. The x-axis in each sub-figure represents lead time, at a 6-hour interval over a one-year lead time. The y-axis represents
RMSE and Bias.
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Figure 15. Cyclic forecasting results of FengWu-4DVar with an observation proportion of 15% and an observation standard
deviation of 0.01. The x-axis in each sub-figure represents lead time, at a 6-hour interval over a one-year lead time. The y-axis represents
RMSE and Bias.
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Figure 16. Forecast skills of FengWu-4DVar’s analysis fields and IFS’s analysis fields. The analysis fields of FengWu-4DVar are
generated with an observation proportion of 15% and an observation standard deviation of 0.01. The x-axis in each sub-figure represents
the lead time of forecasting, at a 6-hour interval over a one-week period. The y-axis indicates the RMSE, averaged over the analysis fields
for the entire year.
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