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Abstract
Active domain adaptation has shown promising
results in enhancing unsupervised domain adap-
tation (DA), by actively selecting and annotat-
ing a small amount of unlabeled samples from
the target domain. Despite its effectiveness in
boosting overall performance, the gain usually
concentrates on the categories that are readily im-
provable, while challenging categories that de-
mand the utmost attention are often overlooked
by existing models. To alleviate this discrepancy,
we propose a novel category-aware active DA
method that aims to boost the adaptation for the
individual category without adversely affecting
others. Specifically, our approach identifies the
unlabeled data that are most important for the
recognition of the targeted category. Our method
assesses the impact of each unlabeled sample on
the recognition loss of the target data via the in-
fluence function, which allows us to directly eval-
uate the sample importance, without relying on
indirect measurements used by existing methods.
Comprehensive experiments and in-depth explo-
rations demonstrate the efficacy of our method on
category-aware active DA over three datasets.

1. Introduction
Recent research efforts have been dedicated to active do-
main adaptation (Su et al., 2020; Wang et al., 2024; Li et al.,
2023; Wang et al., 2023b; Rangwani et al., 2021; Hwang
et al., 2022), in order to bridge the significant performance
gap (Chen et al., 2018; Tsai et al., 2018) between unsuper-
vised domain adaptation (DA) and their supervised coun-
terpart. The active DA framework actively queries ground
truth labels for a small set of important unlabeled target data,
providing extra supervision for the DA models to facilitate
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domain transfer. Most existing active DA works (Huang
et al., 2023; Xie et al., 2022b; 2023) evaluate the importance
of each unlabeled sample by various indirect measurements,
such as diversity (Su et al., 2020), uncertainty (Prabhu et al.,
2021), or domainness (Fu et al., 2021). The target samples
with the highest importance estimation are annotated and
subsequently incorporated into the labeled source data for
re-training the adaptation model.

Nevertheless, the overall advancements brought by these
methods also come with a hidden cost for certain data cat-
egories. Specifically, to achieve the maximum overall en-
hancement with a limited number of new annotations, exist-
ing active domain adaptation models (Prabhu et al., 2021;
Liu et al., 2021; Rangwani et al., 2021; Hwang et al., 2022;
Xie et al., 2023) predominantly focus on easier categories.
That is, the categories that are relatively simple to improve
are frequently queried by the model, even though some of
them already have satisfactory performance. On the con-
trary, the most challenging categories seldom receive any
new annotations, obtaining little improvement or even suf-
fering impairment after active learning. The negligence of
critical categories could raise significant concerns or vulner-
ability in real-life applications.

Contributions. To avoid these risks, we consider category-
aware active domain adaptation, which seeks a strategy that
facilitates adaptation for individual categories, particularly
those deemed challenging. Our major contributions are
summarized as follows:

• We consider a new research question, category-aware
active domain adaptation, which targets the perfor-
mance enhancement specific for each individual cate-
gory, avoiding the potential risks caused by the neglect
of critical categories. To the best of our knowledge,
this is the first attempt to address the performance dis-
crepancy among categories in active domain adaptation.

• We employ the influence function (Cook & Weisberg,
1980) and extend it into the active learning context to
estimate the usefulness of target data. The influence
function enables a direct evaluation of each sample’s
impact on the category-specific classifier, unlike other
indirect measurements aiming for overall performance.
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• We demonstrate the effectiveness of our influence-
based method on targeted categories with comprehen-
sive experiments, as well as provide answers to crucial
underlying questions in category-aware active domain
adaptation with various in-depth explorations.

2. Related Works
Active learning for domain adaptation. Observing the sig-
nificant performance gap between unsupervised DA meth-
ods and their supervised counterparts (Chen et al., 2018;
Tsai et al., 2018), Su et al. (2020) propose active domain
adaptation, which utilizes importance sampling to select
and annotate target samples, to facilitate knowledge trans-
fer. Their original work measures the importance of each
target sample with criteria including diversity and uncer-
tainty, trying to find the samples that are less similar to the
source domain and least confident for the predicting model.
Later, CLUE (Prabhu et al., 2021) integrates both diver-
sity and uncertainty into an uncertainty-weighted clustering
framework. On this route, TQS (Fu et al., 2021) employs a
“transferable committee” consisting of multiple classifiers,
which calculates another criterion “transferable domainess”
in addition to uncertainty and diversity, to mitigate the do-
main gap. S3vaada (Rangwani et al., 2021) introduces a
set-based criterion that extends the concepts of uncertainty
and diversity to subsets of unlabeled data, aiming to identify
the most informative subset. DUC (Xie et al., 2023) further
explores the uncertainty miscalibration in DA problems, and
employs a Dirichlet-based evidential model to select uncer-
tain and informative samples. Observing the varied domain
discrepancy within existing datasets, DiaNA (Huang et al.,
2023) partitions the target data partition based on the do-
mainness and uncertainty, then handles domain gaps with
a “divide-and-adapt” approach. Observing the label distri-
bution issue in active DA, LAMDA (Hwang et al., 2022)
selects target data which best preserve the target data distri-
bution. Inspired by the energy-based models (EBMs) (Le-
Cun et al., 2006), EADA (Xie et al., 2022a) selects a highly
informative subset of unlabeled target data under domain
shift via exploiting “free energy biases” between the two
domains. Recently, several works (Wang et al., 2023a; Li
et al., 2022; Kothandaraman et al., 2023) extend active DA
to a source-data-free setting. Despite the promising overall
performance, these active DA methods often achieve such
improvements at the expense of certain overlooked, hard-to-
improve categories as we discussed in Section 1. Therefore,
we propose the category-aware active domain adaptation
to boost the recognition for each targeted category. Unlike
the above methods, our method does not rely on indirect
measurements such as uncertainty or diversity. Instead, our
model directly estimates each target sample’s impact on the
recognition task with the influence function.

Influence function. Influence function (Cook & Weisberg,

Figure 1: Each bar represents the per-category accuracy dif-
ferences before and after active learning of CLUE (Prabhu
et al., 2021) method for task Ar→Cl on Office-Home
dataset (Venkateswara et al., 2017). The categories with red
bars suffer performance loss after active learning, while the
categories with blue bars benefit from active learning. The
orange dots are the number of samples queried by CLUE
from each category. We highlight two individual categories
Fan and Eraser, with blue and red edges, respectively.

1980) calculates how a model’s output changes in response
to an infinitesimal perturbation of a training data point. Re-
cently, the research community has dedicated significant ef-
forts (Giordano et al., 2019; Koh et al., 2019; Ting & Brochu,
2018) on influence function. Although the accuracy of in-
fluence estimates is limited on certain non-convex, deeper
networks (Basu et al., 2020), many researchers successfully
integrate the influence function in various applications. For
instance, Koh et al. (2019) generalizes the influence func-
tion to a group of data to understand deep convolutional
networks. Later works (Han et al., 2020; Chen et al., 2023)
extend the interpretative ability of the influence function
to natural language processing and graph convolution net-
works. Besides model interpretation, the influence function
is also used for tasks including poisoning attack (Fang et al.,
2020), causal inference (Alaa & Van Der Schaar, 2019),
and model fairness (Li & Liu, 2022). It is worth noting
that ISAL (Liu et al., 2021) applies the influence function to
active learning by estimating the influence of each unlabeled
sample with a pseudo label. To mitigate the domain gap in
DA, our method estimated the influence of the target data
based on the influence of labeled samples, instead of relying
on pseudo labels assigned by a domain-specific model.

3. Motivation
The existing active domain adaptation (DA) methods (Su
et al., 2020; Fu et al., 2021; Prabhu et al., 2021; Xie et al.,
2022b; 2023) have demonstrated potential in elevating over-
all accuracy. However, this enhancement comes at a con-
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Figure 2: Our proposed category-aware active domain adaptation method operates within a specific framework, focusing on
individual categories (diamond shapes). In each query iteration, our method assesses the impact of each sample’s latent
representation on the loss function of the classifier for the binarized data (diamond / not diamond). To achieve this, we
employ a binary logistic regression model h′ to classify the latent representations extracted by the base DA model. The
impact of each labeled source sample is estimated with the influence function. The impact of unlabeled target samples is
then predicted using a separate regression model f , which is trained using the representations and influence values derived
from the labeled samples. With the influence estimations, the model selects unlabeled samples with the highest impact
(depicted with darker fill shades) and incorporates them into the labeled source domain for the next training iteration.

cealed cost: a decline in performance for certain individual
categories. To attain a higher overall result, current models
tend to prioritize certain categories that are relatively easy
to improve. Meanwhile, the truly challenging categories,
which require the utmost attention, are left in the shadows.
Imagine a situation where an active learning recognition
algorithm is integrated into an autonomous driving system,
leading to a substantial increase in average accuracy across
all categories within a driving environment. However, to
achieve this overall improvement, the algorithm primarily
concentrates on querying easy categories, like inanimate
objects, while neglecting certain challenging yet critical
categories, such as humans and moving vehicles. This dis-
crepancy in active learning may impair the performance on
the unattended categories, potentially compromising model
robustness and posing significant risks to vital objects.

This notable disparity among data categories is also present
in current active DA models. As illustrated in Figure 1,
querying extra target data results in different performance
changes in multiple categories for CLUE (Prabhu et al.,
2021). In categories such as Fan, the CLUE model queried
five target samples and boosted their accuracy, although they
already performed relatively well without active learning.
However, the ill-performed Eraser category was entirely
overlooked, resulting in a further decline in its performance,
almost reaching 0%. The negligence of such categories
hinders the reliability of active DA models’ real-life applica-
tions and potentially raises significant concerns for current
active DA methods. This potential limitation demands the
active DA models redirect their focus from the low-hanging
fruit to the harder-to-reach branches in the active domain
adaptation. Consequently, we are driven to find a category-
aware query strategy in active DA. This approach aims to

identify target samples that enhance the recognition of spe-
cific categories, particularly those challenging ones that
have been disregarded by current active DA methods.

4. Method
4.1. Preliminaries and Problem Definition

Influence function. Consider a convex model with pa-
rameters θ trained on a labeled training dataset (X,Y ) =
(x1, x2, ..., xN ), the empirical risk minimization (ERM)
over certain loss function ℓ(·, ·) is represented as θ̂ =
argminθ∈Θ

1
N

∑
x,y ℓ(x, y) +

λ
2 ∥θ∥

2
2. If one training sam-

ple (xi, yi) is down-weighted by infinitesimal ϵ, the new
ERM is given by θ̂xi;−ϵ = argminθ∈Θ

1
N

∑
x,y ℓ(x, y) −

ϵℓ(xi, yi) +
λ
2 ∥θ∥

2
2. The influence function estimates the

actual change θ̂xi;−ϵ − θ̂ as:

Ixi;−ϵ = lim
−ϵ→0

θ̂xi;−ϵ − θ̂ = −H−1

θ̂
∇θ̂ℓ(xi, yi), (1)

where Hθ̂ = 1
N

∑N
i=1 ∇2

θ̂
ℓ(xi, yi) + λI is the positive defi-

nite Hessian matrix for θ̂.

For the validation loss Lv = ℓ(V ; θ̂), V being the validation
set, the change after removing a training sample can further
be estimated using ∇θ̂LvH

−1

θ̂
ℓ(xi, yi), as demonstrated

in the work by Koh & Liang (2017). Therefore, we can
estimate the impact of a specific training data point (xi, yi)
on the validation loss, by calculating the difference of Lv

before and after removing (xi, yi) from training as:

ILv (xi) = −∇θ̂LvH
−1

θ̂
∇θ̂ℓ(xi, yi), (2)
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Active domain adaptation. Active domain adaptation in-
corporates active learning with the unsupervised domain
adaptation, where a backbone DA model B trained on a la-
beled source domain Ls needs to be adapted to perform well
on a different unlabeled target domain Ut. Both domains
contain the same set of categories C. The active learning
process consists of K iterations, where the pre-trained DA
model B actively queries and annotates a small number of
unlabeled target samples Lt in each iteration. These an-
notated samples are added into the source domain, and the
model B is then retrained with the new source Ls = Ls∪Lt

and target domains Ut = Ut \ Lt. Ideally, the model can
achieve better overall performance on the target domain.

Category-aware active domain adaptation. As discussed
in Section 3, category-aware active DA focuses on finding
a query strategy that can enhance the performance for a
specific category c ∈ C. Therefore, the model trains a
category-specific classifier hc to recognize the samples in
category c, with the domain-invariant representations ex-
tracted by the base DA model B. Based on hc, the active
learning algorithm selects b unlabeled samples that are most
beneficial for the targeted category c, and then queries the
ground truth for the selected samples. Finally, the category-
specific classifier is re-trained after acquiring the annotated
target samples Lc

t in each iteration. For simplicity, unless
stated otherwise, we exclude c from the notations through-
out the rest of our discussion, as category-aware learning is
equally applicable to every specific category.

4.2. Framework Overview

Category-aware active DA aims to identify the advantageous
samples for the targeted category c. This necessitates the
active learning module to assess the impact of annotating
each unlabeled sample for individual categories. Contrarily,
the indirect criteria, such as uncertainty or domainness, uti-
lized by current active DA methods (Fu et al., 2021; Prabhu
et al., 2021; Xie et al., 2023) can only estimate the overall
effect of each sample on the entire dataset, neglecting the
discrepancy among categories. To address this challenge,
our method directly estimates the impact of each data point
on predicting the specific target categories using the influ-
ence function (Koh et al., 2019). In predicting the utility of
the unlabeled target samples, we extend the influence func-
tion into the active learning context, enabling it to operate
without accessing the ground truth labels. This straightfor-
ward influence-based query strategy acquires annotations for
unlabeled samples to enhance specific categories, thereby
facilitating category-aware DA through active learning.

Figure 2 illustrates the active learning process in one training
iteration of our proposed method. After an unsupervised
base DA model projects both source and target data into a
shared representation space, our active learning algorithm

Algorithm 1 Category-Aware Active DA for Category c

Input: Binarized labeled source data representations
{(xs, ys)} ∈ Ls, unlabeled target data representations
{(xt)} ∈ Ut, per-round budget b and total rounds R.
Output: Classification model hc for category c.
Train a surrogate classification model h′ with Ls.
for i = 1 to R do

for (xs, y) ∈ Ls do
Calculate the source influences I(xs) by Eq. (4).

end for
Train the influence estimator f with Eq. (5).
for xt ∈ Ut do

Calculate the target influences I(xt) = f(xt).
end for
Choose the 5× b samples with highest influence as C.
Sample and Annotate b data points from C as Lt.
Retrain the surrogate model h′ by Eq. (6).
Update both domains Ls = Ls∪Lt and Ut = Ut \Lt.

end for
Set classification model hc = h′.
Return hc.

selects the target data for annotation with the help of the
influence function. Technically, the category-specific impact
estimation module calculates the impact of each source
sample on a binary surrogate classifier h′, which is trained to
distinguish samples of the targeted category c from the rest
of the data. The influence values of the source data are then
used to train an influence predictor f , enabling the target
influence approximation module to assess the usefulness
of the target data without labels. In the final selection step,
the query set is randomly sampled from a candidate set
C consisting of the target samples with higher influence
estimations. Lastly, the queried samples are annotated with
ground truth labels and incorporated into the labeled source
data to re-train the classifier in the subsequent iteration.

4.3. Sample Selection

In the k-th iteration of the active learning, we have an un-
labeled target dataset Uk

t and a labeled source dataset Lk
s .

Notice that Lk
s contains the original source dataset L0

s and
the annotated target data {Li

t}k−1
i=1 from all previous k-1 it-

erations. To select the most informative samples for each
individual category c, we first binarize all available labels in
Lk
s into the targeted category c (“One”) and the non-targeted

categories not c (“Non-One”). This allows us to focus on
differentiating category c from other the other categories in
Uk
t . As active DA queries the target samples in iterations,

the following section will focus on the query strategy in one
iteration and omit iteration notation k.

Initial iteration. In the first iteration, we do not have any
annotated target samples for influence estimation. To avoid
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the cold start, we selected a diverse query set based on the
pseudo labels h′(xt) of all target samples. Specifically, we
randomly select b

2 target samples with h′(xt) = 0 and b
2

target samples with h′(xt) = 1 in this initial iteration.

Category-specific impact estimation. In the following itera-
tions, we use a logistic regression model h′ to distinguish
the targeted category c from the rest categories. Here h′

serves a convex surrogate for the non-convex classifiers uti-
lized by the current active DA models, satisfying the convex
requirement for the influence function, Mathematically, it
can be expressed as:

Lb =
1

ns
Σ(xs,y)∈Ls

ℓ(h′(xs), y), (3)

where Ls is the source samples with binary labels and ℓ is
the binary cross entropy loss.

The impact of each source sample on the target data can be
then estimated with the influence function. As we do not
have labels for all target samples, we use all queried target
samples from previous iterations, i.e., V = Lt, to calculate
the validation loss Lv in Eq. (2). The influence of a source
sample (xs, y) ∈ Ls can be calculated as:

ILv
(xs) = −∇θ̂LvH

−1

θ̂
∇θ̂ℓ(h

′(xs), y), (4)

where θ̂ is the optimized parameter of h′. We will omit the
Lv and notate the influence estimation for a data point x
as I(x) in the following discussion, as the validation loss
remains unchanged in the same iteration.

Target influence approximation. The influence calculation
with Eq. (4) requires a ground truth label, which is not avail-
able for an unlabeled target data xt ∈ Ut. To address this
limitation, we employ a regression model f to predict the in-
fluence values of each target sample without accessing their
labels. This influence predictor f is trained on the labeled
source data and their corresponding influence estimations
with the following Mean Squared Error loss:

Lf =
1

ns
Σxs∈Ls

ℓmse(f(xs), I(xs)), (5)

where I(xs) is the influence estimation of source data xs.

This influence predictor f approximately calculates the in-
fluence value directly from the training samples. Therefore,
for each unlabeled target xt ∈ Ut, we can estimate its influ-
ence value as I(xt) = f(xt).

Final selection. The queried samples are selected from the
unlabeled target dataset based on the influence estimation.
We employ a random sampling strategy to increase the di-
versity of the queried samples. The queried target samples
are then annotated with the binary labels for re-training the
model. We summarized our category-aware active DA in

Algorithm 1. As we discussed earlier, we omit iteration
number k in all notations.

The time complexity will be O(nd) for the surrogate model
h′, where n is the number of samples, and d is the model
dimension, which is relatively small for logistic regression.
Similarly, the influence estimator f will also take O(nd).
For the influence function, the explicit calculation of Hes-
sian matrix will take O(nd2) time complexity and its in-
verse will take O(d3). To accelerate the this calculation,
we apply conjugate gradients and stochastic estimations of
Hessian-vector products, which reduce the time complexity
to O(nd). Hence, the overall time complex will be O(nd).

4.4. Model Retraining

After obtaining the labels of the queried samples, we update
the classifier h′ by training with the newly annotated data
Lk
t in each iteration. To preserve the knowledge learned in

the previous iterations, we also include all labeled data Lk
s in

the training with a smaller weight than Lk
t . Mathematically,

the re-training is supervised by the following loss term:

Lh =
nt

ns + nt
Σ(xs,y)∈Lk

s
ℓ(h′(xs), y)

+
ns

ns + nt
Σ(xt,y)∈Lk

t
ℓ(h′(xt), y),

(6)

where ns is the size of Lk
s and nt is the size of Lk

t .

5. Experiments
We illustrate the performance of our method in this section.
We first introduce the experimental setup, and then report
the algorithmic performances in category-aware domain
adaptation. Finally, we provide various in-depth analyses to
answer crucial questions in category-aware active DA.

5.1. Experimental Setup

Datasets. We choose three popular DA benchmark datasets,
Office-Home (Venkateswara et al., 2017), DomainNet-
126 (Peng et al., 2019) and VisDa-2017 (Peng et al., 2017)
in our experiments. We conduct experimenters on all 12
adaptation tasks on Office-Home, 6 tasks adapting source do-
mains Cl and Sk to the rest of target domains on DomainNet-
126 (Peng et al., 2019) and the challenging S→R task on
VisDa-2017 (Peng et al., 2017). The detailed descriptions
of the datasets can be found in Appendix A.

Baseline methods. We select four active DA baseline
methods in our compassion, including Random Sampling,
CLUE (Prabhu et al., 2021), DUC (Xie et al., 2023),
ISAL (Liu et al., 2021). We also add an “Always One”
method, which chooses the unlabeled samples that are most
likely to belong to the “One” category, i.e., the target cate-
gory that is expected to improve, according to the classifier.
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Table 1: Average per-category predicting accuracy (%) for Category-Aware Active
Domain Adaptation on Office-Home. Avg. column represents the average accuracy
across all 6 tasks in the same table.

Office-Home Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Avg.

DANN (Ganin et al., 2016) 36.99 51.83 58.81 36.54 48.59 59.17 48.65

Random 47.19 55.41 70.14 50.92 65.08 62.77 58.58
CLUE (Prabhu et al., 2021) 48.14 59.34 74.34 54.23 78.74 66.92 63.62
DUC (Xie et al., 2023) 51.23 61.81 75.31 56.41 79.82 70.02 65.76
ISAL (Liu et al., 2021) 64.84 79.23 78.66 62.93 81.24 75.62 73.75
Always One 66.27 85.85 81.93 70.91 82.15 77.94 77.51
Ours 69.17 88.42 86.25 68.89 84.47 82.74 81.01

Office-Home Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

DANN (Ganin et al., 2016) 32.83 32.98 59.26 52.28 68.93 45.36 48.61

Random 48.41 45.77 72.11 61.92 77.61 55.78 60.26
CLUE (Prabhu et al., 2021) 53.17 59.83 75.13 65.17 80.42 61.14 65.81
DUC (Xie et al., 2023) 59.23 60.73 77.34 67.35 79.68 65.02 68.22
ISAL (Liu et al., 2021) 64.17 65.02 83.51 71.42 80.41 71.51 72.67
Always One 67.44 63.22 83.42 78.16 87.83 67.65 74.62
Ours 69.75 67.85 88.31 79.61 92.11 74.22 78.64

Figure 3: The performance changes
for all test samples that belong to the
“Non-One” categories after category-
aware active learning for adaptation
task Cl→Pr on Office-Home dataset.

Specifically, it queries the unlabeled samples with the high-
est soft-max output for the “One” category of h′. For our
influence-based method, we provide the implementation
details and codes of our method in Appendix B.

5.2. Algorithmic Performance

To evince the efficiency of our method in improving the per-
formance of the targeted individual categories, we compare
the per-category accuracy of our model and the baselines.
For individual category c, we train the model for five active
iterations and calculate the recognition accuracy for the test
target data of category c. We conduct the category-aware
active DA experiments for all categories for each transfer
task, and report the average testing per-category accuracy
across all targeted categories for the same task. We provide
the detailed experimental protocol in Appendix C.

As shown in Table 1, our method attains the best aver-
age per-category accuracy on 11 out of 12 tasks in Office-
Home (Venkateswara et al., 2017), achieving an average
of 79.32% across 12 tasks. The significant performance
margin validates the effectiveness of our influence-based
method over CLUE (Prabhu et al., 2021) and DUC (Xie
et al., 2023) in the category-aware settings. Our method also
outperforms the ISAL (Liu et al., 2021) by 6.11% (ISAL
obtains an average of 73.21% in 12 tasks), which also in-
corporates the influence function. This demonstrates that
our influence approximation module provides more accu-
rate impact estimations for the target domain, compared
with the ISAL’s influence calculation based on pseudo la-
bels. The “Always One” method, which we consider to be
a straightforward baseline suitable for the category-aware
setting, falls behind our proposed method by 3.51%. There-
fore we believe that both “One” and “Non-One” samples

Table 2: Average per-category predicting accuracy (%) for
Category-Aware Active Domain Adaptation on DomainNet-
126 and VisDA-2017. Avg. column represents the average
accuracy across all 3 tasks of DomainNet-126 in this table.

Method DomainNet-126 VisDA-2017

cl→pt cl→rl cl→sk Avg. S→R

DANN 2016 34.18 42.15 36.12 37.48 47.84

Random 36.25 44.75 40.74 40.58 54.19
CLUE 2021 38.06 45.34 42.28 46.47 58.54
DUC 2023 37.53 48.91 39.84 41.89 60.12
ISAL 2021 45.05 56.94 51.31 51.10 62.31
Always One 47.13 57.63 52.84 52.53 63.25
Ours 52.23 64.21 56.34 57.59 66.68

contribute to the prediction of the targeted category for our
influenced-based method. We also notice that this straight-
forward “Always One” method attains the highest accuracy
among the baselines, which illustrates the necessity for a
method specifically tailored for category-aware active DA.

In addition to boosting the performance of the targeted cat-
egory, we also want to avoid significantly sacrificing the
accuracy of other categories, as we discussed in Section 3.
To that end, we calculated the accuracy change for test sam-
ples not belonging to the target category c for adaptation
task Cl→Pr on Office-Home (Venkateswara et al., 2017),
and plot the results after training for each targeted category
in Figure 3. As demonstrated in the figure, the category-
aware active learning for most targeted categories does not
impair other categories. Specifically, only 15 out of 65
categories suffer performance loss on the non-targeted cate-
gories, and the largest drop is only -0.33%, which validates
that our method can achieve category-aware improvement
without hurting the recognition of other categories.

We also conduct experiments for DomainNet-126 (Peng
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(a) Category “Calendar” (b) Category “Helmet” (c) Category “Fork”

Figure 4: Classification loss on the validation set and predicting accuracy on the target domain in three different categories
in the Ar→Cl task on Office-Home (Venkateswara et al., 2017) dataset. For each category, our category-aware active DA
method queries different numbers of unlabeled target samples, and calculates the validation loss and the test predicting
accuracy after re-training the model with newly added annotations.

et al., 2019) and VisDa-2017 (Peng et al., 2017) datasets to
illustrate the generalizability of our method to large-scale
datasets in Table 2. Due to limited space, we only include
results for three tasks for DomainNet-126 and report the
full results in Appendix D. Although the large data vol-
ume increases the difficulty of selecting target samples, our
method still outperforms all active domain adaptation base-
lines. Overall, the improvements are less prominent for all
methods on these two datasets, due to the limited query
budget in contrast to the substantial data size. Despite the
challenging datasets, our method still obtains results that
are at least 5.06% and 3.43% higher than the baselines on
DomainNet-126 and VisDa-2017, respectively. Similar to
Office-Home, the “Always One” method exceeds other active
learning methods that do not emphasize the enhancement of
individual categories, further validating our motivation for
category-aware active domain adaptation.

5.3. In-depth Exploration

In our in-depth exploration, we would like to answer the fol-
lowing questions for our category-aware active DA method:

1. As our method aims at better performance for individ-
ual categories, can we estimate the upper limit of the
recognition accuracy of the target category?

2. In our pursuit of this per-category upper limit, is it ben-
eficial to annotate some “Non-One” data, i.e., samples
out of the targeted category?

3. Given we have chosen the important target data after
answering Questions 1 and 2, can we apply strategies
utilized by previous active learning methods to further
boost the performance?

4. After achieving category-specific improvement, we
observed a slight performance drop for certain “Non-
One” categories. How can we compensate for such
loss within our category-aware active DA framework?

Upper limit for active learning. In the active learning tasks,
there is a natural question: How much we can improve the

performance, and how many samples do we need to reach
that upper limit? As our method selects the query set by
estimating each sample’s impact on the loss function of val-
idation data, we conjure that the validation loss could indi-
cate the upper limit of the performance gain after annotating
more target samples. To that end, we conduct experiments
to further explore the association between validation loss,
predicting accuracy, and the number of queried samples.

We choose three different categories, namely, “Calendar,”
“Helmet,” and “Fork” in the Ar→Cl task on Office-Home
dataset, and plot their change of validation loss and predict-
ing accuracy after increasing the number of queried samples.
For one individual category, we use our influence-based
method to select 10 more samples for the target category in
each iteration, up to 800 target samples. As demonstrated
in Figure 4, the target accuracy shows a strong negative
association with the change of validation loss in all three
categories for task Ar→Cl, and the per-category prediction
accuracy reaches the upper limit when the validation loss
drops down to the lowest value. These results substantiate
our above conjunction that validation loss change can be
used to assess the upper accuracy limit and query size for
our active learning method, and help the user to leverage
between performance gain and query budget.

Effect of “Non-One” samples. The experimental results in
Section 5.2 indicate that the “Non-One” samples for other
categories might also help recognize the target category, as
we notice that the “Always One” method, which only selects
the unlabeled samples that are most likely to belong to the
target category, performs worse than our influenced-based
method. Hence, we aim to delve deeper into the effect of
the samples labeled as “Non-One” in this section.

Firstly, we check how many “One” samples are queried in
task Pr→Ar on Office-Home (Venkateswara et al., 2017) for
different categories with various performance changes after
active learning. In Figure 5(a), we plot the ratio of “One”
samples and the per-category accuracy differences after
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(a) (b)

Figure 5: Per-category accuracy differences for the same set of categories in task Pr→Ar on Office-Home (Venkateswara
et al., 2017) after active learning are plotted with orange lines in both figures. (a) Blue bars represent the ratio of “One”
samples queried by our category-aware active learning method; (b) The green bars and red bars indicate the accuracy
differences when re-training the model with only “One” and “Non-One” samples from the queried data, respectively.

querying 5% data from the target domain. As shown in the
figure, a significant performance gain does not necessarily
require a large number of annotated target samples from the
targeted category. For example, both “Lamp Shade” and
“Eraser” classes attain more than 50% improvement after
actively learning, while only less than 20% of the queried
samples are from the targeted class. Conversely, categories
like “Pan” and “keyboard” only get a moderate boost despite
being trained with more samples of the targeted classes.

We also conduct experiments isolating the queried samples,
i.e., we only annotate the selected “One” or “Non-One” sam-
ples and re-train the classifier separately. In Figure 5(b), we
again plot the per-category accuracy differences after active
learning with the orange line, along with the accuracy dif-
ferences when only re-training with newly annotated “One”
or “Non-One” exclusively, using the red and green bars.
As demonstrated in the figure, even though re-training the
model with the “One” samples can achieve considerable
improvements, the “Non-One” samples alone also benefit
each individual category. Besides, the performance gain of
all samples is larger than the gains of only including “One”
and “Non-One” samples combined, evincing that both kinds
of queried samples help recognize the targeted categories.

Diversity sampling and data re-weighting. Inspired by
previous active DA works like (Su et al., 2020; Fu et al.,
2021), we add a sampling step to obtain a query set with
higher diversity, and increase the weight of the queried
data during the re-training. In this section, we conduct an
ablation study for each module in our method for adaptation
task Rw→Ar on Office-Home dataset. For each method, we
run the experiments 3 times, then report the average results
and standard deviations in Table 3.

Our influence-based active learning strategy (Infl. Only)
without re-weighting and sampling boosts the performance

Table 3: Accuracy with different model components for
domain adaptation task Rw→Ar on Office-Home dataset

Model Infl. Re-Wt. Samp. Acc. (%)

DANN × × × 52.28± 3.63

Infl. Only
√

× × 72.74± 5.41
Infl. + Re-Wt.

√ √
× 76.52± 6.37

Infl. + Samp.
√

×
√

74.36± 3.18
Full Model

√ √ √
79.15± 2.92

by 20.46% over DANN (Ganin et al., 2016) with the ex-
tra target annotations. Adding data re-weighting (Re-Wt.)
further improves the accuracy by 2.74%, indicating the ben-
efit of emphasizing the newly annotated samples. Diversity
sampling (Samp.) alone only brings 1.64% performance
gain, but reduces the standard deviation over 3 random runs.
Compared with the above results, the final accuracy of the
full model demonstrated the efficiency of integrating both
diversity sampling and data re-weighting. Together, these
two modules increase the performance by 6.41% and reduce
the deviation compared with the influence-only model.

Remedy for “Non-One” categories. In Section 5.2, we
noticed a slight accuracy drop for “Non-One” samples af-
ter active training for 15 targeted categories on adaptation
task Cl→Pr. To rectify this minor detriment, we employ a
remedy modification to our query strategy to alleviate the
negative impact on “Non-One” samples. Technically, we
partition “One” and “Non-One” samples in the validation
set V into V1 and V0 respectively, where V contains all the
annotated target data queried by the model. Subsequently,
we compute the influence of each source point xs on V1

and V0 separately using Eq. (4). Following this, we proceed
to train individual target influence predictors f1 and f0 to
estimate the influence of an unlabeled sample xt on ”One”
and ”Non-One” data. Finally, we exclude the samples with
negative influence on “Non-One” data, i.e., f0(xt) < 0, and
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Figure 6: Performance on our remedy on the 15 categories
with performance drop in Figure 3 through two individual
target influence predictors on the “One” and “Non-One.”

query the samples with highest influence f1(xt) from the
rest of the unlabeled data. As shown in Figure 6, the rem-
edy modification successfully eliminates the performance
drop for 13 categories after active learning and reduces the
adverse impact on the other 2 categories to almost 0%. It’s
noteworthy that even after applying the remedy, our model
continues to achieve comparable improvements in the 15
targeted categories, just as it did before the remedy.

6. Conclusion
To sum up, we proposed a category-aware framework to en-
hance the adaptation for individual categories in active DA,
mitigating the potential risks associated with overlooking
critical categories. To the best of our knowledge, this is the
initial effort to tackle the performance discrepancy among
categories in active DA. To achieve category-aware enhance-
ment, our method initially trains a binary classifier dedicated
to recognizing a specific category. The category-aware ac-
tive learning module subsequently utilizes the influence
function to directly estimate the importance of each unla-
beled sample for the category-specific classifier. Samples
with the highest influence estimations are selected for anno-
tation, and these annotations are then utilized to supervise
the retraining of the classifier, thereby facilitating adaptation
for the specific category. The efficacy of our method was
manifested by experiments on three benchmark datasets,
and we also conducted extensive in-depth explorations to
answer some critical questions in category-aware active DA.

Impact Statement
This paper presents work whose goal is to advance the
field of Machine Learning. We expand the well-defined
active domain adaptation task to the category-aware setting,
which tackles performance discrepancy among data cate-
gories brought by active learning. Addressing the disparities
overlooked by current active domain adaptation methods is
essential, as it helps prevent biases in knowledge transfer
and enhances model robustness, avoiding significant risks

to vital entities. Beyond the impact mentioned above, there
are also other potential societal consequences of our work,
none of which we feel must be specifically highlighted here.

Limitations
One potential limitation of our method is that the binariza-
tion might cause an imbalance in training data. We acknowl-
edge the data imbalance issues in the binary classification,
but this is not the primary focus of this work. Therefore,
we did not focus on the data imbalance, which has been ex-
tensively studied in various previous works (Elhassan et al.,
2016; Dai et al., 2022; Gong & Kim, 2017; Popel et al.,
2018; Ahmed et al., 2019) dedicated to this issue.
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Appendix

A. Datasets
In our experiments, we choose three popular DA benchmark datasets, Office-Home (Venkateswara et al., 2017), DomainNet-
126 (Peng et al., 2019) and VisDa-2017 (Peng et al., 2017). (i) Office-Home (Venkateswara et al., 2017) is one of the most
popular DA benchmark datasets, which contains images of 65 different categories from four domains: Art (Ar), Clip Art (Cl),
Product (Pr), and Real World (Rw). We include all 12 available adaptation tasks in our experiments. (ii) DomainNet-126 is a
subset of DomainNet (Peng et al., 2019), the current largest DA benchmark dataset, which consists of 345 categories from 6
different domains. We follow the same data protocol as (Prabhu et al., 2021) and choose 126 categories from 4 different
domains: Real (Rl), Clip Art (Cl), Painting (Pt), and Sketch (Sk) since the labels for certain domains and categories are very
noisy. We conduct six tasks adapting source domains Cl and Sk to the rest three target domains. (iii) VisDa-2017 (Peng
et al., 2017) is a large-scale dataset containing 12 categories from 2 domains, Synthetic (S) and Real (R). In this work, we
focus on the challenging S→R task.

B. Implementation Details
We implement1 our model using PyTorch(Paszke et al., 2019) and scikit-learn (Buitinck et al., 2013) with one NVIDIA
TITAN RTX GPU. We use the ResNet-50 (He et al., 2016) pre-trained on ImageNet as the backbone feature extractor and
train a DANN model as the base DA method following CLUE (Prabhu et al., 2021). The feature representations for both the
labeled source domain and the unlabeled target domain are obtained with a fixed feature extractor pre-trained by the base
DA method. For each specific category c, we convert the labels into binary, i.e., (xs, y) ∈ Ls and train the category-specific
surrogate model h′ with Ls. With this convex surrogate classifier, we choose our first query set as described in Section 4.3.
In the following iterations, we actively query and annotate b target samples with Algorithm 1.

C. Experimental protocol
For each task in one dataset, we conduct the category-aware active learning for each category c. We first binarize all available
labels, i.e., ”One” for category c and ”Non-One” for all other categories. Based on the binary labels and the representations
extracted by the base DA model, we initially train a category-specific logistic regression model h′ as the surrogate classifier.
Subsequently, we perform active learning in five iterations. In each iteration, we select b samples for the target domain as
described in Algorithm 1 and label these samples Lt with ground truth. Next, we retrain the classifier h′ with Eq. (6). After
5 iterations of active learning, we compute the predicting accuracy of the ”One” samples for category c in the test set. For
all three datasets, we train the model for 5 iterations. For Office-Home (Venkateswara et al., 2017), we select 1% of the
target data in each iteration. For the large datasets VisDa-2017 (Peng et al., 2017) and DomainNet-126 (Peng et al., 2019),
we select a fixed number of 100 samples in each iteration. For each transferring task, we take the average accuracy across
all categories and report it in Table 1 and Table 2. We apply the same training and testing protocol in the experiments for
baseline methods, and report the average per-category accuracy.

D. Experimental Results for DomainNet-126

Table 4: Average per-category predicting accuracy (%) for Category-aware Active Domain Adaptation on DomainNet-
126 (Peng et al., 2019). Avg. column represents the average accuracy across all 6 tasks in DomainNet-126.

Method cl→pt cl→rl cl→sk sk→cl sk→pt sk→rl Avg.

DANN (Ganin et al., 2016) 34.18 42.15 36.12 31.82 56.59 47.24 41.35

Random 36.25 44.75 40.74 34.41 58.31 49.53 44.00
CLUE (Prabhu et al., 2021) 38.06 45.34 42.28 35.63 60.12 57.37 46.47
DUC (Xie et al., 2023) 37.53 48.91 39.84 36.12 61.35 58.26 47.02
ISAL (Liu et al., 2021) 45.05 56.94 51.31 40.34 62.27 61.64 52.92
Always One 47.13 57.63 52.84 41.62 61.61 59.15 53.33
Ours 52.23 64.21 56.34 42.49 67.94 63.41 57.78

1Our code is available at https://github.com/wxxiaoss/Category Aware DA.
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