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Abstract
Spiking neural networks (SNNs) are investigated
as biologically inspired models of neural com-
putation, distinguished by their computational
capability and energy efficiency due to precise
spiking times and sparse spikes with event-driven
computation. A significant question is how SNNs
can emulate human-like graph-based reasoning
of concepts and relations, especially leveraging
the temporal domain optimally. This paper reveals
that SNNs, when amalgamated with synaptic de-
lay and temporal coding, are proficient in execut-
ing (knowledge) graph reasoning. It is elucidated
that spiking time can function as an additional di-
mension to encode relation properties via a neural-
generalized path formulation. Empirical results
highlight the efficacy of temporal delay in rela-
tion processing and showcase exemplary perfor-
mance in diverse graph reasoning tasks. The spik-
ing model is theoretically estimated to achieve
20× energy savings compared to non-spiking
counterparts, deepening insights into the capabili-
ties and potential of biologically inspired SNNs
for efficient reasoning. The code is available at
https://github.com/pkuxmq/GRSNN.

1. Introduction
Spiking Neural Networks (SNNs), inspired by the detailed
dynamics of biological neurons, are recognized as more
biologically plausible models for neural computation and
are distinguished as the third generation of neural network
models, owing to their advanced computational capabilities
derived from spiking time (Maass, 1997). Unlike traditional
Artificial Neural Networks (ANNs), SNNs integrate neu-
ronal dynamics using differential equations and leverage
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sparse spike trains in the temporal domain for information
transition (Fig. 1a), enhancing the encoding of information
in biological brains (Reinagel & Reid, 2000; Huxter et al.,
2003) and exhibiting increased expressive power when in-
corporating delay variables (Maass, 1997). The utilization of
sparse, event-based computation in SNNs facilitates energy-
efficient operation on neuromorphic hardware with parallel
in-/near-memory computing (Davies et al., 2018; Pei et al.,
2019; Rao et al., 2022), making SNNs increasingly promi-
nent as powerful and efficient neuro-inspired models in
Artificial Intelligence (AI) applications (Rueckauer et al.,
2017; Shrestha & Orchard, 2018; Roy et al., 2019; Bellec
et al., 2020; Stöckl & Maass, 2021; Yin et al., 2021; Rao
et al., 2022; Xiao et al., 2022; Li et al., 2023; Zhang et al.,
2024). Despite these advancements, critical inquiries remain
unresolved regarding the solution by SNNs for human-like
graph-based reasoning of concepts or relations and an im-
proved utilization of spiking time for information process-
ing.

Symbolic and relational reasoning is a cornerstone of hu-
man intelligence and advanced AI capabilities (Kemp &
Tenenbaum, 2008; Santoro et al., 2017; Rao et al., 2022;
Nickel et al., 2015) and can often be formulated as graph rea-
soning with tasks like link prediction in knowledge graphs
(Fig. 1b) (Nickel et al., 2015). For example, it can be eval-
uated by machine learning tasks of knowledge graph com-
pletion (Nickel et al., 2015) and inductive relation pre-
diction (Yang et al., 2017; Teru et al., 2020), resembling
humans’ ability to reason new relations between entities
based on commonsense knowledge graphs or generalize
relations to new analogous conditions. Investigating how
underlying mechanisms of neural computation can realize
this reasoning capability is pivotal for understanding hu-
man intelligence and advancing AI systems, as graph rea-
soning is important for extensive AI tasks such as knowl-
edge graphs, recommendation systems, and drug or material
design (Wang et al., 2023). While various machine learn-
ing methods, including path-based (Lao & Cohen, 2010;
Yang et al., 2017; Sadeghian et al., 2019), embedding (Bor-
des et al., 2013; Yang et al., 2015; Sun et al., 2019), and
Graph Neural Networks (GNNs) (Schlichtkrull et al., 2018;
Vashishth et al., 2020; Teru et al., 2020; Zhu et al., 2021),
have been proposed for graph reasoning tasks, the efficacy of
bio-inspired models in achieving comparable performance
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Figure 1. Depiction of spiking neural networks and knowledge
graph reasoning. (a) A representation of biological neural circuits,
showcasing spiking neurons, their inherent dynamics, synaptic
interconnections, and the propagation of temporal spike trains.
(b) The process of relational reasoning of concepts, exemplified
through the link prediction task in knowledge graphs.

remains largely unexplored. Existing attempts, such as en-
tity embedding by spiking times of single neurons (Dold &
Garrido, 2021; Dold, 2022) or in-context relational reason-
ing (Rao et al., 2022), have not addressed how reasoning
paths can be propagated, especially with optimal utiliza-
tion of temporal information at the network level, and have
shown limitations in inductive generalization, interpretabil-
ity, and performance in large knowledge graphs.

Moreover, the importance of spiking time in SNNs (Maass,
1997; Reinagel & Reid, 2000; Huxter et al., 2003) and its
potential in AI applications necessitate further exploration.
Many previous works have primarily focused on enhanc-
ing SNNs as energy-efficient alternatives to ANNs for tasks
like image classification (Rueckauer et al., 2017; Shrestha
& Orchard, 2018; Xiao et al., 2022), with an emphasis on
spike counts. Efforts to leverage spiking time have explored
encoding information for single neurons by the time to first
spike (Mostafa, 2017; Comsa et al., 2020; Dold & Garrido,
2021), the interval between spikes (Dold, 2022), or adopting
different weight coefficients at different times (Stöckl &
Maass, 2021), and some have delved into temporal process-
ing tasks like time series classification (Yin et al., 2021; Rao
et al., 2022; Patiño-Saucedo et al., 2023; Hammouamri et al.,
2024). However, more systematic utilization of synaptic de-
lay at the network level and the coding principles embedded
in neuronal spike trains are areas that warrant deeper inves-
tigation for better understanding and application of SNNs
in extensive AI tasks.

In this work, we introduce Graph Reasoning Spiking Neu-
ral Network (GRSNN), a novel method allowing SNNs to
adeptly solve knowledge graph reasoning tasks by leverag-

ing synaptic delay to encode relational information. This
method enables the temporal domain of SNNs to act as an
additional dimension to process edge and path properties at
the network level, offering a fresh perspective on temporal
information processing and coding in SNNs.

We consider link prediction tasks of knowledge graphs and
GRSNN is proposed as a neural generalization to the path
formulation of graph algorithms, drawing inspiration from
existing works (Aimone et al., 2021; Zhu et al., 2021). Path
formulation is important to graph reasoning due to better
interpretability and inductive generalization ability (Zhu
et al., 2021; Yang et al., 2017; Sadeghian et al., 2019). We
generalize the thought—SNNs can provide a parallelizable
and efficient solution to traditional graph path tasks—into
AI applications of graph reasoning. It can serve as a neural
generalization of Dijkstra’s algorithm with learnable synap-
tic delays representing the properties of graph edges (also
coupled with synaptic weights), enabling high-performance
and interpretable solutions.

Experiments on diverse graph prediction tasks are conducted
to assess the effectiveness of GRSNN. The results under-
score the advantage of synaptic delay in encoding relation
information in SNNs for competitive performance, revealing
a potential mechanism of spiking neurons for knowledge
reasoning, and demonstrate the efficiency of GRSNN by
fewer parameters and spike computation, with a theoretical
estimation indicating significant energy savings compared
to non-spiking counterparts. These insights enhance our
understanding of the role of neuro-inspired models in graph-
based reasoning tasks, central to human intelligence, and
emphasize the potential of the temporal domain of SNNs
in developing energy-efficient solutions for graph-based AI
applications.

2. Preliminaries
2.1. Spiking Neural Networks

SNNs are brain-inspired models comprising spiking neu-
rons that communicate through temporal spike trains. In
this work, we employ the current-based Leaky Integrate
and Fire (current-based LIF) spiking neuron model, which
can be equivalently represented using the Spike Response
Model (SRM) form. In this model, each spiking neuron
maintains a membrane potential u, integrating input spike
trains according to the dynamics:

τm
du

dt
= −(u(t)− urest) +R · I(t), u(t) < Vth, (1)

where I is the input current, Vth is the threshold, R is the
resistance, and τm is the membrane time constant. When
u reaches Vth at time tf , a spike is emitted, and u is reset
to the resting potential u = urest, typically set to zero.
The neuron’s output spike train is represented as s(t) =
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tf δ(t− tf ), using the Dirac delta function.

Neurons are interconnected through synapses with weight
and delay (axonal or synaptic delay, for simplicity, we call
synaptic delay in this paper). The model for input current is
given by:

τc
dIi
dt

= −Ii(t) +
∑
j

wijsj(t− dij) + bi, (2)

where wij and dij are the synaptic weight and delay from
neuron j to neuron i, respectively, bi is a bias term repre-
senting background current, and τc is another time constant.
Given the reset mechanism, the equivalent SRM form is:

ui(t) =urest +
∑
j

wij

∫ t

0

κ(τ − dij)sj(t− τ)dτ

+

∫ t

0

ν(τ)si(t− τ)dτ,

(3)

with κ(τ) being the temporal kernel function for input
spikes and ν(τ) = −(Vth − urest)e

− τ
τm representing the

reset kernel. Assuming τc = τm, the input kernel becomes
κ(τ) = R

τm
· τe−

τ
τm for τ ≥ 0 and κ(τ) = 0 for τ < 0.

Setting R = e, the kernel simplifies to κ(τ) = τ
τm

e1−
τ

τm ,
which is commonly used (Shrestha & Orchard, 2018).

In practice, we simulate SNNs using the discrete computa-
tional form of the current-based LIF model:

Ii[t+ 1] = e
− ∆τ

τm Ii[t] + α

(∑
j

wijsj [t− dij ] + bi

)
,

ui[t+ 1] = e
− ∆τ

τm ui[t](1− si[t]) + Ii[t+ 1],

si[t+ 1] = H(ui [t+ 1]− Vth),

(4)

where H(x) is the Heaviside step function, si[t] is the spike
signal at discrete time step t, ∆τ is the discretization inter-
val, and α denote the coefficient e∆τ

τm
.

Utilizing the equivalent SRM formulation and surrogate
derivatives for the spiking function, gradients for parameters,
including wij and dij , can be computed through backpropa-
gation over time (Shrestha & Orchard, 2018). Specifically,
the non-differentiable term ∂si[t]

∂ui[t]
is substituted by surro-

gate derivatives of a smooth function, such as the deriva-
tive of the sigmoid function: ∂s

∂u = 1
a1

e(Vth−u)/a1

(1+e(Vth−u)/a1 )2
,

with a1 as a hyperparameter. The gradients are then cal-
culated as ∂L

∂wij
=

∑
t

∂L
∂si[t]

∂si[t]
∂ui[t]

∂ui[t]
∂wij

and ∂L
∂dij

=∑
t

∂L
∂si[t]

∂si[t]
∂ui[t]

∂ui[t]
∂rij [t]

∂rij [t]
∂dij

, where rij [t] =
∑t

τ=0 κ(τ −
dij)sj [t− τ ], and ∂rij [t]

∂dij
= −

∑t
τ=0 κ̇(τ − dij)sj [t− τ ] (κ̇

denotes the derivative of the kernel κ). In a discrete setting,
dij should be integers, and we employ the straight-through-
estimator to train a quantized real-valued variable. For ad-
ditional details, please refer to Appendix A. In this study,
we primarily focus on parameters wij and dij , leaving the
exploration of heterogeneous neurons for future work.

2.2. Link Prediction of Graphs

We consider link prediction tasks of (knowledge) graphs. A
knowledge graph is denoted by G = (V, E ,R), with V , E ,
and R representing the sets of graph nodes, graph edges, and
relation types, respectively. We also consider homogeneous
graphs G = (V, E) as a special case with only one relation
type. The task is to predict whether an edge of type q exists
between entities x, y (Fig. 2a), and the common methods are
to calculate or learn a pair representation hq(x, y) for pre-
diction, e.g., using paths between two nodes or embedding
methods or GNNs, while we explore using SNNs. Many link
prediction tasks are transductive, i.e., predicting new links
on the training graph, and there is also the inductive setting
where training and testing graphs have different entities but
the same relation types.

2.3. Synaptic Delay for Traditional Graph Algorithms

Some previous works show that the synaptic delay of SNNs
can be leveraged to solve traditional graph tasks, providing
a parallelizable and efficient neuromorphic computing so-
lution to graph algorithms (Aimone et al., 2021). For the
traditional graph single-source shortest path problem, by
assigning a neuron to each graph node and configuring the
delay between neurons as the graph edge weight, SNNs
can parallelly simulate Dijkstra’s algorithm. An example
is shown in Fig. 2e if we decode the spike train of the tar-
get neuron by the time to first spike. We will generalize
the thought—delays in SNNs can represent the properties
of graph edges—to graph AI reasoning tasks with neural
generalization and advanced temporal coding with multiple
temporal spikes for diverse paths.

3. Graph Reasoning Spiking Neural Network
In this section, we introduce our graph reasoning spiking
neural networks. We first introduce the overview of our
model in Section 3.1. Then in Section 3.2, we demonstrate
that GRSNN can be viewed as a generalized path formu-
lation for graph reasoning. In Section 3.3, we discuss the
comparison with graph neural networks. Finally, we intro-
duce implementation details in Section 3.4.

3.1. Model Overview

The outline of GRSNN is depicted in Fig. 2. Each graph
node is assigned n spiking neurons, representing each en-
tity by a neuron population (Fig. 2b). Synaptic connections,
corresponding to relation links between entities, are charac-
terized by weight and delay between neuron groups (Fig. 2c).
These synaptic properties, such as delay, are dependent on
the graph edge relation and modulated by the query relation
(task goal), allowing the integrated properties of paths to be
reflected by the spiking time considering delays (Fig. 2e).
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Figure 2. Schematic of GRSNN. (a) Illustration of the graph link prediction task. In GRSNN, (b) each graph entity node is associated
with a cluster of spiking neurons, and (c) each relational edge corresponds to the synaptic connections between spiking neurons, with
synaptic weight and delay. The weight can exhibit positive or negative values. The delay is contingent on the edge relation and query
relation, representing the edge’s property and the neuromodulation from the task goal. (d) Visualization of GRSNN. To predict a link, a
constant current, dependent on the query relation, is injected into the spiking neurons of the source node, initiating the propagation of
spike trains. After a specific time interval, the spike trains emanating from the target node are decoded to predict the query relation. (e)
Depiction of the temporal domain serving as an additional dimension to process the properties of edges and paths in a network with more
propagation paths. In the demonstrated network under a simplified setting where each input spike triggers an output spike for neurons, a
spike from the source neuron will lead to four spikes from the target neuron, whose time varies corresponding to four propagation paths
with different integrated properties of edges represented by synaptic delay.

Unlike SNNs for traditional graph tasks, we generalize the
model to allow both positive and negative synaptic weights,
acting as complementary transformations to learnable synap-
tic delays that are viewed as an additional dimension to
process graph edges and paths.

For the link prediction task (Fig. 2d), a constant current
Iq is injected to the spiking neurons of the source node
x for a given query q between nodes x and y, generating
spike trains. The network then propagates these spikes, and
a spike train sqy(t) from the target node y’s neurons is ob-
tained after a time interval. A decoding function D cal-
culates the pair representation hq(x, y) = D(sqy(t)) for
link prediction, and we primarily utilize temporal coding
D(sqy(t)) =

(∑
τ λ

τsqy[τ ]
)
/ (

∑
τ λ

τ ), emphasizing early
spiking time. This corresponds to the decoding for various
path formulations (refer to Appendix B for more details).

3.2. GRSNN as Generalized Path Formulation

GRSNN serves as a neural generalization of the path formu-
lation for graphs, allowing for the simultaneous consider-
ation of all paths from a source node without the separate

calculation of each one. Path formulation is important to
graph reasoning due to better interpretability and inductive
generalization ability (Zhu et al., 2021; Yang et al., 2017;
Sadeghian et al., 2019). Traditional path-based algorithms
calculate the pair representation between nodes x and y by
considering paths from x to y, formulated as a generalized
accumulation of path representations (Zhu et al., 2021):

hq(x, y) =
⊕

P∈Pxy

 |P |⊗
i=1

vq(ei)

 , (5)

where Pxy is the set of paths from x to y, ei is the i-th edge
on a path P , and vq(ei) is the edge representation (e.g.,
the transition probability of this edge). Various methods
like Katz Index (Katz, 1953), Personalized PageRank (Page
et al., 1999), and Graph Distance (Liben-Nowell & Klein-
berg, 2007) follow this modeling.

In GRSNN, spike trains propagate over time, with spikes at
different times simultaneously maintaining all paths from
the source node. The spike train of y is:

sqy(t) = f
({

sqz(t),w
q
z,y,d

q
z,y|z ∈ N (y)

})
= · · · = f

({
sqx(t), {wq

ei ,d
q
ei}

|P |
i=1|P ∈ Pxy

})
,

(6)
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where f is the function of spiking neurons, wq
z,y and dq

z,y

are synaptic weights and delays between nodes z and y given
the query relation q, N (y) denotes the set of neighbors of
y, and f denotes the general composite function for all
paths. In some degenerated conditions, the time of a spike
is the sum of edge delays on one path, allowing a decoding
function F to perform a general summation over all paths
represented in the spike train. We show that, with specific
settings, GRSNN can solve traditional path-based methods.

Proposition 3.1. Katz Index, Personalized PageRank, and
Graph Distance can be solved by GRSNN under specific
settings.

The proof is detailed in Appendix B, focusing on the con-
struction of appropriate delay and decoding functions. This
proposition illustrates that GRSNN can degenerate to emu-
late traditional path-based algorithms. By employing param-
eterized synaptic delays for learnable edge representations,
and additional parameters like synaptic weights for transfor-
mations in another dimension, GRSNN emerges as a neural
generalization of the path formulation for graph reasoning.
This sheds light on the capability of SNNs to execute neuro-
symbolic computation on graph paths utilizing spiking time
and synaptic delay. Furthermore, GRSNN, as a generaliza-
tion of path formulation, extends its important applicability
to inductive settings and reasoning path interpretations, dis-
tinguishing it from entity embedding methods.

3.3. Comparison with Graph Neural Networks

The introduced GRSNN bears a resemblance to the widely-
used message-passing GNNs in machine learning, both
propagating messages between interconnected nodes. How-
ever, notable distinctions exist.

First, GRSNN incorporates varied temporal synaptic delays
in message passing, allowing for the encoding of relational
information in spiking times with enhanced spatiotemporal
processing. In contrast, GNNs uniformly propagate mes-
sages across all edges in each iteration. Second, GRSNN
disseminates temporal spike trains throughout the network,
as opposed to GNN’s real-valued activations. This not only
facilitates the representation of multiple paths through di-
verse spiking times within a spike train but also promotes
event-driven energy-efficient computation suitable for neu-
romorphic hardware. Moreover, while Zhu et al. (2021)
interprets GNN as a neural counterpart to the Bellman-Ford
algorithm, GRSNN is perceived as a neural generalization
of Dijkstra’s algorithm. This parallel between artificial and
brain-inspired neural networks in generalizing distinct clas-
sical algorithms for analogous objectives is intriguing.

Once the inherent differences are accounted for, GRSNN
can also have a formulation analogous to GNNs. Specifi-
cally, at each discrete time step, every node (with spiking

neurons) aggregates messages from neighbors. Assuming
the sharing of synaptic weights across all edges, akin to
GNNs, messages are represented by delayed spikes. The
aggregation function then becomes a synthesis of the sum-
mation of all messages, a linear transformation, and the
spike generation with neuronal dynamics of spiking neu-
rons. Thus, for every node z, the following holds:


Iqz[t+ 1] = e

− ∆τ
τm Iqz[t] + α

W
∑

k∈N (z)

sqk[t− dq
r] + b

 ,

uq
z[t+ 1] = e

− ∆τ
τm uq

z[t](1− sqz[t]) + Iqz[t+ 1] + 1z=xI
q,

sqz[t+ 1] = H(uq
z[t+ 1]− Vth).

(7)
Here, r signifies the relation from node k to node z, sqk[t−
dq
r] represents the vector of spikes with associated delays

dq
r, and 1z=x is an indicator for the current injection to the

source node. The time steps can be viewed as the layers of
GNNs, with shared weights and delays for all time steps.
Consequently, the inference time and space complexity of
GRSNN align closely with those of GNNs, except that they
are proportional to the number of discrete time steps instead
of GNN’s layer number.

3.4. Implementation Details

Model Detail In practice, our models predominantly ad-
here to Eq. (7). The set of learnable parameters encom-
passes W and b, symbolizing a shared linear transformation
of synaptic weights, and dq

r, denoting the delay between
the spiking neurons of two nodes, contingent on their rela-
tion r and the query relation q. Additionally, r signifies the
embedding of relations, utilized for both current injection
(Iq = rq) and the ultimate link prediction with a parameter-
ized function to predict links based on hq(x, y) and rq. To
differentiate the varying contributions of a relation (edge)
in forecasting different query relations, we align with pre-
vious studies (Zhu et al., 2021) to parameterize the edge
representation of relation r as a linear function over the
query relation. This is then processed through a sigmoid
function with a bound scale β to serve as positive delays,
i.e., dq

r = βσ(Wrr
q +br). In the context of homogeneous

graphs characterized by a singular relation, this simplifies
to dq

r = βσ(br). It undergoes quantization and is trained
by the straight-through-estimator. Post-learning, it can be
archived in a look-up table, obviating the need for nonlinear
computations. This can be analogous to neuromodulation
with a superior signal delineating the task objective.

Link Prediction Detail In line with prevalent practices for
link prediction, the objective is to ascertain the likelihood
of a triplet (x, q, y), consisting of the source node, query
relation, and target node. The procedure of our model to
deduce a triplet (x, q, y) commences with the propagation of
spike trains across the graph to secure the pair representation
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(b) WN18RR

Figure 3. Results of Transductive Knowledge Graph Completion on FB15k-237 and WN18RR. Lower values are preferable for MR,
while higher values are desirable for MRR, HITS@1, and HITS@10. Detailed values can be found in Appendix F.1.

hq(x, y), and subsequently, the likelihood score is computed
by a parameterized function g given hq(x, y), consistent
with prior studies (Zhu et al., 2021). More details can be
found in Appendix E.1. The overarching procedure aligns
with the conventional graph reasoning paradigm, with our
primary focus being on the pivotal step of acquiring the pair
representation through SNN propagation.

Regarding the training procedure, we adhere to the method-
ologies of preceding works (Bordes et al., 2013; Sun et al.,
2019; Zhu et al., 2021), generating negative samples by
corrupting one entity in a positive triplet. Please refer to
Appendix E.1 for more details.

4. Experiments
In this section, we conduct experiments on transductive
knowledge graph completion, inductive knowledge graph
relation prediction, and homogeneous graph link predic-
tion to evaluate the proposed GRSNN model. For knowl-
edge graphs, we consider the commonly used FB15k-
237 (Toutanova & Chen, 2015) and WN18RR (Dettmers
et al., 2018) with the standard transductive splits and in-
ductive splits (Teru et al., 2020). For homogeneous graphs,
we consider Cora, Citeseer, and PubMed (Sen et al., 2008).
The train/valid/test ratio of edges is 85:5:10 following the
common practice, and the statistics of datasets can be found
in Appendix D.

For evaluation of knowledge graph completion, we adhere
to the filtered ranking protocol (Bordes et al., 2013), ranking
a test triplet (x, q, y) against all unseen negative triplets and
report Mean Rank (MR), Mean Reciprocal Rank (MRR),

Table 1. Results of knowledge graph completion on FB15k-237
by SNNs with different methods to represent relation information.
For MR, the lower the better. For MRR, HITS@1, HITS@3, and
HITS@10, the higher the better.

Method MR↓ MRR↑ H@1↑ H@3↑ H@10↑
None 396 0.204 0.119 0.226 0.380

Synaptic weight 197 0.311 0.220 0.343 0.491
Synaptic delay 139 0.368 0.275 0.407 0.551

and HITS@N. For inductive knowledge graph relation pre-
diction, the evaluation adheres to the protocols outlined in
the literature (Teru et al., 2020), where 50 negative triplets
are drawn for each positive one using the filtered ranking,
and the results are reported as HITS@10. For homogeneous
graph link prediction, we follow Kipf & Welling (2016);
Zhu et al. (2021) to compare the positive edges against the
same number of negative edges, and the results are quanti-
fied using Area Under the Receiver Operating Characteristic
Curve (AUROC) and Average Precision (AP).

More experimental details can be found in Appendix E.3.

4.1. Transductive Knowledge Graph Completion

We initiate our evaluation with experiments on transduc-
tive knowledge graph completion to assess the efficacy of
GRSNN. This task, illustrated in Appendix E.2, involves
predicting unseen relations between two existing entities in
a knowledge graph and serves as a standard for assessing
graph reasoning link prediction.

Advantage of synaptic delay We investigate the role of
synaptic delay in encoding relational information for rea-

6



Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning

0

10

20

30

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

non-spiking spiking

E
n

e
rg

y
 (

m
J
)

O
p

e
ra

ti
o

n
 n

u
m

b
e

r

Add

Mul

energy

30

3.1
>1.89

0.52

0.1

1

10

RotatE NBFNet SpikTE GRSNN

P
a

ra
m

e
te

rs
 (

M
)

FB15k-237

20

0.22

0.03

0.01

0.1

1

10

RotatE NBFNet GRSNN

WN18RR

a b
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soning, illustrated in Table 1. Our experiments contrast two
baselines. The first baseline does not encode edge relations,
focusing solely on the existence of edges. The second en-
codes edge relations with an additional relation-dependent
term in synaptic weights, eschewing synaptic delay, reminis-
cent of the DistMult message function in GNN. More details
are provided in the Appendix E.3. The results, presented in
Table 1, highlight that synaptic delay significantly excels
over the baselines, accentuating the merits of incorporating
temporal processing with delays in bio-inspired models for
effective relational reasoning.

Comparison with prevalent machine learning methods
We juxtapose the performance of our bio-inspired GRSNN
with various machine learning methods, including path-
based, embedding, and GNN methods, as depicted in Fig. 3,
to underscore its efficacy in knowledge graph reasoning. We
derive the results of preceding methods (Zhu et al., 2021;
Vashishth et al., 2020; Dold, 2022). In essence, GRSNN
secures competitive results, surpassing the majority of ma-
chine learning methods across all metrics, thereby attesting
to the effectiveness of bio-inspired models in solving human-
like advanced knowledge reasoning tasks. NBFNet attains
superior performance by employing numerous GNN tricks
that we deliberately omitted to preserve the inherent proper-
ties of SNNs. If we further integrate some techniques (refer
to Appendix E.3), our model, denoted as GRSNN+ in Fig. 3,
also achieves a better performance. Note that the proposed
GRSNN prioritizes bio-plausibility, delivering promising
performance with augmented efficiency, as will be analyzed
in the following.

4.2. Analysis Results

Parameter amount Fig. 4a contrasts the parameter quan-
tities of several representative methods, highlighting the
notable parameter efficiency of GRSNN in achieving com-
petitive performance compared to other methods.

Theoretical estimation of energy GRSNN leverages the
energy efficiency inherent to SNNs through spike-based
computation. On the test set of FB15k-237, the model ex-

hibits a spike rate—the average spike count per discrete time
step—of approximately 0.258. This translates to roughly
a 4× reduction in synaptic operations compared to equiv-
alent real-valued neural networks. Given that spikes ne-
cessitate only Accumulate (AC) operations as opposed to
Multiply-and-Accumulate (MAC) operations, there is a sub-
stantial reduction in energy costs, as evidenced by the en-
ergy consumption of 32-bit FP MAC and AC operations on
a 45 nm CMOS processor being 4.6 pJ and 0.9 pJ, respec-
tively (Horowitz, 2014). Fig. 4b provides a concise theoreti-
cal estimation of the number of addition and multiplication
operations and the associated energy requirements, with the
multiplication in SNNs arising due to leaky neuronal dy-
namics (please refer to Appendix E.3 for calculation details).
Based on these estimations, a potential 20× energy reduc-
tion is foreseeable, and under certain conditions where AC
can be 31× cheaper than MAC (Yin et al., 2021; Horowitz,
2014), this could extend to around 100×.

Note that there can also be costs from synaptic delay. We
consider the Ring Buffer as a potential implementation,
which is commonly used by digital neuromorphic platforms
and analyzed (Patiño-Saucedo et al., 2023). The additional
energy overhead will account for an extremely small pro-
portion of energy—it is estimated as 0.004 mJ, while the
energy for synaptic operations estimated above is 1.337
mJ (please refer to Appendix E.3 for calculation details),
and this conclusion is consistent with Patiño-Saucedo et al.
(2023). Therefore, the costs of synaptic delay do not affect
the substantial energy efficiency.

More spike rate statistics on different datasets or tasks are
presented in Table 2, showing that spikes are even sparser on
other datasets or tasks introduced in the following. This un-
derscores the substantial potential of GRSNN in enhancing
energy efficiency by one to two orders of magnitude.

Interpretability To demonstrate the interpretability of
GRSNN as neural-generalized path formulation, in Ap-
pendix F.2, we visualize the reasoning paths for the final
predictions of several examples, based on edge and path im-
portance, determined by the gradient of the prediction w.r.t.
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v1 v2 v3 v4

v1 v2 v3 v4
(a) FB15k-237

(b) WN18RR

Figure 5. Results of Inductive Relation Prediction on FB15k-237 and WN18RR. v1-v4 correspond to the four standard versions of
inductive splits. Detailed values can be found in Appendix F.1.
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Figure 6. Results of Homogeneous Graph Link Prediction on Cora, Citeseer, and PubMed. Detailed values are in Appendix F.1.

edges, and beam search for paths of higher importance (re-
fer to Appendix E.3 for details). Results show that GRSNN
is adept at discerning relation relevances and exploiting
transitions and analogs.

More analysis results such as the impact of temporal dis-
cretization steps and the impact of neuron number and pa-
rameter amount are in Appendix F.

4.3. Inductive Relation Prediction

Experiments are also conducted on inductive relation predic-
tion to assess the efficacy of GRSNN. Unlike the transduc-
tive setting, which focuses on predicting new links within
the training knowledge graph, inductive prediction strives to
extrapolate the ability to predict relations from the training
graph to a distinct testing graph. This testing graph encom-
passes different entities but retains the same relation types,
as illustrated in Appendix E.2, demonstrating the ability
to generalize relational reasoning to new conditions. Tradi-
tional entity embedding methods falter under this condition,
whereas GRSNN, being a generalized form of path formu-
lation, adeptly manages it.

The outcomes, depicted in Fig. 5, reveal that GRSNN sur-
passes the performance of most machine learning methods
in inductive settings, underscoring its proficiency in gener-
alizing reasoning to new entities. The spike rate statistics in
Table 2 also indicate the potential for energy efficiency.

4.4. Homogeneous Graph Link Prediction

We also assess the GRSNN in the context of link predic-
tion tasks for standard homogeneous graphs, illustrating
its versatility across diverse application domains. Homoge-
neous graphs are essentially a subset of knowledge graphs,
characterized by a singular type of relation, i.e., the pres-
ence of graph edges, and are ubiquitously observed. In such
instances, the representation of edges remains consistent
across the graph, and the GRSNN primarily leverages the
information pertaining to graph distance in spiking time, as
opposed to relation-specific information.

The results shown in Fig. 6 reveal that GRSNN manifests
competitive performance in comparison to other proficient
machine learning models, underscoring its efficacy. The
sparse spike rates presented in Table 2 further highlight the
efficiency potential.
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Table 2. More spike rate statistics on different datasets.
Trans. Know. Graph Compl. Induc. Relat. Pred. Homo. Graph Link Pred.
FB15k-237 WN18RR FB. v1 FB. v2 FB. v3 FB. v4 WN. v1 WN. v2 WN. v3 WN. v4 Cora CiteSeer PubMed

0.258 0.191 0.176 0.189 0.257 0.245 0.175 0.165 0.172 0.149 0.082 0.074 0.189

5. Discussion and Conclusion
This study demonstrates the potential of bio-inspired SNNs
in addressing graph reasoning through the innovative use
of synaptic delay and spiking time. We introduced GRSNN,
a model that employs synaptic delays to encode relation
information of graph edges and utilizes the temporal do-
main as an additional dimension for processing graph path
properties. This approach can be perceived as a neural gener-
alization of the path formulation with better inductive gener-
alization ability and interpretability. It provides insights into
the capabilities of networks with biological neuron models
to efficiently facilitate neuro-symbolic reasoning in tasks
central to human intelligence, such as relational reasoning
of concepts. Additionally, it explores the enhanced role that
spiking time can play in AI applications. The promising
performance and substantial theoretical energy efficiency
of our model underscore the potential of SNNs in a wider
array of applications such as efficient reasoning.

Our approach to temporal coding of spike trains assigns
varying weights to different times, which is similar to
the methodology in Stöckl & Maass (2021) but in our
model, earlier spikes are designed to receive higher weights,
which also integrates concepts from the time to first spike
paradigm (Mostafa, 2017). Distinct to these works, our fo-
cus extends beyond individual neuron temporal coding to
encompass the network level, allowing spiking time to in-
tegrate path properties during network propagation, and
enabling multiple spikes to represent diverse paths globally.
Unlike prior studies on traditional graph algorithms (Ai-
mone et al., 2021), which primarily target the shortest path
task, our work delves into the multifaceted realm of graph
AI tasks with multiple temporal spikes for diverse paths.
Together, our work offers a fresh perspective on temporal
information processing in SNNs.

This study marks an initial exploration of utilizing SNNs
for graph reasoning, leveraging the temporal domain, and
opens avenues for numerous future directions. First, the re-
liance on discrete simulation and backpropagation through
time for training SNNs is resource-intensive, especially for
long simulation times with small discrete intervals. There-
fore, this work primarily considers T = 10 discrete time
steps, which could sacrifice more precise temporal informa-
tion. Enhancements in simulation or training methodologies
at hardware/coding/algorithm levels may yield improved
results given more accurate temporal information. Addition-
ally, the exploration of online training methods conducive

to on-chip learning of SNNs (Bellec et al., 2020; Xiao et al.,
2022) for learning synaptic delays may offer insights into ef-
ficient and more biologically plausible learning of our model.
Second, to fulfill the properties of SNNs, many advanced
GNN strategies may not be incorporated, such as intricate
message and aggregate functions and elaborate network
structures. The investigation of SNN-compatible strategies
may potentially bridge the performance gap, e.g., heteroge-
neous neurons and different neuron dynamics may provide
more powerful computational properties (Chakraborty &
Mukhopadhyay, 2023; Bellec et al., 2018). Last, given the
prevalence of graph tasks in AI applications, future studies
could delve into wider applications of graph reasoning such
as drug or material design, investigating the potential of
bio-inspired models for efficient applications.

In conclusion, our study illustrates the capability of brain-
inspired SNNs in efficient symbolic graph reasoning, em-
phasizing the enhanced role of the temporal domain. Given
their neuromorphic attributes, SNNs are poised to achieve
substantial energy efficiency and high parallelism on spike-
based neuromorphic hardware. It is our aspiration that this
research serves as a catalyst for deeper insights and wider
applications of biologically inspired efficient SNNs.

Acknowledgements
Z. Lin was supported by National Key R&D Program of
China (2022ZD0160300), the NSF China (No. 62276004),
and Qualcomm. D. He was supported by National Science
Foundation of China (NSFC62376007).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Aimone, J. B., Ho, Y., Parekh, O., Phillips, C. A., Pinar, A.,

Severa, W., and Wang, Y. Provable advantages for graph
algorithms in spiking neural networks. In ACM Sym-
posium on Parallelism in Algorithms and Architectures
(SPAA), 2021.

Amin, S., Varanasi, S., Dunfield, K. A., and Neumann, G.
Lowfer: Low-rank bilinear pooling for link prediction. In

9



Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning

International Conference on Machine Learning (ICML),
2020.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and
Maass, W. Long short-term memory and learning-to-learn
in networks of spiking neurons. In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D.,
Legenstein, R., and Maass, W. A solution to the learn-
ing dilemma for recurrent networks of spiking neurons.
Nature Communications, 11(1):1–15, 2020.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and
Yakhnenko, O. Translating embeddings for modeling
multi-relational data. In Advances in Neural Information
Processing Systems (NeurIPS), 2013.

Chakraborty, B. and Mukhopadhyay, S. Heterogeneous
neuronal and synaptic dynamics for spike-efficient un-
supervised learning: Theory and design principles. In
International Conference on Learning Representations
(ICLR), 2023.

Comsa, I. M., Potempa, K., Versari, L., Fischbacher, T.,
Gesmundo, A., and Alakuijala, J. Temporal coding in
spiking neural networks with alpha synaptic function. In
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2020.

Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., and Tom-
czak, J. M. Hyperspherical variational auto-encoders.
In Conference on Uncertainty in Artificial Intelligence
(UAI), 2018.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y.,
Choday, S. H., Dimou, G., Joshi, P., Imam, N., Jain, S.,
et al. Loihi: A neuromorphic manycore processor with
on-chip learning. IEEE Micro, 38(1):82–99, 2018.

Dettmers, T., Minervini, P., Stenetorp, P., and Riedel, S.
Convolutional 2d knowledge graph embeddings. In AAAI
Conference on Artificial Intelligence (AAAI), 2018.

Dold, D. Relational representation learning with spike trains.
In International Joint Conference on Neural Networks
(IJCNN), 2022.

Dold, D. and Garrido, J. S. Spike: Spike-based embeddings
for multi-relational graph data. In International Joint
Conference on Neural Networks (IJCNN), 2021.

Fang, H., Zeng, Y., Tang, J., Wang, Y., Liang, Y., and Liu,
X. Brain-inspired graph spiking neural networks for com-
monsense knowledge representation and reasoning. arXiv
preprint arXiv:2207.05561, 2022.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and
Tian, Y. Incorporating learnable membrane time con-
stant to enhance learning of spiking neural networks. In
International Conference on Computer Vision (ICCV),
2021.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD), 2016.

Hammouamri, I., Khalfaoui-Hassani, I., and Masquelier, T.
Learning delays in spiking neural networks using dilated
convolutions with learnable spacings. In International
Conference on Learning Representations (ICLR), 2024.

Horowitz, M. 1.1 computing’s energy problem (and what
we can do about it). In IEEE International Solid-State
Circuits Conference (ISSCC), 2014.

Huxter, J., Burgess, N., and O’Keefe, J. Independent rate
and temporal coding in hippocampal pyramidal cells. Na-
ture, 425(6960):828–832, 2003.

Katz, L. A new status index derived from sociometric anal-
ysis. Psychometrika, 18(1):39–43, 1953.

Kemp, C. and Tenenbaum, J. B. The discovery of structural
form. Proceedings of the National Academy of Sciences
(PNAS), 105(31):10687–10692, 2008.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
arXiv preprint arXiv:1611.07308, 2016.

Lao, N. and Cohen, W. W. Relational retrieval using a
combination of path-constrained random walks. Machine
Learning, 81:53–67, 2010.

Li, J., Yu, Z., Zhu, Z., Chen, L., Yu, Q., Zheng, Z., Tian,
S., Wu, R., and Meng, C. Scaling up dynamic graph
representation learning via spiking neural networks. In
AAAI Conference on Artificial Intelligence (AAAI), 2023.

Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. A free
lunch from ann: Towards efficient, accurate spiking neural
networks calibration. In International Conference on
Machine Learning (ICML), 2021.

Liben-Nowell, D. and Kleinberg, J. The link-prediction
problem for social networks. Journal of the American
Society for Information Science and Technology, 58(7):
1019–1031, 2007.

Lv, C., Xu, J., and Zheng, X. Spiking convolutional neural
networks for text classification. In International Confer-
ence on Learning Representations (ICLR), 2023.

10



Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning

Maass, W. Networks of spiking neurons: the third generation
of neural network models. Neural Networks, 10(9):1659–
1671, 1997.

Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla,
R., and Stuckenschmidt, H. Fine-grained evaluation of
rule-and embedding-based systems for knowledge graph
completion. In International Semantic Web Conference
(ISWC), 2018.

Meng, Q., Xiao, M., Yan, S., Wang, Y., Lin, Z., and Luo, Z.-
Q. Training high-performance low-latency spiking neural
networks by differentiation on spike representation. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2022a.

Meng, Q., Yan, S., Xiao, M., Wang, Y., Lin, Z., and Luo,
Z.-Q. Training much deeper spiking neural networks
with a small number of time-steps. Neural Networks, 153:
254–268, 2022b.

Mostafa, H. Supervised learning based on temporal coding
in spiking neural networks. IEEE Transactions on Neural
Networks and Learning Systems (TNNLS), 29(7):3227–
3235, 2017.

Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E. A re-
view of relational machine learning for knowledge graphs.
Proceedings of the IEEE, 104(1):11–33, 2015.

Page, L., Brin, S., Motwani, R., and Winograd, T. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford InforLab, 1999.

Patiño-Saucedo, A., Yousefzadeh, A., Tang, G., Corradi,
F., Linares-Barranco, B., and Sifalakis, M. Empirical
study on the efficiency of spiking neural networks with
axonal delays, and algorithm-hardware benchmarking. In
IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 2023.

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S.,
Wang, G., Zou, Z., Wu, Z., He, W., et al. Towards artificial
general intelligence with hybrid Tianjic chip architecture.
Nature, 572(7767):106–111, 2019.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online
learning of social representations. In ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD), 2014.

Rao, A., Plank, P., Wild, A., and Maass, W. A long short-
term memory for AI applications in spike-based neuro-
morphic hardware. Nature Machine Intelligence, 4(5):
467–479, 2022.

Reinagel, P. and Reid, R. C. Temporal coding of visual
information in the thalamus. Journal of Neuroscience, 20
(14):5392–5400, 2000.

Roy, K., Jaiswal, A., and Panda, P. Towards spike-based ma-
chine intelligence with neuromorphic computing. Nature,
575(7784):607–617, 2019.

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu,
S.-C. Conversion of continuous-valued deep networks to
efficient event-driven networks for image classification.
Frontiers in Neuroscience, 11:682, 2017.

Sadeghian, A., Armandpour, M., Ding, P., and Wang, D. Z.
Drum: End-to-end differentiable rule mining on knowl-
edge graphs. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2019.

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M.,
Pascanu, R., Battaglia, P., and Lillicrap, T. A simple neu-
ral network module for relational reasoning. In Advances
in Neural Information Processing Systems (NeurIPS),
2017.

Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R.,
Titov, I., and Welling, M. Modeling relational data with
graph convolutional networks. In European Semantic
Web Conference (ESWC), 2018.

Schuman, C. D., Kulkarni, S. R., Parsa, M., Mitchell, J. P.,
Kay, B., et al. Opportunities for neuromorphic comput-
ing algorithms and applications. Nature Computational
Science, 2(1):10–19, 2022.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI Magazine, 29(3):93–93, 2008.

Shrestha, S. B. and Orchard, G. Slayer: spike layer error
reassignment in time. In Advances in Neural Information
Processing Systems (NeurIPS), 2018.
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A. Training Spiking Neural Networks
As introduced in Section 2.1, the models for membrane potential and current are described by the following equations:

τm
du

dt
= −(u(t)− urest) +R · I(t), u(t) < Vth, (8)

τc
dIi
dt

= −Ii(t) +
∑
j

wijsj(t− dij) + bi, (9)

and the equivalent SRM formulation is:

ui(t) = urest +
∑
j

wij

∫ t

0

κ(τ − dij)sj(t− τ)dτ +

∫ t

0

ν(τ)si(t− τ)dτ. (10)

Let L denote the loss based on the spikes of neurons. With the SRM formulation, the gradients for wij and dij can be
calculated as follows:

∂L
∂wij

=

∫ T

0

δi(t)
∂si(t)

∂ui(t)

(∫ t

0

κ(τ − dij)sj(t− τ)dτ

)
dt, (11)

∂L
∂dij

=

∫ T

0

δi(t)
∂si(t)

∂ui(t)
wij

(
−
∫ t

0

κ̇(τ − dij)sj(t− τ)dτ

)
dt, (12)

where δi(t) is the gradient for si(t) and can be recursively calculated by backpropagation through time as:

δi(t) =
∂L

∂si(t)
+

∫ T

t

∑
j

δj(τ)
∂sj(τ)

∂uj(τ)

∂uj(τ)

∂si(t)
+ δi(τ)

∂si(τ)

∂ui(τ)

∂ui(τ)

∂si(t)

 dτ, (13)

and κ̇(·) represents the derivative of κ(·).

In practice, we simulate SNNs using the discrete computational form of the current-based LIF model:

Ii[t+ 1] = exp

(
−∆τ

τc

)
Ii[t] + α

(∑
j

wijsj [t− dij ] + bi

)
,

ui[t+ 1] = exp

(
−∆τ

τm

)
ui[t](1− si[t]) + Ii[t+ 1],

si[t+ 1] = H(ui[t+ 1]− Vth).

(14)

The gradients of δi(t) and ∂L
∂wij

can be calculated using the standard backpropagated automatic differentiation framework

in deep learning libraries, based on the above formulation. The spiking function is non-differentiable, and ∂si[t]
∂ui[t]

can be
replaced by a surrogate derivative (Shrestha & Orchard, 2018). We consider the derivative of the sigmoid function:

∂s

∂u
=

1

a1

e(Vth−u)/a1

(1 + e(Vth−u)/a1)2
, (15)

where we take a1 = 0.25.

The automatic differentiation of the above formulation cannot directly handle ∂L
∂dij

. We rewrite it in the discrete setting as:

∂L
∂dij

=
∑
t

δi[t]
∂si[t]

∂ui[t]
wij

(
−

t−1∑
τ=0

κ̇[τ − dij ]sj [t− 1− τ ]

)
. (16)

We can integrate this into the automatic differentiation by tracking the trace trij [t] = −
∑t

τ=0 κ̇[τ − dij ]sj [t − τ ] and
calculating gradients based on it and the error backpropagated to sj [t− dij ]. In the discrete setting, dij should be an integer
index. We quantize it in the forward simulation and calculate gradients using the straight-through-estimator.

As described in Section 2.1, we consider τc = τm, R = e and the input kernel is κ(τ) = eτ
τm

exp
(
− τ

τm

)
for τ ≥ 0 and

κ(τ) = 0 for τ < 0. Then, κ̇(τ) = e
τm

(
1− τ

τm

)
exp

(
− τ

τm

)
for τ ≥ 0. In the discrete setting of the current-based LIF

model, κ is better described as κ[τ ] = α(τ + 1) exp(− τ
τm/∆τ ), τ ≥ 0 (where α = e

τm/∆τ ). Correspondingly, we take

κ̇[τ ] = α
(
1− τ+1

τm/∆τ

)
exp

(
− τ

τm/∆τ

)
and calculate the trace trij based on it.
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B. Proof of Proposition 3.1
Proposition B.1. Katz Index, Personalized PageRank, and Graph Distance can be solved by GRSNN under specific settings.

Proof. We first introduce more details of Katz Index, Personalized PageRank, and Graph Distance. As described in
Section 3.2, traditional path-based algorithms for graphs calculate the pair representation between nodes x, y by considering
paths from x to y, and this can be formulated as a generalized accumulation of path representations (denoted as ⊗) with a
commutative summation operator (denoted as ⊕):

hq(x, y) =
⊕

P∈Pxy

 |P |⊗
i=1

vq(ei)

 , (17)

where Pxy is the set of paths from x to y, ei is the i-th edge on a path P , and vq(ei) is the representation of the edge (e.g.,
the transition probability of this edge). Katz Index is a path formulation with ⊕ = +,⊗ = ×,vq(e) = β, Personalized
PageRank is with ⊕ = +,⊗ = ×,vq(e) = 1/dout(z) (where dout(z) is the output degree of the start node z of edge e),
and Graph Distance is with ⊕ = min,⊗ = +,vq(e) = 1.

We examine these three distinct settings:

(1) Graph Distance: In this setting, each graph node is assigned one spiking neuron, and neurons are connected if there
exists a graph edge between them, with all synaptic weights and thresholds set to 1. Consequently, each input spike to a
neuron will trigger an output spike. The synaptic delay of each edge is set as the corresponding positive graph edge length,
allowing the propagation of spikes along edges to accumulate edge length into time. By initiating a spike from the source
node at time 0, GRSNN propagates spikes throughout the network, and the time to the first spike of each node represents
the shortest distance to the source node. Utilizing the decoding function of the spike train from the target node as the first
spiking time allows us to compute the graph distance.

(2) Katz Index: The Katz Index necessitates the accumulative multiplication of edge representations. By applying the log
operation, this multiplication can be transformed into accumulation. For an edge representation β ∈ (0, 1) of Katz Index,
corresponding to an attenuation factor, the synaptic delay is set as d = − log β (potentially scaled). For a spiking time t,
10−t represents the accumulative multiplication of edge representations in the path. To sum over all paths, the number
of paths during spike propagation must be maintained. A single spiking neuron is insufficient for this task as it will only
generate one output spike when multiple paths simultaneously propagate to the same node. This limitation can be addressed
by employing multiple spiking neurons, assigning N spiking neurons to each graph node, with thresholds set as 1, 2, · · · , N .
Neurons connected by graph edges have synaptic weights of 1 and delays as described above. The time and number of
spikes of each node correspond to different paths from the source node. After sufficient propagation time, the decoding
function of the spike train from the target node is defined as D(s(t)) =

∑
τ 10

−τ (
∑

i si[τ ]), enabling the computation of
the Katz Index.

(3) Personalized PageRank: This is analogous to the Katz Index, with the edge representation being the transition
probability 1/dout(z) ∈ (0, 1). The synaptic delay is similarly set as d = − log(1/dout(z)) (or with a scale). Thus,
Personalized PageRank can be computed similarly to the Katz Index.

Remark B.2. The crux of the proof revolves around the construction of appropriate synaptic delays and decoding functions.
As illustrated in the construction, distinct temporal coding methods naturally arise for varying path formulations. In many
scenarios, the significance of edge representations in knowledge graphs can be interpreted as learnable probabilities, making
the accumulative multiplication setting (as in Katz Index and Personalized PageRank) particularly advantageous. This
results in the adoption of temporal coding in our experiments in the main text, assigning different weights to different spikes,
represented as D(sqy(t)) =

∑
τ λτ sqy [τ ]∑

τ λτ , except a constant factor. A notable distinction is that, instead of a straightforward
summation across different neurons, we derive the pair representation as a vector of different neurons. Subsequently, the
likelihood is computed using a learnable function g, aligning with the prevalent approaches in graph reasoning methods
(refer to Section 3.4). This approach also serves as a broader generalization of the formulation in the construction.
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C. Related Work
Spiking Neural Networks Recent works mainly study SNNs as energy-efficient alternatives to ANNs by converting
ANNs to SNNs for object recognition (Rueckauer et al., 2017; Stöckl & Maass, 2021; Li et al., 2021; Meng et al., 2022b)
and natural language classification (Lv et al., 2023), or direct training SNNs (with surrogate gradients or other methods)
for audio or visual perception (Shrestha & Orchard, 2018; Fang et al., 2021; Xiao et al., 2021; Meng et al., 2022a; Xiao
et al., 2024), time series classification (Yin et al., 2021; Rao et al., 2022), seizure detection (Zhang et al., 2024), graph
classification (Zhu et al., 2022; Li et al., 2023), etc. Most of them focus on spike counts and hardly leverage the important
temporal dimension. Some works explore temporal encoding for single neurons (Mostafa, 2017; Comsa et al., 2020; Zhou
et al., 2021; Stöckl & Maass, 2021), or utilizing spiking time for feature binding (Zheng et al., 2022), but how synaptic delay
with temporal coding at the network level can be systematically utilized is rarely considered. Patiño-Saucedo et al. (2023)
and Hammouamri et al. (2024) learn delays for time series tasks, and Yan et al. (2024) learn delays in network structure
design, but they not consider temporal coding for graph tasks. Some works attempt to use SNNs for relational reasoning in
knowledge graphs with entity embedding based on spiking times (Dold & Garrido, 2021; Dold, 2022) or population coding
combined with reward-modulated STDP (Fang et al., 2022). They do not consider reasoning paths with synaptic delay and
temporal coding, and are limited in inductive generalization and interoperability considering the entity embedding method as
well as poor performance in large knowledge graphs. Differently, our novel method is the first to demonstrate the advantage
of delays to represent relations with promising performance on real transductive and inductive (knowledge) graphs.

Graph Reasoning Graph link prediction is a fundamental graph reasoning task, typically in the context of knowledge
graph reasoning. Popular methods include three paradigms: path-based, embedding, and graph neural networks (Zhu et al.,
2021). Path-based methods predict links based on paths from the source node to the target node, e.g., the weighted count
of paths in homogeneous graphs (Katz, 1953; Page et al., 1999; Liben-Nowell & Kleinberg, 2007) or paths with learned
probabilities or representations in knowledge graphs (Lao & Cohen, 2010; Yang et al., 2017; Sadeghian et al., 2019).
Embedding methods learn representations for each node and edge which preserve the structure of the graph (Perozzi et al.,
2014; Tang et al., 2015; Grover & Leskovec, 2016; Bordes et al., 2013; Yang et al., 2015; Sun et al., 2019). They rely on
entities and cannot perform inductive reasoning. GNNs perform message passing between nodes for reasoning based on the
learned node or edge representations. For knowledge graphs, R-GCN (Schlichtkrull et al., 2018) and CompGCN (Vashishth
et al., 2020) propagate over all entities with different message functions, while GraIL (Teru et al., 2020) propagates in
an extracted subgraph. NBFNet (Zhu et al., 2021) proposes a framework to integrate path formulation and graph neural
networks, achieving state-of-the-art results with GNNs. Different from these works, we focus on exploring SNNs with
spiking time.

D. Datasets statistics
FB15k-237 (Toutanova & Chen, 2015) is a refined knowledge graph link prediction dataset derived from FB15k. It is
meticulously curated to ensure that the test and evaluation datasets are devoid of inverse relation test leakage. Similarly,
WN18RR (Dettmers et al., 2018) is another knowledge graph link prediction dataset, formulated from WN18 (a subset of
WordNet), maintaining the integrity by avoiding inverse relation test leakage.

For the conventional transductive knowledge graph completion setting, the datasets exhibit varying quantities of entities,
relations, and relation triplets across the train, validation, and test sets, as detailed in Table 3. In the context of the standard
inductive relation prediction setting, the statistical breakdown for different splits is depicted in Table 4.

Additionally, Cora, Citeseer, and PubMed (Sen et al., 2008) serve as homogeneous citation graphs, with their respective
statistics outlined in Table 5.

Table 3. Transductive Knowledge Graph Completion Statistics for FB15k-237 and WN18RR.

Dataset #Entity #Relation #Triplet
#Train #Validation # Test

FB15k-237 (Toutanova & Chen, 2015) 14,541 237 272,115 17,535 20,466
WN18RR (Dettmers et al., 2018) 40,943 11 86,835 3,034 3,134
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Table 4. Inductive Relation Prediction Statistics for FB15k-237 and WN18RR.

Dataset & Split #Relation Train Validation Test
#Entity #Query #Fact #Entity #Query #Fact #Entity #Query #Fact

FB15k-237 (Teru et al., 2020)

v1 180 1,594 4,245 4,245 1,594 489 4,245 1,093 205 1,993
v2 200 2,608 9,739 9,739 2,608 1,166 9,739 1,660 478 4,145
v3 215 3,668 17,986 17,986 3,668 2,194 17,986 2,501 865 7,406
v4 219 4,707 27,203 27,203 4,707 3,352 27,203 3,051 1,424 11,714

WN18RR (Teru et al., 2020)

v1 9 2,746 5,410 5,410 2,746 630 5,410 922 188 1,618
v2 10 6,954 15,262 15,262 6,954 1,838 15,262 2,757 441 4,011
v3 11 12,078 25,901 25,901 12,078 3,097 25,901 5,084 605 6,327
v4 9 3,861 7,940 7,940 3,861 934 7,940 7,084 1,429 12,334

Table 5. Homogeneous Graph Link Prediction Statistics for Cora, CiteSeer, and PubMed.

Dataset #Node #Edge
#Train #Validation # Test

Cora (Sen et al., 2008) 2,708 4,614 271 544
CiteSeer (Sen et al., 2008) 3,327 4,022 236 474
PubMed (Sen et al., 2008) 19,717 37,687 2,216 4,435

E. More Implementation and Experimental Details
E.1. Link Prediction Detail

In line with prevalent practices for link prediction, the objective is to ascertain the likelihood of a triplet (x, q, y), consisting
of the source node, query relation, and target node. Consistent with prior studies (Zhu et al., 2021), we employ a feed-
forward neural network g to estimate the conditional likelihood of the tail entity y, predicated on the head entity x and
query q, utilizing the pair representation hq(x, y), formulated as p(y|x, q) = σ(g(hq(x, y); rq)), where σ denotes the
sigmoid function. Analogously, the conditional likelihood of the head entity x, contingent upon y and q, is deduced as
p(x|y, q−1) = σ(g(hq−1

(y, x); rq
−1

)), with q−1 representing the inverted relation. In the scenario of undirected graphs, the
representations undergo symmetrization, resulting in p(x, q, y) = σ(g(hq(x, y) + hq(y, x); rq)). Adhering to established
methodologies, a two-layer Multi-Layer Perceptron (MLP) with ReLU activation is utilized for g. It is noteworthy that this
configuration is also conducive to implementation via a spiking MLP, given the facile conversion of the ReLU function to
spiking neurons, achievable through rate or temporal coding (Rueckauer et al., 2017; Stöckl & Maass, 2021). Appendix F.5
also studies directly training a spiking MLP for g and the results remain about the same.

In short, the procedure of our model to deduce a triplet (x, q, y) commences with the propagation of spike trains across the
graph to secure the pair representation hq(x, y), and subsequently, the likelihood score is computed by g, predicated on
hq(x, y). When provided with the head entity x and the query relation r, the model is capable of concurrently computing
pair representations and scores for all conceivable tail entities during the forward propagation of SNNs. The overarching
procedure aligns with the conventional graph reasoning paradigm, with our primary focus being on the pivotal step of
acquiring the pair representation through SNN propagation.

Regarding the training procedure, we adhere to the methodologies of preceding works (Bordes et al., 2013; Sun et al.,
2019; Zhu et al., 2021), generating negative samples by corrupting one entity in a positive triplet. The training objective is
formulated to minimize the negative log-likelihood of both positive and negative triplets:

L = − log p(x, q, y)−
m∑
i=1

1

m
log(1− p(x′

i, q, y
′
i)), (18)

where m is the number of negative samples for each positive one, and (x′
i, q, y

′
i) denotes the i-th negative sample.

E.2. Task Details

We illustrate the tasks of transductive knowledge graph completion and inductive relation prediction in Fig. 7. For homoge-
neous graph link prediction, it is similar to transductive knowledge graph completion except that there is only one relation
type in homogeneous graphs, i.e., the existence of the edge.

16



Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning

r1

r7

r1

r3 r4

r5

r6
r3 r4

r1

r2 r2

r2

a1 a2 a3

a6a5

a9

a4

a7
a8

r1

r7

r1

r3 r4

r5

r6
r3 r4

r1

r2 r2

r2

a1 a2 a3

a6a5

a9

a4

a7
a8

r ?5

r ?2

train test

same entities

same relations

a1 a2 a3

a6a5

a9

a4

a7
a8 r ?5

rank against all triplets not in the graph

ba  Transductive

r1

r7

r1

r3 r4

r5

r6
r3 r4

r1

r2 r2

r2

a1 a2 a3

a6a5

a9

a4

a7
a8

train test

different entities

same relations

c  Inductive

b4
r ?4

r ?5

b1 b5

b2 b3

b6

r1

r2

r2

r3

r4

r6

r7

Figure 7. Illustration of task details. (a) Depiction of the transductive knowledge graph completion process. (b) Illustration of the filtered
ranking protocol used to rank the test triplet (x, q, y) against all negative triplets absent from the graph. The triplets (x′, q, y) are not
shown here for clarity. (c) Illustration of the inductive setting of relation prediction.

E.3. Experimental Details

Datasets and preprocessing We assess our model across various tasks including transductive knowledge graph completion,
inductive knowledge graph relation prediction, and homogeneous graph link prediction. For knowledge graphs, we employ
the widely recognized FB15k-237 (Toutanova & Chen, 2015) and WN18RR (Dettmers et al., 2018), adhering to the standard
transductive (Toutanova & Chen, 2015; Dettmers et al., 2018) and inductive splits (Teru et al., 2020). For homogeneous
graphs, we utilize Cora, Citeseer, and PubMed (Sen et al., 2008).

In evaluating knowledge graph completion, we adhere to the prevalent filtered ranking protocol (Bordes et al., 2013),
ranking a test triplet (x, q, y) against all negative triplets (x, q, y′) or (x′, q, y) absent in the graph (considering the likelihood
score). We report MR, MRR, and HITS at N. For inductive knowledge graph relation prediction, we align with the previous
practice (Teru et al., 2020), drawing 50 negative triplets for each positive one using the aforementioned filtered ranking and
report HITS@10. In the context of homogeneous graph link prediction, we follow the approaches of Kipf & Welling (2016),
contrasting the positive edges with an equivalent number of negative edges, and report AUROC and AP. The distribution
of edges in train/valid/test is maintained at a ratio of 85:5:10, aligning with common practice. The specifics and statistics
related to the datasets are available in Appendix D.

Regarding data preprocessing, we adhere to the methodologies of prior works (Yang et al., 2017; Sadeghian et al., 2019;
Kipf & Welling, 2016). In knowledge graphs, each triplet (x, q, y) is augmented with a reversed triplet (y, q−1, x). In
homogeneous graphs, each node is augmented with a self-loop. Additionally, we follow Zhu et al. (2021) to exclude edges
directly connecting query node pairs during the training phase for the transductive setting of FB15k-237 and homogeneous
graphs.

Models and training Given the substantial computational expense associated with simulating SNNs over a long time,
our primary simulations involve T = 10 discrete time steps for SNNs. The hyperparameters for SNNs are designated as
τm/∆τ = 4, Vth = 2, with the discrete delay bound β = 4, and λ = 0.95 for the decoding function. This can correspond
to τm = τc = 20ms with discretization interval ∆τ = 5ms and a total simulation time T ×∆τ = 50ms for SNNs. For
experiments analyzing temporal discretization steps in Appendix F.3, hyperparameters are adjusted relative to the discrete
step; for instance, for T = 5, we assign τm/∆τ = 2, β = 2, λ = 0.9 (corresponding to ∆τ = 10ms), and for T = 20,
we designate τm/∆τ = 8, β = 8, λ = 0.97 (corresponding to ∆τ = 2.5ms). Each graph node is represented by n = 32
spiking neurons by default. No normalization or other modifications are applied, and for models on FB15k-237, a linear
scale of 0.1 is applied post the linear transformation W.

As for the two baseline SNN models that we compare in Section 4 to elucidate the superiority of synaptic delay, the first
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model abstains from encoding edge relations, and the delay dq
r in Eq. (7) is not taken into account, i.e., it is assigned a

value of zero. The second model opts for encoding relations through synaptic weight instead of synaptic delay. We modify
sqk[t− dq

r] in Eq. (7) to wq
r ⊙ sqk[t] (where wq

r is defined analogously to dq
r but devoid of the sigmoid function and bound

scale, and wq
r can be amalgamated into W to formulate the entire synaptic weight). This alteration aligns with the DistMult

message function utilized in prior works to multiply messages with edge representations (Zhu et al., 2021).

For GRSNN+, we apply layer normalization (LN) after the linear transformation of the aggregated messages as in many
GNNs, and encode relations in both synaptic delay and synaptic weight, i.e., the messages are wq

r ⊙ sqk[t− dq
r]. For FB15k-

237, we further adopt the principal neighborhood aggregation (PNA) as the aggregation function instead of summation,
which is a major component for the high performance of NBFNet (Zhu et al., 2021). We show that by integrating these
GNN tricks, GRSNN can also achieve a better performance.

All models are trained utilizing the Adam optimizer over 20 epochs. The learning rate is 2e− 3 for transductive settings
(knowledge graph completion and homogeneous graph link prediction) and 5e− 3 for inductive settings. The batch size is
32 (30 for transductive FB15k-237), achieved by accumulating gradients across several iterations with smaller mini-batches
each iteration.

The ratio of negative samples is configured to 256 for FB15k-237 and WN18RR in the transductive setting and 50 in the
inductive setting to align more closely with testing conditions, while it is established as 1 for homogeneous graphs, adhering
to previous studies. The temperature in self-adversarial negative sampling is determined to be 0.5 and 1 for FB15k-237
and WN18RR, respectively. Model selection is based on validation performance, with MRR serving as the criterion for
knowledge graphs and AUROC for homogeneous graphs.

Our code implementation leverages the PyTorch framework, and experimental evaluations are executed on one or two
NVIDIA GeForce RTX 3090 GPUs.

Details of theoretical energy estimation For theoretical inference operation counts and energy estimations, we consider
the scenario where neural network models are deployed and mapped directly to individual neurons and synapses. This
scenario aligns with the principles of neuromorphic computing and hardware (Davies et al., 2018; Pei et al., 2019; Rao
et al., 2022), facilitating in-memory computation and minimizing energy-consuming memory exchanges. Our theoretical
analysis predominantly centers on the operations of neurons and synapses, omitting additional hardware-related costs such
as memory access.

For the spiking model, the estimated synaptic operations are given by T ×n2×fr×|E|, where T represents the discrete time
step, n is the number of neurons allocated per graph node, fr denotes the spike rate, and |E| is the count of graph edges. This
calculation corresponds to the quantity of synaptic operations instigated by spikes, culminating in an accumulation (addition)
operation of post-synaptic current (or membrane potential). Additionally, accounting for neuron dynamics, there will be
T×n×|V| addition operations for the bias term, T×n×|V| addition operations for the accumulation of membrane potential
with current, and 2T × n× |V| multiplication operations due to the leakage of current and membrane potential, where |V|
represents the number of graph nodes. The computational cost associated with spike generation and reset is omitted in this
estimation. Consequently, the total operations involve 2T × n× |V| multiplications and T × n2 × fr× |E|+ 2T × n× |V|
additions.

For the non-spiking counterpart, assuming the replacement of spiking neurons with conventional artificial neurons and
disregarding the computational cost of the activation function, the synaptic operations would involve T × n2 × |E| MAC
operations (multiplication + addition), along with T ×n×|V| addition operations for the bias term. Thus, the total operations
would encompass T × n2 × |E| multiplications and T × n2 × (|E|+ |V|) additions.

Costs of synaptic delay We consider the Ring Buffer for potential synaptic delay implementation as analyzed in Patiño-
Saucedo et al. (2023), which is commonly used by digital neuromorphic platforms. The memory overhead of the ring buffer
is the number of neurons multiplied by the maximum synaptic delay Md, and the energy overhead is equal to one extra
neural accumulation per time step for each neuron (Patiño-Saucedo et al., 2023). Then, the additional memory overhead
(words) is n× |V|×Md and the additional energy overhead is T ×n× |V|×EAC . Consider the original memory overhead
n× |V| × 2 + n2 × |E| (neuron states + synapses) and the original energy overhead 2T × n× |V| × EMAC + (T × n2 ×
fr × |E|+ 2T × n× |V|)× EAC (analyzed above), the additional overhead is small because the number of synapses is
much larger than the number of neurons (n2 × |E| ≫ n× |V|) in our settings. Specifically, on the test set of FB15k-237, the
originally analyzed energy is estimated as 1.337 mJ, while the additional energy for synaptic delay is estimated as 0.004 mJ,
which is marginal.
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Table 6. Detailed Results for Transductive Knowledge Graph Completion. Lower values are preferable for MR, while higher values
are preferable for MRR, HITS@1, HITS@3, and HITS@10. *SpikTE is an embedding method based on spiking neurons.

(b)

Class Method FB15k-237 WN18RR
MR↓ MRR↑ H@1↑ H@3↑ H@10↑ MR↓ MRR↑ H@1↑ H@3↑ H@10↑

Path-based
Path Ranking (Lao & Cohen, 2010) 3521 0.174 0.119 0.186 0.285 22438 0.324 0.276 0.360 0.406

NeuralLP (Yang et al., 2017) - 0.240 - - 0.362 - 0.435 0.371 0.434 0.566
DRUM (Sadeghian et al., 2019) - 0.343 0.255 0.378 0.516 - 0.486 0.425 0.513 0.586

Embeddings

TransE (Bordes et al., 2013) 357 0.294 - - 0.465 3384 0.226 - - 0.501
DistMult (Yang et al., 2015) 254 0.241 0.155 0.263 0.419 5110 0.43 0.39 0.44 0.49

ComplEx (Trouillon et al., 2016) 339 0.247 0.158 0.275 0.428 5261 0.44 0.41 0.46 0.51
RotatE (Sun et al., 2019) 177 0.338 0.241 0.375 0.533 3340 0.476 0.428 0.492 0.571

LowFER (Amin et al., 2020) - 0.359 0.266 0.396 0.544 - 0.465 0.434 0.479 0.526
SpikTE* (Dold, 2022) - 0.21 0.13 0.23 - - - - - -

GNNs

RGCN (Schlichtkrull et al., 2018) 221 0.273 0.182 0.303 0.456 2719 0.402 0.345 0.437 0.494
GraIL (Teru et al., 2020) 2053 - - - - 2539 - - - -

CompGCN (Vashishth et al., 2020) 197 0.355 0.264 0.390 0.535 3533 0.479 0.443 0.494 0.546
NBFNet (Zhu et al., 2021) 114 0.415 0.321 0.454 0.599 636 0.551 0.497 0.573 0.666

SNNs GRSNN (ours) 139 0.368 0.275 0.407 0.551 720 0.508 0.455 0.528 0.616
GRSNN+ (ours) 132 0.393 0.301 0.431 0.572 610 0.532 0.478 0.557 0.637

Visualization of reasoning paths The methodology for visualizing reasoning paths in Appendix F.2 is elucidated below.
The interpretation of reasoning is predicated on the significance of paths to the concluding prediction score. According to
Zhu et al. (2021), this significance or importance can be computed by the gradient of the prediction with respect to the paths,
based on the local 1st-order Taylor expansion, and the path importance can be approximated by summing the importance of
the edges in the path. This edge importance is computed using automatic differentiation. Specifically, during the forward
procedure, the variable of edge weight (initialized to 1) is multiplied to the message transmitted through this edge (i.e.,
the delayed spikes, with 1 representing a spike and 0 representing no spike). Only when a spike is present will there be
a gradient for this variable during backpropagation. Subsequently, during backpropagation, this variable accumulates the
gradients of all neurons at every time step, representing the edge importance.

For the non-differentiable spiking operation, a distinct surrogate gradient is employed for backpropagation. If the membrane
potential u is below the threshold, the gradient is set to 0, as there is no output spike influencing other neurons. Conversely,
if the membrane potential surpasses the threshold, the gradient is set as 1/u, normalizing the contribution of inputs to the
output based on the membrane potential, as the gradient of the output is for spike 1.

The top-k path importance is thus analogous to the top-k longest paths when considering edge importance. We adopt a beam
search, as suggested by Zhu et al. (2021), to identify these paths. It is crucial to note that this method provides only a rough
approximation, and future research may explore more refined interpretative approaches.

F. More Results and Detailed Values
F.1. Detailed Values of Main Results

In this section, we furnish detailed results for various experiments. The comprehensive result values for transductive
knowledge graph completion are presented in Table 6. For inductive relation prediction, the detailed results can be referred
to in Table 7. Lastly, the exhaustive result values for homogeneous graph link prediction are available in Table 8.

F.2. Interpretability

The visualization of the reasoning paths for the final predictions of several examples are shown in Table 9. It is calculated
based on edge and path importance (refer to Appendix E.3). As shown in the results, GRSNN is adept at discerning relation
relevances and exploiting transitions, for instance, “contains”, and analogs, such as individuals with analogous “award”.

F.3. Impact of Discretization Steps

The impact of temporal discretization with different intervals and steps on GRSNN is explored in Fig. 8, and the details of
hyperparameters are explained in Appendix E.3. Given the substantial computational cost associated with simulating SNNs
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Table 7. Detailed Results for Inductive Relation Prediction (HITS@10). v1-v4 correspond to the four standard versions of inductive
splits.

Class Method FB15k-237 WN18RR
v1 v2 v3 v4 v1 v2 v3 v4

Path-based
NeuralLP (Yang et al., 2017) 0.529 0.589 0.529 0.559 0.744 0.689 0.462 0.671

DRUM (Sadeghian et al., 2019) 0.529 0.587 0.529 0.559 0.744 0.689 0.462 0.671
RuleN (Meilicke et al., 2018) 0.498 0.778 0.877 0.856 0.809 0.782 0.534 0.716

GNNs GraIL (Teru et al., 2020) 0.642 0.818 0.828 0.893 0.825 0.787 0.584 0.734
NBFNet (Zhu et al., 2021) 0.834 0.949 0.951 0.960 0.948 0.905 0.893 0.890

SNNs GRSNN (ours) 0.852 0.957 0.958 0.958 0.943 0.892 0.906 0.888

Table 8. Detailed Results for Homogeneous Graph Link Prediction.

Class Method Cora Citeseer PubMed
AUROC↑ AP↑ AUROC↑ AP↑ AUROC↑ AP↑

Path-based Katz Index (Katz, 1953) 0.834 0.889 0.768 0.810 0.757 0.856
Personalized PageRank (Page et al., 1999) 0.845 0.899 0.762 0.814 0.763 0.860

Embeddings
DeepWalk (Perozzi et al., 2014) 0.831 0.850 0.805 0.836 0.844 0.841

LINE (Tang et al., 2015) 0.844 0.876 0.791 0.826 0.849 0.888
node2vec (Grover & Leskovec, 2016) 0.872 0.879 0.838 0.868 0.891 0.914

GNNs

VGAE (Kipf & Welling, 2016) 0.914 0.926 0.908 0.920 0.944 0.947
S-VGAE (Davidson et al., 2018) 0.941 0.941 0.947 0.952 0.960 0.960

SEAL (Zhang & Chen, 2018) 0.933 0.942 0.905 0.924 0.978 0.979
TLC-GNN (Yan et al., 2021) 0.934 0.931 0.909 0.916 0.970 0.968
NBFNet (Zhu et al., 2021) 0.956 0.962 0.923 0.936 0.983 0.982

SNNs GRSNN (ours) 0.936 0.945 0.915 0.931 0.982 0.982

Table 9. Visualization of the top-2 reasoning paths for examples on FB15k237. It is determined by path importances derived from
edge importances. The superscript −1 indicates the inverse relation.

Query (x, q, y) : (england, contains, pontefract)

0.967 (england, contains, west yorkshire) ∧ (west yorkshire, contains, pontefract)
0.671 (england, contains, leodis) ∧ (leodis, contains−1, west yorkshire) ∧ (west yorkshire, contains, pontefract)

Query (x, q, y) : (58th academy awards nominees and winners, honored for, kiss of the spider woman (film))

1.482 (58th academy awards nominees and winners, award winner, William Hurt)
∧ (William Hurt, film, kiss of the spider woman (film))

1.347 (58th academy awards nominees and winners, award winner, William Hurt)
∧ (William Hurt, nominated for, kiss of the spider woman (film))

Query (x, q, y) : (florida (rapper), profession, artiste)

0.513 (florida (rapper), award, grammy award for album of the year 2010s)
∧ (grammy award for album of the year 2010s, award−1, kanye west) ∧ (kanye west, profession, artiste)

0.512 (florida (rapper), award, grammy award for album of the year 2010s)
∧ (grammy award for album of the year 2010s, award−1, witney houston) ∧ (witney houston, profession, artiste)

over extended periods, experiments primarily employ T = 10 discrete time steps for GRSNN. The results indicate that a
reduced number of time steps (5) with a larger discretization interval significantly impairs performance due to discretization
error, while a larger setting (20) with a smaller interval offers marginal improvements, maintaining comparable results to 10
time steps. This demonstrates the model’s robustness under relatively low latency with minimal discrete time steps.

F.4. Impact of Neuron Number and Parameter Amount

As described in Appendix E.3, we take n = 32 spiking neurons for each graph node, which is consistent with many previous
graph neural network works (Zhu et al., 2021). To further study the impact of neuron number as well as the corresponding
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Figure 8. Analysis of the temporal discretization of GRSNN under varying discrete time steps.

Table 10. Analysis results of GRSNN with varying neuron number per graph node on WN18RR.
Neuron number per node Parameters MR↓ MRR↑ H@1↑ H@3↑ H@10↑

8 1.9K 967 0.452 0.405 0.464 0.551
16 6.9K 819 0.483 0.430 0.500 0.597
32 26K 720 0.508 0.455 0.528 0.616
64 101K 668 0.522 0.469 0.544 0.632
96 226K 648 0.523 0.470 0.546 0.630

parameter amount, we explore results with varying neuron numbers per node in this section. As shown in Table 10, the
performance will grow as parameters increase and 32 neurons per node are not optimal. On the other hand, more neurons
lead to a larger computational complexity, and there exists a trade-off between performance and complexity.

F.5. Spiking Link Prediction Head

As explained in Appendix E.1, we leverage a feedforward neural network g to estimate the conditional likelihood of the given
pair representation hq(x, y), and following previous work (Zhu et al., 2021), g is implemented as a two-layer MLP with
ReLU activation. While this network can be converted to a spiking MLP through rate or temporal coding (Rueckauer et al.,
2017; Stöckl & Maass, 2021) to enable a fully spiking system, we further study if we can directly and jointly train a spiking
network for this link prediction head. To this end, we replace the ReLU activation with a simple non-leaky Integrate and Fire
neuron model combined with the simple current model (i.e., the input current is the linear combination with spikes without
dynamics, Ii(t) =

∑
j wijsj(t) + bi), consider rate coding over four discrete time steps, and use surrogate derivatives for

training. As shown in Table 11, the performance of spiking MLP is almost the same as that with ReLU activation because
the major component of the task is to extract pair representations, which is done by the main GRSNN part.

F.6. Error Bar

We investigate the error bar of our method on WN18RR based on three runs of experiments with different random seeds.
Table 12 shows that the variance of different runs is extremely small, indicating the robustness of the method.

G. More Discussions
Knowledge reasoning in human brains involves many neurophysiological processes across many brain areas, and how this is
implemented is not fully understood. In this work, we mainly focus on neuro-inspired methods in AI task formulation to
investigate how SNNs as computational models can deal with (knowledge) graph reasoning, while it can be future work to
study better correspondence with neuroscience.

For neuromorphic hardware, on-chip memory limitation is an issue, so it may not directly support large-scale graphs. But
neuromorphic hardware is rapidly developing for larger memories, for example, Intel’s Loihi 2 can support 1 million neurons
and 120 million synapses. While this may still not fully support 32 neurons per node for some knowledge graphs, but fewer
neurons, such as 16, could be acceptable, and it works for our method with some trade-off for performance (as shown in
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Table 11. Comparison results of different final MLP types on WN18RR.
Final MLP type MR↓ MRR↑ H@1↑ H@3↑ H@10↑

ReLU 720 0.508 0.455 0.528 0.616
spiking 701 0.502 0.447 0.521 0.615

Table 12. Error bar on WN18RR.
MR↓ MRR↑ H@1↑ H@3↑ H@10↑

707±22 0.508±0.000 0.455±0.001 0.528±0.000 0.616±0.001

Appendix F.4). As neuromorphic computing is a rapidly developing field considering both hardware and algorithm, this
paper do not restrict algorithms to some existing hardware, but focuses on the algorithm level with theoretical analysis
considering hardware (energy), aligning with previous SNNs works. Actually, algorithms can potentially guide future
software-hardware co-design (Schuman et al., 2022). We hope this work could serve as a catalyst for deeper insights and
wider applications of neuromorphic computing systems.
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