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Abstract
Adam with decoupled weight decay, also known
as AdamW, is widely acclaimed for its superior
performance in language modeling tasks, surpass-
ing Adam with ℓ2 regularization in terms of gen-
eralization and optimization. However, this ad-
vantage is not theoretically well-understood. One
challenge here is that though intuitively Adam
with ℓ2 regularization optimizes the ℓ2 regular-
ized loss, it is not clear if AdamW optimizes a
specific objective. In this work, we make progress
toward understanding the benefit of AdamW by
showing that it implicitly performs constrained
optimization. More concretely, we show in the
full-batch setting, if AdamW converges with any
non-increasing learning rate schedule whose par-
tial sum diverges, it must converge to a KKT point
of the original loss under the constraint that the
ℓ∞ norm of the parameter is bounded by the in-
verse of the weight decay factor. This result is
built on the observation that Adam can be viewed
as a smoothed version of SignGD, which is the
normalized steepest descent with respect to ℓ∞
norm, and a surprising connection between nor-
malized steepest descent with weight decay and
Frank-Wolfe.

1. Introduction
Adam (Kingma & Ba, 2014) and its variant AdamW

(Loshchilov & Hutter, 2018) have been the most successful
and widely used optimization algorithms in deep learning,
especially for large language models (LLMs), whose pre-
training costs massively and cannot be done with SGD.
Despite its tremendous empirical success, we lack a good
theoretical understanding of Adam’s underlying work and
the roles of its hyperparameters, in particular, weight decay.
AdamW achieves better optimization and generalization over
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Adam and decouples the effect of the learning rate and the
weight decay coefficient by using a different implementa-
tion of weight decay (Loshchilov & Hutter, 2018). While
Adam implements weight decay as a ℓ2 regularization of the
training objective, AdamW directly shrinks its weight per step,
known as the decoupled weight decay (see Algorithm 1).

However, the advantage of AdamW over Adam is mostly em-
pirical and our theoretical understanding is quite limited.
Zhuang et al. (2022) argues that one desirable property that
AdamW has while Adam does not is scale-freeness, meaning
AdamW yields the same optimization trajectory if loss is mul-
tiplied by any positive constant. Yet this property does not
give us enough information to understand the difference
regarding the optimization processes and the final learned
solutions between AdamW and Adam with ℓ2 regularization.
Intuitively, if Adam with ℓ2 regularization converges to some
point, it converges to at least a stationary point of the reg-
ularized loss function, if not a minimizer. But for AdamW,
it is even not clear if it is optimizing any (regularized) loss
function. Thus, towards taking the first step of understand-
ing the benefit of decoupled weight decay in AdamW, we ask
the following question:

Which solution does AdamW converge to, if it con-
verges?

Our following main result Theorem 1.1 characterizes the
implicit bias of AdamW in the deterministic case, where a
full-batch loss is used:

Theorem 1.1. For any continuously differentiable function
L : Rd → R, β1 ≤ β2 < 1, initialization x0 and non-
increasing learning rate {ηt}∞t=1 such that

∑∞
t=1 ηt = ∞,

if the iterates of AdamW {xt}∞t=0 on L converges to some x∞,
then x∞ is a KKT point (Definition 3.6) of the constrained
optimization problem min∥x∥∞≤ 1

λ
L(x).

If L is additionally convex, then AdamW converges to the
constrained minimizer, i.e., x∞ ∈ argmin∥x∥∞≤ 1

λ
L(x).

Despite being simplistic, the full-batch setting is still a very
interesting and highly non-trivial regime, because the two
main hypotheses of why Adam outperforms SGD got chal-
lenged recently in the deterministic regime (Kunstner et al.,
2022). The first hypothesis is that Adam outperforms SGD
by better handling heavy-tailed noise (Zhang et al., 2020).
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Algorithm 1 Adam with ℓ2 regularization and

Adam with decoupled weight decay (AdamW)

Input: β1, β2 > 0, initialization x0, total steps T , learn-
ing rate schedule {ηt}Tt=1, weight decay coefficient λ
m0 ← 0,v0 ← 0
for t = 1, 2, · · · , T do
gt ← ∇L(xt−1) +λxt−1

mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

xt ← xt−1 − ηt
mt√
vt
−ληtxt−1

end for
return xT

However, Kunstner et al. (2022) finds that Adam still out-
performs GD for optimizing language tasks even in the full-
batch setting. The second hypothesis is the smoothness
of the training loss landscape can linearly increase as the
gradient norm increases and thus clipping or normalization
is necessary for gradient descent. Intriguingly, Kunstner
et al. (2022) finds that normalizing each update of GD can-
not close the gap towards Adam in the full-batch setting,
but normalizing each coordinate to its sign (i.e., SignGD)
closes the gap. The theoretical results and analysis in this
work support the empirical observation made by Kunstner
et al. (2022). The way we prove Theorem 1.1 is first to
prove that normalized steepest descent with weight decay
(NSD-WD) for any norm ∥·∥ must converge to KKT points
of the constrained optimization problem min∥x∥≤ 1

λ
L(x)

(Theorem 3.7). Then we show that AdamW asymptotically
behaves just like SignGD with weight decay, which is the
normalized steepest descent w.r.t. ℓ∞ norm with weight
decay and the same proof framework generalizes to AdamW

if β1 ≤ β2 < 1. The condition β1 ≤ β2 is crucial, and
we provide a counter-example where 1 > β1 > β2 and
AdamW converges somewhere else, instead of a constrained
minimizer.

It remains interesting why SignGD beats Normalized-GD
in the full batch setting. They are both normalized steepest
descent but with respect to different norms – Normalized-
GD picks the steepest direction under the geometry of ℓ2
norm, while SignGD picks the steepest direction under the
geometry of the ℓ∞ norm. It is natural to make the following
conjecture: Adam outperforms GD due to its utilization of ℓ∞
geometry, under which the loss function could have better
properties, e.g., smaller smoothness. Our main result Theo-
rem 1.1 provides positive evidence for this conjecture. We
also provide a convergence analysis for normalized steepest
descent with weight decay for convex loss, where the subop-
timality against the constrained minimizer in norm ball of
radius 1

λ vanishes is O( H
Tλ2 ), where T is the total number

of steps, λ is the weight decay factor, and H is the smooth-

ness of loss w.r.t. the particular norm used for picking the
steepest descent direction. Based on the convergence bound,
we construct a concrete d-dimensional loss function in Sec-
tion 3.1 whose minimizer x∗ satisfies ∥x∗∥2 ≈

√
d ∥x∗∥∞

and SignGD with weight decay converges much faster than
Normalized-GD with weight decay because SignGD with
weight decay can use a

√
d times larger weight decay factor

λ than Normalized-GD.

Contributions. Below we summarize our contributions:

1. In Section 3.1, we prove normalized steepest descent
with weight decay optimizes convex functions under
norm constraints (Theorem 3.5). In Section 3.2, we
prove it must converge to KKT points of the norm-
constrained optimization problem for general loss func-
tions if it converges with a learning rate schedule whose
partial sum diverges (Theorem 3.7).

2. In Section 4, we prove AdamW must converge to KKT
points of the norm-constrained optimization problem
for general loss functions if it converges with a non-
increasing learning rate schedule whose partial sum
diverges (Theorem 1.1).

3. Towards generalizing the proof of Theorem 3.7 to The-
orem 1.1, we prove a novel and tight upper bound on
average update size of Adam (Lemma 4.2), which holds
even for non-deterministic settings as well and might
be of independent interest to the community. We test
various predictions made by our bound in experiments.

2. Preliminaries and Notations
Notations: We use ∥·∥ to denote a general norm and ∥·∥∗
to denote its dual norm. We say a function L : Rd → R
has H-lipschitz gradient w.r.t. norm ∥·∥ for some H > 0
iff for all x,y ∈ Rd, ∥∇L(x)−∇L(y)∥∗ ≤ H ∥x− y∥.
We define the smoothness of loss L as the smallest positive
H w.r.t. ∥·∥ such that L has H-lipschitz gradient. We say a
function L : Rd → R is convex iff for any x,y ∈ Rd and
θ ∈ [0, 1], it holds that L(θx+ (1− θ)y) ≤ θL(x) + (1−
θ)L(y). We define the subgradients of convex function L
at point x as {g ∈ Rd | L(y) ≥ L(x) + ⟨y − x, g⟩ ,∀y ∈
Rd}, which is denoted by ∂L(x). When L is differentiable
at x, ∂L(x) contains only one element, which is the gradient
∇L(x). In particular, all norms are convex functions and
we have the following standard lemma for the subgradients
of norms:

Lemma 2.1. For any norm ∥·∥ and x ∈ Rd,

∂ ∥x∥ = {∆ ∈ Rd | ∥∆∥∗ = 1, ⟨∆,x⟩ = ∥x∥}.

Steepest Descent: We say v is a steepest descent direction
for objective function L at current iterate x w.r.t. norm ∥·∥
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iff ∥v∥ = 1 and ⟨v,∇L(x)⟩ = min∥v′∥≤1 ⟨v′,∇L(x)⟩.
Thus for all steepest descent direction v, we have that
⟨v,∇L(x)⟩ = −∥∇L(x)∥∗.

Given initialization x0, learning rate schedule {ηt}∞t=0 and
weight decay factor λ, the tth iterate of normalized steepest
descent w.r.t. ∥·∥ with decoupled weight decay is defined as

xt = (1− ληt)xt−1 − ηt∆t,

where ∆t ∈ argmax
∥∆∥≤1

∇L(xt−1)
⊤∆. (1)

Because the dual norm of the dual norm is always equal to
the original norm, by Lemma 2.1, we can also characterize
the steepest descent directions as the subgradient of its dual
norm.

Lemma 2.2. argmax
∥∆∥≤1

∇L(x)⊤∆ = ∂ ∥y∥∗|y=∇L(x)
.

For completeness, we also define the steepest descent w.r.t.
∥·∥ with decoupled weight decay below, though we will
not use it in our analysis. If we pick ℓ2 norm, Equation 2
becomes standard GD.

x̃t = (1− ληt)x̃t−1 − ηt∆̃t,

where ∆̃t ∈ argmax
∆̃∈Rd

(
∇L(xt−1)

⊤∆̃− 1

2

∥∥∥∆̃∥∥∥2) .
(2)

It can be shown that for each steepest descent update ∆̃
for objective L at x, there exists some normalized steepest
descent update ∆ satisfying ∆̃ = ∥∇L(x)∥∗ ∆.

3. Warm Up: Implicit Bias of Normalized
Steepest Descent w. Weight Decay

In this section, we aim to present some high-level intu-
ition about the constrained-minimization implicit bias of
AdamW (Theorem 1.1), by showing the same implicit bias
for SignGD with weight decay, or equivalently, normal-
ized steepest descent w.r.t. ℓ∞ norm. AdamW is arguably a
smoothed version of SignGD, which reduces the correlation
between its numerator and denominator by using past mov-
ing average and thus reduces the biasedness of the update
direction in the presence of noise. But intuitively, their be-
haviors are similar when there is no noise and the learning
rate is small.

Our analysis in this section holds for all norms, including
the non-differentiable ones, like ∥·∥∞.

3.1. Convex Setting: Constrained Optimization

In this subsection, we give a simple non-asymptotic conver-
gence analysis for normalized Steepest descent w. weight
decay (NSD-WD) w.r.t. to general norms over smooth con-
vex loss functions. If the norm of initialization is no larger

than 1
λ where λ is the weight decay factor then surprisingly

NSD-WD is exactly equivalent to a well-known optimization
algorithm in literature, Frank-Wolfe (Frank et al., 1956),
where the constraint set here is the norm ball with radius
1
λ . If the norm of initialization is larger than 1

λ , then the
analysis contains an additional phase where the norm of
iterates linearly converges to 1

λ . In this case, the iterate of
NSD-WD may always be outside the 1

λ norm ball, but still,
the convergence analysis of Frank-Wolfe can be adopted
(e.g.,Jaggi (2013)). First, we show that the norm of the
iterates will shrink to 1

λ as long as the norm of each up-
date is bounded by 1, i.e., ∥∆t∥ ≤ 1. Note this conclusion
doesn’t use the convexity of the function L(x) nor the up-
date ∆t being the steepest descent direction. It can hold
under non-deterministic settings.

Lemma 3.1. For any learning rate schedule {ηt}∞t=1 and
update {∆t}∞t=1 such that ληt < 1 and ∥∆t∥ ≤ 1,

∥xt∥ −
1

λ
≤ max

(
e−λ

∑t
i=1 ηi

(
∥x0∥ −

1

λ

)
, 0

)
.

The proof is deferred to Appendix A.1. Lemma 3.1 shows
that xt is either always inside the norm ball with radius
1
λ , or their distance shrinks exponentially as the sum of
learning rates increases. Whenever xt gets into the norm
ball with radius 1

λ , xt will not leave it and the remaining
trajectory of NSD-WD is exactly the same as Frank-Wolfe,
as shown in the following theorem. We note the relationship
between Frank-Wolfe and steepest descent algorithms is
also observed very recently in the continuous case (Chen
et al., 2023).

Theorem 3.2. For any norm ∥·∥, weight decay λ, and
∥xt−1∥ ≤ 1

λ , NSD-WD with learning rate ηt < 1
λ and Frank-

Wolfe (Algorithm 2) with step size γt = ηtλ and convex set
X ≜ {y | ∥y∥ ≤ 1

λ} generate the same next iterate xt.

Algorithm 2 Frank-Wolfe

Input: convex set X , x0 ∈ X , total steps T , step sizes
{γt}Tt=1

for t = 1, 2, · · · , T do
yt ← argminy∈X ∇L(xt−1)

⊤y
xt ← (1− γt)xt−1 + γtyt

end for
return xT

Define x∗ = argmin∥x∥≤ 1
λ
L(x) to be the constrained

minimizer of convex function L(x). We first compute how
much the gap between L(xt) and L(x∗) can decrease in
one normalized steepest descent step when the iterate xt is
bounded.

Lemma 3.3 (Descent Lemma for Smooth Convex Loss).
Suppose loss function L is convex and has H-lipschitz gra-
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dient w.r.t. norm ∥·∥. For iterates {xt} in NSD-WD (Equa-
tion 1), we have that

L(xt)− L(x∗)

≤(1− ληt)(L(xt−1)− L(x∗)) +
H

2
η2t (1 + λ ∥xt−1∥)2 .

The proof of Lemma 3.3 is deferred to Appendix A.2. With
Lemma 3.3, we can prove the convergence of L(xt) for
learning rate schedules with certain conditions. The proof
is also deferred to Appendix A.2.
Theorem 3.4. Assume that ηt ≥ 0, limt→∞ ηt = 0 and∑∞

t=1 ηt = ∞. For any convex loss L with H-lipschitz
gradient, limt→∞ L(xt) = L(x∗).

We also provide a specific example of learning rates {ηt}∞t=1

that can achieve O( 1t ) convergence of f(xt), which is the
same as Frank-Wolfe over convex objectives (Jaggi, 2013)
and the proof is standard. For completeness, we provide a
proof of Theorem 3.5 in Appendix A.2.
Theorem 3.5. Define B = max {∥x0∥ , 1

λ}. For NSD-WD
with learning rate schedule ηt =

2
λ(t+1) , we have

L(xt)− L(x∗) ≤ 2H(1 + λB)2

(t+ 2)λ2

for t ≥ 1.

Note that the descent rate highly depends on the smoothness
coefficient H , which is determined by the selected norm.
Therefore, we provide a synthetic example that may demon-
strate the advantage of ℓ∞ norm as mentioned in Section 1.
For some constant x∗ ∈ Rd, the loss function g : Rd → R
is defined as

g(x) =

d∑
i=1

(xi − x∗
i )

2

i2
. (3)

The Hessian matrix∇2g is a diagonal matrix with diagonal
entries { 2

i2 }
d
i=1. For ℓ2 norm, the smoothness coefficient is

the largest eigenvalue of Hessian matrix, which is 2. For ℓ∞
norm, the smoothness coefficient is the sum of the diagonal
entries because of the diagonality, which is

∑d
i=1

2
i2 . It

is upper bounded by
∑∞

i=1
2
i2 = π2

3 for all dimension d.
However, if x∗ is set to be in the unit ℓ∞ norm ball, its ℓ2
norm can be as large as

√
d, which makes the suboptimal-

ity bound in Theorem 3.5 for ℓ2 norm normalized steepest
descent with weight decay d times larger than its ℓ∞ coun-
terpart. We implement steepest descent with ℓ∞ norm and
ℓ2 norm on a 100-dimension example in Section 5.2 and
find that ℓ∞ norm can indeed work better.

3.2. Non-convex Setting: Convergence to KKT Points

In this subsection, we study the implicit bias of SignGD (or
more generally, NSD-WD) when the loss is non-convex. In

such case, last-iterate parameter convergence is, in general,
difficult to show1, and thus we turn to study what parameters
SignGD and NSD-WD can converge to. Our main results
Theorem 3.7 show that such parameters must be the KKT
points (see Definition 3.6) of the constrained optimization
problems. In particular, if the objective is convex, since the
norm ball constraint is always convex for all norm, all KKT
points are constrained minimizers.

Definition 3.6 (KKT points). We say x∗ ∈ Rd is
a KKT point of the constrained optimization problem
min∥x∥≤ 1

λ
L(x) if and only if there exists s∗ such that x∗

and s∗ satisfy the following KKT condition.

(Stationarity) 0 ∈ ∇L(x∗) + s∗∂ ∥x∗∥ .

(Primal feasibility) ∥x∗∥ ≤ 1

λ
.

(Dual feasibility) s∗ ≥ 0.

(Complementary slackness) s∗(∥x∗∥ − 1

λ
) = 0.

For convex L, all KKT points x∗ are optimal and the dual
variable s∗ ≥ 0 is the certificate for the optimality. To see
that, for any other ∥y∥ ≤ 1

λ , it holds that

L(y) ≥ L(y) + s∗(∥y∥ − 1

λ
) ≥ L(x∗) + s∗(∥x∗∥ − 1

λ
),

where the second inequality is because L(x) + s∗ ∥x∥ is
also convex and 0 is its subgradient at x∗. Thus we conclude

L(y) ≥ L(x∗) + s∗(∥x∗∥ − 1

λ
) = L(x∗).

Now we state the main result for this subsection.

Theorem 3.7 (Non-convex, KKT). For any continuously
differentiable function L : Rd → R, initialization x0, and
learning rate schedule {ηt}∞t=1 such that

∑∞
t=1 ηt =∞, if

the iterates of NSD-WD {xt}∞t=0 on L converges to some x∞,
then x∞ is a KKT point (Definition 3.6) of the constrained
optimization problem min∥x∥≤ 1

λ
L(x).

To prove Theorem 3.7, we use the following alternative
characterization for KKT points of min∥x∥≤ 1

λ
L(x) below

based on Lemma 2.1.

Lemma 3.8. x is a KKT point of min∥x∥≤ 1
λ
L(x) iff ∥x∥ ≤

1
λ and ⟨−λx,∇L(x)⟩ = ∥∇L(x)∥∗.

With Lemma 3.8, next we illustrate the intuition for The-
orem 3.7 for the case where the dual norm ∥·∥∗ is contin-
uously differentiable at ∇L(x∞), e.g., ℓ2 norm and when
∇L(x∞) ̸= 0. For sufficiently large t, when∇L(xt) gets
sufficiently close to ∇L(x∞), the descent direction −∆t

1Indeed, even for convex case, Frank-Wolfe may not converge
in parameter.(Bolte et al., 2023)
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is unique, equal to −∇∥∇L(xt)∥∗ by Lemma 2.2, and
satisfies ⟨∆t,∇L(xt)⟩ = ∥∇L(xt)∥∗.

Taking t→∞ we get

⟨−∇∥∇L(x∞)∥∗ ,∇L(x∞)⟩ = ∥∇L(x∞)∥∗ .

Moreover, we must have

∇∥∇L(x∞)∥∗ + λx∞ = lim
t→∞

(∇∥∇L(xt)∥∗ + λxt)

= 0,

otherwise xt keeps moving towards∇∥∇L(x∞)∥∗+λx∞
and thus x∞ cannot be the limit, since

∑∞
t=1 ηt = ∞.

This implies the second condition in Lemma 3.8. The first
condition that ∥x∞∥ ≤ 1

λ is immediate from Lemma 3.1
and that

∑∞
t=1 ηt =∞.

However, the above intuition no longer works when dual
norm ∥·∥∗ is not differentiable at ∇L(x∞). This could
happen for ℓ∞ norm where the dual norm is ℓ1 norm and
∇L(x∞) with coordinates of value 0, because the subgradi-
ent of absolute value function at 0, ∂|0|, could be anything
between −1 and 1. And more generally, this could happen
for any norm and∇L(x∞) = 0. If the limit point x∞ has
zero gradient for L, then the steepest descent direction −∆
is provably not continuous around x∞.

The following lemma (Lemma 3.9) circumvents the above
issue by considering the weighted average of past steepest
descent directions, which provably converges, given the iter-
ates {xt}∞t=1 converge. Theorem 3.7 is a direct combination
of Lemma 3.9 and Lemma 3.8 and we omit its proof. The
proof of Lemma 3.9 is deferred into Appendix A.3.

Lemma 3.9. For any learning rate schedule {ηt}∞t=1 sat-
isfying

∑∞
t=1 ηt = ∞, if the iterates of NSD-WD {xt}∞t=0

converges to some x∞, we have that

1. ∆∞ := lim
T→∞

∑T
t=1 ηt∆t∑T

t=1 ηt
exists and ∆∞ = −λx∞.

2. ⟨∇L(x∞),∆∞⟩ = ∥∇L(x∞)∥∗.

3. ∥∆∞∥ ≤ 1.

4. Implicit Bias of AdamW
In this section, we extend the analysis on NSD-WD in Sec-
tion 3 to AdamW to prove that the converged parameters of
AdamW is the KKT point of the constrained optimization
problem. The proof relies on an upper bound of average
update size of AdamW and we find that the bound can also be
used to guide hyperparameter tuning in empirical study.

We first state the analog of Lemma 3.9 for AdamW with the
norm being ℓ∞ norm since we treat AdamW as a smoothed
version of SignGD, which is Lemma 4.1. Here we addi-
tionally assume that {ηt}∞t=1 is non-increasing and ∆t is

defined as mt√
vt

from Algorithm 1. Theorem 1.1 is again a
direct combination of Lemma 3.8 and Lemma 4.1.

Lemma 4.1. For non-increasing learning rate schedule
{ηt}∞t=0 satisfying

∑∞
t=1 ηt = ∞ and β2 ≥ β1, we get

{xt}∞t=1 by running AdamW with weight decay factor λ. If
{xt}∞t=0 converges to some x∞, then it holds that

1. ∆∞ ≜ lim
T→∞

∑T
t=1 ηt∆t∑T

t=1 ηt
exists and ∆∞ = −λx∞.

2. ⟨∇L(x∞),∆∞⟩ = ∥∇L(x∞)∥1.

3. ∥∆∞∥∞ ≤ 1.

The condition β1 ≤ β2 is necessary for the conclusion to
hold. Otherwise, the iterates can converge outside the ℓ∞
norm ball with radius 1

λ as shown in Appendix B.3.

The first two properties in Lemma 4.1 are straightforward,
and the main technical difficulty here lies in the proof of
the third property. This is because for any single t, ∥∆t∥
could be larger than 1, which is different from the case of
NSD-WD. To prove the third property, we need a tight upper
bound for the average update size of Adam-like update rule,
which is Lemma 4.2. The proof of Lemma 4.1 is deferred
to Appendix B.

4.1. Upper Bound for Average Update Size of Adam

As mentioned earlier, Adam updates
∥∥∥ mt√

vt

∥∥∥ can easily go
beyond 1 and thus we prove the following upper bound for
the average update size of Adam (Lemma 4.2). The proof of
Lemma 4.2 is deferred to Appendix B.1.

Lemma 4.2. Given any β1 ≤ β2 < 1, suppose scalar
sequences {vt}∞t=0 and {gt}∞t=1 satisfy that v0 ≥ 0, v1 > 0
and vt − β2vt−1 ≥ (1 − β2)g

2
t for t ≥ 1. Given initial

value |m0| ≤
√
v0, define mt = β1mt−1 + (1 − β1)gt

and ∆t =
mt√
vt

for t ≥ 1. For any coefficients {ηt}∞t=1 and
T ∈ N, it always holds that(

|
∑T

t=1 ηt∆t|∑T
t=1 ηt

)2

≤1 + β2 − β1

1− β2

∑T
t=1 ηtβ

t−1
1∑T

t=1 ηt

+
(β2 − β1)(1− β1)

(1− β2)
∑T

t=1 ηt

T∑
t=2

αt ln
vt
v1

(4)

where αt = ηt
1−βt−1

1

1−β1
−
∑T−t

i=1 ηt+iβ
i−1
1 . In particular,

when β1 = β2, it even holds that |∆t| ≤ 1.

Note {vt}∞t=0 here only needs to satisfy a more general
condition rather than to be the exact moving average of g2t .
It can be applied to the practical scenario where a small
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positive constant ϵ is added to
√
vt in the denominator to

improve the numerical stability of Adam. It is easy to verify
that for vt in Algorithm 1, we have that

(
√
vt + ϵ)2 − β2(

√
vt−1 + ϵ)2

≥(vt − β2vt−1) + 2ϵ(
√
vt − β2

√
vt−1)

=(1− β2)g
2
t + 2ϵ(

√
β2
2vt−1 + (1− β2)g2

t −
√

β2
2vt−1)

≥(1− β2)g
2
t .

Therefore, for Adam with ϵ, vt in Equation 4 is always lower
bounded, and if we further have an upper bound for gradi-
ents, then we can easily control the average update size of
Adam. One nice property is that the upper bound only scales
up logarithmically to 1/ϵ, instead of linearly, as the naive
upper bound scales.

Relationship of ℓ∞ norm and hyperparameters An-
other application of Lemma 4.2 is to provide a tight upper
bound for the norm of iterates for any setting, e.g., before
convergence or even when the gradient is stochastic. In par-
ticular, when the learning rate does not change over steps,
we have the following upper bound whose proof is in Ap-
pendix B.4.

Lemma 4.3. For any coordinate j ∈ [d], for AdamW with
constant learning rate η and weight decay factor λ, with
C ≜ max

1≤t≤T

∣∣∣ln vt,j

v1,j

∣∣∣, it holds that

λ |xT,j | − 1 ≤ (1− λη)Tλ |x0,j |

+
λη(β2 − β1)

[
2C + βT

1 + (1− λη)T
]

2(1− β2)|1− λη − β1|
.

When β1 = β2, we only need T = Ω
(

log∥x0∥∞
λη

)
to guar-

antee that |xT , j| is no larger than 1
λ for any λη ≤ 1. How-

ever, when β1 < β2 and β1 < 1− λη, the dominating term
on the right-hand side is C · ηλ(β2−β1)

(1−β2)(1−ηλ−β1)
. Assuming

C = O(1), it also requires λη ≪ 1 − β2 < 1 − β1 or
λη < 1 − β2 ≈ 1 − β1 to ensure the remaining term is
small.

5. Experiments
In this section, we run experiments to verify the theoretical
claims. In Section 5.1, we show that the ℓ∞ norm of iterates
by AdamW can converge below 1

λ as shown in Theorem 1.1
even when the function is non-convex. In Section 5.2, we
show that steepest descent w.r.t. ℓ∞ norm works better
than w.r.t. ℓ2 norm for a specific function, which has better
properties under ℓ∞ geometry.

100 102 104

Epoch

0.5

1

2

(a) β1 = β2 = 0.99

100 102 104

Epoch

0.5

1

2
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(d) β1 = 0.9, β2 = 0.999

Adam AdamW, = 1 AdamW, = 2

Figure 1: The ℓ∞ norm of parameters during the training
process of language modeling task on PTB. The complete
results for Adam are in Figure 6. As predicted by Lemma 4.3,
ℓ∞ norm can be bounded by 1

λ when β1 = β2 or λη ≪
1− β2 < 1− β1. However, for the default setting β1 = 0.9
and β2 = 0.999, the ℓ∞ norm of AdamW may not be bounded
by 1

λ because 1− β2 < λη < 1− β1.

5.1. Language Modeling Task on PTB

We train a small two-layer transformer for language mod-
eling task on the Penn Treebank dataset (PTB) (Marcus
et al., 1993) based on the implementation provided by Kun-
stner et al. (2022). We train the model in full batch without
dropout in order to get deterministic gradients and follow
the constant learning rate setting for the total 12800 epochs.
The learning rate η is

√
10× 10−32. For each setting of β1,

β2, we use Adam and AdamW with weight decay coefficient
λ = 1, 2 to compare the ℓ∞ norm for iterates in each opti-
mizer. We employ the standard implementation in PyTorch
but set ϵ to be 10−16 in Adam and AdamW rather than 0 to
avoid division by zero error because the gradient of some
coordinates is 0 in the first iteration. Each run is repeated for
4 random seeds to show the robustness of our claim. More
details can be found in Appendix C.

From the discussion in Lemma 4.3, it requires either β1 ≈
β2 or λη ≪ 1 − β2 when β1 < β2 in order for ∥xT ∥∞
to be bounded by 1

λ . To verify the first case, we employ
the two hyperparamter settings where β1 = β2 = 0.99 and
β1 = β2 = 0.999. To verify the second case, we employ
the hyperparameter setting where β1 = 0.9 and β2 = 0.95.
The ℓ∞ norm of iterates for one random seed are shown in

2We follow the tuning process in Kunstner et al. (2022) for
AdamW and

√
10 × 10−3 achieves the best training performance.√

10× 10−3 also achieves the best training performance for full-
batch Adam in Kunstner et al. (2022).
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Figures 1a to 1c. In order to show the details around 0.5
and 1, we truncate the range of y-axis and the full result is
plotted in Figure 6 in Appendix C. In all these three settings,
the ℓ∞ norm of iterates in Adam keeps increasing while the
ℓ∞ norm of iterates in AdamW is constrained below 1 and
1
2 for λ = 1 and 2 respectively. The results for another
three random seeds show similar pattern and are plotted in
Figures 3 to 5 and Figures 7 to 9.

We also show that the condition is necessary for empirical
study by training with default β1 = 0.9 and β2 = 0.999.
Now 1−β2 < λη and β1 ̸= β2, which breaks the condition.
The ℓ∞ norm of iterates are shown in Figure 1d. The ℓ∞
norm of AdamW can not be constrained by 1 and 1

2 for λ = 1
and 2.

5.2. Synthetic Problem

As mentioned in Section 3.1, we construct the loss function
Equation 3 for some x∗ ∈ R100. The first 10 coordinates of
x∗ is 1 while the rest 90 coordinates are uniformly sampled
between [−1, 1]. With such initialization, the ℓ∞ norm of
x∗ is always upper bounded by 1 but the ℓ2 norm can be as
large as 10.

We want to verify that an optimization algorithm can take
advantage when it employs the norm that is more suitable
for the loss function. So we implement normalized steepest
descent and steepest descent with ℓ∞ norm and ℓ2 norm. In
order to test the effect of weight decay, we also implement
normalized steepest descent with weight decay for both
norms. In order to be able to reach the global minimizer, the
weight decay factor λ is set to be the lower bound of 1

∥x∗∥ ,
which is 1 for ℓ∞ norm and 0.1 for ℓ2 norm. The learning
rate can be set according to theoretical results. The learning
rate for steepest descent is constant 1

H in which H is the
smoothness coefficient. By Theorem 3.5, the learning rate
for normalized steepest descent with weight decay factor λ
should be set as ηt = 2

λ(t+1) . We also use the same learning
rate schedule for normalized steepest descent without weight
decay.

All the algorithms receive the same initialization x0, whose
coordinate is uniformly initialized from [−5, 5]. The results
for the first 100 iterations is shown in Figure 2. The steepest
descent w.r.t. ℓ∞ norm always performs better than the
steepest descent w.r.t. ℓ2 norm no matter whether the update
is normalized or not. For both norms, the performance of
the normalized steepest descent is improved when weight
decay is activated.

6. Related Work
Adaptive Methods: While stochastic gradient de-
scent (Robbins & Monro, 1951) remains popular for op-
timizing deep learning models like ResNet (He et al., 2016),

20 40 60 80 100
Iteration

10 4

10 2

100

102
 norm
 norm with wd
 norm unnormalized

2 norm
2 norm with wd
2 norm unnormalized

Figure 2: For both ℓ2 and ℓ∞ norm, we plot training loss
of normalized steepest descent w. and w.o. weight decay
and unnormalized steepest descent over the quadratic loss
g(x) =

∑100
i=1

(xi−x∗
i )

2

i2 . When weight decay is turned
on, it is set as 1

∥x∗∥ to preserve the optimal value even
with the norm constraints Theorem 3.4. We find that ℓ∞
norm always outperforms ℓ2 norm regardless of the usage
of weight decay and irrespective of whether the steepest
descent method is normalized. The usage of weight decay
accelerates the optimization for both ℓ∞ norm and ℓ2
norm.

only adaptive methods can efficiently train recently-emerged
large language models (Zhang et al., 2020). There has been a
fruitful amount of research on adaptive gradient method, in-
cluding AdaGrad (Duchi et al., 2011), RMSProp (Tieleman
& Hinton, 2012), AdaDelta (Zeiler, 2012), Adam (Kingma
& Ba, 2014), AdaFactor (Shazeer & Stern, 2018), AMS-
Grad (Reddi et al., 2018), AdaBound (Luo et al., 2018),
Lion (Chen et al., 2024), etc. Recently there have been also
adaptive methods attempting to accelerate by leveraging
the second-order information, e.g., AdaHessian (Yao et al.,
2021) and Sophia (Liu et al., 2023). However, most algo-
rithms that are able to train large language models adopt
coordinate-wise adaptivity. In contrast, stochastic gradient
descent, even equipped with global gradient norm clipping,
cannot match the performance of coordinate-wise adaptive
algorithms on language tasks (Li et al., 2022a). Previous
work has given convergence rate for RMSProp and Adam
under different assumptions (Chen et al., 2018; Zou et al.,
2019; Shi & Li, 2021; Guo et al., 2021; Défossez et al.,
2022; Zhang et al., 2022).

Our work shows that AdamW and SignGD with weight decay
converge to the same point assuming convergence. Balles
& Hennig (2018); Kunstner et al. (2022) point out that the
similarity with SignGD largely accounts for the advantage
of Adam over SGD. Moreover, when SignGD is equipped
with momentum which is one key component of Adam, it
can achieve comparable empirical results with Adam for
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various tasks (Balles & Hennig, 2018; Kunstner et al., 2022;
Bernstein et al., 2018; Crawshaw et al., 2022).

Role of Weight Decay: The usage of weight decay, which
refers to shrinking the parameter by a small constant frac-
tion, can be dated back to the 1980s (Rumelhart et al., 1986;
Hinton, 1987). It has been recognized as a standard trick
to improve the generalization performance of neural net-
works (Krogh & Hertz, 1991; Bos & Chug, 1996) for a
long time. Krizhevsky et al. (2012) first noticed that weight
decay can sometimes accelerate optimization in deep learn-
ing. For modern architectures equipped with normalization
layers, e.g., BatchNorm (Ioffe & Szegedy, 2015) and Layer-
Norm (Ba et al., 2016), only the direction of the parameters
before normalization layers matters, rather than their norms.
Turning on weight decay in such settings changes the ef-
fective learning rate of the parameters (Hoffer et al., 2018;
Arora et al., 2018; Zhang et al., 2018; Li & Arora, 2019; Li
et al., 2020).

Though weight decay is equivalent to ℓ2 regularization for
SGD, for steepest descent methods with general norms and
adaptive methods like Adam, they lead to different optimiza-
tion trajectories (Loshchilov & Hutter, 2018; Zhang et al.,
2018; Zhuang et al., 2022). The empirical benefit of weight
decay over ℓ2 regularization when they are different is not
well-understood in theory.

Implicit Regularization: Our main result Theorem 1.1
shows that AdamW regularizes the ℓ∞ norm of the learned
solution implicitly through modifying the optimization dy-
namics, rather than directly modifying the objective, like
Adam with ℓ2 regularization. This kind of behavior is termed
implicit regularization or implicit bias of optimization al-
gorithms. Though there has been a large volume of works
studying the implicit bias of (Stochastic) GD and its non-
adaptive variants, including settings related to max mar-
gin (Soudry et al., 2018; Gunasekar et al., 2018; Nacson
et al., 2019a;b; Ji & Telgarsky, 2018; Lyu & Li, 2019), ini-
tialization with norm (Gunasekar et al., 2017; Arora et al.,
2019a; Li et al., 2019; Lyu et al., 2021), kernel regime (Jacot
et al., 2018; Arora et al., 2019b;c), and flatness (Blanc et al.,
2020; Damian et al., 2021; Li et al., 2021; Arora et al., 2022;
Li et al., 2022b; Wen et al., 2022; Damian et al., 2022), very
few results are known about the implicit bias of adaptive
methods like Adam. Wilson et al. (2017) shows that for
linear regression problem, adaptive methods can converge
to a solution whose elements have the same magnitude un-
der certain conditions. Their converged solution thus has
small ℓ∞ norm while the converged solution of non-adaptive
methods is known to have the smallest ℓ2 norm among all
the global minimizers. Wang et al. (2021) shows that Adam
behaves similarly to non-adaptive methods like GD when
the cross-entropy loss converges to 0 due to the positive

numerical stability hyperparameter ϵ in the denominator of
Adam’s update rule. The theoretical derivation by Cattaneo
et al. (2023) argues that Adam tends to find interpolating
solutions with small ℓ1 norm.

The concurrent work by Chen et al. (2023) is arguably the
most related work to us, where the recently discovered opti-
mization algorithm by auto-search, Lion (Chen et al., 2024),
is elegantly generalized to a family of algorithms, Lion-K,
where K is some convex function. When K is chosen to be
the dual norm and momentum in Lion-K is turned off, Lion-
K becomes the normalized steepest descent. Their analysis
shows that even with momentum, the steepest normalized
descent with weight decay can be viewed as optimization
under the original norm constraint. However, in any Lion-K
algorithm, the update at one step t only depends on past
iterates through first-order momentum mt. Their analysis
cannot be applied to AdamW because AdamW cannot be writ-
ten in the form of Lion-K for any convex functionK. To see
this, simply note that the update of Lion-K for a fixed K is
completely determined by gt,mt and xt while the update
of AdamW can still be different if the second order momen-
tum vt is different. In terms of proof technique, Chen et al.
(2023) constructs the Lyapunov function while we directly
characterize the KKT point and connect the converged point
to KKT point through the weighted average update.

7. Discussion and Future Works
This work focuses on the implicit bias of AdamW in the
deterministic (or full-batch) case. Though our upper bound
on the average update size of Adam holds unconditionally
on the input gradients, regardless of stochasticity or not, it is
unlikely that the 1

λ upper bound can be reached when there
is large gradient noise, especially when β2 is very close to
1. In that case, the denominator of the update of AdamW
is roughly the square root of the square of the expected
gradient plus some additional gradient variance term, which
strictly dominates the expected gradient in the numerator.
Malladi et al. (2022) uses Stochastic Differential Equation
(SDE) approximation to model the trajectories of Adam in
such regime and empirically tests the implication of SDE
approximation, namely the square root scaling rule.

The most interesting future direction is to understand in
what sense the optimization advantage of coordinate-wise
adaptive methods like Adam over standard SGD for language
modeling tasks can be explained by the conjecture implied
by the findings of Kunstner et al. (2022), that the loss func-
tion for language modeling tasks has better properties under
ℓ∞ geometry. It would be interesting to understand if the
loss landscape in real-world applications shares common
properties with our toy quadratic example and induces simi-
lar results in Figure 2.
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Another important future direction is to provide non-
asymptotic convergence rates for AdamW in both convex
and non-convex settings.

8. Conclusions
We make the first step towards understanding the benefit of
AdamW over Adam with ℓ2 regularization by characterizing
the implicit bias of AdamW, i.e., it can only converge to KKT
points of the ℓ∞ norm constrained optimization problem.
There are two main insights behind this result: (1)Adam is
a smoothed version of SignGD, which is the normalized
steepest descent w.r.t. ℓ∞ norm; (2). for any norm, the cor-
responding normalized steepest descent with weight decay
is essentially Frank-Wolfe over the corresponding norm ball,
which is known to perform constrained optimization. Our
main technical contribution is a tight upper bound of the
average update size of Adam updates. We test its prediction
on the relationship between the ℓ∞ norm of the parameters
and the AdamW hyperparameters η, λ, β1, β2 on a language
modeling task.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Omitted Proofs in Section 3
In this section, we provide the omitted proofs in Section 3, which shows the iterates and the converged solution by normalized
steepest descent with decoupled weight decay before diving into the analysis on AdamW. In Appendix A.1, we prove that the
iterates will enter or stay in the norm ball with radius 1

λ for any normalized update. In Appendix A.2, we prove that the
iterates of normalized steepest descent with weight decay will converge to the constrained minimizer of L(x) in the same
ball with proper learning rates.
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A.1. Omitted proofs for convergence into norm ball with bounded update

Proof of Lemma 3.1. We prove by induction that ∥xt∥ ≤ 1
λ +

∏t
i=1(1− ληi)

(
∥x0∥ − 1

λ

)
.

∥xt∥ −
1

λ
= ∥(1− ληt)xt−1 − ηt∆t∥ −

1

λ
≤ (1− ληt) ∥xt−1∥+ ηt ∥∆t∥ −

1

λ
≤ (1− ληt) ∥xt−1∥+ ηt −

1

λ

= (1− ληt)

(
∥xt−1∥ −

1

λ

)
≤

t∏
i=1

(1− ληi)

(
∥x0∥ −

1

λ

)
.

When ∥x0∥ > 1
λ , we have that

∥xt∥ −
1

λ
≤

t∏
i=1

(1− ληi)

(
∥x0∥ −

1

λ

)
≤

t∏
i=1

exp(−ληi)
(
∥x0∥ −

1

λ

)
= exp(−λ

t∑
i=1

ηi)

(
∥x0∥ −

1

λ

)
.

When ∥x0∥ ≤ 1
λ , ∥xt∥ − 1

λ ≤ 0. This completes the proof.

A.2. Omitted proofs for convergence to constrained minimizer with proper learning rates

Proof of Lemma 3.3. For normalized steepest descent update ∆t from Equation 1,

∇L(xt−1)
⊤(xt − xt−1) = −ηt∇L(xt−1)

⊤∆t − ληt∇L(xt−1)
⊤xt−1

= −ηt ∥∇L(xt−1)∥∗ − ληt∇L(xt−1)
⊤(xt−1 − x∗)− ληt∇L(xt−1)

⊤x∗

≤ −ηt ∥∇L(xt−1)∥∗ − ληt (L(xt−1)− L(x∗)) + ληt ∥∇L(xt−1)∥∗ ∥x
∗∥

≤ −ληt (L(xt−1)− L(x∗)) ,

where the first inequality we use convexity of L and the second inequality uses ∥x∗∥ ≤ 1.

Since the gradient of L is H-lipschitz, by Taylor expansion, we have that

L(xt)− L(xt−1) =

∫ 1

0

∇L (xt−1 + α(xt − xt−1))
⊤
(xt − xt−1) dα

= ∇L(xt−1)
⊤(xt − xt−1) +

∫ 1

0

(∇L (xt−1 + α(xt − xt−1))−∇L(xt−1))
⊤
(xt − xt−1) dα

≤ −ληt (L(xt−1)− L(x∗)) +

∫ 1

0

∥∇L (xt−1 + α(xt − xt−1))−∇L(xt−1)∥∗ ∥xt − xt−1∥ dα

≤ −ληt (L(xt−1)− L(x∗)) +

∫ 1

0

Hα ∥xt − xt−1∥2 dα

= −ληt (L(xt−1)− L(x∗)) +
H

2
∥xt − xt−1∥2

Because the update ∆t is normalized and thus have unit norm by definition, it holds that

∥xt − xt−1∥2 = ∥−ηt∆t − ληtxt−1∥2 ≤ η2t (∥∆t∥+ λ ∥xt−1∥)2 ≤ η2t (1 + λ ∥xt−1∥)2

Finally, we conclude that

L(xt)− L(x∗) ≤ (1− ληt)(L(xt−1)− L(x∗)) +
H

2
η2t (1 + λ ∥xt−1∥)2 .

Proof of Theorem 3.4. The proof of Theorem 3.4 is a direct application of Lemma A.1 on the one-step descent
lemma Lemma 3.3.

13
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Lemma A.1. Assume that ηt ≥ 0, limt→∞ ηt = 0 and
∑∞

t=1 ηt = ∞. C is any positive number and a0 ≥ 0. If the
sequence {at}∞t=0 satisfies that at ≤ (1− ηt)at−1 + Cη2t , then limt→∞ at = 0.

Proof of Lemma A.1. First we show by induction that at ≤ a0 exp
(
−
∑t

i=1 ηi

)
+ C

∑t
i=1 η

2
i exp

(
−
∑t

j=i+1 ηj

)
. Sup-

pose the inequality holds for t− 1, then we have that

at ≤ (1− ηt)at−1 + Cη2t ≤ exp (−ηt) at−1 + Cη2t

≤ exp (−ηt)

a0 exp(− t−1∑
i=1

ηi

)
+ C

t−1∑
i=1

η2i exp

− t−1∑
j=i+1

ηj

+ Cη2t

= a0 exp

(
−

t∑
i=1

ηi

)
+ C

t−1∑
i=1

η2i exp

− t∑
j=i+1

ηj

+ Cη2t

= a0 exp

(
−

t∑
i=1

ηi

)
+ C

t∑
i=1

η2i exp

− t∑
j=i+1

ηj

 .

Because
∑∞

t=1 ηt = ∞, limt→∞ a0 exp
(
−
∑t

i=1 ηi

)
= 0. In order to show limt→∞ at = 0, it’s sufficient to show

limt→∞
∑t

i=1 η
2
i exp

(
−
∑t

j=i+1 ηj

)
= 0.

For any ϵ > 0, η∗ is chosen such that η∗eη
∗
= ϵ

2 . There exists τ ∈ N+ such that ηi ≤ η∗ for i ≥ τ . We choose T such that
exp(−

∑T
j=τ ηj) ≤

ϵ
2
∑τ−1

i=1 η2
i

. Then for any t ≥ T , we have that

τ−1∑
i=1

η2i exp

− t∑
j=i+1

ηj

 ≤ τ−1∑
i=0

η2i exp

− t∑
j=τ

ηj

 ≤ (τ−1∑
i=1

η2i

)
exp

− T∑
j=τ

ηj

 ≤ ϵ

2

and

t∑
i=τ

η2i exp

− t∑
j=i+1

ηj

 ≤ η∗
t∑

i=τ

ηi exp

− t∑
j=i+1

ηj


≤ η∗

t∑
i=τ

(exp(ηi)− 1) exp

− t∑
j=i+1

ηj


= η∗

t∑
i=τ

exp(ηi) (1− exp(−ηi)) exp

− t∑
j=i+1

ηj


≤ η∗

t−1∑
i=τ

exp(η∗) (1− exp(−ηi)) exp

− t∑
j=i+1

ηj


= η∗ exp(η∗)

t∑
i=τ

exp
− t∑

j=i+1

ηj

− exp

− t∑
j=i

ηj


= η∗ exp(η∗)

1− exp

− t∑
j=τ

ηj

 ≤ η∗ exp(η∗) =
ϵ

2
.

When summing them up, we have that

t∑
i=1

η2i exp

− t∑
j=i+1

ηj

 =

τ−1∑
i=1

η2i exp

− t∑
j=i+1

ηj

+

t∑
i=τ

η2i exp

− t∑
j=i+1

ηj

 ≤ ϵ

2
+

ϵ

2
= ϵ.
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Proof of Theorem 3.5. From Lemma 3.1, ∥xt∥ ≤ max {∥x0∥ , 1
λ} = B for t ≥ 0. Define C ≜ H(1+λB)2

2λ2
4

(t+1)2 .

We have that for t = 1,

L(x1)− L(x∗) ≤ (1− 1)(L(x0)− L(x∗)) +
H(1 + λB)2

2λ2
= C ≤ 4C

3
.

Suppose L(xt−1)− L(x∗) ≤ 4C
t+1 . We have that

L(xt)− L(x∗) ≤ (1− 2

t+ 1
)(L(xt−1)− L(x∗)) +

H(1 + λB)2

2λ2

4

(t+ 1)2

≤ t− 1

t+ 1

4C

t+ 1
+

4C

(t+ 1)2
=

4Ct

(t+ 1)2
≤ 4C

t+ 2
.

A.3. Omitted Proofs for Lemma 3.9

Proof of Lemma 3.9.

1. For any ϵ > 0, there exists t′ such that ∥xt − x∞∥ ≤ ϵ
2λ for any t > t′. Because ηt∆t = xt−1 − xt − ληtxt−1, we

have that ∑T
t=1 ηt∆t∑T
t=1 ηt

=
x0 − xT − λ

∑T
t=1 ηtxt−1∑T

t=1 ηt

=
x0 − xT − λ(

∑t′

t=1 ηtxt−1 −
∑t′

t=1 ηtx∞)∑T
t=1 ηt

− λ

∑t′

t=1 ηtx∞ +
∑T

t=t′+1 ηtxt−1∑T
t=1 ηt

Then we choose T ′ ≥ t′ such that
∑T

t=1 ηt ≥
2
ϵ

(∥∥∥x0 − x∞ − λ
(∑t′

t=1 ηtxt−1 −
∑t′

t=1 ηtx∞

)∥∥∥+ ϵ
2

)
for T ≥ T ′

and have that

∥∥∥∥∥
∑T

t=1 ηt∆t∑T
t=1 ηt

+ λx∞

∥∥∥∥∥ ≤
∥∥∥x0 − xT − λ

(∑t′

t=1 ηtxt−1 −
∑t′

t=1 ηtx∞

)∥∥∥∑T
t=1 ηt

+ λ

∑T
t=t′+1 ηt ∥xt−1 − x∞∥∑T

t=1 ηt

≤

∥∥∥x0 − x∞ − λ
(∑t′

t=1 ηtxt−1 −
∑t′

t=1 ηtx∞

)∥∥∥+ ∥xT − x∞∥∑T
t=1 ηt

+ λ
ϵ

2λ

≤ ϵ

2
+

ϵ

2
= ϵ

So ∆∞ :=
∑T

t=1 ηt∆t∑T
t=1 ηt

exists and ∆∞ = −λx∞.

2. Because ∇L(x) is a continuous function and limt→∞ xt = x∞, limt→∞∇L(xt) = ∇L(x∞). For any ϵ > 0, there
exists T1 such that |∥∇L(xt)∥∗ − ∥∇L(x∞)∥∗| ≤ ∥∇L(xt)−∇L(x∞)∥∗ ≤

ϵ
3 for any t ≥ T1. It also holds that

| ⟨∇L(xt)−∇L(x∞),∆t⟩ | ≤ ∥∇L(xt)−∇L(x∞)∥∗ ∥∆t∥ ≤ ϵ
3 because ∥∆t∥ ≤ 1. Because

∑∞
t=1 ηt = ∞,

there exists T2 ≥ T1 such that
∑T2

t=1 ηt ≥
3
ϵ

∣∣∣∑T1

t=1 ηt (∥∇L(xt)∥∗ − ∥∇L(x∞)∥∗ + ⟨∇L(x∞)−∇L(xt),∆t⟩)
∣∣∣.

Then for any T ≥ T2, we have that
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∣∣∣∣∣
∑T

t=1 ηt ⟨∇L(x∞),∆t⟩∑T
t=1 ηt

− ∥∇L(x∞)∥∗

∣∣∣∣∣
=

∣∣∣∣∣
∑T

t=1 ηt ⟨∇L(xt),∆t⟩∑T
t=1 ηt

+

∑T
t=1 ηt ⟨∇L(x∞)−∇L(xt),∆t⟩∑T

t=1 ηt
− ∥∇L(x∞)∥∗

∣∣∣∣∣
=

∣∣∣∣∣
∑T

t=1 ηt ∥∇L(xt)∥∗∑T
t=1 ηt

+

∑T
t=1 ηt ⟨∇L(x∞)−∇L(xt),∆t⟩∑T

t=1 ηt
− ∥∇L(x∞)∥∗

∣∣∣∣∣
=

∣∣∣∣∣
∑T

t=1 ηt(∥∇L(xt)∥∗ − ∥∇L(x∞)∥∗)∑T
t=1 ηt

+

∑T
t=1 ηt ⟨∇L(x∞)−∇L(xt),∆t⟩∑T

t=1 ηt

∣∣∣∣∣
≤

∣∣∣∑T1

t=1 ηt (∥∇L(xt)∥∗ − ∥∇L(x∞)∥∗ + ⟨∇L(x∞)−∇L(xt),∆t⟩)
∣∣∣∑T

t=1 ηt

+

∑T
t=T1+1 ηt |∥∇L(xt)∥∗ − ∥∇L(x∞)∥∗|∑T

t=1 ηt
+

∑T
t=T1+1 ηt |⟨∇L(x∞)−∇L(xt),∆t⟩|∑T

t=1 ηt

≤ ϵ

3
+

ϵ

3

∑T
t=T1+1 ηt∑T

t=1 ηt
+

ϵ

3

∑T
t=T1+1 ηt∑T

t=1 ηt
≤ ϵ

Therefore, we prove that ∥∇L(x∞)∥∗ = limT→∞

∑T
t=1 ηt⟨∇L(x∞),∆t⟩∑T

t=1 ηt
. On the other hand, we have that

⟨∇L(x∞),∆∞⟩ =

〈
∇L(x∞), lim

T→∞

∑T
t=1 ηt∆t∑T
t=1 ηt

〉
= lim

T→∞

〈
∇L(x∞),

∑T
t=1 ηt∆t∑T
t=1 ηt

〉

= lim
T→∞

∑T
t=1 ηt ⟨∇L(x∞),∆t⟩∑T

t=1 ηt
,

which finishes the proof.

3. For any T ,
∥∥∥∑T

t=1 ηt∆t∑T
t=1 ηt

∥∥∥ ≤ ∑T
t=1 ηt∥∆t∥∑T

t=1 ηt
≤

∑T
t=1 ηt∑T
t=1 ηt

= 1. By continuity of ∥·∥, ∥∆∞∥ = limT→∞

∥∥∥∑T
t=1 ηt∆t∑T

t=1 ηt

∥∥∥ ≤ 1.

B. Omitted Proofs in Section 4
B.1. Omitted proofs for upper bound for average update size of Adam

Proof of Lemma 4.2. We first represent mt and vt as a weighted sum of gt and g2t . mt = β1mt−1 + (1 − β1)gt =

βt
1m0 + (1 − β1)

∑t−1
i=0 β

i
1gt−i. vt ≥ β2vt−1 + (1 − β2)g

2
t ≥ βt

2v0 + (1 − β2)
∑t−1

i=0 β
i
2g

2
t−i. By Cauchy–Schwarz

inequality, we have that∣∣∣∣∣
T∑

t=1

ηt∆t

∣∣∣∣∣ =
∣∣∣∣∣

T∑
t=1

ηt
βt
1m0 + (1− β1)

∑t−1
i=0 β

i
1gt−i√

vt

∣∣∣∣∣
≤

[
T∑

t=1

ηt

(
βt
1m

2
0

vt
+

t−1∑
i=0

(1− β1)β
i
1

g2t−i

vt

)] 1
2
[

T∑
t=1

ηt

(
βt
1 +

t−1∑
i=0

(1− β1)β
i
1

)] 1
2

≤

(
T∑

t=1

ηt
βt
1v0
vt

+

T∑
t=1

ηt

t−1∑
i=0

(1− β1)β
i
1

vt−i − β2vt−i−1

(1− β2)vt

) 1
2
(

T∑
t=1

ηt

) 1
2

.
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We only calculate the first term in the following way

T∑
t=1

ηt
βt
1v0
vt

+

T∑
t=1

ηt

t−1∑
i=0

(1− β1)β
i
1

vt−i − β2vt−i−1

(1− β2)vt

=

T∑
t=1

ηt
βt
1v0
vt

+

T∑
t=1

ηt
1− β1

(1− β2)vt

(
vt − βt−1

1 β2v0 +

t−1∑
i=1

(βi
1 − β2β

i−1
1 )vt−i

)

=

T∑
t=1

ηt +
β2 − β1

1− β2

T∑
t=1

ηt

(
1− βt−1

1

v0
vt
− (1− β1)

t−1∑
i=1

βi−1
1

vt−i

vt

)

≤
T∑

t=1

ηt +
β2 − β1

1− β2

T∑
t=1

ηt

(
βt−1
1 + (1− β1)

t−1∑
i=1

βi−1
1

(
1− vt−i

vt

))

≤
T∑

t=1

ηt +
β2 − β1

1− β2

T∑
t=1

ηt

(
βt−1
1 + (1− β1)

t−1∑
i=1

βi−1
1 ln

(
vt
vt−i

))

=

T∑
t=1

ηt +
β2 − β1

1− β2

T∑
t=1

ηtβ
t−1
1 +

(β2 − β1)(1− β1)

1− β2

T∑
t=1

(
ηt
1− βt−1

1

1− β1
−

T−t∑
i=1

ηt+iβ
i−1
1

)
ln vt

=

T∑
t=1

ηt +
β2 − β1

1− β2

T∑
t=1

ηtβ
t−1
1 +

(β2 − β1)(1− β1)

1− β2

T∑
t=2

(
ηt
1− βt−1

1

1− β1
−

T−t∑
i=1

ηt+iβ
i−1
1

)
ln

vt
v1

.

When β1 = β2, we have that

|∆t| =

∣∣∣∣∣βt
1m0 + (1− β1)

∑t−1
i=0 β

i
1gt−i√

vt

∣∣∣∣∣ ≤
(
βt
1m

2
0 + (1− β1)

∑t−1
i=0 β

i
1g

2
t−i

vt

) 1
2
(
βt
1 +

t−1∑
i=0

(1− β1)β
i
1

) 1
2

≤

(
βt
1v0 + (1− β1)

∑t−1
i=0 β

i
1g

2
t−i

vt

) 1
2

= 1

B.2. Proof for Lemma 4.1

Proof of Lemma 4.1.

1. The proof for this part is the same as the proof of Lemma 3.9 in Appendix A.3.

2. If ∇L(x∞) = 0, ⟨∇L(x∞),∆∞⟩ = 0 = ∥∇L(x∞)∥1.

If∇L(x∞) ̸= 0, we consider each coordinate j such that∇L(x∞)j ̸= 0. limt→∞∇L(xt)j = ∇L(x∞)j .

mt,j = (1 − β1)
∑t

i=0 β
i
1gt−i,j → ∇L(x∞)j and vt,j = (1 − β2)

∑t
i=0 β

i
2g

2
t−i,j → ∇L(x∞)2j . limt→∞ ∆t,j =

limt→∞
mt,j√
vt,j

= sign(∇L(x∞)j). For any ϵ > 0, there exists t′ such that ∥∆t,j − sign (∇L(x∞)j)∥ ≤ ϵ
2 for t ≥ t′.

And there exists T ′ ≥ t′ such that
∑T

t=1 ηt ≥
2
ϵ

∑t′

t=1 ηt (∆t,j − sign (∇L(x∞)j)) for any T ≥ T ′. Then for any
T ≥ T ′, we have that∥∥∥∥∥

∑T
t=1 ηt∆t,j∑T

t=1 ηt
− sign(∇L(x∞)j)

∥∥∥∥∥
≤

∥∥∥∥∥
∑t′

t=1 ηt (∆t,j − sign(∇L(x∞)j))∑T
t=1 ηt

∥∥∥∥∥+
∑T

t=t′+1 ηt ∥∆t,j − sign(∇L(x∞)j)∥∑T
t=1 ηt

≤ ϵ

2
+

ϵ

2
= ϵ.
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So ∆∞,j = limT→∞

∑T
t=1 ηt∆t,j∑T

t=1 ηt
= sign(∇L(x∞)j) for ∇L(x∞)j ̸= 0. Then we have that

⟨∇L(x∞),∆∞⟩ =
∑

∇L(x∞)j ̸=0

∇L(x∞)j∆∞,j =
∑

∇L(x∞)j ̸=0

|∇L(x∞)j | = ∥∇L(x∞)∥1 .

3. For any nonzero coordinate j of ∇L(x∞), from above we have |∆∞,j | = |sign(∇L(x∞)j)| = 1.
For j such that ∇L(x∞)j = 0, we know limt→∞ gt,j = limt→∞ mt,j = limt→∞ vt,j = 0. We employ the upper
bound for average update in Lemma 4.2 since {gt,j}∞t=1 and {vt,j}∞t=0 in Algorithm 1 satisfy the condition that
vt,j − β2vt−1,j ≥ (1− β2)g

2
t,j and m0,j = 0 ≤ √v0,j . By Lemma 4.2 we have∣∣∣∣∣

∑T
t=1 ηt∆t,j∑T

t=1 ηt

∣∣∣∣∣
≤

∑T
t=1 ηt +

β2−β1

1−β2

∑T
t=1 ηtβ

t−1
1 + (β2−β1)(1−β1)

1−β2

∑T
t=2

(
ηt

1−βt−1
1

1−β1
−
∑T−t

i=1 ηt+iβ
i−1
1

)
ln

vt,j

v1,j∑T
t=1 ηt


1
2

.

The denominator goes to∞ when T →∞. So it suffices to bound the last two terms in the numerator by constants in
order to show ∥∆∞∥ ≤ 1. Because ηt is non-increasing in t, it holds that

T∑
t=1

ηtβ
t
1 ≤

T∑
t=1

η1β
t
1 ≤

η1β1

1− β1
.

For the last term, we first analyze the coefficient between each lnvt,j . Define αt = ηt
1−βt−1

1

1−β1
−
∑T−t

i=1 ηt+iβ
i−1
1 . We

claim that |αt| ≤ max { βt−1
1

1−β1
ηt+1,

ηt

1−β1
} = ηt

1−β1
. This is because

αt ≤ ηt
1− βt−1

1

1− β1
≤ ηt

1− β1
,

and again by monotonicity of learning rates ηt, we have that

αt ≥ ηt+1
1− βt−1

1

1− β1
−

T−t∑
i=1

ηt+1β
i−1
1 ≥ ηt+1

(
1− βt−1

1

1− β1
−

∞∑
i=1

βi−1
1

)
= − βt−1

1

1− β1
ηt+1.

We can also have ln
vt,j

v1,j
≥ (t − 1) lnβ2 because lnvt,j − lnvt−1,j = ln

vt,j

vt−1,j
= ln

β2vt−1,j+(1−β2)g
2
t,j

vt−1,j
≥ lnβ2.

And there exists t′ such that ln vt,j

v1,j
≤ 0 for any t ≥ t′ because limt→∞ vt,j = 0. Then it holds that

T∑
t=2

αt ln
vt,j

v1,j
≤

t′∑
t=2

|αt|
∣∣∣∣ln vt,j

v1,j

∣∣∣∣+ T∑
t=t′+1

αt ln
vt,j

v1,j

≤
t′∑

t=2

ηt
1− β1

∣∣∣∣ln vt,j

v1,j

∣∣∣∣+ ∑
αt≤0, t′<t≤T

αt ln
vt,j

v1,j

≤

∑t′

t=2 ηt

∣∣∣ln vt,j

v1,j

∣∣∣
1− β1

+
∑

αt≤0, t′<t≤T

(
− βt

1

1− β1
ηt+1

)
(t− 1) lnβ2

≤

∑t′

t=2 ηt

∣∣∣ln vt,j

v1,j

∣∣∣
1− β1

+ (− lnβ2)

T∑
t=1

(t− 1)βt
1

1− β1
ηt+1

≤

∑t′

t=2 ηt

∣∣∣ln vt,j

v1,j

∣∣∣
1− β1

+ (− lnβ2)η1

T∑
t=1

(t− 1)βt
1

1− β1

≤

∑t′

t=2 ηt

∣∣∣ln vt,j

v1,j

∣∣∣
1− β1

− η1β
2
1 lnβ2

(1− β1)3
.
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Define C := (β2−β1)η1β1

(1−β2)(1−β1)
+ β2−β1

1−β2

(∑t′

t=2 ηt |lnvt,j | − η1β
2
1 ln β2

(1−β1)2

)
, we now have

∣∣∣∣∣
∑T

t=1 ηt∆t,j∑T
t=1 ηt

∣∣∣∣∣ ≤
(∑T

t=1 ηt + C∑T
t=1 ηt

) 1
2

.

Therefore |∆∞,j | =
∣∣∣ lim
T→∞

∑T
t=1 ηt∆t,j∑T

t=1 ηt

∣∣∣ ≤ lim
T→∞

∣∣∣∑T
t=1 ηt∆t,j∑T

t=1 ηt

∣∣∣ ≤ 1, since
∑∞

t=1 ηT =∞. This completes the proof.

B.3. A counter example when β1 > β2

For any λ and β1 > β2, we provide the following example for which the iterates of AdamW will converge and the ℓ∞ norm
of the converged solution is larger than 1

λ .

For some sufficiently small η, denote x̃ = − 1
λ

1−β1
1−λη−β1√

1−β2
(1−λη)2−β2

. L(x) is defined as 1
2 (x− x̃)2. For any starting point x0 > x̃,

m0 is set as 1−β1

1−λη−β1
g1 and v0 is set as 1−β2

(1−λη)2−β2
g21 with g1 = ∇L(x0) = x0− x̃. We show by induction that mt√

vt
= −λx̃

and xt − x̃ = (1− λη)(xt−1 − x̃) for any t ≥ 1.

When t = 1, we have that m1 = β1m0 + (1− β1)g1 = (1−β1)(1−λη)
1−λη−β1

g1 and v1 = β2v0 + (1− β2)g
2
1 = (1−β2)(1−λη)2

(1−λη)2−β2
g21 .

Then m1√
v1

= sign(g1)
1−β1

1−λη−β1√
1−β2

(1−λη)2−β2

=
1−β1

1−λη−β1√
1−β2

(1−λη)2−β2

= −λx̃, which proves the first claim. For the second claim, we have

that

x1 − x̃ = x0 − η
m1√
v1
− ληx0 − x̃ = x0 + ληx̃− ληx0 − x̃ = (1− λη)(x0 − x̃).

Suppose the claims hold for any 0 ≤ i < t. Then gi+1 = ∇L(xi) = xi − x̃ = (1− λη)ig1. We have that

mt = βt
1m0 + (1− β1)

t∑
i=1

βt−i
1 gi = βt

1

1− β1

1− λη − β1
g1 + (1− β1)

t∑
i=1

βt−i
1 (1− λη)i−1g1

=

(
βt
1

1− β1

1− λη − β1
+ (1− β1)

(1− λη)t − βt
1

1− λη − β1

)
g1 =

1− β1

1− λη − β1
(1− λη)tg1,

and

vt = βt
2v0 + (1− β2)

t∑
i=1

βt−i
2 g2i = βt

2

1− β2

(1− λη)2 − β2
g21 + (1− β2)

t∑
i=1

βt−i
2 (1− λη)2(i−1)g21

=

(
βt
2

1− β2

(1− λη)2 − β2
+ (1− β2)

(1− λη)2t − βt
2

(1− λη)2 − β2

)
g21 =

1− β2

(1− λη)2 − β2
(1− λη)2tg21 .

Then mt√
vt

=
1−β1

1−λη−β1√
1−β2

(1−λη)2−β2

= −λx̃. We also have that

xt − x̃ = xt−1 − η
mt√
vt
− ληxt−1 − x̃ = x0 + ληx̃− ληx0 − x̃ = (1− λη)(x0 − x̃).

.

In this regime, xt will converge to x̃ because |xt − x̃| = O((1− λη)t). However, when β1 > β2 and λη is very small, |x̃|
can be larger than 1

λ . For example, when β1 = 0.99, β2 = 0.9, λ = 0.1 and η = 0.01, |x̃| = 10.999 > 1
λ .
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B.4. Proof for upper bound for norm of iterates in AdamW

Proof of Lemma 4.3. For AdamW with constant learning rate η and each coordinate j, xT,j can be written as weighted
average of past update

xT,j = (1− λη)Tx0,j +

T−1∑
t=0

η(1− λη)t
mT−t,j√
vT−t,j

= (1− λη)Tx0,j +

T∑
t=1

η(1− λη)T−t mt,j√
vt,j

.

Define ηt = η(1 − λη)T−t for 1 ≤ t ≤ T . We apply Lemma 4.2 on {vt,j}Tt=1 and {gt,j}Tt=1 to bound∣∣∣∑T
t=1 η(1− λη)T−t mt,j√

vt,j

∣∣∣.
We first compute

∑T
t=1 ηt =

1−(1−λη)T

λ ≤ 1
λ . For the second term in Equation 4, we have that

β2 − β1

1− β2

T∑
t=1

ηtβ
t−1
1 =

β2 − β1

1− β2

T∑
t=1

η(1− λη)T−tβt−1
1 =

1

λ

(β2 − β1)λη[(1− λη)T − βT
1 ]

(1− β2)(1− λη − β1)

≤ (β2 − β1)η

(1− β2) |1− λη − β1|
[
βT
1 + (1− λη)T

]
.

For the last term, we define αt = ηt
1−βt−1

1

1−β1
−
∑T−t

i=1 ηt+iβ
i−1
1 and we can compute the exact form of αt as following

αt = η(1− λη)T−t 1− βt−1
1

1− β1
−

T−t∑
i=1

η(1− λη)T−t−iβi−1
1 = η(1− λη)T−t 1− βt−1

1

1− β1
− η[(1− λη)T−t − βT−t

1 ]

1− λη − β1

=
η(1− λη)T−t(−λη)
(1− β1)(1− λη − β1)

− η(1− λη)T−tβt−1
1

1− β1
+

ηβT−t
1

1− λη − β1
.

Then we can bound the last term by showing that

(β2 − β1)(1− β1)

1− β2

T∑
t=2

αt ln
vt,j

v1,j

≤ (β2 − β1)(1− β1)

1− β2

T∑
t=2

|αt|
∣∣∣∣ln vt,j

v1,j

∣∣∣∣
≤C (β2 − β1)(1− β1)

1− β2

[
T∑

t=2

λη2(1− λη)T−t

(1− β1)|1− λη − β1|
+

T∑
t=2

η(1− λη)T−tβt−1
1

1− β1
+

T∑
t=2

ηβT−t
1

|1− λη − β1|

]

=C
(β2 − β1)(1− β1)

1− β2

[
η[1− (1− λη)T−1]

(1− β1)|1− λη − β1|
+

β1η|(1− λη)T−1 − βT−1
1 |

(1− β1)|1− λη − β1|
+

η(1− βT−1
1 )

|1− λη − β1|(1− β1)

]

≤C (β2 − β1)(1− β1)

1− β2

[
η[1− (1− λη)T−1]

(1− β1)|1− λη − β1|
+

β1η
(
(1− λη)T−1 + βT−1

1

)
(1− β1)|1− λη − β1|

+
η(1− βT−1

1 )

|1− λη − β1|(1− β1)

]

=
2Cη(β2 − β1)

(1− β2)|1− λη − β1|
+

Cη(β2 − β1)(β1 − 1)

(1− β2)|1− λη − β1|
[
βT−1
1 + (1− λη)T−1

]
≤ 2Cη(β2 − β1)

(1− β2)|1− λη − β1|
.
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Therefore, we have the following bound

λ|xT,j | ≤ λ(1− λη)T |x0,j |+ λ

∣∣∣∣∣
T∑

t=1

ηt
mt,j√
vt,j

∣∣∣∣∣
≤ λ(1− λη)T |x0,j |+ λ

T∑
t=1

ηt

[
1 +

(β2 − β1)η
[
βT
1 + (1− λη)T

]∑T
t=1 ηt(1− β2) |1− λη − β1|

+
2Cη(β2 − β1)∑T

t=1 ηt(1− β2)|1− λη − β1|

] 1
2

≤ λ(1− λη)T |x0,j |+

[
(λ

T∑
t=1

ηt)
2 + λ2

T∑
t=1

ηt

[
(β2 − β1)η

[
βT
1 + (1− λη)T

]
+ 2Cη(β2 − β1)

(1− β2) |1− λη − β1|

]] 1
2

≤ λ(1− λη)T |x0,j |+

[
1 + λ

(β2 − β1)η
[
βT
1 + (1− λη)T

]
+ 2Cη(β2 − β1)

(1− β2) |1− λη − β1|

] 1
2

≤ λ(1− λη)T |x0,j |+

[
1 +

λη(β2 − β1)
[
βT
1 + (1− λη)T

]
2(1− β2)|1− λη − β1|

+ C
λη(β2 − β1)

(1− β2)|1− λη − β1|

]

≤ 1 + λ(1− λη)T ∥x0∥∞ +
λη(β2 − β1)

[
βT
1 + (1− λη)T

]
2(1− β2)|1− λη − β1|

+ C
λη(β2 − β1)

(1− β2)|1− λη − β1|
.

This completes the proof.

C. Experimental Details and More Results
The architecture of the two-layer transformer is the same as in Kunstner et al. (2022), which is also used as a tutorial example
in PyTorch. It consists of a 200-dimensional embedding layer, 2 transformer layers and a linear layer. Each transformer
layer consists of a 2-head self-attention and an MLP with a hidden dimension 200. The experiments are run on a single
A4000 or a single A6000.

As mentioned in Section 5, we present the results for another three random seeds in Figures 3 to 5. We also plot the results in
full range for all the four random seeds in Figures 6 to 9 to show that the ℓ∞ norm of parameters for Adam keeps increasing.
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Figure 3: ℓ∞ norm of parameters for Adam and AdamW with different β1, β2 for seed 1
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Figure 4: ℓ∞ norm of parameters for Adam and AdamW with different β1, β2 for seed 2
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Figure 5: ℓ∞ norm of parameters for Adam and AdamW with different β1, β2 for seed 3
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Figure 6: ℓ∞ norm of parameters for Adam and AdamW with different β1, β2 for seed 0
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Figure 7: ℓ∞ norm of parameters for Adam and AdamW with different β1, β2 for seed 1
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Figure 8: ℓ∞ norm of parameters for Adam and AdamW with different β1, β2 for seed 1
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Figure 9: ℓ∞ norm of parameters for Adam and AdamW with different β1, β2 for seed 3
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