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Abstract
Continuous normalizing flows (CNFs) learn an
ordinary differential equation to transform prior
samples into data. Flow matching (FM) has re-
cently emerged as a simulation-free approach for
training CNFs by regressing a velocity model to-
wards the conditional velocity field. However, on
constrained domains, the learned velocity model
may lead to undesirable flows that result in highly
unnatural samples, e.g., oversaturated images, due
to both flow matching error and simulation error.
To address this, we add a boundary constraint term
to CNFs, which leads to reflected CNFs that keep
trajectories within the constrained domains. We
propose reflected flow matching (RFM) to train
the velocity model in reflected CNFs by matching
the conditional velocity fields in a simulation-free
manner, similar to the vanilla FM. Moreover, the
analytical form of conditional velocity fields in
RFM avoids potentially biased approximations,
making it superior to existing score-based genera-
tive models on constrained domains. We demon-
strate that RFM achieves comparable or better
results on standard image benchmarks and pro-
duces high-quality class-conditioned samples un-
der high guidance weight.

1. Introduction
Deep generative models, which are deep learning models de-
signed to generate new data samples that resemble a given
data set, find applications in various domains including
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image synthesis (Arjovsky et al., 2017; Ho et al., 2020;
Dhariwal & Nichol, 2021; Song et al., 2023), text genera-
tion (Devlin et al., 2018; Brown et al., 2020; Zhang et al.,
2022), and molecular design (Jin et al., 2018; Xu et al.,
2021; Hoogeboom et al., 2022). While the recent advances
in this domain are mostly driven by diffusion models (Ho
et al., 2020; Song et al., 2020b), a powerful alternative is
flow-based model (Rezende & Mohamed, 2015), which
works by learning a flow, i.e., a function that transforms
samples from a simple prior distribution into samples dis-
tributed similarly to the target data distribution. Flows can
also be implicitly defined via ordinary differential equations
(ODEs), which lead to a general framework called continu-
ous normalizing flows (CNFs) (Chen et al., 2018). Despite
their flexibility, classical maximum likelihood training of
CNFs can be inefficient as it requires expensive numerical
ODE simulations.

Alternatively, flow matching (FM) (Lipman et al., 2023)
presents an efficient and scalable training method for CNFs
by regressing a learnable velocity model to the target ve-
locity field (i.e., the drift term in ODE) that generates the
data distribution. Inspired by denoising score matching
(DSM) (Vincent, 2011), FM decomposes the intractable tar-
get velocity field into a mixture of analytical conditional
velocity fields, leading to a regression objective that is com-
putationally stable and simulation-free. A typical example
of conditional velocity fields is the optimal transport (OT)
conditional velocity field, which has a constant speed along
the straight line from a prior sample to a data point (i.e., its
condition). FM has also been extended to equivariance mod-
eling (Klein et al., 2023), Bayesian inference (Wildberger
et al., 2023), and dynamic optimal transport (Tong et al.,
2023), etc.

Despite the superiority of FM, the learned velocity model
may cause unreasonable flows, due to both the inherent flow
matching error (i.e., the difference between the learned ve-
locity model and the true velocity field) and compounded
simulation error (i.e., the error introduced by discretizing
the ODE during sampling), which can generate highly un-
natural samples, especially for complex data distributions
on constrained domains. For example, an RGB image is
constrained to a domain [0, 255]d (d is the number of dig-
its), and a boundary violation may result in collapsed and
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singular samples. Recently, there has been a growing inter-
est in generative modeling on constrained domains, driven
by its broad range of applications (Fishman et al., 2023;
Lou & Ermon, 2023; Liu et al., 2023). Within the frame-
work of score-based generative models (Song et al., 2020b;
Ho et al., 2020), reflected diffusion models (RDMs) (Lou
& Ermon, 2023) incorporate the constraints through a re-
flected stochastic differential equation (SDE) that always
stays within the domain. The reverse diffusion process is
then parameterized with the scores of the perturbed interme-
diate distributions, which can be trained via DSM. However,
the transition kernels in RDMs lack a closed-form expres-
sion, necessitating the complicated conditional score ap-
proximation that requires computing reflecting points (Jing
et al., 2022b) or solving partial differential equations (Bor-
toli et al., 2022). These challenges introduce bias and make
the application of RDMs difficult for general domains, lim-
iting their practicality to simple constrained domains like
hypercubes. Although implicit score matching (ISM) avoids
the computation of transition kernels (Fishman et al., 2023),
it is less stable than DSM and does not scale well to high-
dimensional cases.

In this work, we propose reflected flow matching (RFM),
which extends the training and sampling procedures of
CNFs to constrained domains. To achieve this, we add
an additional boundary constraint term to the ODEs in
CNFs, which we call reflected CNFs. When initiated from
prior distributions supported on the target constrained do-
main, the reflected CNFs ensure that the trajectories remain
within this domain. The velocity fields in the reflected
CNFs can be trained by matching the conditional veloc-
ity fields in a simulation-free manner, akin to vanilla FM
(Lipman et al., 2023). Moreover, these conditional velocity
fields can be readily derived from corresponding condi-
tional flows that satisfy the constraints. This means that,
unlike RDMs (Lou & Ermon, 2023), FM can be smoothly
generalized to constrained domains with no extra compu-
tational burden. Moreover, inherited from FM, the RFM
framework permits the choice of arbitrary prior distribu-
tions on the constrained domain, which may provide extra
flexibility for generative modeling. We demonstrate the ef-
fectiveness of RFM across various generative tasks, includ-
ing low-dimensional toy examples as well as unconditional
and conditional image generation benchmarks. Our code is
available at https://github.com/tyuxie/RFM.

2. Background
2.1. Flow Matching

A time-dependent flow xt = ϕt(x), which describes the
motion from a base point x, can be defined by an ordinary

differential equation (ODE)

dϕt(x) = vt(ϕt(x))dt, (1a)
ϕ0(x) = x, (1b)

for t ∈ [0, 1], where vt(·) ∈ Rd is called the velocity field.
Given a density p0(x) at t = 0, the velocity field induces
a probability path pt(x) : [0, 1] × Rd → R, where pt is
the probability density function (PDF) of the points from
p0(x) transported along vt from time 0 to time t, and it is
characterized by the well-known continuity equation:

∂

∂t
pt(x) = −∇ · (pt(x)vt(x)), x ∈ Rd. (2)

Chen et al. (2018) models the velocity field by a neural
network vθ(x, t) with parameters θ to generate a learnable
model of ϕt, called a continuous normalizing flow (CNF).
Given a target probability path pt(x) that connects a simple
prior distribution p0(x) and a complicated target distribution
p1(x) which is close to the data distribution pdata(x), the
main idea of flow matching (FM) (Lipman et al., 2023) is
to regress the velocity model vθ(x, t) to the target velocity
field vt(x) by minimizing the FM objective

LFM(θ) =

∫ 1

0

Ept(x)∥vθ(x, t)− vt(x)∥2dt. (3)

One way to construct such a target probability path is to
create per-sample conditional probability paths pt(x|x1)
that satisfy p0(x|x1) = p0(x), p1(x|x1) ≈ δ(x1), and
marginalize them over the data distribution as follows

pt(x) =

∫
Rd

pt(x|x1)pdata(x1)dx1. (4)

Lipman et al. (2023) then shows that the corresponding
velocity field vt(x) takes the following form

vt(x) =

∫
Rd

vt(x|x1)
pt(x|x1)pdata(x1)

pt(x)
dx1, (5)

where vt(x|x1) is the conditional velocity field that gen-
erates pt(x|x1). The velocity model vθ(x, t), therefore,
can be trained by minimizing the conditional flow matching
(CFM) objective

LCFM(θ) =

∫ 1

0

Ept(x|x1)pdata(x1)∥vθ(x, t)−vt(x|x1)∥2dt.
(6)

Concretely, Lipman et al. (2023) considers the Gaussian
conditional probability paths, which can be induced by a
flow conditioned on x1 as

ϕt(x|x1) = σt(x1)x+ µt(x1), (7)
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where x follows a standard Gaussian distribution. Conse-
quently, the conditional velocity field takes the form

vt(x|x1) =
σ′
t(x1)

σt(x1)
(x− µt(x1)) + µ′

t(x1). (8)

A typical example is the optimal transport (OT) conditional
velocity field, where σt(x1) = 1− (1− σmin)t, µt(x1) =
tx1, and σmin is a sufficiently small value.

2.2. Reflected Diffusion Models

For generative modeling on constrained domains, reflected
diffusion models (RDMs) (Lou & Ermon, 2023) use re-
flected stochastic differential equations (SDEs) that perform
reflection operations at the boundary to keep samples inside
the target domain. Let the support of the data distribution
q0(·) be Ω, which is assumed to be connected and compact
with a nonempty interior. Concretely, the forward process
in an RDM is described by the following reflected SDE

dut = f(ut, t)dt+ g(t)dBt + dLt, u0 ∼ q0(·), (9)

where t ∈ [0, L], f(ut, t) and g(t) are the drift term and
diffusion term as in the classical diffusion models (Song
et al., 2020b), and Lt is an additional boundary constraint
that intuitively forces the particle to stay inside Ω. When ut

hits the boundary ∂Ω, Lt neutralizes the outward-normal
velocity. To generate samples from the data distribution,
one can simulate the reverse reflected SDE (Cattiaux, 1988;
Williams, 1987)

dut =

[
f(ut, t)−

1

2
(1 + λ2)g2(t)∇ log qt(ut)

]
dt

+λg(t)dB̄t + dLt, uL ∼ qL(·),
(10)

where qL(·) = uniform(Ω) under some special conditions,
B̄t is a standard Brownian motion when time flows back
from L to 0 and∇ log qt(ut) is the score function at time t.

Although denoising score matching (DSM) (Vincent, 2011;
Song et al., 2020b) succeeds in estimating the intractable
score function∇ log qt(ut), the required conditional score
function ∇ut log qt(ut|u0) is no longer analytically avail-
able for the forward process in equation (9). To estimate
∇ut

log qt(ut|u0), RDMs rely on approximation methods
based on sum of Gaussians (Jing et al., 2022b) or Laplacian
eigenfunctions (Bortoli et al., 2022). However, both of them
can be domain-dependent and require truncating an infinite
series of functions. Besides, although the noisy training data
in DSM can be obtained in a simulation-free manner, the
required geometric techniques may be restrictive in practice.

2.3. Classifier-free Guidance

Diffusion models can be controlled to generate guided sam-
ples from q̃t(u|c) ∝ qt(c|u)wqt(u) where c is a condition

(e.g., a class label) and w is the guidance weight (Ho &
Salimans, 2022). The score function of q̃t(u|c) satisfies

∇ log q̃t(u|c) = w∇ log qt(c|u) +∇ log qt(u). (11)

With the Bayes formula qt(c|u) = qt(u|c)qt(c)
qt(u) and a con-

ditional score model sϕ(u, t, c) ≈ ∇ log qt(u|c), the score
function of q̃t(u|c) can be estimated by

s̃ϕ(u, t, c) = wsϕ(u, t, c) + (1− w)sϕ(u, t, ∅), (12)

where sϕ(u, t, ∅) = sϕ(u, t) ≈ ∇ log qt(u) denotes the
unconditional score with c set to the empty token. Equation
(12) also holds for RDMs, and one can directly substitute the
score function in equation (10) with s̃ϕ(u, t, c) to generate
guided samples (Lou & Ermon, 2023).

3. Proposed Method
In this section, we present reflected flow matching (RFM),
which learns a flow-based generative model for the data
distribution pdata(·) supported on a constrained domain
Ω ⊂ Rd. The data domain Ω is assumed to be connected
and compact with a non-empty interior Ωo and a sufficiently
regular boundary ∂Ω.

3.1. Reflected Ordinary Differential Equation

To model flows over the constrained domain Ω, we add an
additional term for the boundary constraint to the vanilla
ODE (1), inspired by Lou & Ermon (2023). Concretely,
let Lt reflect the outward normal direction at ∂Ω. Given
a initial point x, our reflected ODE for describing a time-
dependent flow xt = ϕt(x) takes the form

dϕt(x) = vt(ϕt(x))dt+ dLt, (13a)
ϕ0(x) = x, (13b)

where vt(·) : Ω → Rd defines velocity field over Ω for
each time t ∈ [0, 1]. In equation (13), the velocity term
vt(ϕt(x)) describes the motion of particles in Ωo just as
in the vanilla ODE (1), and the reflection term dLt com-
pensates the outward velocity at ∂Ω by pushing the motion
back to the domain Ω. That is, upon the motion’s hitting
the boundary ∂Ω at xt, dLt neutralizes the outward normal-
pointing component. We give the following theorem for
the existence and uniqueness of the solution to the reflected
ODE (13), which is a corollary of Pilipenko (2014, Theorem
2.5.4) (see Appendix A.1 for details).

Theorem 3.1. Assume i) the domain Ω satisfies the uniform
exterior sphere condition and the uniform cone condition;
ii) the velocity field vt(x) is Lipschitz continuous in x ∈ Ω
(uniformly on t). Then the solution to the reflected ODE
(13) exists and is unique on t ∈ [0, 1].
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Remark 3.2. The reflected ODE (13) recovers the vanilla
ODE (1) in flow matching by taking Ω = Rd. In this case,
the reflection term dLt disappears because the motion will
never hit the boundary.

With the initial point x distributed as a simple prior dis-
tribution p0(·) supported on Ω, the PDF pt(·) of the flow
ϕt(x) can also be used to construct a probability path which
connects p0(·) and a target distribution p1(·) that closely ap-
proximates the data distribution pdata(·). Moreover, due to
the reflection term dLt, the probability path pt(x) is natu-
rally supported on Ω and evolves according to the following
continuity equation with the Neumann boundary condition1

(Schuss, 2015)

∂

∂t
pt(x) = −∇ · (vt(x)pt(x)) , x ∈ Ωo, (14a)

pt(x)vt(x) · n(x) = 0, x ∈ ∂Ω, (14b)

where n(x) is the outward normal vector at x on ∂Ω.

3.2. Reflected Flow Matching

Similarly to Lipman et al. (2023), the basic idea of RFM is
to learn a parametrized velocity model vθ(x, t), which leads
to a deep model of ϕt called reflected CNF, by minimizing
the following RFM loss

LRFM(θ) =

∫ 1

0

Ept(x)∥vθ(x, t)− vt(x)∥2dt, (15)

given a target probability path pt(x) and a corresponding ve-
locity field vt(x). We can construct such a probability path
and velocity field as follows. Let pt(x|x1) be a conditional
probability path satisfying p0(x|x1) = p0(x), p1(x|x1) ≈
δ(x1). The marginal probability path then takes the form

pt(x) =

∫
Ω

pt(x|x1)pdata(x1)dx1. (16)

Let vt(x|x1) be a conditional velocity field that generates
the conditional probability path pt(x|x1) and defines the
marginal velocity field

vt(x) =

∫
Ω

vt(x|x1)
pt(x|x1)pdata(x1)

pt(x)
dx1. (17)

Note that we require supp (pt(x|x1)) ⊂ Ω for all t and
x1, in contrast to the vanilla FM (Lipman et al., 2023).
In fact, the velocity field vt(x) in equation (17) exactly
generates the probability path pt(x) in equation (16), which
is formalized in Theorem 3.3.

1Informally, when a particle hits the boundary, the outward-
normal part of its velocity would be neutralized by the reflection
term dLt, which would make the velocity satisfy the Neumann
boundary condition.

Theorem 3.3. Assume supp (pt(x|x1)) ⊂ Ω for all t and
x1. For any target distribution p1(x1), if the conditional
probability path pt(x|x1) and conditional velocity field
vt(x|x1) satisfy the continuity equation (14), then marginal
probability path pt(x) and the marginal velocity field vt(x)
also satisfy the continuity equation (14).

Proof. The fact that pt(x) and vt(x) satisfy equation (14a)
is from Lipman et al. (2023, Theorem 1). To prove pt(x)
and vt(x) satisfy the Neumann boundary condition (14b),
it suffices to combine

pt(x)vt(x) =

∫
Ω

vt(x|x1)pt(x|x1)pdata(x1)dx1

and pt(x|x1)vt(x|x1) · n(x) = 0 for x ∈ ∂Ω.

Similarly to the CFM objective in equation (6), the velocity
model vθ(x, t) in reflected CNFs can be trained by opti-
mizing the following conditional reflected flow matching
(CRFM) objective

LCRFM(θ) =

∫ 1

0

Ept(x|x1)pdata(x1)∥vθ(x, t)−vt(x|x1)∥2dt,
(18)

as proved in Theorem 3.4 (see Appendix A.2 for proof).

Theorem 3.4. Assume that pt(x) > 0 for all x ∈ Ωo and
t ∈ [0, 1]. Then ∇LRFM(θ) = ∇LCRFM(θ).

Moreover, we prove the following Wasserstein bound for
the reflected CNFs trained with RFM (see Appendix A.3
for proof), similar to Albergo & Vanden-Eijnden (2022,
Proposition 3).

Theorem 3.5 (Wasserstein Bound). Assume Ω is convex and
the velocity model vθ(x, t) is M -Lipschitz in x (uniformly
on t). Let pθ,t(x) be the probability path of the reflected
CNF induced by vθ(x, t) starting from the same prior dis-
tribution p0(x). Then the squared Wasserstein-2 distance
between p1(x) and pθ,1(x) is bounded by

W 2
2 (p1(x), pθ,1(x)) ≤ e1+2MLRFM(θ). (19)

3.3. Construction of Conditional Velocity Fields

One remaining thing is the choice of the conditional prob-
ability path pt(x|x1) and the conditional velocity field
vt(x|x1) on Ω. Based on reflected ODEs, both of them
can be simply derived from a conditional flow ϕt(x|x1),
which satisfies that ϕ0(x|x1) = x, ϕ1(x|x1) ≈ x1, and
ϕt(x|x1) ∈ Ω for all x,x1 ∈ Ω and t ∈ [0, 1]. In fact, with
a data sample x1 from pdata(·),

vt(x|x1) = ϕ′
t(ϕ

−1
t (x|x1)|x1), (20a)

pt(x|x1) = p0(ϕ
−1
t (x|x1))

∣∣det (∇xϕ
−1
t (x|x1)

)∣∣ ,
(20b)
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Half Annulus Cup

Figure 1. Illustration of the conditional velocity fields on two non-
convex domains: half annulus (left) and cup (right). The black
solid curve is the designed conditional velocity field within the
domain. The OT conditional velocity field is represented by the
blue dashed segment which violates the domain constraint.

naturally satisfy the continuity equation (14). Here we pro-
vide two concrete examples.
Example 3.6 (Convex Domain). Let Ω be a convex domain.
Using the same idea of OT conditional velocity field, we set

ϕt(x|x1) = (1− (1− σmin)t)x+ (1− σmin)tx1, (21)

where σmin is a sufficiently small number such that the
resulting p1(·|x1) is concentrated around x1. Note that
equation (21) is different from the vanilla OT conditional
velocity field in FM in that it has a coefficient (1 − σmin)
on x1 to ensure that ϕt(x|x1) ∈ Ω due to the convexity
of Ω. A typical example of convex domains is the convex
polytope defined as

Ω = {u |Au < b} ⊂ Rd, (22)

where A ∈ Rm×d, b ∈ Rm, and m is the number of linear
constraints. By taking A = [Id,−Id]′ and b = 12d where
Id is the d-dimensional identity matrix and 12d is an all-ones
vector of length 2d, the corresponding constrained domain
becomes a hypercube Ω = [−1, 1]d, which is frequently
encountered in image generation tasks.
Example 3.7 (Half Annulus). Consider a two-dimensional
half annulus area

Ω = {(x1, x2) | r2 ≤ x2
1 + x2

2 ≤ R2, x2 ≥ 0} ⊂ R2 (23)

with 0 < r < R. Let x = (∥x∥ cosα, ∥x∥ sinα)′ and
x1 = (∥x1∥ cosα1, ∥x1∥ sinα1)

′ where α, α1 ∈ [0, π].
The conditional flow that (approximately) connects x and x1

can be given by ϕt(x|x1) = (xt cosαt, xt sinαt)
′ where

xt = (1− (1− σmin)t)∥x∥+ (1− σmin)t∥x1∥, (24a)
αt = (1− (1− σmin)t)α+ (1− σmin)tα1. (24b)

It is easy to verify that ϕt(x|x1) ∈ Ω for all x, x1, and
t. Intuitively, equation (24) forms an OT conditional veloc-
ity field that (approximately) pushes x to x1 in the polar
coordinates. See the left plot in Figure 1 for an illustration.

Algorithm 1 Sampling from Reflected CNFs

Input: A velocity model vθ(x, t); the prior distribu-
tion p0(·); total number of discretization steps K; an
increasing time sequences {γk}Kk=0 such that γ0 = 0
and γK = 1; an one-step ODE solver SOLVER(·); a
reflection function Refl∂Ω(·).
Output: A sample x1 from the reflected CNF.
Sample a point x0 from p0(·);
for k = 1 to K do

x̄γk
← SOLVER

(
xγk−1

, γk−1, γk,vθ

)
;

(∆,α,y)←
(
∥x̄γk

− xγk−1
∥, x̄γk

−xγk−1

∥x̄γk
−xγk−1

∥ ,xγk−1

)
;

while TRUE do
Calculate the first intersection y′ of the ray y +
αs(s ≥ 0) and the boundary ∂Ω;
∆′ ← ∥y′ − y∥;
if ∆ ≤ ∆′ then

Stop the inner loop;
end if
(∆,α,y)← (∆−∆′,Refl∂Ω(α,y′),y′);

end while
xγk
← y +α∆ ∈ Ω;

end for

Compared to RDMs (Lou & Ermon, 2023), the superiority
of RFM can be summarized in three key aspects: i) one
can efficiently sample from pt(x|x1) through the analyti-
cal conditional flow ϕt(x|x1) to obtain the training data
in LCRFM(θ) without requiring additional geometric tech-
niques; ii) the conditional velocity field vt(x|x1) has an
analytical form, eliminating the need for potentially compli-
cated approximations; iii) in principle, the prior distribution
can take any distribution on arbitrary domain Ω, thereby
enhancing the flexibility of reflected CNFs.

3.4. Sampling from Reflected CNFs

To generate a sample from the learned reflected CNFs, we
start from the prior distribution and simulate the reflected
ODE (13) where vt(x) is replaced by vθ(x, t). Assume
an increasing sequence 0 = γ0 < · · · < γK = 1 of the
interpolation time points for ODE simulation. Here, we
only discuss the simulation methods with fixed step sizes,
and those with adaptive step sizes can be derived similarly.

First of all, we sample a point x0 from the prior distribu-
tion p0(·) as our initialization as t = 0. In the k-th step,
given the current position xγk−1

, we need to calculate the
next position xγk

. For ODEs without spatial constraints,
this one-step update can be achieved by many widely-used
algorithms, e.g., Euler method, Runge-Kutta method, etc.
These algorithms can generally be represented by

x̄γk
= SOLVER

(
xγk−1

, γk−1, γk,vθ

)
, (25)
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where the ODE solver SOLVER(·) takes the current po-
sition xγk−1

, the starting and ending time γk−1, γk, and a
velocity field vθ as inputs. However, if the ODE solver does
not account for the boundary constraints, the next position
x̄γk

may extend beyond the constrained domain Ω.

Inspired by the geometry implication of the reflection term
dLt, we handle the case x̄γk

/∈ Ω by applying reflections
iteratively to the segment from xγk−1

to x̄γk
. Concretely,

let ∆ = ∥x̄γk
−xγk−1

∥ and α =
x̄γk

−xγk−1

∥x̄γk
−xγk−1

∥ ∈ Rd be the
length and direction of the one-step update, and y = xγk−1

is the current position. We first calculate the first intersection
y′ of the ray y + αs(s ≥ 0) and the boundary ∂Ω. If
∥y′ − y∥ =: ∆′ < ∆, we continue the iteration and update
the triplet (∆,α,y) by

(∆,α,y)← (∆−∆′,Refl∂Ω(α,y′),y′) , (26)

where Refl∂Ω(α,y′) gives the reflected velocity of α at y′

on ∂Ω; otherwise, we stop the iteration and calculate

xγk
= y +α∆ ∈ Ω (27)

as the next position. The whole procedure for sampling
from reflected CNFs is summarized in Algorithm 1.

Note that for certain special domains Ω, it is possible to
directly compute the next position instead of applying re-
flections iteratively. For example, for Ω = [−1, 1]d, we
can directly compute xγk

= 1 − |(x̄γk
+ 1)mod 4 − 2|.

This observation is crucial to efficient sampling in image
generation tasks.

Flow Guidance Inspired by the classifier-free guidance
for score-based conditional generation (Section 2.3), we
consider a similar scheme for guided generation based on
the reflected ODE (13). With a c-conditioned velocity
field vt(x|c) which pushes the prior distribution p0(x|c) =
p0(x) to p1(x|c), we defines the guided velocity field as

ṽt(x|c) = wvt(x|c) + (1− w)vt(x|∅), (28)

where w is the guidance weight and vt(x|∅) is the uncondi-
tioned velocity with c set to the empty token. A similar idea
is also considered in Dao et al. (2023); Zheng et al. (2023).
According to the reflected ODE, the guided probability path
p̃t(x|c) is then defined implicitly by the solution to the fol-
lowing continuity equation with the Neumann boundary
condition

∂

∂t
p̃t(x|c) = −∇x · (ṽt(x|c)p̃t(x|c)) , x ∈ Ωo, (29a)

p̃t(x|c)ṽt(x|c) · n(x) = 0, x ∈ ∂Ω, (29b)

where n(x) is the outward normal direction at x ∈ ∂Ω. In
particular, one has p̃t(x|c) = pt(x) or p̃t(x|c) = pt(x|c) if
w = 0 or w = 1 respectively.

The following theorem implies that in the vanilla FM setting,
the velocity field is connected to that in the ODE counter-
part of the reversed SDE (i.e., λ = 0 in equation (10)),
establishing an equivalence between equation (12) and (28).

Theorem 3.8. Let Ω = Rd and the prior distribution
p0(x) be a standard Gaussian distribution. Assume the
OT conditional velocity field for FM, i.e., ϕt(x|x1) =
tx1 + (1− (1− σmin)t)x. Then

vt(x) =
1

t
x+

1− (1− σmin)t

t
∇ log pt(x). (30)

The proof of Theorem 3.8 can be found in Appendix A.4.

4. Experiments
4.1. Low-dimensional Toy Examples

We first test the effectiveness of RFM for modeling probabil-
ity distributions on low-dimensional constrained domains,
including hypercube, simplex, half annulus, and cup.

Hypercube and Simplex We consider the d-dimensional
hypercube Ω = [−1, 1]d and the d-dimensional simplex

Ω =

{
(x1, . . . , xd)

′

∣∣∣∣∣x1 ≥ 0, . . . , xd ≥ 0,

d∑
i=1

xi ≤ 1

}
.

Both domains are convex and satisfy the condition in Exam-
ple 3.6. We consider two cases here: d = 2 and d = 10. For
RFM, we use the OT conditional velocity field in equation
(21) with σmin = 10−5.

Half Annulus We consider a two-dimensional half annu-
lus area which is defined in Example 3.7 and choose the con-
ditional velocity field in equation (24) with σmin = 10−5

for RFM.

Cup We also consider a non-convex two-dimensional cup
area defined as

Ω = {(x1, x2)
′|−1 ≤ x1 ≤ 1, x2 ≥ 0, x2

1+(x2−3)2 ≤ 2}.

Let x = (x1, x2) and x1 = (x1,1, x1,2) be the prior sample
and data sample. We define the conditional flow as

ϕt(x|x1) = ((1− t)x1 + tx1,1, |(1− t)x2 − tx1,2|)′ ,

which is a broken line connecting x and x1 with one reflec-
tion at the x-axis (Figure 1, right plot).

For all these domains above, we set the prior distribution
p0(·) to the standard Gaussian distribution for CNFs (trained
with FM) and the uniform distribution over the constrained
domain Ω for reflected CNFs (trained with RFM). As an
additional baseline, the CNFs (trained with FM) where p0(·)

6
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Figure 2. The histplots of samples obtained by different methods compared to the ground truth on the two-dimensional hypercube, simplex,
and cup data set. Samples out of the constrained domain are plotted with red dots. The total sample size is 100,000.

Table 1. KL divergences to the ground truth obtained by different methods on low-dimensional generation tasks. For each method, we
calculate the KL divergence using the Python ITE module (Szabó, 2014) with a sample size of 50,000. The results are averaged over 10
independent runs with standard deviation in the brackets.

Method Hypercube Simplex Half Annulus Cup

d = 2 d = 10 d = 2 d = 10 d = 2 d = 2

RDM 0.0110(0.0003) 0.4798(0.0006) 0.0055(0.0001) 0.7613(0.0036) N/A N/A
FM 0.0044(0.0010) 0.0224(0.0010) 0.0062(0.0011) 0.0522(0.0022) 0.0083(0.0008) 0.0122(0.0012)
FM∗ 0.0021(0.0010) 0.0257(0.0020) 0.0045(0.0009) 0.0460(0.0022) 0.0085(0.0011) 0.0118(0.0020)
RFM 0.0021(0.0011) 0.0243(0.0011) 0.0027(0.0011) 0.0452(0.0023) 0.0038(0.0009) 0.0058(0.0010)

Table 2. Constraint violation ratio (‰) of different methods on
low-dimensional generation tasks. We collect 500,000 samples to
calculate the constraint violation ratio.

Method Hypercube Simplex Half Annulus Cup

d = 2 d = 10 d = 2 d = 10 d = 2 d = 2

FM 3.1 26.9 9.0 86.2 10.4 13.9
FM∗ 0.2 8.6 5.9 33.7 10.2 10.2
RFM 0.0 0.0 0.0 0.0 0.0 0.0

is a uniform distribution are also considered and denoted
by FM∗. We choose the target distribution pdata(·) as the
mixture of Gaussians which is truncated by the domain Ω
(Fishman et al., 2023). On all domains, the OT conditional
velocity field with σmin = 10−5 is chosen for FM. The
results are collected after 200,000 iterations with a batch
size of 512. We use the popular fixed-step third-order Heun
algorithm (Chen et al., 2018) and set the number of function
evaluations (NFE) as 300 to sample from the CNFs and the
reflected CNFs. We also consider the RDM baseline imple-
mented by Fishman et al. (2023) and generate the samples
using the Euler-Maruyama algorithm (Kloeden & Platen,
1992) with 300 NFE. See more details of implementation in

Appendix B.1.

Table 1 reports the approximation accuracies measured by
the Kullback–Leibler (KL) divergences to the ground truth
obtained by different methods. We find that in all cases,
RFM performs on par or better than FM and FM∗ and con-
sistently outperforms RDM. Interestingly, the results of
RDM get worse in the 10-dimensional cases, partially due
to the requirement for more discretization steps. One can
also see from Table 2 that a large proportion of samples vio-
lating the constraints are generated by FM and FM∗, while
our RFM enjoys zero constraint violation ratio by design.
This demonstrates the effectiveness of the reflection opera-
tion in CNFs. Interestingly, the boundary violation ratio of
CNFs can be somewhat reduced by employing a uniform
prior distribution, as evidenced by the FM∗ results.

Figure 2 shows the histplots of samples obtained by differ-
ent methods. We see that both CNFs and reflected CNFs
(trained by FM and RFM respectively) can generate samples
similar to the data distributions. Moreover, samples from
reflected CNFs all stay within the domains while those from
CNFs can violate the constraints (the red dots). It is worth
noting that the conditional velocity fields of RFM on the
nonconvex half annulus and cup areas work well, although
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Figure 3. Class-conditioned guided samples from the CNFs trained with FM (left, NFE = 769) and the reflected CNFs trained with RFM
(right, NFE = 723) with a high guidance weight w = 15 on ImageNet (64× 64). The samples from CNFs are clipped to [0, 255] after
the ODE simulation.

Table 3. Sample quality measured by FID score (↓) obtained by
different methods on CIFAR-10 (32×32). Methods for constrained
generation are marked in the shaded area. The result with ∗ is
produced by ourselves using the official checkpoint in Lou &
Ermon (2023) and the predictor-corrector (PC) algorithm. The
other results are from their original papers.

Method FID NFE

NCSN++ (Song et al., 2020b) 2.20 2000
DDPM++ (Song et al., 2020b) 2.41 2000
Subspace NCSN++ (Jing et al., 2022a) 2.17 2000
DDIM (Song et al., 2020a) 4.16 100
FM (Lipman et al., 2023) 6.35 142

RDM (Lou & Ermon, 2023) 2.72 2000
RDM (Lou & Ermon, 2023) 44.40∗ 200
RFM (ours) 4.76 139

they are not optimal transports. More results about alterna-
tive ODE solvers and learned velocity fields can be found
in Appendix C.1.

4.2. Image Generation Benchmarks

We then explore the performances of RFM for the uncondi-
tional image generation task on CIFAR-10 (32 × 32) and
the conditional generation task on ImageNet (64 × 64).
For both data sets, the data are rescaled to a hypercube
Ω = [−1, 1]3×m×m (m is the image size), which is a con-
vex domain (Example 3.6). For CNFs trained with FM, we

set the prior distribution to be a standard Gaussian distribu-
tion and use the OT conditional velocity field. For reflected
CNFs trained with RFM, we set the prior distribution to
be a truncated standard Gaussian distribution over Ω and
use the OT conditional velocity field in equation (21). The
architectures of the velocity model vθ(x, t) for CIFAR-10
or the class-conditioned velocity model vθ(x, t, c) for Ima-
geNet employed by RFM and FM are the same as the UNet
(Ronneberger et al., 2015) of the score function model in
Dhariwal & Nichol (2021). On CIFAR-10, the velocity
model of RFM is optimized with Adam (Kingma & Ba,
2015) and a constant learning rate of 0.0002 after a warm-
up phase of 5000 training steps; on ImageNet, the velocity
model of RFM is optimized with AdamW (Loshchilov &
Hutter, 2018) and a constant learning rate of 0.0001 after
a warm-up phase of 5000 training steps. The total number
of training steps is 800,000 on CIFAR-10 and 540,000 on
ImageNet. The batch size is set to 128 on CIFAR-10 and
2048 on ImageNet. We also train CNFs with FM on Im-
ageNet by ourselves using the same setting as RFM. We
use the adaptive-step Dormand–Prince method (Dormand &
Prince, 1980) with absolute and relative tolerances of 10−5

to sample from the CNFs and the reflected CNFs. See more
implementation details in Appendix B.2 and B.3.

Unconditional Image Generation In Table 3, we draw
50,000 samples and report the Fréchet inception distance
(FID) score (Seitzer, 2020) as well as the NFE obtained
by different methods. Among the methods for constrained
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Table 4. Digit-level constraint violation ratio of FM and RFM on
the ImageNet (64× 64) conditional generation task. (Reflected)
CNFs are simulated by the fixed-step third-order Heun algorithm
with 600 NFE.

Flow guidance weight w 7.5 15 25

FM 51.28% 61.12% 64.51%
RFM 0.0% 0.0% 0.0%

generation, we see that although RDM with the predictor-
corrector (PC) sampler works well under a large NFE, it has
a large performance drop when the NFE is small. In con-
trast, RFM can obtain high-quality samples on constrained
domains with small NFEs, inheriting the benefit of straighter
velocity fields of FM. Besides, we want to point out that the
FID score produced by FM can be sensitive to the exper-
imental setting (e.g., FID=3.66 reproduced by Tong et al.
(2023)). In comparison with FM, the benefit of RFM mainly
comes from a zero boundary violation rate and more real-
istic image samples (see the next paragraph), and the FID
score is not very sensitive to the boundary violation issue.
Image samples generated from reflected CNFs trained with
RFM can be found in Figure 7 of Appendix C.2.

Conditional Image Generation Figure 3 shows the class-
conditioned samples generated by the CNFs trained with
FM and the reflected CNFs trained with RFM under a high
guidance weight using the flow guidance introduced in Sec-
tion 3.4. We see that the vanilla CNFs tend to generate
oversaturated and unnatural images due to the boundary
violation. In contrast, reflected CNFs trained with RFM
effectively improve the sample quality by producing more
faithful images with a comparable NFE. Table 4 reports the
constraint violation ratios of different methods with vary-
ing guidance weights. We see that the constraint violation
ratio of FM is large for this high-dimensional task and can
increase as the flow guidance weight gets larger.

5. Conclusion
In this work, we presented reflected flow matching (RFM),
an extension of flow matching for constrained domains
through reflected ODEs/CNFs. By leveraging conditional
probability paths that adhere to the constraints, we show
that the velocity fields in the reflected ODEs/CNFs can be
effectively trained by matching the analytical conditional
velocity fields in a simulation-free manner, akin to FM. We
demonstrate the efficacy of RFM across various choices
of conditional velocity fields on low-dimensional convex
and nonconvex domains. On standard image benchmarks,
we show that RFM performs on par or better than existing
baselines with a small NFE and produces more faithful sam-
ples under high guidance weight. Further applications of
RFM to constrained generative modeling of high-resolution

images, videos, cloud points, human motions, etc., will be
interesting future directions.

Limitations To apply RFM, we have the following re-
quirements for the constrained domain: i) the domain has a
regular shape so that we can design a conditional flow that
is confined to it. All convex domains satisfy this require-
ment. ii) the boundary has an analytical form to compute the
intersection point and the reflection direction if necessary.
iii) the conditional flow is easy to simulate and differentiate
for velocity computation. We leave exploring the design of
conditional probability paths on more general domains to
future work.
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A. Theoretical Results
A.1. Details of Theorem 3.1

Theorem 3.1. Assume
(i) the domain Ω satisfies the uniform exterior sphere condition, i.e.,

∃r0 > 0,∀x ∈ ∂Ω,we have
{
n
∣∣∥n∥ = 1, B(x− r0n, r0) ∩ Ω = ∅

}
̸= ∅,

where B(x, r) is a open ball with center x and radius r;
(ii) the domain Ω satisfies the uniform cone condition, i.e.,

∃δ > 0, α ∈ [0, 1),∀x ∈ ∂Ω,we have
{
m

∣∣∥m∥ = 1,∀y ∈ B(x, δ) ∩ ∂Ω, C(y,m, α) ∪B(x, δ) ⊂ Ω
}
̸= ∅,

where C(y,m, α) =
{
z
∣∣(z − y) ·m ≥ ∥z − y∥α

}
.

(iii) the velocity field vt(x) is Lipschitz continuous in x ∈ Ω (uniformly on t).
Then the solution to the reflected ODE (13) exists and is unique on t ∈ [0, 1].

Sketch of Proof The reflected ODE we considered can be viewed as a special case of reflected SDE where the diffusion
coefficient is zero. Therefore, Theorem 3.1 is indeed a corollary of Pilipenko (2014, Theorem 2.5.4) with no diffusion term
(i.e., diffusion coefficients bk(xt), 1 ≤ k ≤ m, are zeros).

For a more rigorous derivation, note that Pilipenko (2014, Theorem 2.5.2) says that under the assumption (i) (ii) of the
domain D in our Theorem 3.1, there exists a unique solution to the Skorokhod problem with normal reflection as long as the
drift function a(xt) is continuous. To prove the existence and uniqueness of the solution to the reflected ODE, one can
first use Euler discretization to find a sequence of approximate solutions whose existence and uniqueness are guaranteed by
Pilipenko (2014, Theorem 2.5.2). We can then prove that this sequence of approximate solutions converges to the solution
of the reflected ODE problem as the stepsize goes to zero. This proof simply follows the proof provided by Pilipenko (2014)
for reflected SDEs.

A.2. Proof of Theorem 3.4

First of all, we have

∥vθ(x, t)− vt(x)∥2 = ∥vθ(x, t)∥2 − 2vθ(x, t) · vt(x) + ∥vt(x)∥2 (31a)

∥vθ(x, t)− vt(x|x1)∥2 = ∥vθ(x, t)∥2 − 2vθ(x, t) · vt(x|x1) + ∥vt(x|x1)∥2 (31b)

To prove that∇LRFM(θ) = ∇LCRFM(θ), it can be easily seen that

Epdata(x1)pt(x|x1)∥vθ(x, t)∥2 = Ept(x)∥vθ(x, t)∥2 (32)

by the definition of pt(x) in equation (16). The remaining thing to show is

Epdata(x1)pt(x|x1)vθ(x, t) · vt(x|x1) = Ept(x)vθ(x, t) · vt(x). (33)

By the definition of vt(x) in equation (17), we have

Ept(x)vθ(x, t) · vt(x) =

∫
Ω

pt(x)vθ(x, t) · vt(x)dx

=

∫
Ω

pt(x)vθ(x, t) ·
∫
Ω

vt(x|x1)
pt(x|x1)pdata(x1)

pt(x)
dx1dx

=

∫
Ω

∫
Ω

vθ(x, t) · vt(x|x1)pt(x|x1)pdata(x1)dx1dx

= Epdata(x1)pt(x|x1)vθ(x, t) · vt(x|x1).

This finishes the proof.
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A.3. Proof of Theorem 3.5

We first give an alternative expression (Pilipenko, 2014) of the reflected ODE

dϕt(x) = vt(ϕt(x))dt+ n(ϕt(x))dlt, (34a)
ϕ0(x) = x, (34b)

where the initial point x ∼ p0(x), n(x) is the inward unit normal vector at x on ∂Ω, and lt is non-decreasing in t with
l0 = 0. Moreover, lt satisfies

∫ t

0
I(ϕs(x) /∈ ∂Ω)dls = 0 for t > 0, i.e., dlt vanishes in the interior and will push the velocity

along n(x) when the trajectory hits the boundary.

Let ϕθ,t(x) (with a reflection term l̄t) be the solution to the reflected ODE (34) with velocity field vθ(x, t). By the definition
of Wasserstein-2 distance, we have

W 2
2 (p1(x), pθ,1(x)) ≤

∫
Ω

∥ϕ1(x)− ϕθ,1(x)∥2p0(x)dx := Ŵ 2
2 (pt(x), pθ,t(x))

∣∣
t=1

. (35)

Take the derivative of Ŵ 2
2 (pt(x), pθ,t(x)) w.r.t. t gives

dŴ 2
2 (pt(x), pθ,t(x)) = 2

∫
Ω

(ϕt(x)− ϕθ,t(x)) (dϕt(x)− dϕθ,t(x)) p0(x)dx (36)

Note that

(ϕt(x)− ϕθ,t(x)) (dϕt(x)− dϕθ,t(x))

= (ϕt(x)− ϕθ,t(x))
[
(vt(ϕt(x))− vθ(ϕθ,t(x), t))dt+ n(ϕt(x))dlt − n(ϕθ,t(x))dl̄t

]
=(ϕt(x)− ϕθ,t(x)) (vt(ϕt(x))− vθ(ϕθ,t(x), t))dt

+ (ϕt(x)− ϕθ,t(x))n(ϕt(x))dlt − (ϕt(x)− ϕθ,t(x))n(ϕθ,t(x))dl̄t,

The first term can be bounded by

(ϕt(x)− ϕθ,t(x)) (vt(ϕt(x))− vθ(ϕθ,t(x), t))

= (ϕt(x)− ϕθ,t(x)) (vt(ϕt(x))− vθ(ϕt(x), t)) + (ϕt(x)− ϕθ,t(x)) (vθ(ϕt(x), t)− vθ(ϕθ,t(x), t))

≤1

2
∥ϕt(x)− ϕθ,t(x)∥2 +

1

2
∥vt(ϕt(x))− vθ(ϕt(x), t)∥2 +M∥ϕt(x)− ϕθ,t(x)∥2

where in the last inequality we use the mean inequality and the fact that vθ(x, t) is M -Lipschitz in x. To handle the second
term, note that dlt > 0 only if ϕt(x) ∈ ∂Ω. When ϕt(x) ∈ ∂Ω, we know (ϕt(x)− ϕθ,t(x))n(ϕt(x)) ≤ 0 due to the
convexity of Ω. Therefore, the second term satisfies

(ϕt(x)− ϕθ,t(x))n(ϕt(x))dlt ≤ 0.

Using the same argument, we know that the third term satisfies

− (ϕt(x)− ϕθ,t(x))n(ϕθ,t(x))dl̄t ≤ 0

See Lamperski (2021) for a more rigorous argument. Therefore, we have the following bound for dŴ 2
2 (pt(x), pθ,t(x)) /dt

dŴ 2
2 (pt(x), pθ,t(x)) /dt

≤
∫
Ω

∥ϕt(x)− ϕθ,t(x)∥2p0(x)dx+

∫
Ω

∥vt(ϕt(x))− vθ(ϕt(x), t)∥2p0(x)dx+ 2M

∫
Ω

∥ϕt(x)− ϕθ,t(x)∥2p0(x)dx

=(1 + 2M)Ŵ 2
2 (pt(x), pθ,t(x)) +

∫
Ω

∥vt(ϕt(x))− vθ(ϕt(x), t)∥2p0(x)dx.

By Gronwall’s inequality and Ŵ 2
2 (pt(x), pθ,t(x))

∣∣
t=0

= 0, we have

Ŵ 2
2 (pt(x), pθ,t(x)) ≤ e1+2M

∫ 1

0

∫
Ω

∥vt(ϕt(x))− vθ(ϕt(x), t)∥2p0(x)dxdt = e1+2MLRFM(θ). (37)

By combining equation (35) and (37), we finally conclude

W 2
2 (p1(x), pθ,1(x)) ≤ e1+2MLRFM(θ).

This finishes the proof.
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A.4. Proof of Theorem 3.8

Let Ω = Rd and the prior distribution p0(·) be the standard Gaussian distribution. Under the OT conditional flow, the
conditional velocity field is vt(x|x1) =

x1−(1−σmin)x
1−(1−σmin)t

, and the conditional probability path is pt(x|x1) = N (tx1, (1 −
(1− σmin)t)

2I). Define

p̄t(x1|x) =
pt(x|x1)pdata(x1)

pt(x)
.

By the definition of vt(x), we have

vt(x) = Ep̄t(x1|x)vt(x|x1)

= Ep̄t(x1|x)
x1 − (1− σmin)x

1− (1− σmin)t

=
x

t
− 1− (1− σmin)t

t
Ep̄t(x1|x)

x− tx1

(1− (1− σmin)t)2

=
x

t
+

1− (1− σmin)t

t
Ep̄t(x1|x)∇ log pt(x|x1)

=
x

t
+

1− (1− σmin)t

t
∇ log pt(x)

where we use the fact

Ep̄t(x1|x)∇x log pt(x|x1) =

∫
pt(x|x1)pdata(x1)

pt(x)

∇xpt(x|x1)

pt(x|x1)
dx1 =

1

pt(x)
∇x

∫
pt(x|x1)pdata(x1)dx1 = ∇x log pt(x).

This finishes the proof.

B. Implementation Details
B.1. Low-dimensional Toy Examples

For all data sets, we use 6-layer MLPs with 512 channels for the parametrization of the velocity model vθ(x, t). We use the
sinusoidal positional embedding (Vaswani et al., 2017) with 512 channels for the time step t and adds the time embeddings
to the input of each activition function in MLPs. We add a residual block after each linear layer in MLPs. All the activition
function is set to be the Gaussian error linear units (GELU) (Hendrycks & Gimpel, 2016). All models are implemented in
PyTorch (Paszke et al., 2019) and optimized with the Adam (Kingma & Ba, 2015) optimizer (β1 = 0.9, β2 = 0.999). The
learning rate is set to be 0.0003 at the beginning, with a decay rate of 0.75 per 10,000 iterations. The results are collected
after 200,000 iterations.

B.2. Unconditional Image Generation

The data are rescaled to a hypercube Ω = [−1, 1]3×32×32. For FM, we set the prior distribution to be a standard Gaussian
distribution and use the OT conditional velocity field. For RFM, we set the prior distribution to be a truncated standard
Gaussian distribution over Ω and use the OT conditional velocity field in equation (21). The architecture of the velocity
model vθ(x, t) in RFM and FM is the same as the UNet (Ronneberger et al., 2015) of score function model in Dhariwal &
Nichol (2021) (see Table 5 for details). We use full 32-bit precision for training on CIFAR-10. Following Lipman et al.
(2023), the velocity model in RFM is optimized with Adam (Kingma & Ba, 2015) optimizer (β1 = 0.9, β2 = 0.999,
weight decay = 0.0, and ϵ = 10−8) and a constant learning rate of 0.0002 after a warm-up phase of 5000 training steps. In
the warm-up phase, the learning rate is linearly increased from 10−8 to the maximum learning rate 0.0002. The results are
collected after 800,000 iterations with a batch size of 128. We use the Dormand–Prince method (Dormand & Prince, 1980)
with absolute and relative tolerances of 10−5 to simulate the reflected CNFs. It costs 1.5 day on 8 Nvidia 2080 Ti GPUs to
train reflected CNFs with RFM on CIFAR-10.

B.3. Conditional Image Generation

Similarly to the unconditional image generation tasks, we rescale the data to a hypercube Ω = [−1, 1]3×64×64. The prior
distribution is set to be the standard Gaussian distribution for FM and the truncated standard Gaussian distribution for RFM.
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Table 5. Hyper-parameters used for training each model.

Datasets CIFAR-10 ImageNet64

Channels 128 192
Depth 2 3
Channels multiple 1,2,2,2 1,2,3,4
Heads 4 4
Heads Channels 64 64
Attention resolution 16 32,16,8
Dropout 0.1 0.1
Effective Batch size 128 2048
Iterations 800k 540k
Learning Rate 2e-4 1e-4
EMA rate 0.9999 0.9999
Learning Rate Scheduler Constant Constant
Warmup Steps 5k 5k

Both FM and RFM use the OT conditional velocity field. The class-conditioned velocity field model vθ(x, t, c) in RFM
and FM is the same as the UNet in the class-conditioned score function model in Dhariwal & Nichol (2021) (see Table 5).
We use 16-bit mixed precision for training on ImageNet64. We train FM and RFM using AdamW optimizer (Loshchilov
& Hutter, 2018) with a constant learning rate of 0.0001 after a warm-up phase of 5000 steps. In the warm-up phase, the
learning rate is linearly increased from 10−8 to the maximum learning rate 0.0001. The results are collected after 540,000
iterations with a batch size of 2048. For both FM and RFM, we use the Dormand–Prince method (Dormand & Prince, 1980)
with absolute and relative tolerances of 10−5 to simulate the (reflected) CNFs. It costs 14 days on 32 Nvidia A100 GPUs to
train FM and RFM on ImageNet (64× 64).

C. Addtional Experimental Results
C.1. Low-dimensional Toy Examples

For the four 2D constrained domains: hypercube, simplex, half annulus, and cup, we plot the velocity field in reflected CNFs
learned by RFM in Figure 5 and the velocity field in CNFs learned by FM in Figure 6. We also report the KL divergences to
the ground truth (Table 6) and the constraint violation ratio (Table 7) of samples generated using the Dormand–Prince method
(Dormand & Prince, 1980) with absolute and relative tolerances of 10−5. According to Table 8, we see that compared to
FM, RFM uses similar NFE on hypercube and simplex, but uses more NFE on half annulus and cup due to the non-optimal
transport conditional velocity field.

We further investigate the effect of discretization steps on the constraint violation ratio (Table 9). Table 9 shows that the
constraint violation ratio can increase when NFE gets larger. We attribute this to the more time the solver spends exploring
around the boundary. When the NFE is small, the samples generated by FM collapse to the interior of the domain, which
causes a low constraint violation rate but poor approximation accuracy.

Table 6. KL divergences to the ground truth obtained by different methods on low-dimensional generation tasks. For each method, we
calculate the KL divergence using the Python ITE module (Szabó, 2014) with a sample size 50,000. We generate the samples from CNFs
and reflected CNFs using the Dormand–Prince method (Dormand & Prince, 1980) with absolute and relative tolerances of 10−5. The
results are averaged over 10 independent runs with standard deviation in the brackets.

Method Hypercube Simplex Half Annulus Cup

d = 2 d = 10 d = 2 d = 10 d = 2 d = 2

RDM 0.0110(0.0003) 0.4798(0.0006) 0.0055(0.0001) 0.7613(0.0036) N/A N/A
FM 0.0049(0.0008) 0.0247(0.0028) 0.0093(0.0018) 0.0563(0.0012) 0.0091(0.0008) 0.0132(0.0018)
RFM 0.0020(0.0013) 0.0248(0.0027) 0.0030(0.0012) 0.0460(0.0013) 0.0032(0.0014) 0.0069(0.0019)
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Table 7. Constraint violation ratio (‰) of different methods on low-dimensional generation tasks. We generate the samples from CNFs
and reflected CNFs using the Dormand–Prince method (Dormand & Prince, 1980) with absolute and relative tolerances of 10−5.

Method Hypercube Simplex Half Annulus Cup

d = 2 d = 10 d = 2 d = 10 d = 2 d = 2

FM 3.2 28.6 12.1 92.8 10.4 15.1
RFM 0.0 0.0 0.0 0.0 0.0 0.0

Table 8. NFE used to samples from different models on low-dimensional generation tasks using the Dormand–Prince method (Dormand &
Prince, 1980) with absolute and relative tolerances of 10−5.

Method Hypercube Simplex Half Annulus Cup

d = 2 d = 10 d = 2 d = 10 d = 2 d = 2

FM 103 92 111 151 110 119
RFM 117 112 116 99 206 275

Table 9. Constraint violation ratio (‰) and KL divergence with varying NFE on the generation task on Simplex (d = 2). Solver:
third-order Heun algorithm.

NFE 15 60 300

Constraint violation ratio 0.5 1.7 9.0
KL divergence 0.1805(0.0024) 0.0084(0.0013) 0.0062(0.0011)

C.2. Unconditional Image Generation

We investigate that the effect of the ODE solvers on the FID score in Table 10, where the DOPRI5 achieves the best result.
Samples generated by the reflected CNFs trained with RFM on CIFAR-10 are shown in Figure 7. We also test the uniform
distribution over the constrained domain as the prior distribution for RFM in Figure 8.

Table 10. FID score obtained by RFM with different ODE solvers (Chen et al., 2018) on CIFAR10.

Solver Dopri5 (NFE=139) RK4 (NFE=100) RK4 (NFE=200) Heun3 (NFE=150) Heun3 (NFE=300)

FID 4.76 5.37 4.85 4.92 4.81

C.3. Conditional Image Generation

Table 11 reports the FID scores on ImageNet (64 × 64) conditional generation benchmark. Generally, the FID score of
class-conditioned images under high guidance weight can be poor and the generated images (Figure 3) are more informative.
We provide a sample quality comparison between FM, RFM, and RDM in Figure 9.

Table 11. FID scores on ImageNet (64 × 64) conditional generation benchmark (flow guidance weight w = 15). Solver: Dopri5 for
FM/RFM, RK45 for RDM(ODE), Euler-Maruyama for RDM(SDE).

Method FM RDM (ODE) RDM (SDE) RFM

NFE 769 871 1000 723
FID 31.83 66.74 35.70 26.67
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Figure 4. The histplots of samples obtained by different methods compared to the ground truth on the two-dimensional hypercube, simplex,
and cup data set. We generate the samples from CNFs and reflected CNFs using the Dormand–Prince method (Dormand & Prince, 1980)
with absolute and relative tolerances of 10−5. Samples out of the constrained domain are plotted with red dots. The total sample size is
100,000.
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Figure 5. Velocity field in reflected CNFs learned by RFM for different ts on two-dimensional generation tasks.
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Figure 6. Velocity field in CNFs learned by FM for different ts on two-dimensional generation tasks. We only plot those velocity fields in
the constrained domain.
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Figure 7. Samples generated by the reflected CNFs trained with RFM on CIFAR-10 (NFE = 139). The prior distribution is set to the
truncated standard Gaussian distribution over [−1, 1]3×32×32. The ODE solver is the Dormand–Prince method (Dormand & Prince,
1980) with absolute and relative tolerances of 10−5.
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Figure 8. Samples generated by the reflected CNFs trained with RFM on CIFAR-10 (NFE = 118). The prior distribution is set to the
uniform distribution over [0, 1]3×32×32. The ODE solver is the Dormand–Prince method (Dormand & Prince, 1980) with absolute and
relative tolerances of 10−5.
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FM RFM

RDM (ODE) RDM (SDE)

Figure 9. Class-conditioned guided samples with a high guidance weight w = 15 on ImageNet (64 × 64) from different methods,
including i) the CNFs trained with FM (upper left, NFE = 769, Dormand-Prince method); ii) the reflected CNFs trained with RFM (upper
right, NFE = 723, Dormand-Prince method); iii) backward ODE in RDM (lower left, NFE = 871, Runge–Kutta–Fehlberg method
without reflection); iv) backward SDE in RDM (lower right, NFE = 800, Euler-Maruyama method with reflection). The samples of i) and
iii) are clipped to [0, 255] after the ODE simulation.
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