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Abstract
Graph neural networks (GNNs) have exhibited
superb power in many graph related tasks. Exist-
ing GNNs can be categorized into spatial GNNs
and spectral GNNs. The spatial GNNs primarily
capture the local information around each node,
while the spectral GNNs are able to operate on
the frequency signals of the entire graph. How-
ever, most, if not all, existing spectral GNNs are
faced with two limitations: (1) the polynomial
limitation that for most spectral GNNs, the ex-
pressive power in the spectral domain is limited
to polynomial filters; and (2) the transductive lim-
itation that for the node-level task, most spectral
GNNs can only be applied on relatively small-
scale graphs in transductive setting. In this paper,
we propose a novel spectral graph neural network
named SLOG to solve the above two limitations.
For the polynomial limitation, SLOG proposes a
novel filter with real-valued order with geometric
interpretability, mathematical feasibility and adap-
tive filtering ability to go beyond polynomial. For
the transductive limitation, SLOG combines the
subgraph sampling technique in spatial GNNs and
the signal processing technique in spectral GNNs
together to make itself tailored to the inductive
node-level tasks on large-scale graphs. Extensive
experimental results on 16 datasets demonstrate
the superiority of SLOG in inductive homophilic
and heterophilic node classification task.

1. Introduction
In the era of big data and AI (Ban et al., 2021; 2023; Wei
et al., 2023; Liu et al., 2020a;b; Roach et al., 2020; Du
et al., 2021; Lin et al., 2024; Wei et al., 2024), graph neural
networks (Hamilton et al., 2017; Veličković et al., 2018)
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(GNNs) have demonstrated strong learning ability on graph
related tasks such as node classification (Kipf & Welling,
2016; Wu et al., 2019; He et al., 2021; Yan et al., 2022a;
Liu et al., 2023; Fu et al., 2024), link prediction (Zhang
& Chen, 2018; Yan et al., 2024a;b; Wang et al., 2023a),
network alignment (Yan et al., 2021a;b; 2022b; Zeng et al.,
2023a; 2024), node clustering (Fu et al., 2020; Jing et al.,
2022; 2024; Li et al., 2022a; Zeng et al., 2023b; Fu et al.,
2023) and knowledge graph reasoning (Wang et al., 2018;
Vashishth et al., 2019; Liu et al., 2021; 2022; Wang et al.,
2022; 2023b).

Most of existing GNNs can be divided into two main cate-
gories: spatial GNNs and spectral GNNs. The spatial GNNs
are designed based on the subgraph sampling technique
and the message-passing mechanism in the spatial domain.1

The spatial GNNs sample the local topological information
around each node. For example, GraphSAGE (Hamilton
et al., 2017) samples a two-hop subgraph around the target
node for message-passing and obtains the embedding for
the node. GAT (Veličković et al., 2018) adopts the self-
attention technique to assign different weights to different
edges in the sampled subgraph. Different from the spatial
GNNs focusing on capturing the local information around
each node, the spectral GNNs pay more attention to the fre-
quency signals of the whole graph. Most spectral GNNs are
developed based on the graph signal processing technique
(Wang & Zhang, 2022) in the spectral domain, which can
capture different frequency signals of the graph. To name a
few, ChebNet (Defferrard et al., 2016) utilizes a Chebyshev
polynomial filter, GNN-LF/HF (Zhu et al., 2021b) embraces
a rational function, and BernNet (He et al., 2021) applies
Bernstein polynomials as the filter.

However, most, if not all, existing spectral GNNs are faced
with with two limitations: the polynomial limitation and the
transductive limitation. Specifically, the polynomial limi-
tation means that for most spectral GNNs, the expressive
power in the spectral domain is limited to polynomial filters,
i.e., the orders of the filters are integer-valued.2 The order

1Dealing with small-scale graphs, the spatial GNNs may di-
rectly aggregate node information from all neighbors, which can
also be seen as a full neighborhood sampling.

2The filters in GNN-LF/HF (Zhu et al., 2021b), ARMA
(Bianchi et al., 2021), CayleyNet (Levie et al., 2018), and so
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of the polynomial filters, with the only exception of (Yan
et al., 2023), needs to be fixed as a hyper-parameter before
training and lacks flexibility. For the transductive limitation,
it refers to the fact (Kipf & Welling, 2016; Liu et al., 2022;
Yan et al., 2023) that in terms of node-level tasks, most spec-
tral GNNs can only be applied to the transductive setting on
relatively small-scale graphs and can not accommodate to
the inductive setting in real-world large-scale graphs, where
new nodes keep emerging. This is because these existing
spectral GNNs have to precompute the graph signal process-
ing operators such as multiplication on the adjacency matrix
of the entire graph.

To address the above two limitations of existing spec-
tral GNNs, in this paper, we propose a novel model
named SLOG with three sub-models with different com-
ponents/layers: SLOG(B) (Base), SLOG(N) (Nolinear), and
SLOG(L) (Local). The key idea of SLOG(B) is two-fold:
firstly, to solve the polynomial limitation, SLOG(B) pro-
poses a novel filter with real-valued order to go beyond
polynomial. In detail, we elucidate that the filter with real-
valued order of SLOG(B) enjoys (1) good geometric inter-
pretability in spatial domain; (2) mathematical feasibility
in spectral domain; and (3) adaptive filtering ability for
different frequency signals (e.g., low/high/band-pass and
band-stop) (Section 3.1). Secondly, to resolve the trans-
ductive limitation, SLOG(B) creatively combines the sub-
graph sampling technique in spatial GNNs and the signal
processing technique in spectral GNNs together, which ren-
ders SLOG(B) the inductive ability on large-scale graphs
(Section 3.2). Since SLOG(B) only has one linear layer
filter, we further propose two sub-models: SLOG(N) and
SLOG(L). SLOG(N) extends SLOG(B) to multiple layers
and adds more non-linearity into the model (Section 3.2) and
SLOG(L) interpolates the global uniform filter in SLOG(B)
with local adaptive filter for each subgraph (Section 3.3).
Through extensive empirical evaluations on 16 real-world
datasets in the node classification task, we corroborate the
effectiveness of the proposed SLOG. To summarize, our
contributions are three-fold:

• Insight. The key idea of our paper is two-fold: (1)
designing a real-valued order filter with geometric in-
terpretability, mathematical feasibility and adaptive
filtering ability; and (2) combining the subgraph sam-
pling technique in spatial GNNs and the graph signal
processing technique in spectral GNNs together.

• Model. We propose a large-scale inductive spectral
GNN beyond polynomial filter named SLOG, which
includes three sub-models: SLOG(B) as the base sub-
model, SLOG(N) with non-linearity and SLOG(L) for
interpolating the global uniform filter in SLOG(B) with

on, are still built upon polynomial filters.

the local adaptive filter for each subgraph. While the
three sub-models are differentiated by unique compo-
nents/layers, they belong to the unified SLOG model.

• Experiments. We conduct extensive experiments on
16 datasets and empirically find that the proposed
SLOG achieves comparable or better performance than
the state-of-the-arts in the inductive homophilic and
heterophilic node classification task, which demon-
strates the superiority of SLOG.

2. Preliminaries
Notations. We utilize bold uppercase letters for matrices
(e.g., A), bold lowercase letters for column vectors (e.g.,
u) and lowercase letters for scalars (e.g., α). We use the
superscript ⊤ for the transpose of matrices and vectors (e.g.,
A⊤ and u⊤). Consider a graph G = (V, E), where V =
{vi}ni=1 represents the set of n nodes, and E ⊆ V × V
denotes the set of edges. We use X ∈ Rn×f to represent
the node features of a graph with feature dimension f . The
adjacency matrix A ∈ Rn×n is defined such that Aij = 1 if
(vi, vj) ∈ E , and Aij = 0 otherwise. The degree matrix is
D = diag({

∑
j Aij}ni=1). We introduce Ã = A+ I as the

adjacency matrix augmented with self-loop for each node,
where I is the identity matrix, and D̃ is the degree matrix of
Ã.

Spectral Graph Theory. The graph Laplacian matrix is
defined as L = D −A. We use Lsym = I −D− 1

2AD− 1
2

for the symmetrically normalized graph Laplacian matrix.
Let Lsym = UΛU⊤ represents the eigen-decomposition
of Lsym, where U = [u1, · · · ,un] is the matrix of eigen-
vectors, and Λ = diag({λi}ni=1) is the diagonal matrix
of eigenvalues. The eigenvalues of Lsym are bounded by
λi ∈ [0, 2) (Chung, 1997)3, which also applies to the eigen-
values {λ̃i}ni=1 of L̃sym. In addition, applying a function
g(·), also known as a filter, to Lsym is equivalent to applying
g(·) to its eigenvalues (Shuman et al., 2013):

g(Lsym) =

n∑
i=1

g(λi)uiu
⊤
i . (1)

This is also applicable to L̃sym. For a l-th layer simpli-
fied graph convolutional network (SGC) (Wu et al., 2019)
without non-linear activation function, the final node repre-
sentation matrix Z can be formulated as:

Z = (I− L̃sym)
lXW, (2)

where X is the node feature matrix and W is the train-
able parameter matrix. Here, the linear graph convolu-
tional layer is equivalent to applying a polynomial function

3In this work, we only consider connected graph without bipar-
tite components (i.e., a component which is a bipartite graph).
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g(Lsym) = (I − Lsym)
l(l ∈ N+) to the graph Laplacian

matrix, functioning as a graph filter.

Graph Homophily and Heterophily. The concept of ho-
mophily/heterophily addresses the tendency of nodes to
connect with others of the same or different classes/labels
respectively. There are several interpretations of ho-
mophily/heterophily in existing literature, including per-
spectives at the edge scale (Abu-El-Haija et al., 2019; Zhu
et al., 2020; Luan et al., 2021), node scale (Pei et al., 2020),
and graph scale (Lim et al., 2021). This paper specifically
addresses edge heterophily, defined as the proportion of
edges connecting nodes of the different types relative to the

total number of edges: h(G) =
∣∣(vi,vj)∈E|yi ̸=yj

∣∣
|E| , where yi

represents the type of node vi.

3. Model
In this section, we present the details of the proposed SLOG
model. We first introduce the specially designed filter with
real-valued order, which is the key component of SLOG to
solve the polynomial limitation (Section 3.1). Equipped with
the filter with real-valued order, we present how the one lin-
ear layer filter base model SLOG(B) solves the transductive
limitation by combining the subgraph sampling technique
in spatial GNNs and the frequency signal processing tech-
nique in spectral GNNs together (Section 3.2). Then, we
enhance the one layer linear SLOG(B) to multi-layer non-
linear SLOG(N) (Section 3.2). To handle the varying degree
of heterophily across different parts of the graph4, we fur-
ther propose the SLOG(L), which interpolates the global
uniform filter from SLOG(B)/SLOG(N) with the local adap-
tive filter for each subgraph in corresponding SLOG(LB)
and SLOG(LN) (Section 3.3). Moreover, a complexity anal-
ysis can be found in Appendix A.4.

3.1. Filter Beyond Polynomial

The filter in most existing spectral GNNs (e.g., ChebNet
(Defferrard et al., 2016), APPNP (Gasteiger et al., 2018),
and SGC (Wu et al., 2019)) can be summarized as follows:

g(Lsym) =

K∑
k=1

αkL
k
sym, (3)

where Lsym is the symmetrically normalized graph Lapla-
cian and K is order of the polynomial. To map the filter
in the spectral domain to the K-hop subgraph in the spa-
tial domain, usually, the order K is a fixed positive integer
hyper-parameter, which lacks flexibility and can not be op-
timized as a variable during the training process. Recently,
TeDGCN (Yan et al., 2023) redefines the depth/layer of
GNNs and successfully builds a filter with real-valued order

4Please refer to Figure 3 and Section 3.3 for details.

as: g(Lsym) = (I− 1
2Lsym)

d, where d is a real number and
a trainable parameter. Unfortunately, this filter can only cap-
ture low/high frequency signals and is not able to function as
a band-pass/band-stop filter (Balcilar et al., 2021). Further-
more, TeDGCN has to conduct the eigen-decomposition on
Lsym, which means that it is still faced with the transductive
limitation.

In this subsection, we introduce the key component of
SLOG: a filter with real-valued order, ω(·), to go beyond
the polynomial expressiveness in the spectral domain as
follows:

ω(Lsym) = (I− 1

2
Lsym)

p(I+ (Lsym − I)2)q, (4)

where p and q are two trainable real-valued parameters. We
opt for the filter design in Eq. (4) for the following three
key properties: geometric interpretability, mathematical
feasibility and adaptive filtering:

P1. Geometric Interpretability in the Spatial Domain.
Proposition 3.1. The SLOG’s filter with real-valued or-
der, ω(·), in the spectral domain can be regarded as the
combination of two linear graph convolutional networks
in the spatial domain: ω(Lsym) = Sp

1 · Sq
2, where S1 =

1
2 (I+D− 1

2AD− 1
2 ) and S2 = I+ (D− 1

2AD− 1
2 )2.

The proof can be found in Appendix A.1. Based on Propo-
sition 3.1, the filter in Eq. (4) essentially represents the
combination of two linear graph convolutional networks
with trainable real-valued depths, which is composed of a
series of operations applied to the adjacency matrix A. This
process involves symmetric normalization of A, and addi-
tion of self-loops to both one-hop and two-hop adjacency
matrices.

P2. Mathematical Feasibility. The eigenvalues of Lsym
are confined within the range λi ∈ [0, 2). And the filter
ω(Lsym) comprises two components: (I − 1

2Lsym)
p and

(I + (Lsym − I)2)q. The first part, a polynomial function
of Lsym, is positive-definite, leading to the mathematical
feasibility to compute its exponentiation by any real number
p 5. Likewise, the second part is also positive-definite and
enjoys similar mathematical feasibility.

P3. Adaptive Filtering. The frequency response of the
proposed filter under various parameter configurations is
illustrated in Figure 1. This demonstrates the filter’s ability
to be transformed into high-pass, low-pass, band-pass, or
band-stop filters by optimizing the parameters p and q in the
real number domain.

Given the filter with real-valued order in Eq. (4), we next
introduce the details of SLOG and how it can be applied

5For a positive-definite matrix, computing the real-valued order
of the matrix is equivalent to conducting eigen-decomposition and
computing the power of the eigenvalues. (Shuman et al., 2013)
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Figure 1. The frequency responses of the proposed filter with different parameters.

to the inductive setting and run on large-scale graphs in
Section 3.2.

3.2. SLOG(B) and SLOG(N)

Algorithm 1 SLOG(B)
1: Input: Graph G(V, E); node feature X; node v ∈ V; hop

number of subgraphs K; maximum neighbor numbers of each
depth {Ni}.

2: Output: Vector representations zv for node v.
# Step 1: Sampling K-hop subgraph

3: Gv(VGv , EGv )← SAMPLE(G, {v},K, {Ni})
# Step 2: Calculation and Filtering

4: Compute node feature XGv and symmetrically normalized
Laplacian matrix LGv of Gv
# Step 3: Obtaining node representation

5: ZGv ← ω(LGv )XGvW
6: zv ← ZGv (v)
7: return zv

# Method: Subgraph sampling strategy
8: function SAMPLE(G,Vi,K, {Ni})
9: V(0) ← Vi

10: for k = 1 to K do
11: Sample Su ⊆ N (u), s.t. |Su| ≤ Nk for each u ∈

V(k−1), where N : v → 2V is the neighbor function of
G.

12: V(k) ← (
⋃

u∈V(k−1) Su) ∪ V(k−1)

13: end for
14: return G(V(K), E(K))
15: end function

In this subsection, we present the details of SLOG(B) and
SLOG(N). To handle the inductive setting and large-scale
graphs, the key idea of SLOG is to integrate the subgraph
sampling technique from spatial GNNs with the proposed
filter with real-valued order in Section 3.1. In other words,
for a given node v, SLOG applies the filter on a sampled
subgraph centered on v, whose size is much smaller than
the whole graph. In this way, SLOG fits into the inductive
setting and avoids the eigen-decomposition of the whole
graph, which enables it to be run on large-scale graphs.

Concretely, for a target node v, as shown in Algorithm 1,

SLOG(B) contains 3 parts: (1) Firstly, we sample a subgraph
Gv around v: starting from v, we sample a K-hop graph
with random node mask. All the sampled nodes and the
edges between them form the subgraph Gv; (2) Based on
Gv, we calculate the symmetrically normalized Laplacian
matrix LGv

of Gv and apply the filter ω(·) in Eq. (4) on LGv
;

(3) Finally, the representations of nodes in Gv is obtained as
follows:

ZGv
= ω(LGv

)XGv
W, (5)

where W is the parameter matrix. An illustrative example
of SLOG(B) is shown in Figure 2(a).

From the above introduction of SLOG(B) and the filter ω(·)
in Section 3.1, we can find that SLOG(B) is able to solve
the polynomial limitation and the transductive limitation
with the help of (1) the filter with real-valued order; and
(2) the combination of the subgraph sampling technique in
spatial GNNs and the frequency signal processing technique
in spectral GNNs.

Nevertheless, this simple linear filter in SLOG(B) does not
possess non-linearity. To address this, we further propose
an enhanced sub-model, SLOG(N), which includes L layers
of SLOG(B). In addition, it not only incorporates non-linear
activation functions between filters but also introduces resid-
ual connections (He et al., 2016). Details of the structure are
illustrated in a figure provided in Appendix A.2. The resid-
ual connections make the output become an interpolation
of the embeddings from previous layer and the embeddings
after transformation by Eq. (4). Specifically, in each layer,
the representation matrix is updated by:

H
(l)
Gv

= σ(ω(l)(LGv )H
(l−1)
Gv

W
(l)
1 +H

(l−1)
Gv

W
(l)
2 ), (6)

where σ(·) denotes the activation function, ω(l)(·) denotes
the filter at the l-th layer, H(l)

Gv
is the representation matrix at

the l-th layer, and W
(l)
1 and W

(l)
2 are the parameter matrices

at the l-th layer.
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Figure 2. An overview of the proposed SLOG. (a) In SLOG(B)/SLOG(N), nodes ui and uj are associated with K-hop subgraphs Gui and
Guj respectively. The filter with real-valued order, ω(·), is applied to these subgraphs during model training. New nodes, depicted with
dashed outlines, are processed similarly: sampled subgraphs are generated and the established filter is utilized for prediction. For node v,
its corresponding subgraph Gv is employed for prediction. (b) In SLOG(L), the graph is partitioned into M subgraphs; for instance, two
such subgraphs are GTi and GTj . Each subgraph is expanded to restore disrupted edges, and a combination of global and respective local
filters (ωi(·) for GTi , ωj(·) for GTj ) is applied during training. Newly added nodes are assigned to the nearest subgraph, exemplified by
node v being matched with GTi , and predictions are made using the corresponding filter ωi(·).
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Figure 3. The one hop edge heterophily density of two real-world
datasets: Squirrel (Rozemberczki et al., 2021) and Minesweeper
(Platonov et al., 2023). The x-axis represents the edge heterophily
(h), and the y-axis shows the corresponding density distribu-
tion. For all nodes in the graph, we sample 1-hop ego-graph
for each node, and the density of the distribution can be defined
as ρ(h) = ∆N(h)/∆h, where N(h) represents the proportion
of the subgraphs that have an edge heterophily equal to h. The
edge heterophily distribution of Squirrel is uniform, while that of
Minesweeper is varying.

3.3. SLOG(L)

Actually, SLOG(B), SLOG(N), and various other het-
erophilic graph-oriented methods, such as GPRGNN (Chien
et al., 2020), H2GCN (Zhu et al., 2020), and BernNet (He
et al., 2021) employ one single uniform filter to capture the
frequency information of the whole graph. Nevertheless,
heterophily in graphs is not uniformly distributed and can
exhibit significant variation across different graph regions,
which has been exemplified by Figure 3.

Therefore, one uniform filter with the same parameters (e.g.,
same p and q in Eq. (4)) for all subgraphs can not effec-
tively capture the varying local heterophily. To address this
issue, the proposed SLOG(L)’s filter contains two parts: one
global uniform filter from SLOG(B)/SLOG(N) and one lo-
cal adaptive filter for each subgraph, which is tailored to
capture the local frequency signals. The filter for SLOG(L)
is outlined in Eq. (7).

ωi(LGv ) = (I− 1

2
LGv )

p′
i(I+ (LGv − I)2)q

′
i , (7)

where p′i = βpglo + (1− β)pi and q′i = βqglo + (1− β)qi
represent the weighted combinations of global and local
parameters. Here, β is a hyper-parameter that modulates the
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balance between global and local filters. The parameters pglo
and qglo are associated with the global uniform filter, while
pi and qi are adaptive to the i-th subgraph. By interpolating
the parameters of the global filter with those of the local
filter, SLOG(L) can address the varying edge heterophily
distribution across different subgraphs.

As illustrated in Figure 2(b), SLOG(L) contains the follow-
ing steps: (1) Graph partition: when the number of nodes
in the graph is extremely large, it is infeasible for SLOG(L)
to adopt the same sampling strategy as SLOG(B)/SLOG(N)
due to the growing number of parameters (i.e., one (pi, qi)
for one node vi). Thus, we employ the METIS graph parti-
tion method (Karypis & Kumar, 1998) to partition the train-
ing graph into M subgraphs, {GTi

(VTi
, ETi

)}Mi=1. More
details about METIS are presented in Appendix C.3; (2)
Subgraph expansion and training: for each subgraph GTi

,
the graph partition may disrupt some edge connections, thus
we augment it with nodes and edges within K-hop distance
from GTi

. This process can restore the disrupted edges
in GTi

. After this step, we pursue the same procedure in
SLOG(B)/SLOG(N) to apply the filter ωi(·) in Eq. (7) on
the subgraph. The filter ωi(·) is a combination of global
and corresponding local filter. We then train the model; (3)
Minimum distance subgraph search & prediction: in the
inductive setting, when a new node v emerges, SLOG(L)
calculates its distance to each subgraph, and finds out the
nearest subgraph. The subgraph with the minimum distance
and its corresponding filter are selected to obtain the rep-
resentation of v, which can be used for prediction. The
detailed algorithm of SLOG(L) is attached in Appendix A.3
due to the page limit.

4. Experiment
In this section, we evaluate SLOG on the semi-supervised
node classification task. We first introduce the datasets,
baselines and settings in Section 4.1. Next, in Section 4.2,
we experiment with SLOG(B) and SLOG(N). In Section 4.3,
we conduct experiments on SLOG(L). In addition, We con-
duct additional experiments on SLOG’s adaptive filtering
ability in Section 4.4. Due to the page limit, some addi-
tional experimental results are attached in Appendix: (1)
ablation studies (Appendix B.1); (2) results of additional
baselines (Appendix B.2); (3) experimental results on syn-
thetic datasets (Appendix B.3); (4) a convergence study
(Appendix B.4); and (5) experimental results using two
alternative optimization methods (Appendix B.5).6

6Our code is available at https://github.com/
Hsu1023/SLOG.

4.1. Experiment Setup

Datasets. We adopt 16 datasets for evaluation, including 13
small-scale datasets and 3 large-scale datasets. The small-
scale datasets, sourced from (Kipf & Welling, 2016; Bo-
jchevski & Günnemann, 2017; Shchur et al., 2018; Rozem-
berczki et al., 2021; Platonov et al., 2023), include two cate-
gories: the heterophilic datasets include Chameleon, Squir-
rel, Squirrel-filtered, Chameleon-filtered, Minesweeper,
Tolokers, Amazon-ratings, and Questions; the homophilic
datasets include Cora, Citeseer, DBLP, Coauthor-CS, and
Coauthor-Physics. The large-scale datasets, sourced from
(Hamilton et al., 2017; Zeng et al., 2019; Hu et al., 2020),
are Flickr, Ogbn-arxiv, Reddit. These datasets are diverse,
varying in scale, domain, and heterophilic/homophilic ratios.
Detailed statistics of datasets are presented in Appendix C.1.

Baselines. We compare our method against 13 baselines, in-
cluding (1) a non-topology method: MLP; (2) general GNN
methods including GCN (Kipf & Welling, 2016), Cheb-
Net (Defferrard et al., 2016), GraphSAGE (Hamilton et al.,
2017), GAT (Veličković et al., 2018), APPNP (Gasteiger
et al., 2018), SGC (Wu et al., 2019), GATv2 (Brody et al.,
2021); (3) heterophilic graph oriented methods including
GPRGNN (Chien et al., 2020), H2GCN (Zhu et al., 2020),
FAGCN (Bo et al., 2021), BernNet (He et al., 2021), Jacobi-
Conv (Wang & Zhang, 2022).

Settings. For small-scale datasets, we employ a random
split of 60%/20%/20% for train/validation/test sets and con-
duct experiments in the inductive setting7. For large-scale
datasets, we keep the same split and the same transduc-
tive/inductive setting as those used in the original papers. It
is important to note that in the inductive setting, the models
are not exposed to validation or test nodes during training.
For evaluation, we use accuracy (ACC) with standard devia-
tion (std) as the metric, averaging the results over 5 runs.

4.2. SLOG(B) & SLOG(N)

The performance comparison on small-scale datasets is de-
tailed in Table 1 and Table 2. Our method demonstrates
a notable superiority over all baselines in most datasets,
achieving the best performance in 11 out of 13 small-scale
datasets. Specifically, for heterophilic datasets (Table 1), our
method surpasses every baseline across all datasets. This
superiority is attributed to the method’s capability to ef-
fectively discern the graph’s heterophily, thereby flexibly
adjusting its filter to capture a diverse range of frequency
signals depending on the dataset. In contrast, for homophilic
datasets (Table 2), our method shows excellence in 3 out of
5 datasets and ranks second in the remaining two. Notably,

7For spectral methods, we build a new Laplacian matrix Lsym
when new nodes emerge in the inductive setting and inherit the old
parameters from training.
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Table 1. Evaluation results on heterophilic datasets in the inductive setting.
Datasets Squirrel Chameleon Squirrel-filt. Chameleon-filt. Minesweeper Tolokers Amazon-ratings Questions

MLP 0.336±0.014 0.469±0.004 0.366±0.021 0.380±0.021 0.788±0.000 0.775±0.000 0.449±0.005 0.972±0.000
GCN 0.374±0.007 0.532±0.012 0.329±0.020 0.411±0.031 0.788±0.000 0.784±0.001 0.420±0.002 0.970±0.000

ChebNet 0.350±0.004 0.535±0.005 0.333±0.019 0.372±0.025 0.823±0.001 0.783±0.003 0.393±0.001 0.969±0.001
GraphSAGE 0.387±0.011 0.246±0.043 0.349±0.013 0.360±0.041 0.810±0.002 0.794±0.003 0.436±0.005 0.970±0.000

GAT 0.306±0.006 0.484±0.020 0.329±0.017 0.344±0.024 0.787±0.001 0.776±0.000 0.392±0.001 0.970±0.000
APPNP 0.314±0.008 0.410±0.010 0.312±0.019 0.381±0.020 0.788±0.000 0.778±0.001 0.429±0.002 0.970±0.000

SGC 0.371±0.005 0.486±0.002 0.320±0.016 0.357±0.021 0.786±0.000 0.782±0.000 0.398±0.002 0.970±0.000
GATv2 0.310±0.006 0.468±0.009 0.350±0.013 0.394±0.026 0.788±0.002 0.775±0.001 0.394±0.002 0.970±0.000

GPRGNN 0.343±0.009 0.472±0.020 0.364±0.019 0.394±0.038 0.791±0.000 0.775±0.001 0.414±0.004 0.970±0.000
H2GCN 0.359±0.005 0.454±0.007 0.335±0.025 0.381±0.026 0.824±0.001 0.788±0.001 0.442±0.002 0.971±0.000
FAGCN 0.332±0.008 0.412±0.026 0.350±0.030 0.369±0.027 0.789±0.001 0.784±0.002 0.433±0.009 0.970±0.000
BernNet 0.361±0.007 0.578±0.007 0.361±0.020 0.374±0.030 0.788±0.000 0.772±0.007 0.398±0.002 0.969±0.001

JacobiConv 0.221±0.017 0.309±0.015 0.295±0.012 0.348±0.035 0.788±0.000 0.704±0.100 0.355±0.010 0.877±0.176

SLOG(B) 0.392±0.006 0.581±0.024 0.427±0.013 0.420±0.023 0.822±0.009 0.796±0.005 0.451±0.007 0.972±0.001
SLOG(N) 0.355±0.010 0.520±0.022 0.376±0.025 0.431±0.026 0.844±0.008 0.810±0.006 0.456±0.006 0.972±0.001

Table 2. Evaluation results on homophilic datasets in the inductive setting.
Datasets Cora Citeseer DBLP Co.-CS Co.-Phys.

MLP 0.695±0.017 0.680±0.016 0.769±0.004 0.925±0.002 0.962±0.000
GCN 0.863±0.005 0.746±0.010 0.847±0.008 0.905±0.001 0.958±0.001

ChebNet 0.804±0.004 0.740±0.009 0.840±0.000 0.640±0.001 0.958±0.000
GraphSAGE 0.835±0.005 0.724±0.010 0.840±0.003 0.907±0.002 0.970±0.001

GAT 0.852±0.010 0.739±0.008 0.848±0.005 0.938±0.001 0.958±0.001
APPNP 0.839±0.004 0.748±0.008 0.835±0.008 0.918±0.001 0.961±0.000

SGC 0.859±0.010 0.754±0.008 0.845±0.003 0.938±0.001 0.958±0.000
GATv2 0.863±0.008 0.741±0.012 0.845±0.006 0.905±0.001 0.959±0.001

GPRGNN 0.874±0.010 0.756±0.003 0.848±0.004 0.942±0.001 0.966±0.000
H2GCN 0.815±0.004 0.757±0.010 0.840±0.001 0.940±0.001 0.966±0.000
FAGCN 0.845±0.007 0.751±0.014 0.835±0.007 0.932±0.013 0.963±0.003
BernNet 0.865±0.006 0.745±0.015 0.849±0.004 0.938±0.001 0.959±0.000

JacobiConv 0.584±0.034 0.559±0.098 0.455±0.041 0.882±0.008 0.924±0.010

SLOG(B) 0.865±0.011 0.766±0.026 0.850±0.005 0.934±0.003 0.959±0.002
SLOG(N) 0.761±0.010 0.675±0.026 0.839±0.003 0.944±0.005 0.966±0.001

Table 3. Evaluation results on large-scale datasets.
Datasets Flickr Ogbn-arxiv Reddit

nodes 89,250 169,343 232,965
edges 899,756 1,166,243 114,615,892
setting inductive transductive inductive

MLP 0.474±0.001 0.539±0.001 0.702±0.001
GraphSAGE 0.502±0.002 0.717±0.002 0.944±0.001

GAT 0.509±0.001 0.676±0.003 0.944±0.002
GATv2 0.517±0.001 0.675±0.001 0.957±0.000

GPRGNN 0.508±0.002 0.684±0.002 0.950±0.000
H2GCN 0.516±0.002 0.677±0.000 OOM

SLOG(B) 0.509±0.001 0.723±0.001 0.954±0.000
SLOG(N) 0.520±0.003 0.719±0.002 0.962±0.001

in the Cora and Coauthor-Physics datasets, our method’s
performance is marginally lower than the best baseline, by
only 1.4% and 0.4%, respectively. This underscores our
method’s effectiveness in homophilic datasets as well.

For large-scale dataset evaluation, results in Table 3 illus-
trate that our method consistently outperforms others. A
notable aspect is the size of the Reddit dataset, which con-
tains 115M edges and is significantly larger than those in
most related studies. Due to the high computational cost,
some baselines meet the out-of-memory (OOM) problem in
our machine8. However, thanks to the sampling technique,
our method is able to directly run on the graph, achieving the
best performance, confirming its scalability to large-scale
graphs. It is also important to note that these experiments
adhere to the same transductive/inductive settings as used
in the original papers, further evidencing our method’s ro-
bustness across various settings.

In addition, it is observed that SLOG(N) outperforms
SLOG(B) on numerous datasets, despite its more complex

8Since some spectral GNNs can not be run on such large-scale
datasets, we do not include them in the comparison.

architecture and increased number of parameters. This
improvement is attributed to the additional non-linearity
in SLOG(N), which enhances the model’s expressiveness.
Moreover, the incorporation of residual connections in
SLOG(N) helps preserve the node embedding from previous
layer.

4.3. SLOG(L)

The SLOG(L) model, as introduced in Section 3.3, addresses
varying distributions of homophily/heterophily ratios across
a graph. In order to quantify the heterophily/homophily
balance, we introduce a metric, locality. We sample a fixed
number of nodes in the graph, obtain their 1-hop ego-graphs,
and calculate the edge heterophily of these ego-graphs. The
locality, defined as the standard deviation of all 1-hop ego-
graphs’ edge heterophily, inversely indicates the balance
level of local edge heterophily across the whole graph.

As shown in Table 4, SLOG(LB)/SLOG(LN) en-
hances performance in datasets with high locality (e.g.,
Chameleon, Chameleon-filt., Minesweeper, Tolokers), sug-
gesting its effectiveness in contexts with imbalanced ho-
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Table 4. Performance of SLOG(L) on datasets with different locality.
Datasets Squirrel Squirrel-filt. Chameleon Chameleon-filt. Minesweeper Tolokers

Locality/10−2 1.85 1.66 4.16 3.03 4.08 3.84

Best of baselines 0.387±0.011 0.366±0.021 0.578±0.007 0.411±0.031 0.824±0.001 0.794±0.003

SLOG(B) 0.392±0.006 0.427±0.013 0.581±0.024 0.420±0.023 0.822±0.009 0.796±0.005
SLOG(N) 0.355±0.010 0.376±0.025 0.520±0.022 0.431±0.026 0.844±0.008 0.810±0.006

SLOG(LB) 0.387±0.008 0.409±0.010 0.605±0.043 0.443±0.029 0.807±0.006 0.785±0.008
SLOG(LN) 0.355±0.012 0.375±0.028 0.535±0.017 0.453±0.041 0.848±0.007 0.814±0.004

mophily/heterophily distributions. However, in datasets
with low locality (e.g., Squirrel, Squirrel-filt.), the perfor-
mance gain is not observed, likely due to the already bal-
anced local edge heterophily of these graphs. Here, the
addition of a local component unnecessarily complicates the
model, potentially hindering the effectiveness of the model.

4.4. Adaptive Filtering to Broad Frequency Signals

In this subsection, we present the learned filters of our
method on real datasets. The learned filters of our method
SLOG(B) on real datasets are shown in Figure 4(a) and
4(b). To compare with BernNet, we also show the learned
filters of BernNet on the same datasets in Figure 4(c) and
Figure 4(d). For the homophilic Citeseer graph, SLOG(B)
functions as a low-pass filter, capturing homophilic informa-
tion (Figure 4(a)). Conversely, for the heterophilic Squirrel
graph, it selectively filters out medium-frequency signals
and preserves high-frequency ones (Figure 4(b)). However,
BernNet’s performance on Citeseer includes not only low-
frequency signals but also some medium-frequency noise
(Figure 4(c)), indicating a potential for overfitting due to its
complex coefficients. Though BernNet learns filters similar
to SLOG(B) on Squirrel, the fluctuating signal curves imply
the capture of some extraneous signals (Figure 4(d)).

5. Related Work
Graph neural networks (GNN). GNN models can be
roughly divided into two categories, i.e. spectral-based
methods and spatial-based methods (Zhang et al., 2020).
Spectral methods are based on the spectral graph theory,
aiming to establish graph convolutional kernel in the spec-
tral domain. The notable attempt is reported in (Bruna et al.,
2013), which firstly introduces graph convolutional kernel.
After that, ChebNet (Defferrard et al., 2016) utilizes Cheby-
chev polynomials to form a convolutional kernel. GCN
(Kipf & Welling, 2016) takes the first-order approxima-
tion to simplify the kernel. SGC (Wu et al., 2019) further
changes multi-layer design to one linear transformation.
Other spectral-based methods include (Levie et al., 2018; Li
et al., 2018; Zhu et al., 2021b; Bianchi et al., 2021) and so
on. Spatial-based methods mainly focus on aggregating the
information of neighboring nodes. GraphSAGE (Hamilton
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Figure 4. Learned filters on real dataset.

et al., 2017) studies three different aggregators to aggregate
the information of neighbors. In GAT (Veličković et al.,
2018), attention mechanism is introduced as the aggregator.
GIN (Xu et al., 2018) deploys MLPs to model injective
functions in order to enhance the discriminative power of
the GNN. We refer readers to (Zhou et al., 2020; Wu et al.,
2020) for more details.

Heterophilic graph learning. While GNNs are mostly
based on the homophily assumption that neighboring nodes
are inclined to share the same labels, there are many real-
world graphs that do not satisfy this assumption (McPherson
et al., 2001). These graphs, which are called heterophilic
graphs, have gained an increasing attention recently. Cay-
leyNet (Levie et al., 2018) defines a complex Cayley filter
and utilize Jacobi iteration to optimize it, while ARMA
(Bianchi et al., 2021) uses auto-regressive moving average
(ARMA) filter to capture the global graph structure. Geom-
GCN (Pei et al., 2020) defines the geometric relationship in a
latent space to use neighborhood information. FAGCN (Bo
et al., 2021) utilizes the attention mechanism to seperately
learn low-frequency and high-frequency signals. ACM-
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GCN (Luan et al., 2021) adopts a linear combination of
low/high pass filters and adaptively mix the generated node
information from the two filters. CPGNN (Zhu et al., 2021a)
utilizes a compatibility matrix to model the heterophilic/ ho-
mophilic relationships between nodes. TeDGCN (Yan et al.,
2023) utilizes a filter with real-valued order, with its learn-
able parameter as the depth of graph convolutional layers,
expressed as a real number. Other heterophilic graph learn-
ing methods include (Li et al., 2022b; Wang & Zhang, 2022;
He et al., 2022; Zheng et al., 2023; Xu et al., 2023; Guo &
Wei, 2023; Geng et al., 2023; Guo et al., 2023). We refer
readers to (Zheng et al., 2022) for more details.

6. Conclusion and Limitations
In this paper, we propose an inductive spectral graph neu-
ral network named SLOG with the expressive power be-
yond a polynomial filter. Specifically, SLOG includes
three sub-models: the base model SLOG(B), the non-linear
model SLOG(N) and the local model SLOG(L). SLOG(B)
is equipped with a filter with real-valued order, which en-
joys geometric interpretability, mathematical feasibility and
adaptive filtering. SLOG(N) adds non-linearity and residual
connections into SLOG(B). To better capture the varying
heterophily distribution, SLOG(L) conducts an interpolation
between the global uniform filter and the local adaptive filter.
Extensive experiments on 16 real-world datasets corrobo-
rate the effectiveness, scalability and robustness of SLOG
in the inductive semi-supervised homophilic/heterophilic
node classification task. One potential limitation of SLOG is
that it only focuses on node classification problem, and we
leave its extension to other tasks including link prediction
as future work.
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Appendices
The contents of the appendices are organized as follows:

• In Appendix A, we present more details about SLOG.

– In Appendix A.1, we present a detailed proof of Proposition 3.1.
– In Appendix A.2, we present an illustration of residual connections in SLOG(N).
– In Appendix A.3, we present the pseudo code of SLOG(L).
– In Appendix A.4, we present a complexity analysis of SLOG.

• In Appendix B, we present additional experiment results.

– In Appendix B.1, we present ablation studies.
– In Appendix B.2, we present comparison results between SLOG and additional baselines.
– In Appendix B.3, we present experimental results on synthetic datasets.
– In Appendix B.4, we present the convergence study.
– In Appendix B.5, we present the results obtained using two alternative optimization methods.

* In Appendix B.5.1, we present the results of Alternating Minimization.

* In Appendix B.5.2, we present the results of Gaussian Process optimization.

• In Appendix C, we present the experimental details.

– In Appendix C.1, we present statistics of datasets used.
– In Appendix C.2, we present the details on model implementations.
– In Appendix C.3, we present the details on METIS graph partition method.

A. Details of Proposed Model
A.1. Proof of Proposition 3.1

Proposition 3.1. The SLOG’s filter with real-valued order, ω(·), in the spectral domain can be regarded as the combination
of two linear graph convolutional networks in the spatial domain: ω(Lsym) = Sp

1 · S
q
2, where S1 = 1

2 (I+D− 1
2AD− 1

2 ) and
S2 = I+ (D− 1

2AD− 1
2 )2.

Proof. The filter with real-valued order, ω(·), is defined as follows:

ω(Lsym) = (I− 1

2
Lsym)

p(I+ (Lsym − I)2)q, (8)

We define S1 = 1
2 (I+D− 1

2AD− 1
2 ), S2 = I+ (D− 1

2AD− 1
2 )2. Since Lsym = I−D− 1

2AD− 1
2 , we have:

S1 = I− 1

2
Lsym = U(I− 1

2
Λ)U⊤

= I− 1

2
(I−D− 1

2AD− 1
2 ) =

1

2
(I+D− 1

2AD− 1
2 ),

S2 = I+ (Lsym − I)2 = I+ (I−D− 1
2AD− 1

2 − I)2

= I+ (D− 1
2AD− 1

2 )2.

Then, we have:
ω(Lsym) = Sp

1 · S
q
2. (9)

Similar to d in TeDGCN (Yan et al., 2023), p and q can be explained as two real-valued depths of the graph convolution
networks S1 and S2.
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+

Figure 5. Residual connection in SLOG(N).

A.2. Illustration of Residual Connections in SLOG(N)

In Section 3.2, we introduce the SLOG(N), which adds more non-linearity and residual connections. In each layer, the
representation of nodes is updated by Eq. (6). Here, we present a figure to further illustrate the residual connection structure,
as shown in Figure 5.

A.3. Pseudo Code of SLOG(L)

Algorithm 2 SLOG(LB) Algorithm

1: Input: Training Graph GT (VT , ET ); evaluating nodes VE , corresponding edges EE ; input features XT ,XE ; hop number of
subgraphs K; maximum neighbor numbers of each depth {Ni}

2: Output: Vector representations zv for node v ∈ VE
# Step 1: Graph partition

3: Utilize METIS to partition GT into M subgraphs {GTi(VTi , ETi)}Mi=1.
4: Initialize parameters of global filter (pglo, qglo) and local filters {(pi, qi)}Mi=1

# Step 2: Subgraph expansion and training
5: for i = 1 to M do
6: G′Ti

← SAMPLE(GTi ,VTi ,K, {Ni})
7: Obtain corresponding filter ωi by Eq. (7)
8: Obtain nodes representations ZG′

Ti
of G′Ti

by Eq. (5)
9: Normalize representations in GTi with Softmax function and optimize Cross-entropy loss

10: end for
# Step 3: Minimum distance subgraph search & prediction

11: G ← (VT ∪ VE , ET ∪ EE)
12: for v ∈ VE do
13: Calculate distance from v to each Gi and get {disti}
14: Gv ← GTi , s.t. disti is the minimum
15: Gv ← SAMPLE(G, {v} ∪ VTv ,K, {Ni})
16: Obtain corresponding filter ωi by Eq. (7)
17: Obtain nodes representations ZGv of Gv by Eq. (5)
18: zv ← ZGv (v)
19: end for
20: return {zv|v ∈ VE}
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A.4. Complexity Analysis

In this subsection, we conduct a brief complexity analysis of SLOG(B) and SLOG(N). We base our analysis on a one-hop
neighbor sampling strategy, setting the maximum number of sampled neighbors (k) empirically to no more than 25. This
setup leads to a time complexity of O(k) per batch. For SLOG(B), if we utilize a single node for one batch, we have
N batches to train the model, where N is the number of nodes. The computational procedures for each batch can be
categorized into two main steps: (1) eigenvalue decomposition and (2) message passing. Regarding (1), the eigenvalue
decomposition of Lsym takes O(k3) time. In terms of (2), by Eq. (1), the computation of ω(Lsym) requires O(k3) time. Then,
matrix multiplications cost O(k2f + kfc) time, where f is the feature dimension, and c is the class number. Consequently,
the time complexity for a single batch in SLOG(B) is O(k3 + k2f + kfc), and for the entire graph, it escalates to
O(N(k3 + k2f + kfc)). For SLOG(N) with L layers, the time complexity is O(NL(k3 + k2f + kfc)).

B. Additional Experiment
B.1. Ablation studies

We conduct an ablation study on SLOG(B), which is detailed in Table 5, and assess the impact of each component. Results
of the first two rows reveal that omitting any term from Eq. (4) reduces performance, emphasizing the importance of each
element. Additionally, the sampling strategy plays a crucial role in enhancing performance. Without this strategy, the model
would not only encounter a drop in performance but also become unsuitable for application to large-scale datasets, including
Flickr, Ogbn-arxiv, and Reddit.

Table 5. Ablation Study for SLOG(B) Model.
Datasets Cora Chameleon Minesweeper

SLOG(B) 0.865±0.011 0.581±0.024 0.822±0.009

w/o. S1 0.854±0.016 0.570±0.015 0.803±0.004
w/o. S2 0.838±0.013 0.576±0.030 0.818±0.008

w/o. sampling 0.856±0.017 0.568±0.013 0.802±0.008

To test the effectiveness of subgraph sampling strategy on other baseline methods, we equip ChebNet with subgraph
sampling. The results are shown in Table 6. We can observe that the subgraph sampling strategy can indeed be beneficial
to other baseline methods as well. However, the proposed SLOG still outperforms the baseline methods with subgraph
sampling strategy like ChebNet.

Table 6. Evaluation results on different datasets in the inductive setting.
Dataset Cora Citeseer Squirrel Chameleon Tolokers

ChebNet 0.804±0.004 0.740±0.009 0.350±0.004 0.535±0.005 0.783±0.003
w. sampling 0.829±0.013 0.754±0.010 0.356±0.013 0.467±0.000 0.784±0.003

SLOG(B) 0.865±0.011 0.766±0.026 0.392±0.006 0.581±0.024 0.796±0.005

B.2. Additional Baselines

In inductive setting, we compare SLOG(B)/SLOG(N) with CayleyNet (Levie et al., 2018), GIN (Xu et al., 2018), ARMA
(Bianchi et al., 2021), ChebNetII (He et al., 2022), TeDGCN (Yan et al., 2023), PyGNN (Geng et al., 2023), FavardGNN
(Guo & Wei, 2023), OptBasisGNN (Guo & Wei, 2023) with the same random split in Section 4. The results can be found
in Table 7. It is observed that the latest baseline methods, such as ChebNetII, TeDGCN, can produce competitive results.
However, SLOG still outperforms all the baselines among most of the datasets. It reveals the effectiveness of our proposed
method.

B.3. Synthetic Datasets

To demonstrate the robustness of SLOG under different homophily/heterophily ratios, we generate synthetic datasets with
varying heterophily ratios (h) from 0.1 to 0.9, following the method described in (Zhu et al., 2020). The higher the h value,
the more heterophilic the graph is. Node features are sampled from the Ogbn-arxiv dataset (Hu et al., 2020).
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Table 7. Evaluation results on different datasets in the inductive setting.
Datasets Cora Citeseer Squirrel-filt. Chameleon-filt. Minesweeper Tolokers Amazon-ratings

CayleyNet 0.773±0.007 0.685±0.017 0.347±0.027 0.264±0.022 0.798±0.004 0.781±0.008 0.265±0.003
GIN 0.808±0.022 0.700±0.009 0.327±0.009 0.348±0.042 0.788±0.001 0.775±0.002 0.420±0.007

ARMA 0.757±0.026 0.735±0.009 0.364±0.010 0.343±0.034 0.794±0.012 0.779±0.007 0.428±0.004
ChebNetII 0.868±0.011 0.717±0.011 0.354±0.013 0.367±0.018 0.759±0.016 0.783±0.004 0.396±0.002
TeDGCN 0.825±0.005 0.751±0.003 0.409±0.031 0.422±0.022 0.793±0.001 0.796±0.002 0.425±0.002
PyGNN 0.863±0.011 0.742±0.007 0.349±0.011 0.397±0.030 0.787±0.003 0.789±0.001 0.456±0.005

FavardGNN 0.850±0.007 0.749±0.018 0.383±0.015 0.406±0.019 0.805±0.004 0.786±0.002 0.397±0.004
OptBasisGNN 0.856±0.005 0.753±0.006 0.392±0.007 0.400±0.043 0.789±0.001 0.775±0.000 0.368±0.000

SLOG(B) 0.865±0.011 0.766±0.026 0.427±0.013 0.420±0.023 0.822±0.009 0.796±0.005 0.451±0.007
SLOG(N) 0.761±0.010 0.675±0.026 0.376±0.025 0.431±0.026 0.844±0.008 0.810±0.006 0.456±0.006

To be specific, we initialize a small graph, and recursively add new nodes to the graph. The class assignment for the
newly added nodes is determined randomly from a predefined set of class numbers, denoted as C. The probability of an
edge between the new node and the existing nodes in the graph is determined by the classes that the nodes belong to, the
heterophily ratio h, and the current degrees of existing nodes. Once the graph scale reaches the target scale, we assign each
node a feature vector from a real dataset. It is ensured that nodes belonging to the same class in the generated graph have
feature vectors originating from nodes in the same class in the real dataset. The statistics of generated datasets are shown in
Table 8.

Table 8. The statistics of synthetic datasets.
Datasets Nodes Edges Features Classes Heterophily
syn-arxiv 2,000 ∼20,000 128 40 0.1 to 0.9

The experiments are conducted under inductive settings across 5 runs for each model on each dataset, and each dataset is
randomly splited into 60%/20%/20% train/validation/test split. The results are shown in Table 9.
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Figure 6. Performance comparison on synthetic datasets with different heterophily ratios h.

Figure 6 shows the performance comparison of SLOG(B) and several baselines on synthetic datasets of different h values. It
can be seen that our method demonstrates superior performance on synthetic datasets across different heterophily ratios
h, indicating its robustness to varying heterophilic/homophilic balances. Notably, general GNN methods (e.g., GCN,
GraphSAGE, GAT) show high sensitivity to h, especially under high h values where their performance drops significantly,
suggesting their limitation in heterophilic contexts. In contrast, heterophilic graph-oriented methods (e.g., GPRGNN,
H2GCN) show more robustness. Yet our method still outperforms them, demonstrating our method’s ability to adaptively
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Table 9. Performance comparison on synthetic datasets.
h 0.1 0.2 0.3 0.4 0.5

MLP 0.771±0.018 0.803±0.005 0.826±0.007 0.817±0.004 0.857±0.006
GCN 0.998±0.002 0.988±0.005 0.981±0.007 0.917±0.005 0.764±0.003

ChebNet 0.845±0.004 0.823±0.002 0.856±0.019 0.818±0.005 0.817±0.005
GraphSAGE 0.996±0.003 0.994±0.002 0.980±0.002 0.943±0.009 0.838±0.006

GAT 0.994±0.003 0.996±0.002 0.980±0.010 0.933±0.003 0.846±0.017
APPAP 0.996±0.003 0.975±0.004 0.962±0.005 0.930±0.006 0.874±0.005

SGC 0.997±0.002 0.989±0.004 0.970±0.013 0.899±0.009 0.744±0.008
GATv2 0.995±0.001 0.982±0.003 0.983±0.009 0.952±0.007 0.901±0.008

GPRGNN 0.997±0.001 0.984±0.004 0.991±0.003 0.952±0.005 0.903±0.005
H2GCN 0.996±0.001 0.977±0.002 0.975±0.004 0.941±0.003 0.890±0.006
FAGCN 0.993±0.004 0.981±0.004 0.973±0.014 0.952±0.003 0.905±0.004
BernNet 0.830±0.003 0.839±0.006 0.845±0.008 0.823±0.012 0.812±0.004

JacobiConv 0.213±0.022 0.187±0.020 0.213±0.031 0.235±0.039 0.201±0.038

SLOG(B) 0.998±0.002 0.998±0.003 0.991±0.003 0.979±0.008 0.946±0.011

h 0.6 0.7 0.8 0.9

MLP 0.813±0.005 0.825±0.006 0.828±0.002 0.810±0.006
GCN 0.517±0.019 0.342±0.008 0.193±0.017 0.208±0.014

ChebNet 0.805±0.006 0.814±0.014 0.782±0.007 0.804±0.006
GraphSAGE 0.671±0.005 0.544±0.019 0.351±0.030 0.219±0.011

GAT 0.678±0.010 0.519±0.012 0.367±0.022 0.244±0.050
APPAP 0.831±0.005 0.832±0.005 0.799±0.007 0.751±0.009

SGC 0.481±0.005 0.331±0.013 0.194±0.018 0.195±0.012
GATv2 0.852±0.016 0.776±0.019 0.654±0.068 0.413±0.046

GPRGNN 0.854±0.002 0.830±0.005 0.811±0.007 0.822±0.008
H2GCN 0.846±0.002 0.837±0.007 0.819±0.009 0.821±0.007
FAGCN 0.846±0.006 0.828±0.002 0.820±0.007 0.822±0.005
BernNet 0.783±0.011 0.822±0.009 0.810±0.007 0.800±0.013

JacobiConv 0.235±0.051 0.341±0.047 0.378±0.080 0.384±0.101

SLOG(B) 0.864±0.018 0.839±0.019 0.830±0.004 0.834±0.013

capture both homophilic and heterophilic information.

Figure 7 shows the learned filters of our method on synthetic datasets with different h. Learned filters on synthetic datasets
reveal adaptability to the heterophily ratio: a low-pass filter for small h (better for homophilic graphs) and a high-pass filter
for large h (suited for heterophilic graphs). Especially, combining datasets with contrasting h values results in a band-stop
filter, a hybrid of high-pass and low-pass filters. This is consistent with our intuition that the filter should be able to capture
both homophilic and heterophilic information.
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Figure 7. Learned filters on synthetic datasets with different h. Note that Figure 7(c) is the learned filter when two dataset with h=0.1 and
h=0.9 are combined.
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B.4. Convergence Study
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Figure 8. Convergence comparison on Ogbn-arxiv dataset.

To assess the convergence speed of SLOG(B), we performed experiments on the Ogbn-arxiv dataset, comparing it with
various baselines. The results, depicted in Figure 8, demonstrate that SLOG(B) converges faster than the other methods.
This rapid convergence is due to the method’s simplicity, characterized by only two learnable exponents, p and q, along with
several weight matrices.

B.5. Optimization Study

SLOG(B) comprises two groups of learnable parameters: those from the filter with real-valued order and those from weight
matrices. in Section 4, we utilize Adam to optimize the orders of SLOG filter, p, q. However, the parameters p, q in
the filter, being in the exponent position, are challenging to converge using traditional gradient descent methods or other
commonly-used gradient-based optimizers. We evaluate two alternative optimization methods, Alternating Minimization in
Section B.5.1 and Gaussian Process in Section B.5.2.

B.5.1. ALTERNATING MINIMIZATION

Alternating minimization can partially address this convergence issue, enabling the model to converge more rapidly (Li
et al., 2019; Ghosh & Kannan, 2020). Specifically, this method sequentially optimizes one group of variables while fixing
the others, then recursively repeats this optimization sequence. We apply alternating minimization to SLOG(B), dividing the
parameters into filter-related and weight-related groups to facilitate convergence.

We start by initializing all parameters. Then, we fix p and q in the filter and train all other parameters. After this, we fix all
parameters except for p and q and continue the training. This process is repeated until the model converges or reaches the
maximum number of iterations. The details are presented in Algorithm 3, where d denotes the tuple of (p, q).

We assess the algorithm using the same settings described in Section 4.2. We set the total number of minimization steps,
2TS = 500, equal to the maximum iteration number used in Section 4.2. T is maximum iteration number of the outer loop,
and S is that of the inner loop. For Squirrel and Squirrel-filt., we use S = 5. For Chameleon, we set S = 10, and for the
remaining datasets, S = 25. The results are presented in Table 10.

Table 10. Performance of Gaussian Process optimization.
Datasets Cora Citeseer Squirrel Chameleon Squirrel-filt. Chameleon-filt. Minesweeper

SLOG(B) 0.865±0.011 0.766±0.026 0.392±0.006 0.581±0.024 0.427±0.013 0.420±0.023 0.822±0.009
w. AM 0.876±0.014 0.771±0.004 0.412±0.012 0.589±0.010 0.428±0.025 0.424±0.028 0.825±0.004

The results indicate that alternating minimization enhances the performance of the original model, even with the same
number of iterations. This suggests that the filter parameters, though challenging to train, can be effectively optimized with
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Algorithm 3 SLOG(B) with Alternating Minimization
1: Input: ModelM; dataset D; parameter space Xd and Xθ; loss function L; optimizer O; learning rate η; maximum alternation

iteration number T ; maximum optimization step number S.
2: Output: Optimal d∗ and θ∗.
3: Initialize θ(0,0), d(0,0) randomly
4: for t = 0 to T − 1 do
5: # Step 1: optimization for θ
6: for s = 1 to S do
7: θ(t,s) ← argminθ∈Xθ L(M(d(t,0), θ(t,s−1)),D) using Optimizer O
8: end for
9: θ(t+1,0) ← θ(t,s)

10: # Step 2: optimization for d
11: for s = 1 to S do
12: d(t,s) ← argmind∈Xd L(M(d(t,s−1), θ(t+1,0)),D) using Optimizer O
13: end for
14: d(t+1,0) ← d(t,s)

15: end for
16: d∗, θ∗ ← d(T,0), θ(T,0)

17: return d∗, θ∗

appropriate methods.

B.5.2. GAUSSIAN PROCESS

SLOG(B) includes parameters p, q (as in Eq. (4)) and other weight matrices. The placement of p, q in the exponent position
makes training difficult. Large values of p, q can lead to excessively large gradients, risking gradient explosion, while small
values may cause vanishing gradients. Both scenarios present challenges in achieving stable convergence. Therefore, we
explore an alternative optimization method to tackle this issue.

We denote the tuple of (p, q) as d and all weight matrices as θ. The optimization problem for SLOG(B) can be formulated as:

d∗, θ∗ = argmin
d∈Xd,θ∈Xθ

L(M(d, θ),D). (10)

We approach this optimization using a bi-level strategy:

d∗ = argmin
d∈Xd

L(M(d, θ∗),D)

s.t. θ∗ = argmin
θ∈Xθ

L(M(d, θ),D).
(11)

The lower-level optimization (optimization of θ) can be solved using traditional methods such as gradient descent or
advanced optimizers like Adam (Kingma & Ba, 2014), AdamW (Loshchilov & Hutter, 2017).

The high-level optimization resembles a hyper-parameter search problem. We employ Bayesian Optimization methods, such
as Gaussian Process, for this purpose.

Here, we briefly introduce Gaussian Process. Gaussian Process is a stochastic search process, in which every data point
searched at different timestamp obeys a multi-variant normal distribution. A key factor of the process is the covariance
functions K, also known as Gaussian kernels, which determine the covariance of the variable collection. The most common
covariance function is squared exponential kernel, defined as follows:

K(d,d′) = exp(− 1

2ℓ2
∣∣|d− d′|

∣∣2), (12)

where ℓ is the characteristic length scale. Therefore, if we set the mean value of the multi-variant normal distribution as 0,
then we can derive the prediction of newly searched data point d as:[

y
y′

]
∼ N

(
0,

[
K(d,d) K(d,d′)
K(d′,d) K(d′,d′)

])
, (13)
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where y = L(M(d, θ),D) indicates the loss (also the performance) given the model parameters. From this, we can derive
the following equation (Rasmussen et al., 2006):

y′|y ∼ N (K(d′,d)K(d,d)−1y,K(d′,d′)−K(d′,d)K(d,d)−1K(d,d′)). (14)

Therefore, the most likely value of y′ is given by:

y′ = K(d′,d)K(d,d)−1y. (15)

Thus, we alternate the optimization of model parameters θ and hyper-parameters d. For further details on Bayesian
optimization and Gaussian Process, see (Rasmussen et al., 2006; Frazier, 2018). The optimization algorithm is detailed in
Algorithm 4.

Algorithm 4 SLOG(B) with Gaussian Process optimization
1: Input: ModelM; dataset D; parameter space Xd and Xθ; loss function L; optimizer O; learning rate η; maximum iteration number

T .
2: Output: Optimal d∗ and θ∗.
3: Initialize θ(0), d(0) randomly
4: Y ← ∅
5: for t = 0 to T − 1 do
6: # Lower-level: optimization for θ
7: θ∗ ← argminθ∈Xθ L(M(d(t), θ),D) using Optimizer O
8: y(t) ← L(M(d(t), θ∗),D)
9: Y ← Y ∪ {d(t), y(t)}

10: # Upper-level: optimization for d
11: C ← {di ∼ Xd}Ni=1

12: Calculate yi according to Eq. (15) for each di ∈ C
13: idx← argmaxi∈|C| yi
14: d(t+1) ← didx ∈ C
15: end for
16: k ← argmini{y(i)|(d(i), y(i)) ∈ Y}
17: return d(k), θ(k)

We evaluate the algorithm using the same settings described in Section 4.2, setting the maximum iteration number T = 20.
The results are shown in Table 11.

Table 11. Performance of Gaussian Process optimization.
Datasets Cora Citeseer Squirrel Chameleon Squirrel-filt. Chameleon-filt. Minesweeper

SLOG(B) 0.865±0.011 0.766±0.026 0.392±0.006 0.581±0.024 0.427±0.013 0.420±0.023 0.822±0.009
w. GP 0.853±0.022 0.778±0.010 0.417±0.005 0.586±0.021 0.402±0.017 0.426±0.044 0.826±0.010

This evaluation demonstrates that Gaussian Process optimization significantly enhances the performance of SLOG(B). As
shown in Table 11, the model optimized with Gaussian Process outperforms that using the original settings across most
of the datasets. Note that Gaussian Process will not increase the computational complexity of SLOG, since the total time
complexity of Gaussian Process is O(n3 +n2m), where n is the number of elements in training set (i.e., |Y| in Algorithm 4)
and m is the amount of samples to be predicted (i.e., |C| in Algorithm 4). However, due to the rather limited training set
scale (n ∼ 10) and prediction set scale (m ∼ 100 in the experiments), the complexity of Gaussian Process (Line 10-14,
Algorithm 4) is negligible in comparison to that of model training (Line 6-9, Algorithm 4).

C. Experimental Details
C.1. Dataset Statistics

For datasets like Cora, Citeseer, Chameleon, Squirrel, DBLP, Coauthor-CS, and Coauthor-Physics, we collect them from
Pytorch Geometric library (Fey & Lenssen, 2019). For Chameleon-filtered, Squirrel-filtered, Minesweeper, Tolokers,
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Amazon-ratings, Questions, we collect the raw data released from (Platonov et al., 2023)9. For Ogbn-arxiv, we collect it
from Open Graph Benchmark (Hu et al., 2020). The statistics of these datasets are shown in Table 12.

Table 12. The statistics of the datasets.
Datasets Nodes Edges Features Classes Heterophily

Cora 2,708 10,556 1,433 7 0.190
Citeseer 3,327 9,104 3,703 6 0.264

Chameleon 2,277 62,792 2,325 5 0.765
Squirrel 5,201 396,846 2,089 5 0.776
DBLP 17,716 105,734 1,639 4 0.172

Coauthor-CS 18,333 163,788 6,805 15 0.192
Coauthor-Physics 34,493 495,924 8,415 5 0.069

Chameleon-filtered 890 13,584 2,325 5 0.764
Squirrel-filtered 2,223 65,718 2,089 5 0.793

Minesweeper 10,000 39,402 7 2 0.317
Tolokers 11,758 519,000 10 2 0.405

Amazon-ratings 24,492 93,050 300 5 0.620
Questions 48,921 153,540 301 2 0.160

Flickr 89,250 899,756 500 7 0.681
Ogbn-arxiv 169,343 1,166,243 128 40 0.322

Reddit 232,965 114,615,892 602 41 0.244

C.2. Implementation Details

For small-scale datasets, we set the hidden dimension of all methods to 128, the learning rate to 0.01. For large-scale
datasets, we set the hidden dimension as 512, and fine-tune the learning rate in the range of [10−2, 10−3, 10−4]. We use
Adam as the optimizer. For all datasets, we set the weight decay to 0.0005. For all datasets except Reddit, we limit the
training epochs to 500. For Reddit, we set maximum training epochs as 30. The layer number L for SLOG(N) is set to 3. We
determine the size of the subgraphs partitioned by SLOG(L) to be approximately 512, and the parameter β is set to 0.5. For
hyper-parameters of baselines, we use the default configurations if available, otherwise, we use the same hyper-parameter
space for SLOG. We run all the experiments on a Tesla-V100 GPU with 32G Memory.

C.3. Graph Partition: METIS Algorithm

In SLOG(L), METIS (Karypis & Kumar, 1998) is used for graph partition. Here, we provide more information about graph
partition and METIS.

A k-way graph partition is defined as minimizing the edge-cut to conduct the following node partition (Karypis & Kumar,
1996): given a graph G = {(V, E)} with |V | = n, partition the node set V into k subsets, V1, · · · ,Vk, with the minimal
number of edges whose incident verticles belong to different subset, subject to the constraint that Vi ∩ Vj = ∅ for i ̸= j,
∪k
i=1Vi = V and |Vi| = n/k for i = 1, · · · , k. To simplify the problem, we introduce bisection graph partition, which

is a special case of k-way graph partition with k = 2. The METIS algorithm solve the problem with the following steps
(Karypis & Kumar, 1998):

Step 1: Coarsening Phase. The original graph G0 will produce a sequence of graph G1, · · · ,Gm, such that |V0| > |V1| >
· · · > |Vm|. A set of nodes in Gi can be coarsened to a single multinode in Gi+1. The coarsening strategy is related to
matching, which is defined as a set of edges in which no two edges are incident on a same node. There are lots of matching
algorithm, and METIS uses heavy-edge matching with a slight modification. One can refer to (Karypis & Kumar, 1998) for
more details. The coarsening phase is repeated until the graph size is small enough.

Step 2: Partition Phase. We compute the bi-parition for Gm, guaranteeing that each part after partition contains approxi-
mately half of the nodes in the original graph G0. Since the number of nodes in Gm is small, the time consumed in this step
is rather small.

Step 3: Uncoarsening Phase. The partition of Gm is projected back to G0 by applying the same partition to the coarser
graphs Gm−1, · · · ,G1. The uncoarsening phase is repeated until the original graph G0 is reached.

9Github link: https://github.com/yandex-research/heterophilous-graphs/tree/main/data.
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We implement graph partition with the help of PyMETIS10 library, which is a python wrapper for METIS.

10Github link: https://github.com/inducer/pymetis.
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