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Abstract
Causal representation learning aims at identifying
high-level causal variables from perceptual data.
Most methods assume that all latent causal vari-
ables are captured in the high-dimensional obser-
vations. We instead consider a partially observed
setting, in which each measurement only provides
information about a subset of the underlying
causal state. Prior work has studied this setting
with multiple domains or views, each depending
on a fixed subset of latents. Here we focus on
learning from unpaired observations from a
dataset with an instance-dependent partial observ-
ability pattern. Our main contribution is to estab-
lish two identifiability results for this setting: one
for linear mixing functions without parametric
assumptions on the underlying causal model, and
one for piecewise linear mixing functions with
Gaussian latent causal variables. Based on these
insights, we propose two methods for estimating
the underlying causal variables by enforcing spar-
sity in the inferred representation. Experiments
on different simulated datasets and established
benchmarks highlight the effectiveness of our
approach in recovering the ground-truth latents.

1. Introduction
Endowing machine learning models with causal reasoning
capabilities is a promising direction for improving their ro-
bustness, generalization, and interpretability (Spirtes et al.,
2000; Pearl, 2009; Peters et al., 2017). Traditional causal in-
ference methods assume that the causal variables are given a
priori, but in many real-world settings, we only have unstruc-
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tured, high-dimensional observations of a causal system.
Motivated by this shortcoming, causal representation learn-
ing (CRL; Schölkopf et al., 2021) aims to infer high-level
causal variables from low-level data such as images.

A popular approach to identify (i.e., provably recover)
high-level latent variables is (nonlinear) independent
component analysis (ICA) (Hyvarinen and Morioka, 2016;
2017; Hyvarinen et al., 2019; Khemakhem et al., 2020),
which aims to recover independent latent factors from
entangled measurements. Several works generalize this
setting to the case in which the latent variables can have
causal relations (Yao et al., 2022; Brehmer et al., 2022;
Lippe et al., 2022; 2023; Ahuja et al., 2023a;b; Lachapelle
et al., 2022; 2023; 2024; von Kügelgen et al., 2021; 2023;
Wendong et al., 2023; Squires et al., 2023; Buchholz
et al., 2023; Zhang et al., 2023), establishing various
identifiability results under different assumptions on the
available data and the generative process. However, most
existing works assume that all causal variables are captured
in the high-dimensional observations. Notable exceptions
include Sturma et al. (2023) and Yao et al. (2023) who
study partially observed settings with multiple domains
(datasets) or views (tuples of observations), respectively,
each depending on a fixed subset of the latent variables.

In this work, we also focus on learning causal representa-
tions in such a partially observed setting, where not neces-
sarily all causal variables are captured in any given observa-
tion. Our setting differs from prior work in two key aspects:
(i) we consider learning from a dataset of unpaired partial
observations; and (ii) we allow for instance-dependent par-
tial observability patterns, meaning that each measurement
depends on an unknown, varying (rather than fixed) subset
of the underlying causal state.

This setting is motivated by real-world applications in which
we cannot at all times observe the complete state of the
environment, e.g., because some objects are moving in and
out of frame, or are occluded. As a motivating example,
consider a stationary camera that takes pictures of a parking
lot on different days as shown in Fig. 1a. On different days,
different cars are present in the parking lot, and the same
car can be parked in different spots. Our task is to recover
the position for each car that is present in a certain image.
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Figure 1: (a) Motivating example for the Unpaired Partial Observation setting: a stationary camera taking pictures of a
car park. We consider x1 the image on day 1 and x2 the image on day 2. The latent causal variables c1 and c2 represent
the positions of four cars on each day. In x1 only Car2 and Car3 are visible, while in x2 all cars except Car3 are visible.
This is represented by the ones in the binary mask variables y1 and y2. The combination of the values of the latent causal
variables c and the masks y are the masked causal variables z, which used by the mixing function f to generate the images x.
(b) Causal model of the setting, the dotted line variables are not directly observed, but they are measured only through the
observation X. Our goal is to learn a representation Ẑ that identifies Z up to permutation and element-wise transformation.

In this setting, we only have one observation for a given
state of the system (i.e., one image per day), and the subsets
of causal variables that are measured in the observation
(the parked cars), change dynamically across images. We
highlight the following contributions:

• We formalize the Unpaired Partial Observations setting
for CRL, where each partial observation captures only
a subset of causal variables and the observations are un-
paired, i.e., we do not have simultaneous partial observa-
tions of the same state of the system.

• We introduce two theoretical results for identifying causal
variables up to permutation and element-wise transforma-
tion under partial observability. Both results leverage a
sparsity constraint. In particular, Thm. 3.1 proves identifi-
ability for linear mixing function and without parametric
assumptions on the underlying causal model. Thm. 3.4
proves identifiability for the piecewise linear mixing func-
tion, when the causal variables are Gaussian and we can
group observations by their partial observability patterns.

• Finally, we propose two methods that implement these
theoretical results and validate their effectiveness with
experiments on simulated data and image benchmarks,
e.g. Causal3DIdent (von Kügelgen et al., 2021), that we
modify to test our partial observability setting.

2. Problem setting
In this section, we formalize the Unpaired Partial Obser-
vation setting, in which we have a set of high-dimensional

observations that are functions only of instance-dependent
subsets of the true underlying causal variables. This set-
ting consists of four sets of random variables: the causal
variables C, the binary mask variables Y that represent
if a variable is measured in a sample, the masked causal
variables Z that combine the information from the causal
variables and the masks, and the observations X. Our goal is
to recover the masked causal variables Z up to permutation
and element-wise transformation, solely from the observa-
tions X, despite the instance-dependent partial observability
pattern. We show an example of a causal graph of the setting
in Fig 1b and discuss each component in the following.

Causal variables C. We define our latent causal variables
as a random vector C = (C1, ..., Cn) that takes values in
C = C1×...×Cn ⊆ Rn, which is an open, simply connected
latent space. The causal variables follow a distribution with
density p(C), which allows for causal relations between
them. We assume that p(c) ̸= 0 for all c ∈ C.

Mask variables Y. We use a binary mask random vari-
able Y = (Y1, . . . , Yn) with domain Y ⊆ {0, 1}n to rep-
resent the dynamic partial observability patterns, i.e., the
causal variables that are measured in each of the samples.
If Yi = 1 then we consider the variable Ci measured, i.e.
captured in the observation, otherwise it is considered un-
measured. We assume Y follows p(Y). Further, we define
the support index random set S as the index of non-zero
components of Y, i.e., S := {i ∈ [n] : Yi ̸= 0}. The
support index set has a probability mass function p(s) and
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support S defined as:

P(s) := P

∧
j∈s

(Yj = 1) ∧
∧
j ̸∈s

(Yj = 0)


and S := {s ⊆ [n] | p(s) > 0}.

This definition allows us to model also dependences between
the components of Y and masking behavior that depends
on the values of the underlying causal variables.

Masked causal variables Z. The masked causal variables
Z = (Z1, ..., Zn) ∈ Z are a combination of the causal
variables and the masks, and they are the latent inputs to the
mixing function f that we are trying to recover. In particular,
they are the Hadamard product of the causal variables with
the binary mask variable, i.e., Z = Y⊙C. This means that
for sample i ∈ [N ] and any causal variable j ∈ [n], if the
mask value yij is 1, then the causal variable cij is measured
and zij is cij . Instead, if yij = 0, then the causal variable is
unmeasured and zij takes a fixed masked value Mj , which
we will consider for simplicity to be 0. Note that this is not
equivalent to do-interventions, since masking variables does
not influence any downstream variables, as an intervention
would, as explained in an example in App. A. Finally, we
assume that for all s ∈ S, the probability measure PZs|S=s

has a density w.r.t. the Lebesgue measure on R|s|.

Observations X. We assume that observations X ∈ X ⊆
Rd are generated by mixing the masked causal variables
Z with the same mixing function f : Z → X , i.e., X =
f(Z). We refer to partitions of observations with the same
unknown partial observability pattern, i.e., with the same
unknown value of Y = y, as groups, and we assume that
each observation xi for i ∈ [N ] is part of a group gi ∈ G.

Our goal is to identify the masked causal variables Z from
a set of observations X. In CRL we usually cannot recover
the exact value of the latent variables, but we can only iden-
tify them up to some transformation. Our results guarantee
that each ground truth variable is represented by a single
estimated variable up to a linear transformation. Similar no-
tions of identifiability were used in previous works (Comon,
1994; Khemakhem et al., 2020; Lachapelle et al., 2023).
Definition 2.1. The ground truth representation vector Z
is said to be identified up to permutation and element-wise
linear transformation by a learned representation vector Ẑ
when there exists a permutation matrix P and an invertible
diagonal matrix D such that Ẑ = PDZ almost surely.

To prove our results, we describe the sufficient support index
variability, which was originally defined by Lachapelle et al.
(2023) for sparse multitask learning for disentanglement.
Assumption 2.2. (Sufficient support index variability
(Lachapelle et al., 2023)) For all i ∈ [n], we assume that the

union of the support indices s that do not contain i covers
all of the other causal variables, or more formally:⋃

s∈S|i/∈s

s = [n] \ {i} .

This assumption avoids cases in which two variables are
always missing at the same time, since then we would not
be able to disentangle them from the observations. A trivial
set S that satisfies this assumption is S = 1, 2, ..., n, which
contains n distinct masks. We conjecture that if this assump-
tion is not satisfied for all i, but only for blocks of variables,
we would instead get block identifiability.

3. Identifiability via a Sparsity Principle
In this section, we show how a simple sparsity constraint
on the learned representations allows us to learn a disentan-
gled representation of the ground truth variables. We first
consider linear mixing functions and prove identifiability
without any parametric assumption on the causal variables
and while allowing for partial observability patterns that can
depend on the value of the causal variables (Thm. 3.1).We
then investigate if this sparsity principle can also identify
variables for nonlinear mixing functions f . This is not the
case in general, as we show in Example 3.1.

Our linear result hinges on the existence of a function g
such that the composition of g and f is affine. Based on this
intuition, we consider piecewise linear mixing functions f ,
since for Gaussian causal variables they can be composed
with an appropriate g to obtain an affine function. In this
setting, we prove that we can learn a disentangled represen-
tation of the latent variables (Def. 2.1) given that the masks
are independent of the causal variables and given that we
know the groups of the observations (Thm. 3.4).

3.1. Linear Mixing Function

We show that for linear mixing functions under a perfect
reconstruction (Eq. 1), a simple sparsity constraint on the
learned representation (Eq. 2) allows us to learn a disentan-
gled representation of the ground truth latent variables.

Theorem 3.1 (Element-wise Identifiability for Linear f ). As-
sume the observation X = f(Z) follows the data-generating
process in Sec. 2, where f : Z → X is an injective linear
function, and Ass. 2.2 holds. Let g : X → Rn be an invert-
ible linear function onto its image and let f̂ : Rn → Rd be
an invertible continuous function onto its image. If both of
the following conditions hold,

E
∥∥∥X− f̂(g(X))

∥∥∥2
2
= 0 , and (1)

E ∥g(X)∥0 ≤ E ∥Z∥0 , (2)
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then Z is identified by f̂−1(X) up to a permutation and
element-wise linear transformations (Def. 2.1), i.e., f̂−1 ◦ f
is a permutation composed with element-wise invertible
linear transformations on Z .

We provide a proof in App. B.1 and now give an intuitive
explanation for why it holds. The zero reconstruction loss
ensures that no information is lost in the encoding g(X),
which implies that g(X) is not sparser than Z. Hence,
incorporating Eq. (2) as a constraint or regularization term
in our methods enables our estimators to match the sparsity
of the ground truth variables, which breaks indeterminacies
due to rotations of the latent space.

The idea of using a sparsity constraint or regularization is
similar to previous work (Lachapelle et al., 2023) in the
context of sparse multitask learning. In this paper we lever-
age these ideas in the distinct setting of partial observability.
This result requires that the mixing function f , is injective,
but not necessarily bijective. Notably, it does not require
any parametric assumptions on the distribution of Z, thus al-
lowing for causal relations or other statistical dependencies
among the latent variables. Finally, this result also allows
for mask variables that potentially depend on the values of
the latent causal variables.

3.2. Is sparsity enough for identification for nonlinear f?

Since linearity of f is a strong assumption that may not
hold in many applications, an obvious question is whether
we can extend this result to nonlinear mixing functions.
Unfortunately, this is not the case without making further
assumptions, as demonstrated by the following example.
Example 3.1. Consider C ∼ N (0, I2), where I2 is the
identity matrix. Assume an independent mask Y with dis-
tribution p(Y = y) = 1/4 for any y ∈ {0, 1}2, satisfying
Ass. 2.2. Let the nonlinear mixing function f : R2 → R2 be

f(z) := sinh(Rπ
4
z) + sinh(R−π

4
z) , (3)

where Rθ is a rotation matrix. Consider f̂ and g to be
the identity function, which trivially satisfy Eq. 1, since
f̂ ◦ g(X) = X. We show in Appendix C that g satisfies the
sparsity constraint (Eq. 2). However, despite satisfying all
requirements of Thm 3.1 except for the linearity of f , we can
show that each component of f̂−1 ◦ f = f depends on both
components of z; or in other words, the learned representa-
tion does not identify Z up to permutation and element-wise
transformations. We refer to App. C for details.

3.3. Piecewise Linear Mixing Function

In light of Example 3.1, we consider the role of linearity
in Thm. 3.1. We notice that it is a sufficient condition for
ensuring that there exists a g such that g ◦ f is affine on Z .
We then consider the question: even if f is not affine itself,

can we consider a restricted class of f and latent variables
Z such that the composition of f and an appropriate g is
affine? As a first step we consider a piecewise linear f and
assume that the causal variables are Gaussian and that the
masks are independent from the causal variables.

Assumption 3.2. We assume C follows a non-degenerate
multivariate normal distribution, i.e. C ∼ N(µ,Σ), where
µ ∈ Rn and Σ ∈ Rn×n is a positive definite matrix.

Assumption 3.3. We assume C and Y are independent
from each other, i.e. the partial observability pattern does
not depend on the values of the causal variables.

These assumptions represent a classical linear Gaussian
Structural Causal Model setting for the causal variables and
a missing-at-random assumption in terms of which variables
are measured in the observation. On the other hand, in our
setting, we do not directly observe the causal variables or the
masks, but we only observe them mixed in an observation.

Under these assumptions, the conditional distribution of the
masked causal variables Z given the binary mask vector Y
is defined as a multivariate normal distribution:

Z |Y ∼ N(µY,ΣY)

where µY = (µ1Y1, . . ., µnYn), ΣY(ij) = ΣijYiYj

This distribution is a degenerate multivariate normal (De-
MVN), i.e., a normal with a singular covariance matrix, if
at least one of the causal variables is masked by Y.

Intuitively, we can leverage the Gaussianity of Z|Y to en-
force that the reconstructed Ẑ|Y = g(X) is also Gaussian.
We now show that this allows us to identify the latent factors
Z through our sparsity constraint on the learned represen-
tations (Eq. 5), given that we are able to partition the data
according to the unknown value of Y = y, or in other
words, given that we know the group gi for each observation
xi for i ∈ [N ]. The rationale of this requirement is that we
do not need to know the value of the latent mask Y, but we
do need to be able to separate observations that are gener-
ated by different distributions of Z, so we can effectively
enforce the Gaussianity constraint (Eq. 6).

Theorem 3.4 (Element-wise Identifiability for Piecewise
Linear f ). Assume the observation X follows the data-
generating process in Sec 2, Ass. 2.2, 3.2 and 3.3 hold
and f : Z → X is an injective continuous piecewise linear
function. Let g : X → Rn be a continuous invertible piece-
wise linear function and let f̂ : Rn → Rd be a continuous
invertible piecewise linear function onto its image. If all
following conditions hold:

E
∥∥∥X− f̂(g(X))

∥∥∥2
2
= 0 , (4)

E ∥g(X)∥0 ≤ E ∥Z∥0 and (5)
g(X) | (Y = y) ∼ N(µy,Σy) ∀y ∈ Y, (6)
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for some µy ∈ Rn,Σy ∈ Rn×n, then Z is identified
by f̂−1(X), i.e., f̂−1 ◦ f is a permutation composed with
element-wise invertible linear transformations (Def. 2.1).

We provide the complete proof in App. B.2. We first provide
some results for a weaker notion of identifiability: identifia-
bility up to affine transformations (Def. B.4). To this end,
we first extend a theorem by Kivva et al. (2022) from the
case of non-degenerate to potentially degenerate multivari-
ate normal variables (Thm. B.5). Such variables are crucial
in our setting because partial observability potentially in-
troduces degenerate cases. The crux of our proof involves
handling the case of degenerate variables that do not have
probability density. We then show that given the information
of the binary mask Y, we can identify the latent factors Z
up to an affine function hY (Lemma B.10). We then show
that all of these affine functions can be represented by a
single affine function v := f̂−1(f(Z)) defined on Z .

Compared to linear case in Thm. 3.1, the additional con-
straint in this case is Gaussianity on both Z|Y and the
estimator g(X)|Y. This ensures that the composition of
two piecewise linear functions g and f remains affine on Z ,
extending the results from linear f to piecewise linear f .

Non-zero mask values. Our theoretical analysis assumes
that we mask the unmeasured latent variables with a mask
value of 0, i.e. when yi = 0 for i ∈ [N ], we set zi = 0.
One can wonder whether allowing to set zi = M when
yi = 0 for some potentially nonzero constant vector M
would make the model more expressive. It turns out that
this is not the case, since the decoder f can always shift Z in
arbitrary ways, making the specific value of M irrelevant.

4. Implementation
We implement our two theoretical results asconstrained opti-
mization problems in Cooper (Gallego-Posada and Ramirez,
2022). We approximate the sparsity constraint, i.e. Eq. 2
in Thm. 3.1 and Eq. 5 in Thm. 3.4, by replacing the L0

norm with L1 norm, which is differentiable except at zero.
In practice, the L1 norm of the ground truth variables Z
is unknown, so we instead set a hyperparameter ϵ for the
sparsity constraint E ∥g(X)∥1 ≤ ϵ. In our experiments, we
use ϵ = 0.01 or 0.001, details are provided in App. D.2.

For linear f , we can reconstruct the latent variables directly
from a dataset of observations {xi}i∈[N ] by minimizing
the reconstruction error and adding the sparsity constraint
(Thm 3.1). For piecewise linear f , Thm. 3.4 requires that
we know how to partition the data with the same partial ob-
servability at training time, i.e., we have information about
the group of each observation. At test time, we have already
learned g, so we can instead use only the observations with-
out the group information. To encourage the Gaussianity

condition on g(X)|Y = y (Eq. 6) in Thm. 3.4, we add two
regularization terms that push the estimated skewness of
each latent variable in each group to be 0 and the estimated
kurtosis to be 3, which are the values of these moments in
the Gaussian distribution. We learn the encoder gψ and the
decoder f̂θ by solving the following optimization problem:

min
(θ,ψ)

1

N

∑
i∈[N ]

∥∥∥xi − f̂θ(gψ(x
i))

∥∥∥2
2

+
∑
g∈G

( ∣∣∣ŝkewg (gψ(x))∣∣∣+ ∣∣∣k̂urtg (gψ(x))− 3
∣∣∣ )

subject to:
1

nN

∑
i∈[N ]

∥∥gψ(xi)∥∥1 ≤ ϵ, (7)

where ŝkewg (gψ(x)) and k̂urtg (gψ(x)) are the estimated
skewness and estimated kurtosis for group g ∈ G. We solve
both problems with the extra-gradient version of Adam
(Gidel et al., 2018). We provide all details in App. D.

5. Experimental Results
We perform three sets of experiments, one with numeri-
cal data in Sec. 5.1 and two with image datasets, a dataset
with multiple balls in Sec. 5.2 and PartialCausal3DIdent,
a partially observable version of Causal3DIdent (von
Kügelgen et al., 2021) in Sec. 5.3. We provide
all the code for our method and the experiments at
https://github.com/danrux/sparsity-crl.

Following previous work (Hyvarinen et al., 2019; Khe-
makhem et al., 2020), we report the mean coefficient of de-
termination (MCC) to assess that the learned representations
match the ground truth up to a permutation and element-wise
linear transformations. This metric is based on the Pearson
correlation matrix Corrn×n between the learned representa-
tions Ẑ = g(X) and ground truth masked causal variables
Z. Since our results are up to permutation, we compute the
MCC on the permutation π that maximizes the average of
|Corri,π(i)| for each index of a ground truth variable i ∈ [n],
i.e. MCC= 1

n maxπ∈perm([n])

∑n
i=1 |Corri,π(i)|. We denote

the correlation matrix with the permutation π as Corrn×nπ .

5.1. Numerical Experiments

We generate numerical data following Sec. 2. We investigate
varying the partial observability patterns, the underlying
causal model and the type of mixing function f . For the
encoder g and the decoder f̂ , we use 7-layer MLPs with
[10, 50, 50, 50, 50, 10] × n units per layer, where n is the
number of causal variables, with LeakyReLU activations
for each layer except the final one in the piecewise linear
case. We apply batch normalization to control the norm
of g(X). For simplicity, for most experiments we set the
output dimension of g to n. In an ablation in App. E.1.4
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we set the output dimension of g to an overestimate of n,
showing that our method learns to only use n dimensions
and provides similar performance to the other experiments.
In each setup, we average over 20 random seeds.

We experiment with different ratios of measured variables
ρ = {1VAR, 50%, 75%}, where 1VAR is one measured vari-
able, while 50% and 75% are the percentages of measured
variables in each sample. Based on each ρ we predefine a
set of K masks Y that satisfies Ass. 2.2. As discussed in
Sec. 3, while the theoretical results assume a mask value
of M = 0, the specific value used is inconsequential from
the theoretical point of view. On the other hand, the opti-
mization procedure improves for mask values that are out of
distribution w.r.t. the unmasked distribution of each variable,
since it is then easier to recover which variables are masked
in each group. We investigate different masks values and
consider M = µ + δ · σ, where µ, σ ∈ Rn are the mean
and standard deviation of Z and δ ∈ {0, 2, 3, 5, 10}.

We consider n = {3, 5, 10, 20, 40} causal variables C. In
each experiment, we generate a random directed acyclic
graph D from a random graph Erdös-Rényi (ER)-k model,
where k ∈ {0, 1, 2, 3} and ER-k is a graph with n · k edges.
In particular, ER-0 implies independent C and therefore Z.
Based on D, we consider three types of structure causal mod-
els (SCM): i) a linear Gaussian SCM where edge weights
are sampled uniformly from [−2,−0.5] ∪ [0.5, 2] and we
use standard Gaussian noises; ii) a linear exponential SCM,
where we have a similar setup, but with exponential noises
with scale 1; iii) a nonlinear SCM, where we simulate a non-
linear function with a linear layer, a sigmoid activation and
a fully connected layer with 100 hidden units, where edge
weights are sampled uniformly from [−2,−0.5] ∪ [0.5, 2]
and we use standard Gaussian noises.

Results for linear mixing function (Thm. 3.1). We use a
fully connected layer to model the linear mixing function f .
We show the performance, measured in the average MCC
over three random seeds in Table 1. In the first four rows,
we investigate how the number of the latent causal variables
influences the performance for a linear Gaussian SCM with
an average degree k = 1 and a ratio of measured variables
ρ = 50%. In this case, the method achieves excellent perfor-
mances for smaller n, but these degrade as n increases. In
the second group of rows, we consider the effect of k, the av-
erage degree in the causal graph in the linear Gaussian case
for n = 10 causal variables and ρ = 50%. Also in this case,
the performances are excellent for low k, including k = 0
which represents independent variables, but they degrade
with higher k. The third and fourth group of rows show how
the performance varies for different k for the linear expo-
nential and nonlinear SCM, showing a similar performance.
Finally, we show the results for varying ratio of measured
variables ρ, showing a small degradation when we measure

Table 1: Results for the numerical experiments for linear
mixing functions with δ = 0. The bold font indicates which
parameters are varying in each block of rows.

n k SCM ρ MCC
5 1 LIN. GAUSS 50 % 0.997±0.002

10 1 LIN. GAUSS 50 % 0.996±0.001
20 1 LIN. GAUSS 50 % 0.987±0.029
40 1 LIN. GAUSS 50 % 0.714±0.153
10 0 INDEP. GAUSS 50 % 0.998±0.001
10 1 LIN. GAUSS 50 % 0.996±0.001
10 2 LIN. GAUSS 50 % 0.904±0.113
10 3 LIN. GAUSS 50 % 0.793±0.142
10 0 INDEP. EXP 50 % 0.998±0.001
10 1 LIN. EXP 50 % 0.998±0.002
10 2 LIN. EXP 50 % 0.910±0.108
10 3 LIN. EXP 50 % 0.825±0.123
10 1 NONLINEAR 50 % 0.997±0.001
10 2 NONLINEAR 50 % 0.997±0.001
10 3 NONLINEAR 50 % 0.996±0.001
10 1 LIN. GAUSS 1VAR 0.998 ±0.002
10 1 LIN. GAUSS 50 % 0.996±0.001
10 1 LIN. GAUSS 75 % 0.877 ±0.096

more variables at the same time. Intuitively, measuring a
smaller number of variables for each sample is the easier
setting for disentangling them from the observations.

Results for piecewise linear mixing function (Thm. 3.4).
For the piecewise linear f , we use a m = {3, 10, 20}-
hidden-layer MLP with m−1 LeakyReLU (α = 0.2) activa-
tion functions and a final linear layer, to model the piecewise
linear mixing function. The number for layers m in the f
mixing function is a proxy for the complexity of the function
f , a linear function has m = 0, while the higher the m the
higher the non-linearity. Following (Lachapelle et al., 2022),
the weight matrices are sampled from a standard Gaussian
distribution and are orthogonalized by their columns to en-
sure f is injective. In this setting, we evaluate with a linear
Gaussian SCM, since this satisfies Ass. 3.2 in Thm. 3.4.

We start by showing results in Fig. 2a for the simple case of
number of causal variables n = 3 and number of layers m =
3. Through optimization of Eq. (7), our approach achieves
good performances in these simple scenarios. However, in
more complex cases, e.g. more latent variables or more
complicated f , there is a decline in performance, as shown
in Fig. 2b-f. We hypothesize that the reason for this drop is
that the estimated skewness and kurtosis cannot guarantee
Gaussianity, which is crucial to ensure identifiability in
Thm. 3.4. We show that this is empirically the case for
n = 5 in Fig. 6 in App. D.3. We attribute this issue to the
per-group sample variance used to calculate both sample
skewness and kurtosis. We test this assumption and potential
of our theoretical results, by comparing with an oracle that
has access to the masks yi for each observation xi. This
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Figure 2: Results for different parameters in the piecewise linear numerical experiments. Our method implements Eq. 7
based on the group information. The oracle method implements the same loss, but with as additional information the mask
yi, which it uses to assign a low variance to the masked variables in each sample for the skewness and kurtosis regularization
terms. This method showcases the potential of our theoretical results with a stronger Gaussianity constraint.

.

information is used to set the group sample variance to a
low value for the masked variables in each group. As shown
in Fig. 2b-f this is effective in improving the performances
of our sparsity constraint.

We test the performance of our method and the oracle for
various parameters in Fig. 2. In particular, we see in Fig. 2a
and Fig. 2e that when the distance δ between masked and
unmasked variables increases, it enables a more distinct sep-
aration of Z, providing better identification results. Similar
to the linear case, we see that an increase in complexity, e.g.,
in the number of causal variable n, as shown in Fig. 2f, or
the number of layers m, as shown in Fig. 2b, lowers the per-
formance. Similarly, as shown in Fig. 2d, the performance
drops when the ratio of measured variables ρ increases. In-
terestingly, the average degree of the causal graph k does
not have an impact, as shown in Fig. 2c. We provide more
results and visualizations in App. E.1. In App. E.1.5 we
show the results of applying standard causal discovery meth-
ods on the learned representations, assuming the causal
Markov and faithfulness assumption, as well as causal suffi-
ciency.Intuitively, the closer the learned representations are
to the ground truth, the more accurate are the learned causal
relations between them.

5.2. Image dataset: Multiple Balls

We create a new image dataset in which we render in a 2D
space b moving balls, as shown in Fig. 30 in App. E.2. Our

latent causal variables are the (x, y) position of each ball b,
which we model as Gaussian. We consider two settings: i) a
missing ball setting in which the balls can only move along
the x-axis and they can move out of view, and ii) a masked
position setting in which the balls can move freely inside
the frame and each of their coordinates can be masked by
being set to an unknown, but fixed, M value. Both of these
settings showcase possible applications of our approach.
The first setting is a simplified version of a setting with a
fixed camera capturing a set of objects that might move
out of view. The second setting is a simplified version of
occlusion, in which an occluded object is not captured in
the image, but it still interacts with other objects.

The missing ball setting represents the intuitive setting for
partial observability, i.e. when an object is out of the frame
or occluded. While we model each object with two causal
variables, its x and y coordinates, our methods do not allow
that masks for two variables are deterministically related
(Ass. 2.2). Thus, we constrain the balls to move only on
the x-axis, which we then identify from the observations.
In order to test also the identifiability of each variable of
the same object, we devise the masked position setting. In
this setting, we can still use our method with a non-zero
mask value for each variable, which in this case represents
a specific value for one of the x or y coordinates of the
ball. We generate datasets for both settings by varying the
number of balls b = 2, 5, 8. We use a predefined set of
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Table 2: Results for the multiple balls dataset.

b MCC Missing MCC Masked
2 0.963±0.012 0.946±0.005
5 0.950±0.011 0.939±0.003
8 0.928±0.004 0.901±0.002

K masks y that satisfies Ass. 2.2. For the missing ball
setting, we generate the x-coordinates of each ball from
a truncated normal distribution N (0.5, 0.12) with bounds
(0.1, 0.9). For the masked position setting, we generate the
x and y-coordinates of each ball i ∈ [b] independently from
a truncated 2-dimensional normal distribution N (µi,Σi)
with bounds (0.1, 0.9)2, where µi ∼ Unif(0.4, 0.6)2, and
Σi = ((0.01, 0.005)(0.005, 0.01)) for all groups. For
both settings, we generate the masked causal variables as
(Zk)

K
k=1 = y ·C+(1−y) ·M ∈ RK×n, where M = 0 for

the missed ball setting, and M = µi+ δ · σi for the masked
position setting. Instead of a fixed-size training dataset, we
generate images online until convergence. We provide more
details in App. E.2.

Results. As illustrated in Table 2, while the MCC de-
creases with an increase in the number of balls b, all MCCs
remain above 0.90. The results are consistently higher in
the missing ball setting, where there are b variables to re-
construct, while in the masked position setting there are
2b. Additionally, in the masked position setting, we have
dependence between the x and y coordinates, which can
make the problem more challenging.

5.3. Image dataset: PartialCausal3DIdent

We explore the capability of our method on a partial ob-
servability version of Causal3DIdent (von Kügelgen et al.,
2021) that we create. Causal3DIdent collects images of 7
object classes rendered from 10 causal variables, including
object color, object positions, spotlight positions, etc. Each
latent variable is rescaled into an interval of [−1, 1]. The
mixing function, i.e., the rendering process, is not piecewise
linear (which violates the assumption in Thm. 3.4). We still
evaluate our piecewise linear method, following the intu-
ition that non-linear functions can be approximated up to an
arbitrary precision by an adequate number of linear pieces.

Dataset generation. Since Causal3DIdent is fully observ-
able, we sample from it to create PartialCausal3DIdent, a
dataset in which some of the latent variables are masked
to a predefined value. For each datum, we sample a
latent vector C ∼ N (0, σ2I) of n = 10 independent
causal variables. We apply the set of K predefined masks
y ∈ {0, 1}K×n to get a set of masked latent variables
(Zk)

K
k=1 = y ·C + (1 − y) ·M ∈ RK×n. We define the

masked value as the maximum of the support area (which

Table 3: MCC on PartialCausal3DIdent over each object
class, with masking distance δ = 10 for all latent variables.

OBJECT CLASS ID 0 1
MCC (MEAN ± STD) 0.842± 0.018 0.804± 0.023

OBJECT CLASS ID 2 3
MCC (MEAN ± STD) 0.828± 0.014 0.820± 0.009

OBJECT CLASS ID 4 5
MCC (MEAN ± STD) 0.837± 0.020 0.821± 0.033

OBJECT CLASS ID 6 AVG. MEAN
MCC (MEAN ± STD) 0.858± 0.005 0.832± 0.016

is 1 for all latents). The ratio of the measured variables
ρ varies from 10% (only one latent is measured) to 100%
(all latents are measured). The average ρ is set to 50%.
After obtaining the masked latent variables, we retrieve K
corresponding images from the dataset, based on the index
searching scheme provided by von Kügelgen et al. (2021).

Results. We evaluate our method separately on each ob-
ject class in PartialCausal3DIdent and show the results in
Table 3. Although the performance fluctuates slightly across
classes, our method achieves a high MCC over 80% for
all classes, which verifies that our approach is empirically
applicable even on highly nonlinear high dimensional data.
We provide all details and ablation studies on δ in App. E.3.

6. Related Work
Most closely related to our work are recent identifiability
studies, which also explicitly learn causal representations
in a partially observable setting. Yao et al. (2023) con-
sider learning from tuples of simultaneously observed views,
which depend on different fixed (potentially overlapping)
subsets of latents with modality-specific mixing functions,
and prove identifiability results for different blocks of shared
content variables (von Kügelgen et al., 2021). Compared to
our setting, such paired multi-view data may be harder to ob-
tain. Sturma et al. (2023) study an unpaired, multi-domain
setup, in which observations from each domain depend on
a different fixed subset of latents, and show identifiability
of the causal representation and graph in the fully linear
case. This setting resembles our results for the piecewise
linear case in Thm. 3.4, where we assume we have the group
information for each observation, which can be seen as a
single domain. On the other hand, for the linear case in
Thm. 3.1, we do not need the group information, hence we
also allow for mixtures of data from multiple domains.

Other works in an i.i.d. setting can be viewed as modelling
partial observability implicitly by restricting the graph con-
necting latent and observed variables and establishing iden-
tifiability for linear (Adams et al., 2021; Cai et al., 2019;
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Silva et al., 2006; Xie et al., 2020; 2022) or discrete (Kivva
et al., 2021) settings. In our work, we consider the case in
which either the causal model or the mixing are not linear
and do not constrain the connectivity between Z and X.

Not considering partial observability, other works on
CRL aim to also learn the causal graph from different
types (hard/soft, single/multi-node) of interventions in lin-
ear (Squires et al., 2023; Bing et al., 2023), partially (Buch-
holz et al., 2023; Ahuja et al., 2023a;b; Zhang et al., 2023),
or fully nonlinear (von Kügelgen et al., 2023; Varici et al.,
2023) settings. We focus instead on only recovering the
latent causal variables without access to interventional data.

Other works have also explored the piecewise linear setting
for identifiability, including with the assumption of Gaus-
sian causal variables. In particular, Thm. 3.4 resembles one
of the identifiability results from Kivva et al. (2022) which
assumes Z is a mixture of non-degenerate Gaussians and f
is a piecewise linear function. We note that, in Thm. 3.4, Z
is also a mixture of Gaussians, where the “cluster index” cor-
responds to Y. However, this mixture contains components
which are degenerate, in the sense that their covariances
might be singular (this occur when Yi = 0 for some i).
This prevents us from applying the result of Kivva et al.
(2022) directly to our setting. On the other hand, although
we allow for degenerate components, our result assumes
knowledge of the groups g, unlike Kivva et al. (2022).

Prior work has also leveraged sparsity in representation
learning, for example via a Spike and Slab prior (Tono-
lini et al., 2020; Moran et al., 2022), assuming structural
sparsity on the support of Jacobian of nonlinear mixing
function (Zheng et al., 2022; Zheng and Zhang, 2023), ex-
ploiting the sparsity constraint on the linear mixing func-
tion (Ng et al., 2023), or by relating the learnt represen-
tation to multiple tasks, each depending only on a small
subset of latents (Lachapelle et al., 2023; Fumero et al.,
2023). Other work that is closely related to ours is work
by Lachapelle et al. (2022; 2024), who have proposed a
sparsity principle for identifiable CRL in interventional and
temporal settings, motivated by the sparse mechanism shift
hypothesis (Schölkopf et al., 2021; Perry et al., 2022).

Among these works leveraging sparsity, Lachapelle et al.
(2023) introduce a sparsity principle that inspired our work,
but for the multi-task setting, where each task depends on
a subset of variables. More precisely, they assume that the
connections W between tasks Y and representations f(X)
are sparse, i.e. Y = Wf(X) and W is a column-sparse
matrix (some of the columns are filled with zeros). In our set-
ting, the sparsity assumption is on the representation itself,
i.e. each causal variable has a positive probability of being
masked. While the proof strategies are similar, our result
also had to address the piecewise linear case. Other work
that is closely related to ours is work by Lachapelle et al.

(2022; 2024), who have proposed a sparsity principle for
identifiable CRL in interventional and temporal settings, mo-
tivated by the sparse mechanism shift hypothesis (Schölkopf
et al., 2021; Perry et al., 2022).

Our work is also related to sparse component analysis (Gri-
bonval and Lesage, 2006) and sparse dictionary learn-
ing (Mairal et al., 2009). These unsupervised representation
learning methods assume linear mixing functions f and
learn a sparse representations of the input X, similar to our
g(X). The identifiability of dictionary learning has been
studied, e.g. by Hu and Huang (2023), in the finite sample
regime. The main distinction with our work is that we focus
on identifiability with nonlinear mixing.

Similar to our piecewise linear theorem, Liu et al. (2022)
also assumes that the underlying SCM is linear Gaussian.
As opposed to our work, it leverages the fact that the coeffi-
cients (or weights) of the causal relations are varying across
environments, while in our case we leverage the partial ob-
servability patterns and assume that the underlying SCM is
the same for all data. Similarly, Liu et al. (2024) extends the
results from Liu et al. (2022) to polynomial causal models
with exponential family noise variables. These works are
related to ours in leveraging changes across environments,
but provide a different type of results.

7. Conclusions and Limitations
In this work, we focused on learning causal representations
in the unpaired partial observability setting, i.e., when only
an instance-dependent subset of causal variables are cap-
tured in the measurements. We first proved the identifiability
with linear mixing functions f under a sparsity constraint.
We then presented an example to illustrate why extending
the results to nonlinear f is not possible without additional
assumptions. We proved identifiability when f is piecewise
linear, both the causal variables and the learned representa-
tions are Gaussian, and we know the group of each sample.

While our experiments validate our theoretical results, there
are still several limitations. From the theoretical point of
view, knowing the group of each sample might not always
be possible, so extending our results beyond this limitation
is an exciting direction. Additionally, piecewise linear func-
tions are a limited class and there might be other classes
of nonlinear functions for which our identifiability results
could be extended. In particular, our results hinge on the
linearity of the composition g and f on Z , which can be
implied by other types of constraints on f , g and the causal
variables. Finally, our Gaussianity constraint is empirically
difficult to satisfy, as shown by the gap between the perfor-
mances of our method and the oracle. This warrants further
investigation in other ways to encourage Gaussianity of the
learned representations.
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A. Relation between partial observability and do interventions
In our setting we consider two types of related variables: the causal variables C and the masked causal variables Z. The causal
variables C = (C1, ..., Cn) represent the underlying causal system. The masked causal variables Z = (Z1, ..., Zn) ∈ Z
are a combination of the causal variables and the masks Y, and they are the latent inputs to the mixing function f that we
are trying to recover. In particular, they are the Hadamard product of the causal variables with the binary mask variable, i.e.,
Z = Y ⊙C. For sample i ∈ [N ] and any causal variable j ∈ [n], if the mask value yij is 1, then the causal variable cij is
measured and zij is cij . Instead, if yij = 0, then the causal variable is unmeasured and zij takes a fixed masked value Mj . We
show an example in Fig. 3a, where the binary mask Y2 for causal variable C2 is 0.

A superficially similar operation is a do-intervention (Pearl, 2009), in which we fix the value of a random variable to a
specific value. For example, one could consider an intervention do(zij = Mj), which forces the value of the variable zij to
Mj . As shown in Fig. 3, there are several differences between the masked variables and the intervened variables.

C1 C2 C3

Z3M2Z1

Y3Y2 = 0Y1

z

(b)

C1 M2 C3

c1 c3

(a)

M2

c2 c3c1c
y

c |do(C2 = M2) c1 c′ 3

0 11

M2

C1 C3C2

c2 c3c1c
y 0 11 Z1 /⊥⊥ Z3

After :do(C2 = M2)

C1 ⊥⊥ C3 |do(C2 = M2)

Figure 3: Comparison between (a) masking on C2, and (b) do intervention on C2. In the second case, there is an effect on
C3, and the intervention cuts the link and hence the dependence between C1 and C3.

Despite having the same fixed value for the masked or intervened variable, these two operations have different effects. In
particular, masking variables does not influence any downstream variables, as an intervention would. For example, consider
the case of three variables C1 → C2 → C3 in Fig. 3a. In this case, if we mask C2, then there will be no effect on the value
of C3, and C1 and C3 will still be dependent. If we performed an intervention on C2, as in Fig. 3b, then there would be a
change in the value of C3, and C1 and C3 would be independent.

B. Proofs
B.1. Proof of the results for linear mixing functions (Theorem 3.1)

We first introduce the definition of dependent inputs, which intuitively is the set of variables on which a reconstruction of a
given variable depends.

Definition B.1. Let v : Z → Rn be a function with variables z = (z1, ..., zn) ∈ Z . For all i ∈ [n] consider Ni to be the set
of all variables on which vi depends, which we will call dependent inputs. Formally, we define the set of dependent inputs
Ni ⊆ [n] as

Ni := {j ∈ [n] | ∃(zj , z0−j), (z′j , z0−j) ∈ Z where zj ̸= z′j s.t. vi(z0−j , zj) ̸= vi(z
0
−j , z

′
j)} , (8)

where z0−j is any n− 1 dimensional vector that represents all of the components of a vector z ∈ Z except for the index j.

This definition intuitively represents the indices of z for which the function vi is not constant, or in other words, the inputs
on which vi depends. Note that if there is only one zj such that (zj , z0−j) ∈ Z for an appropriate z0−j , then any function
defined on Z is constant for that index, and hence Ni does not contain j.
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We now show a lemma that we will use to prove the theorem showing that for any diffeomorphism and any variable, there
always exists a permutation that ensures that a variable is in the set of its dependent inputs. Intuitively, this ensures that for
all variables, there always exists a permutation, such that the reconstruction of a given variable depends on the variable itself.

Lemma B.2 (Existence of permutation π s.t. i ∈ Nπ(i)). Let v : Z → Rn be a diffeomorphism onto its image with variables
z = (z1, ..., zn) ∈ Z . Assume there exists a point z0 ∈ Z and a value ϵ > 0, such that ∀i ∈ [n], ei ⊙ [−ϵ, ϵ)n + z0 ⊂ Z ,
where ei is the standard basis for space Rn for the i-th dimension, i.e. a n-dimensional vector in which all dimensions
except i are 0, and the i-th dimension is 1. Then there exists a permutation π : [n] → [n] such that i ∈ Nπ(i) for all i, where
Ni is defined as in Def. B.1.

Proof. Since v is a diffeomorphism, its Jacobian Dv = {∂vi

∂zj
}i,j∈[n] is invertible everywhere, so it is invertible at z0 ∈ Z .

Since Dv(z0) is invertible, we have that its determinant is non-zero, i.e.

det(Dv(z0)) :=
∑
π∈Sn

sign(π)
n∏
i=1

Dv(z0)π(i),i ̸= 0 , (9)

where Sn is the set of n-permutations. This equation implies that at least one term of the sum is non-zero, and that for that
term, all of the terms in the product are non-zero, meaning:

∃π ∈ Sn,∀i ∈ [n], Dv(z0)π(i),i ̸= 0 . (10)

This means that, for all i ∈ [n], ∂vπ(i)

∂zi
(z0) ̸= 0, which implies that vπ(i) is not constant for zi in z0. Then by definition of

Ni in Def. B.1, i ∈ Nπ(i).

As an intermediate step, we first prove an important lemma that shows that by enforcing sparsity of the transformed variables,
the corresponding transformation is an element-wise linear function. Intuitively, these transformed variables will be the
reconstructed masked latent variables Z.

Lemma B.3 (Element-wise Identifiability for Linear Transformation). Assume that the masked latent variables Z with
support Z follow the data generating process in Sec. 2 and Ass. 2.2 holds. Let the function v : Z → Rn be invertible and
linear on Z , and

E ∥v(Z)∥0 ≤ E ∥Z∥0 . (11)

Then v is a permutation composed with an element-wise invertible linear transformation on Z .

Proof. We reuse the definition of the support indices S := {i ∈ [n] : Zi ̸= 0} and analyze each side of inequality (11),
starting with its right-hand side.

E||Z||0 = E
n∑
i=1

1(Zi ̸= 0) (12)

=
∑
s∈S

p(s)E

[
n∑
i=1

1(Zi ̸= 0) | S = s

]
(13)

=
∑
s∈S

p(s)

n∑
i=1

E[1(Zi ̸= 0) | S = s] (14)

=
∑
s∈S

p(s)

n∑
i=1

1(i ∈ s) (15)
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Now analyzing the left hand side of (11), starting with similar steps as previously we get

E||v(Z)||0 =
∑
s∈S

p(s)

n∑
i=1

E[1(vi(Z) ̸= 0) | S = s] (16)

=
∑
s∈S

p(s)

n∑
i=1

PZ|S=s[vi(Z) ̸= 0] (17)

=
∑
s∈S

p(s)

n∑
i=1

(
1− PZ|S=s[vi(Z) = 0]

)
. (18)

For v to be a permutation composed with an element-wise invertible linear transformation on Z , it is enough to show there
exists a permutation π : [n] → [n] such that, for every i, Ni = {π(i)}. To achieve this, we are going to first show that

PZ|S=s[vi(Z) = 0] = αi1(Ni ∩ s = ∅) , (19)

where αi ∈ {0, 1}. Since vi is linear on Z , we have that vi(Z) = wi · Z+ ci for some wi ∈ Rn. Furthermore, we show
that in this case Ni = {j ∈ [n] | wi

j ̸= 0}. In one direction, if wi
j = 0, then vi is constant in dimension j, so wi

j should
be non-zero for j to be included in Ni. For the other direction, if wi

j ̸= 0 there are two cases in which we could have that
j ̸∈ Ni: (i) if wi

jZj always cancels out with another wi
kZk, where both wi

j ,w
i
k ̸= 0, (ii) if the variable Zj can only take a

single value. We show that neither of these cases can happen because of Ass. 2.2. In particular, the first case cannot happen
because two masks for two different variables cannot be the same and satisfy this assumption. The second case also cannot
happen because of Ass. 2.2, since there needs to be a support index set in which i is masked and one in which it is not
masked. Thus,

vi(Z) = wi · Z+ ci = wi
Ni

· ZNi
+ ci .

Case 1: Suppose Ni ∩ s = ∅. Then,

PZ|S=s[vi(Z) = 0] = PZ|S=s[w
i
Ni

· ZNi
+ ci = 0] = PZ|S=s[w

i
Ni

· 0+ ci = 0] = PZ|S=s[ci = 0] = αi .

Note that the event PZ|S=s[ci = 0] is deterministically either true of false, hence αi ∈ {0, 1}.

Case 2: Suppose Ni ∩ s ̸= ∅. Thus, wi
s ̸= 0. Thus,

PZ|S=s[vi(Z) = 0] = PZ|S=s[w
i · Z+ ci = 0] = PZ|S=s[w

i
s · Zs + ci = 0] .

Note that the event {Zs | wi
s · Zs + ci = 0} corresponds to the kernel of the linear map wi

s. We can thus infer
its dimensionality via the rank-nullity theorem (Friedberg et al., 2014) which states that rank(wi

s) + dim(Ker(wi
s)) =

dim(Dom(wi
s)), where Ker() is nullity and Dom() is domain, which here implies that 1 + dim(Ker(wi

s)) = |s|. We thus
have dim({Zs | wi

s · Zs + ci = 0}) = |s| − 1. Since PZ|S=s has a density w.r.t. to the Lebesgue measure, we have that
PZ|S=s[w

i
s · Zs + ci = 0] = 0 (since a density w.r.t. to Lebesgue cannot concentrate mass on a lower-dimensional linear

subspace).

We thus have proved that indeed, PZ|S=s[vi(Z) = 0] = αi1(Ni ∩ s = ∅).

Putting (11), (15), (18) and (19) together, we obtain∑
s∈S

p(s)

n∑
i=1

[(1− αi) + αi1(Ni ∩ s ̸= ∅)] ≤
∑
s∈S

p(s)

n∑
i=1

1(i ∈ s) (20)

We can now use Lemma B.2, because Ass. 2.2 implies the existence of the z0 point, which in this case is (0, ..., 0).

By using this lemma, we can show that there exists a permutation π such that, for all i ∈ [n], i ∈ Nπ(i). We now permute
the terms on the l.h.s. according to π and reorganize the terms as:∑

s∈S
p(s)

n∑
i=1

[(1− απ(i)) + απ(i)1(Nπ(i) ∩ s ̸= ∅)] ≤
∑
s∈S

p(s)

n∑
i=1

1(i ∈ s)

∑
s∈S

p(s)

n∑
i=1

[(1− απ(i)) + απ(i)1(Nπ(i) ∩ s ̸= ∅)− 1(i ∈ s)] ≤ 0 (21)
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Note how, for all i, (1−απ(i))+απ(i)1(Nπ(i)∩s ̸= ∅)−1(i ∈ s) ≥ 0, since whenever i ∈ s, we must have Nπ(i)∩s ̸= ∅,
because we chose a permutation such that i ∈ Nπ(i). Note also that this is true irrespective of the value of απ(i) ∈ {0, 1}.

We then can notice that if i ̸∈ s, then απ(i) = 0. The function can have either value 0 or 1, but in any case not negative.
Hence the inequality in (21) is actually an equality and hence for all s ∈ S and all i ∈ [n],

(1− απ(i)) + απ(i)1(Nπ(i) ∩ s ̸= ∅)− 1(i ∈ s) = 0 . (22)

The first thing we conclude is that if i ̸∈ s, then απ(i) = 1, since otherwise Equ.(22) is violated. Under Ass. 2.2, we have
that, for all i ∈ [n], there exists an s ∈ S such that i ̸∈ s. We thus conclude that αi = 1 for all i ∈ [n], which allows us to
write

1(Nπ(i) ∩ s ̸= ∅) = 1(i ∈ s) (23)
1(Nπ(i) ∩ s = ∅) = 1(i ̸∈ s) . (24)

Importantly, this means

∀i ∈ [n],∀s ∈ S, i ̸∈ s =⇒ Nπ(i) ∩ s = ∅ =⇒ Nπ(i) ⊆ sc , (25)

which can be rewritten as

∀i ∈ [n], Nπ(i) ⊆
⋂

s∈S|i ̸∈s

sc . (26)

We now rewrite Assumption 2.2 below and take the complement on both sides:

∀i ∈ [n],
⋃

s∈S|i ̸∈s

s = [n] \ {i} (27)

⋂
s∈S|i̸∈s

sc = {i} (28)

Combining (26) with (28) implies that Nπ(i) = {i} for all i, which concludes the proof.

We now prove identifiability up to permutation and element-wise linear transformations for the case of a linear mixing
function, given the assumption of sufficient support index variability.

Theorem 3.1 (Element-wise Identifiability for Linear f ). Assume the observation X = f(Z) follows the data-generating
process in Sec. 2, where f : Z → X is an injective linear function, and Ass. 2.2 holds. Let g : X → Rn be an invertible
linear function onto its image and let f̂ : Rn → Rd be an invertible continuous function onto its image. If both of the
following conditions hold,

E
∥∥∥X− f̂(g(X))

∥∥∥2
2
= 0 , and (1)

E ∥g(X)∥0 ≤ E ∥Z∥0 , (2)

then Z is identified by f̂−1(X) up to a permutation and element-wise linear transformations (Def. 2.1), i.e., f̂−1 ◦ f is a
permutation composed with element-wise invertible linear transformations on Z .

Proof. Since X = f(Z), we can rewrite Equation (49) (perfect reconstruction) as

E||f(Z)− f̂(g(f(Z)))||22 = 0 . (29)

This means f and f̂ ◦ g ◦ f are equal PZ-almost everywhere. Both of these functions are continuous, f by assumption and
f̂ ◦ g ◦ f because f̂ is continuous, and f ,g are linear. Since they are continuous and equal PZ-almost everywhere, this means
that they must be equal over the support of Z, Z , i.e.,

f(z) = f̂ ◦ g ◦ f(z) ,∀z ∈ Z . (30)
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This can be easily shown by considering any point z′ ∈ Z on which f and f̂ ◦ g ◦ f are different, i.e. f̂ ◦ g ◦ f(z′) ̸= f(z′),
This would imply that (f − f̂ ◦ g ◦ f), which is also a continuous function, is non-zero in z′, and in its neighbourhood. This
would contradict the assumption that f and f̂ ◦ g ◦ f are the same almost everywhere. We can now apply the inverseon both
sides to obtain

f̂−1 ◦ f(z) = g ◦ f︸︷︷︸
v:=

(z) ,∀z ∈ Z . (31)

Since both f is an injective linear function from Z to X and g is an invertible linear function from X onto its image, then,
f̂−1 ◦ f is an invertible linear function on Z . As v is equal to f̂−1 ◦ f on Z , then, we have v is also an invertible linear
function on Z . By Lemma B.3, we can derive v is a permutation composed with an element-wise linear transformation on
Z .

B.2. Proof of the results for the piecewise linear functions( Theorem 3.4)

For piecewise linear mixing functions, we first prove an intermediate result (Thm B.5) for a weaker form of identifiability
that does not imply a disentanglement, but an affine correspondence between the ground truth and the learned variables.

Definition B.4 (Identifiability up to affine transformation (Khemakhem et al., 2020; Lachapelle et al., 2022)). The
ground truth representation vector Z (n-dimensional random vector) is identified up to affine transformations by a learned
representation vector Ẑ (also n-dimensional random vector) when there exists an invertible linear transformation h such
that, Ẑ = h(Z) almost surely.

We then introduce Lemma B.10, which proves that, when Y is provided, we can identify the distribution of latent variables
by linear transformations that may vary across Y. It is crucial to emphasize that in this work, having Y = y does not imply
knowledge of the exact value of y; instead, we simply need the information on grouping, i.e. the partitioning of the dataset
based on mask values. Finally, we use these intermediate results to conclude the prove of the theorem.

B.2.1. LINEAR IDENTIFIABILITY FOR (DE)-MVNS WITH PIECEWISE AFFINE f

In what follows, we let ≡ denote equality in distribution.

Theorem B.5 (Linear Identifiability for (De)-MVNs with Piecewise Affine f ). Assume f , f̂ : Rn → Rd are injective and
piecewise affine. We assume Z and Ẑ follow a (degenerate) multivariate normal distribution. If f(Z) ≡ f̂(Ẑ), then there
exists an invertible affine transformation h : Rn → Rn such that h(Z) ≡ Ẑ (Def. B.4).

Intuitively, Thm B.5 states that if we can align two (De)- MVN-distributed random vectors to the same distribution through
piecewise affine transformations, then their distributions can be interchanged via an affine transformation. This finding
is initially inspired by Kivva et al. (2022), who established the linear identifiability for latent variables following non-
denegerate Multivariate Normal (MVN) distributions. Our primary focus revolves around addressing two key issues to
extend the findings from MVN to de-MVN: i) determining the identifiability of de-MVN distributions, which do not have a
probability density function, and ii) constructing an affine function when the domain changes from Rn to Z .

We start by proving an useful lemma about (degenerate) multivariate normal distributions.

Lemma B.6. (Degenerate) Multivariate Normals, or (De)MVNs, are close under affine transformation. More formally,
if Z ∼ N(µ,Σ) with µ ∈ R and |Σ| ≥ 0, is a potentially degenerate multivariate normal variable, then AZ, where
A ∈ Rn×n is also a potentially degenerate multivariate normal variable.

Proof. Let Ẑ = AZ, then PẐ = AN(µ,Σ) = N(Aµ,AΣAT ) where the determinant of the covariance, |AΣAT | ≥ 0.
Therefore, Ẑ is a potentially degenerate multivariate normal variable.

We now summarize the results on the identifiability of non-degenerate multivariate normal variables by Kivva et al. (2022).
We report an adapted version of Theorem C.3 by Kivva et al. (2022).

Theorem B.7 (Identifiability of non-degenerate MVNs (Kivva et al., 2022)). Consider a pair of non-degenerate MVNs in
Rn. If

P = N(µ,Σ) and P ′ = N(µ′,Σ′), (32)
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and there exists a ball B(x0, δ), where x0 ∈ Rn and δ > 0, such that P and P ′ induce the same measure on B(x0, δ), then
P ≡ P ′.

The original proof follows from the identity theorem for real analytic functions. We extend this result to the case of
potentially degenerate multivariate normal variables, which we call (De)-MVNs. We first propose an intermediate result for
the case in which only one of the variables is a (degenerate) multivariate normal, while the other variable is a non-degenerate
multivariate normal. We then use this result to prove the general case in which both variables are potentially degenerate
MVNs.

Lemma B.8 (Identifiability of a (De)-MVNs and a non-degenerate MVN). Consider a pair of random vectors X, X′ in Rn
distributed as

X ∼ N(µ,Σ) and X′ ∼ N(µ′,Σ′), (33)

for appropriate values of µ,µ′ and where the determinant |Σ| ≥ 0 and the determinant |Σ′| > 0. In other words, X is a
potentially degenerate MVN, while X′ is a non-degenerate MVN.

If there exists a ball B(x0, δ) ⊆ Rn, where x0 ∈ Rn and δ > 0, such that X and X′ follow the same distribution on
B(x0, δ), then X ≡ X′, i.e.,(µ,Σ) = (µ′,Σ′).

Proof. Let the rank of Σ be k ≤ n and consider the spectral decomposition of Σ:

Σ = QDQT , (34)

where Q is an orthogonal n × n matrix and D a the diagonal matrix. If n = k we consider D to have k diagonal
entries (σ2

1 , σ
2
2 , . . . , σ

2
k) where σi for i ∈ [k] are the eigenvalues. Otherwise, if k < n, then D has n diagonal entries

(σ2
1 , σ

2
2 , . . . , σ

2
k, 0, . . . , 0) where σi for i ∈ [k] are the eigenvalues.

Let Y = QTX and Y′ = QTX′. Since Q is an orthogonal matrix, this means that

Y ∼ N(QTµ, QTQDQTQ) = N(QTµ,D) (35)

Y′ ∼ N(QTµ′, QTΣ′Q) (36)

Since we know X ≡ X′ in B(x0, δ), then we can derive that Y ≡ Y′ in B(QTx0, δ̃) for an appropriate δ̃ > 0. We project
B(QTx0, δ̃) into two subspaces, B(QTx0, δ̃)1:k and B(QTx0, δ̃)k+1:n. The first captures the first k dimensions of the ball,
and the second the last (n− k) dimensions.

We can pick the first k dimensions of Y and Y′, and denote them as Y1:k and Y′
1:k respectively. The first k dimensions

of both variables are still the same, i.e., Y1:k ≡ Y′
1:k in B(QTx0, δ̃)1:k. We can show that Y1:k is a non-degenerate

multivariate normal, because its covariance matrix D1:k,1:k is full rank. Since both Y1:k and Y′
1:k are non-degenerate

multivariate normals, by Theorem B.7 by (Kivva et al., 2022) we have Y1:k ≡ Y′
1:k.

We will now prove by contradiction that Y is also a non-degenerate MVN, i.e., that k = n. We consider the other
(n − k) dimensions of Y and Y′. The covariance matrix of Yk+1:n is Dk+1:n,k+1:n, which is a zero matrix. However,
since determinant |Σ′| > 0, the variance of any component of Y′

k+1:n cannot be 0. Since Yk+1:n ≡ Y′
k+1:n in the ball

B(QTx0, δ̃)k+1:n, their covariance matrices should be the same. We now come to a contradiction, because one is supposed
to be a zero matrix, while the other one is supposed to be full rank. We therefore derive that k = n, and hence Y1:k ≡ Y′

1:k

implies Y ≡ Y′. We can now exploit that X = QY and X′ = QY′, due to the orthogonality of Q, and conclude that
X ≡ X′.

Lemma B.9 (Identifiability of (De)-MVNs). Consider a pair of random vectors X, X′ in Rn distributed as

X ∼ N(µ,Σ) and X′ ∼ N(µ′,Σ′), (37)

for appropriate values of µ,Σ,µ′,Σ′, including also singular Σ and Σ′. If there exists a ball B(x0, δ) ⊆ Rn, where
x0 ∈ X , δ > 0 and X is support of X, such that X and X′ follow the same distribution on B(x0, δ), then X ≡ X′,
i.e.,(µ,Σ) = (µ′,Σ′).
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Proof. Let the rank of Σ be k ≤ n and consider the spectral decomposition of Σ:

Σ = QDQT , (38)

where Q is an orthogonal n× n matrix and D a the diagonal matrix. If the rank k < n, i.e. X is a degenerate multivariate
normal, we consider D to have n diagonal entries σ2

1 , σ2
2 , ..., σ2

k, 0, ..., 0, where σi for i ∈ [k] are the eigenvalues.

Let Y = QTX and Y′ = QTX′. This means that

Y ∼ N(QTµ, QTQDQTQ) = N(QTµ, D) (39)

Y′ ∼ N(QTµ′, QTΣ′Q) (40)

Since we know X ≡ X′ in B(x0, δ), then we can derive that Y ≡ Y′ in B(QTx0, δ̃) for an appropriate δ̃ > 0. We project
B(QTx0, δ̃) into two subspaces, B(QTx0, δ̃)1:k and B(QTx0, δ̃)k+1:n. The first captures the first k dimensions of the ball,
and the second the last (n− k) dimensions.

We can pick the first k dimensions of Y and Y′, and denote them as Y1:k and Y′
1:k respectively. The first k dimensions

of both variables are still the same, i.e., Y1:k ≡ Y′
1:k in B(QTx0, δ̃)1:k. We can show that Y1:k is a non-degenerate

multivariate normal, because its covariance matrix D1:k,1:k is full rank. So by Lemma B.8 we have Y1:k ≡ Y′
1:k, i.e.

(QTΣ′Q)1:k,1:k = D1:k,1:k.

For the other (n − k) dimensions of Y and Y′, i.e., Yk+1:n and Y′
k+1:n, we can also show that Yk+1:n ≡ Y′

k+1:n

in B(QTx0, δ̃)k+1:n. For Yk+1:n, since x0 is contained in B(x0, δ), we can derive that QTx0 is contained in
B(QTx0, δ̃). Since the covariance matrix of Yk+1:n is Dk+1:n,k+1:n, which is a zero matrix, the distribution of
Yk+1:n is a point mass with all of the probability on a single value (QTx0)k+1:n. From (39), we know that
Yk+1:n ∼ N((QTµ)k+1:n, Dk+1:n,k+1:n) = N((QTµ)k+1:n,0), so we can derive (QTµ)k+1:n = (QTx0)k+1:n.

Since Yk+1:n ≡ Y′
k+1:n in B(QTx0, δ̃)k+1:n, and Yk+1:n is a point mass on (QTµ)k+1:n ∈ B(QTx0, δ̃)k+1:n, then we

can derive that Y′
k+1:n should be a point mass on the same point (QTµ)k+1:n. Therefore, (QTΣ′Q)k+1:n,k+1:nis a zero

matrix, which is equal to Dk+1:n,k+1:n, and (QTµ)k+1:n = (QTµ′)k+1:n. This means that Yk+1:n ≡ Y′
k+1:n.

We can now exploit that X = QY and X′ = QY′ due to the orthogonality of Q, and we can write:

X = QY = Q(Y1:k
T ,Yk+1:n

T ) (41)

X′ = QY′ = Q(Y′
1:k

T
,Y′

k+1:n
T
), (42)

which together with Y1:k ≡ Y′
1:k and Yk+1:n ≡ Y′

k+1:n implies that X ≡ X′.

Theorem B.5 (Linear Identifiability for (De)-MVNs with Piecewise Affine f ). Assume f , f̂ : Rn → Rd are injective and
piecewise affine. We assume Z and Ẑ follow a (degenerate) multivariate normal distribution. If f(Z) ≡ f̂(Ẑ), then there
exists an invertible affine transformation h : Rn → Rn such that h(Z) ≡ Ẑ (Def. B.4).

Proof. By the definition of (De) MVN, we can write Z = Aε+ b, where ε ∼ N(0, I) with dimension dε ≤ n and support
Rdε , and A ∈ Rn×dε has full column rank. The support of Z, Z ⊆ Rn, is Z = colsp(A) + b, where colsp(A) is the
column space of matrix A.

Since f(Z) and f̂(Ẑ) are equally distributed, they have the same image space. Therefore, we can define h0 := f̂−1 ◦ f on
Z , which is a piecewise affine function. Since we assumed that f(Z) is equally distributed to f̂(Ẑ), then Ẑ ≡ f̂−1 ◦ f(Z) =
h0(Z). We can now define another function that takes as domain the whole space Rn:

h̃(x) := h0(A(ATA)−1AT (x− b) + b), (43)

where x ∈ Rn. This function is the same as h0 on Z We first proof that h̃ and h0 agree on Z . In particular, ∀z0 ∈ Z ,
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∃ε0 ∈ Rdε , s.t. z0 = Aε0 + b. Thus, by definition of h̃, we have ∀z0 ∈ Z ,

h̃(z0) = h0(A(ATA)−1AT (z0 − b) + b) (44)

= h0(A(ATA)−1AT (Aε0 + b− b) + b) (45)

= h0(A (ATA)−1ATA︸ ︷︷ ︸
=I

ε0 + b) (46)

= h0(Aε0 + b) (47)
= h0(z0). (48)

So we have h0 and h̃ agree on Z . This implies that Ẑ ≡ h̃(Z).

Then, we will complete the proof by two steps:

i There exists a z0 ∈ Z and δ > 0 s.t. h̃ is affine on the ball B(z0, δ) ⊂ Rn (potentially not completely contained in Z).
ii We can define an affine function h on Z such that h̃ and h agree on the ball B. Then we show h(Z) ≡ Ẑ.

(i). We now first show that ∃z0 ∈ Z , s.t. h̃ is differentiable at point z0.

As shown in Eq. 47, h̃(z0) can be written as the composition of the functions h0(Aε0 + b) and (ATA)−1AT (z0 − b).
The function h0(Aε0 + b) is piecewise affine, because it is a composition of (piecewise) affine maps. Hence, there must
exists a point ϵ0 ∈ Rdϵ s.t. h0(Aε + b) is differentiable at that point. Moreover, we have that (ATA)−1AT (x − b) is
differentiable at z0 := Aε0 + b, because it is an affine function, and (ATA)−1AT (x− b) evaluated at z0 yields ε0, so
the composition h̃ is differentiable at z0. Since h̃ is piecewise affine and differentiable in z0, then we can construct a ball
B(z0, δ) (not necessarily completely contained in Z) which contains one single linear piece of h̃.

(ii) Let h : Rn → Rn be an invertible affine function such that h coincides with h̃ on B(z0, δ). This means h(Z) and h̃(Z)

coincide on B(z0, δ) ∩ Z . Since we have shown that h̃(Z) ≡ Ẑ are equal in distribution on Z , then h(Z) = h̃(Z) ≡ Ẑ on
B(z0, δ) ∩ Z .

Since we assume Z is a (De-)MVN, by Lemma B.6, h(Z) is a (De-)MVN as well, because h is affine. Moreover, we know
Ẑ is a (De-)MVN by assumption. We leverage the fact that they are equal on the intersection of the ball B(z0, δ) and the
support of Z and use Lemma B.9 to prove that h(Z) ≡ Ẑ.

B.2.2. LINEAR IDENTIFIABILITY GIVEN Y = y FOR PIECEWISE LINEAR f

We now show that given the information of the binary mask Y, we can identify the latent factors Z up to an affine
transformation (Def. B.4). It is crucial to emphasize that in this paper, having Y = y does not imply knowledge of the exact
value of y; instead, it simply needs the information on grouping, i.e. the partitioning of the dataset based on mask values.
Lemma B.10 (Linear Identifiability given Y = y for Piecewise Linear f ). Assume the observation X = f(Z) follows
the data-generating process in Sec. 2, Ass. 3.2 and3.3 hold, and f : Z → X is an injective piecewise linear function. Let
g : X → Rn be a continuous piecewise linear function and f̂ : Rn → Rd be an injective piecewise linear function. If both
following conditions hold,

E
∥∥∥X− f̂(g(X))

∥∥∥2
2
= 0 , and (49)

g(X) | (Y = y) ∼ N(µy,Σy), (50)

for some µy ∈ Rn,Σy ∈ Rn×n, then Z | (Y = y) is identified by f̂−1(X) | (Y = y) up to affine transformation, i.e.,
there exists an invertible affine function hY : ZY → Rn, such that hy(Z) | (Y = y) ≡ g(f(Z)) | (Y = y).

Proof. We start by introducing some additional notation.

Definition B.11. Let v : Z → Rn be a function with variables z = (z1, ..., zn) ∈ Z . Let y ∈ [0, 1]n be a n-dimensional
binary mask. We define the sub-support space as

Zy = {z ∈ Z : 1(zi = 0) ≥ 1(yi = 0), ∀i ∈ [n]}. (51)
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Intuitively, this means if yi = 0, this must cause zi = 0.

Alternatively, let s ⊆ [n] be the index set of nonzero elements in y, we can define

Zs = {z ∈ Z : 1(zi = 0) ≥ 1(i ̸∈ s), ∀i ∈ [n]}. (52)

From the perfect reconstruction constraint (4), we can derive

E||X− f̂(g(X))||22 = 0 (53)

E||f(Z)− f̂(g(f(Z))))||22 = 0 (54)

E
{
E
[
||f(Z)− f̂(g(f(Z)))||22 | Y

]}
= 0 (55)

E
[
||f(Z)− f̂(g(f(Z)))||22 | Y

]
= 0 PY−a.e. (56)

by first substituting X = f(Z), then applying the law of total expectation and finally using the fact that the sum of squares is
a positive function. Finally Y is a discrete random variable, in this case PY-almost everywhere means everywhere on its
support. We now denote v := g ◦ f : Rn → Rn. Then, following (56), we have for any value y ∈ Y we have

E
[
||f(Z)− f̂(v(Z))||22 | Y = y

]
= 0, (57)

This means that for the data that satisfy Y = y, f(Z) and f̂(v(Z)) are equal PZ|Y-almost everywhere, which implies
f(Z) and f̂(v(Z)) are equally distributed. Since by assumption Z and v(Z) = g(X) are potentially degenerate MVNs, by
Theorem B.5, there exists an invertible affine transformation hy : Rn → Rn such that

hy(Z) ≡ v(Z) . (58)

This proves that for data coming from the same mask Y = y (potentially unknown), we can identify the masked causal
variables mixed through a piecewise linear function up to a linear transformation.

B.2.3. COMBINING RESULTS AND CONCLUDING THE PROOF OF THM 3.4

Before we prove Theorem 3.4, we first report an adapted version of Lemma D.2 from Kivva et al. (2022), which shows the
linearity of the function f if both Z and f(Z) follow the same MVN distribution.

Lemma B.12. (Linearity of f for non-degenerate case (Kivva et al., 2022)) Let Z ∼ N(µ,Σ), where |Σ| > 0, i.e. Z is a
non-degenerate MVN. Assume that f : Rn → Rn is a continuous piecewise affine function such that f(Z) ≡ Z, i.e. f(Z) is
equal in distribution to Z . Then f is affine.

The original Lemma is proved by contradiction. We extend this result to the case of degenerate multivariate normal variables.

Lemma B.13 (Linearity of f for (De) MVNs). Let Z ∼ N(µ,Σ), where |Σ| ≥ 0, i.e. Z is potentially a degenerate
multivariate normal. Assume that f : Rn → Rn is a continuous piecewise affine function such that f(Z) ≡ Z. Then f is
affine over Z , the support of Z.

Proof. First, for the simplest case, if rank(Σ) = 0, then, Z is a single point {µ}, and f is affine over Z .

If rank(Σ) > 0, by the definition of (De) MVN, we know that Z = Aε+ b, where ε ∼ N(0, I) with dimension dε, and
A ∈ Rn×dε has full column rank. This implies that Z = colsp(A) + b.

If we substitute Z = Aε+ b into f(Z) ≡ Z, we get

f(Aε+ b) ≡ Aε+ b (59)
f(Aε+ b)− b ≡ Aε (60)

(ATA)−1AT [f(Aε+ b)− b] ≡ ε (61)

The ≡ symbol denotes that (ATA)−1AT [f(Aε+ b)− b] is equal to ε in distribution, which means it is not necessarily
the same in each point of the support.
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By Lemma B.12, we can derive the function (ATA)−1AT [f(Aε+ b)− b] is affine over Rdε . Therefore, there exists
M ∈ Rdε×dε , and c ∈ Rdε such that for every ε0 ∈ Rdε :

(ATA)−1AT [f(Aε0 + b)− b] = Mε0 + c (62)

A(ATA)−1AT [f(Aε0 + b)− b] = A(Mε0 + c) (63)

Since A(ATA)−1AT is a projection and its image space is colsp(A), then, it is the identity operator I on colsp(A).

Since f(Z) ≡ Z, then, the support of f(Z) should be the same as the support of Z, which is colsp(A) + b. This implies
f(Aε0 + b)− b ∈ colsp(A). Then, we have

f(Aε0 + b)− b = A(Mε0 + c) (64)
f(Aε0 + b) = A(Mε0 + c) + b. (65)

By definition, ε0 = (ATA)−1AT (z0 − b) for every z0 ∈ Z . We substitute this into Equation 65, and we get

f(z0) = A[M(ATA)−1AT (z0 − b) + c] + b. (66)

Hence, we can conclude f is a linear function over Z .

With these results, we can now prove the following Theorem 3.4.

Theorem 3.4 (Element-wise Identifiability for Piecewise Linear f ). Assume the observation X follows the data-generating
process in Sec 2, Ass. 2.2, 3.2 and 3.3 hold and f : Z → X is an injective continuous piecewise linear function. Let
g : X → Rn be a continuous invertible piecewise linear function and let f̂ : Rn → Rd be a continuous invertible piecewise
linear function onto its image. If all following conditions hold:

E
∥∥∥X− f̂(g(X))

∥∥∥2
2
= 0 , (4)

E ∥g(X)∥0 ≤ E ∥Z∥0 and (5)
g(X) | (Y = y) ∼ N(µy,Σy) ∀y ∈ Y, (6)

for some µy ∈ Rn,Σy ∈ Rn×n, then Z is identified by f̂−1(X), i.e., f̂−1 ◦ f is a permutation composed with element-wise
invertible linear transformations (Def. 2.1).

Proof. Since X = f(Z), we can rewrite Equation (4) (perfect reconstruction) as

E||f(Z)− f̂(g(f(Z)))||22 = 0 . (67)

This means f and f̂ ◦ g ◦ f are equal PZ-almost everywhere.

Since f , g and f̂ are continuous, we can derive f and f̂ ◦ g ◦ f must be equal over the support of Z, Z , i.e.,

f(z) = f̂ ◦ g ◦ f(z) ,∀z ∈ Z . (68)

We denote v := g ◦ f : Rn → Rn, an invertible continuous piecewise affine function. Take the left inverse of f̂ on both
sides, then we have,

f̂−1 ◦ f(z) = v(z) ,∀z ∈ Z . (69)

From Lemma B.10, we know that for all y ∈ Y , given the mask Y = y, there exists an invertible affine transformation
hy : Rn → Rn such that v(Z) ≡ hy(Z) over Zy.

Since we know Z|Y = y follows a (De)MVN and hy is affine, by Lemma B.6, we can derive that hy(Z) follows a
(De-)MVN distribution as well. Then, we can rewrite v(Z) ≡ hy(Z) in distribution as

hy(Z) ≡ v ◦ hy
−1 ◦ hy(Z). (70)
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Since hy is affine, its inverse is continuous. In addition, v is continuous as it is the composition of continuous functions
f and g. Therefore, v ◦ hy

−1 is continuous piecewise affine. By using Lemma B.13, we get that v ◦ hy
−1 is affine over

hy(Zy), i.e. there exists an invertible affine map h1 such that

v ◦ hy
−1(z) = h1(z) ⇐⇒ v(z) = h1 ◦ hy(z) ∀z ∈ Zy. (71)

Since v is a composition of affine maps, it is also affine on Zy, ∀y ∈ Y .

We define Zs :=
∏n
i=1(R · 1{i ∈ s}), which is the space of the supports for each dimension given a value of the support

index s. For the dimensions which are included in si, this is R, while for the others it is 0. By this definition and by the
sufficient variability assumption Ass. 2.2, Z =

⋃
s∈S Zs.

Since S is a finite set, which implies countable, we can find a way to order the elements in S, denoted as {s1, ..., s|S|}.
Thus, Z =

⋃|S|
i=1 Zsi .

While we have already proven that v is affine over each subspace Zsi , we now show that v is a linear function on Z , i.e.
v(z) = wz,∀z ∈ Z , where w ∈ Rn×n.

i We first consider two index sets s1 and s2. Without loss of generality, we assume the index in s1 is from 1 to |s1|, and
the index in s2 is from m to m+ |s2|, where m ∈ {1, 2, ..., n−|s2|+1}. Since v is affine on Zs1 and Zs2 individually,
we have

v(z) = z1a1 + ...+ z|s1|a|s1| + c1 ∀z ∈ Zs1 (72)
v(z) = zmbm + ...+ z|s2|+mb|s2|+m + c2 ∀z ∈ Zs2 . (73)

Since Zs1 ∩ Zs2 = {0}, then we can get c1 = c2.
Case 1. s1 ∩ s2 = ∅. Then, we have ∀z ∈ Zs1 ∪ Zs2

v(z) = z1a1 + ...+ z|s1|a|s1| + zmbm + ...+ z|s2|+mb|s2|+m + c1 (74)

Case 2. s1 ∩ s2 ̸= ∅. Without loss of generality, we assume |s2| ≤ |s1|.
(a). s2 ⊆ s1. Then, we can directly get ∀z ∈ Zs1 ∪ Zs2

v(z) = z1a1 + ...+ z|s1|a|s1| + c1 (75)

(b). s2 ̸⊆ s1. Without loss of generality, we assume s1 ∩ s2 = {m, ...,m + t}, where t ∈ {1, ..., |s2|}. Then,
∀z ∈ Zs1 ∩ Zs2 , we have

v(z) = zmam + ...+ zm+tam+t + c1 (76)
v(z) = zmbm + ...+ zm+tbm+t + c1. (77)

This implies ai = bi, i = m, ...,m+ t. Therefore, we can derive ∀z ∈ Zs1 ∪ Zs2 ,

v(z) = z1a1 + ...+ z|s1|a|s1| + zm+t+1bm+t+1 + ...+ z|s2|+mb|s2|+m + c1. (78)

By considering both cases, we can now proof that v is a linear function on Zs1 ∪ Zs2 .
ii We can iterate this strategy by iteratively adding new Zsi to the union, until Z|S|. Finally, we have that v is a linear

function on
⋃

s∈S Zs = Z .

Then, the rest proof immediately follows from Lemma B.3, where we have proven element-wise identifiability for the linear
transformation.

C. Example: sparsity is not enough for identifiability in the non-linear case.
In Theorem 3.1 we prove that we can achieve element-wise identifiability for an invertible linear mixing function f in the
Partially Observable Causal Representation Learning setting, assuming sufficient support index variability (Ass. 2.2) and
under the condition of perfect reconstruction and a sparsity principle.
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Figure 4: Level curves of the function f̂−1 ◦ f of Example C.1. The cold color scheme corresponds to the level curves of
(f̂−1 ◦ f)1(z) while the warm color scheme corresponds to (f̂−1 ◦ f)2(z). The example gives a concrete case where all
assumptions of Theorem 3.1 hold except for the linearity of f . We can see that f̂−1 ◦ f is not a permutation composed with
an element-wise invertible transformation, since along the vertical dashed line, we can see that both components of f̂−1 ◦ f
change.

An obvious extension of this result might be considering the identifiability for non-linear mixing functions. In this section
we show a counter-example that describes why this is not possible in general without any further assumption (e.g. assuming
both a piecewise linear mixing function and a Gaussian causal model, as shown by our results in Thm. 3.4).

Example C.1. Assume we have 2 latent and 2 observed variables, i.e. n = 2 and d = 2. Furthermore, assume that the
domain of the causal variables C = R2 and that Ass. 3.2 and 3.3 hold. For example, consider C ∼ N (0, I2) with an
independent mask Y with distribution p(Y = y) = 1/4 for any y ∈ {0, 1}2, which trivially satisfies Ass. 3.2 and 3.3. In
this case, the support of Z = Y ⊙C is Z = R2. Assume further that f : R2 → R2 is defined by

f(z) := sinh(Rπ
4
z) + sinh(R−π

4
z) , (79)

where sinh(x) := ex−e−x

2 (applied element-wise above) and Rθ is a rotation matrix defined by

Rθ :=

[
cos θ − sin θ
sin θ cos θ

]
. (80)

Consider f̂ and g to be the identity function. We now show that all the assumptions of Theorem 3.1 except the linearity of f
are satisfied. First, notice how

E||X− f̂(g(X))||2 = E||X−X||2 = 0 . (81)

Since X = f(Z) by definition and g(X) = X, since g is the identity function, then f(Z) = g(X) and thus E||g(X)||0 =
E||f(Z)||0.

We now show that E||f(Z)||0 ≤ E||Z||0, which we will then use to prove the sparsity condition on E||g(X)||0.
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We can see that

f(

[
z1
0

]
) = sinh(z1

[
cos π4
sin π

4

]
) + sinh(z1

[
cos−π

4
sin−π

4

]
) (82)

= sinh(z1

[
cos π4
sin π

4

]
) + sinh(z1

[
cos π4
− sin π

4

]
) (83)

=

[
2 sinh(z1 cos

π
4 )

sinh(z1 sin
π
4 ) + sinh(−z1 sin

π
4 )

]
(84)

=

[
2 sinh(z1 cos

π
4 )

sinh(z1 sin
π
4 )− sinh(z1 sin

π
4 )

]
=

[
2 sinh(z1 cos

π
4 )

0

]
, (85)

where we use the fact that sin and sinh are odd, while cos is even. An analogous argument shows that

f(

[
0
z2

]
) =

[
0

2 sinh(z2 cos
π
4 )

]
. (86)

We can also easily show that f(0) = 0. The above shows that, for all z ∈ R2, ||f(z)||0 ≤ ||z||0. By taking the expectation
on both sides we get the desired result: E||f(Z)||0 ≤ E||Z||0 and thus E||g(X)||0 ≤ E||Z||0.

However, we can see in in Figure 4 and in the computation below, f̂−1 ◦ f = f is not a permutation composed with an
element-wise invertible transformation on R2.

f(

[
z1
z2

]
) =

[
sinh(cos π4 z1 − sin π

4 z2) + sinh(cos π4 z1 + sin π
4 z2)

sinh(sin π
4 z1 + cos π4 z2)− sinh(sin π

4 z1 − cos π4 z2)

]
(87)

This counter-example shows that the results of Theorem 3.1 do not apply in general if f is nonlinear, but only with additional
assumptions, as shown in Theorem 3.4.

D. Implementation details
This section provides further details about the experiment implementation in Section 4. The implementation is built upon
the code open-sourced by Lachapelle et al. (2022) released under Apache 2.0 License; Ahuja et al. (2022); von Kügelgen
et al. (2021) released under MIT License; Zheng et al. (2018) released under Apache 2.0 License.

D.1. Hyperparameters

Numerical linear f Numerical p.w. linear f Multiple balls PartialCausal3DIdent
Section 5.1 Section 5.1 Section 5.2 Section 5.3

ϵ 0.001 0.01 0.01 0.01
Optimizer ExtraAdam ExtraAdam ExtraAdam ExtraAdam
Primal optimizer learning rate 1e-4 5e-5 1e-5 1e-4
Dual optimizer learning rate 1e-4/2 5e-5/2 1e-5/2 1e-4/2
Batch size 6144 10000 50×K 13×K
Group number K 2n latent size 5n latent size n 10
# Seeds 20 20 3 3
# Iterations 30000 20000 10000 10000

Table 4: Parameters for experiments results in Sec. 5 and App. E.

D.2. Sensitivity analysis on ϵ

We conduct a sensitivity analysis on ϵ. As shown in Figure 5, we observe that the linear case exhibits heightened sensitivity
ϵ, whereas the piecewise linear case does not display such sensitivity. We attribute this difference to the additional group and
mask information given in the training phase for piecewise linear case, enhancing the method’s robustness to variations in
this hyperparameter.

25



A Sparsity Principle for Partially Observable Causal Representation Learning

1e-4 1e-3 1e-2 1e-1 1 10 1e+3 1e+4

0.2

0.4

0.6

0.8

1.0

M
C

C

linear: n=10, k=1, =50% =0

1e-4 1e-3 1e-2 1e-1 1 10 1e+3 1e+4

0.2

0.4

0.6

0.8

1.0

M
C

C

p.l. n=10, m=10, k=1, =50% =2

oracle
our method

Figure 5: Sensitivity analysis on ϵ varies from 1e− 4 to 1e4. The left graph is for the linear case, and right-hand side is for
the piecewise linear case.

D.3. Oracle method

In Sec. 4, to encourage Gaussianity of learned representations, we add a regularization term to force the sample skewness
and kurtosis to match the Gaussian distribution. However, as we mention in Sec. 4, estimated skewness and kurtosis cannot
guarantee Gaussianity. In Figure 6, we empirically show even by adding the two penalty terms into the loss function, the
estimator we obtain is still highly non-gaussian.

In the Oracle method, we adopt the assumption of knowing masks in train phases. Instead of directly estimating the
unmeasured part as a constant value, we provide less information by replacing gψ(xi) with a low log standard deviation
−10 in Eq. 7; for the measured latent variables, we assign 1 to gψ(xi). After training, we obtain the encoder function g. In
the test phase, data in distinct groups can be mixed together. There is no longer a requirement for mask-related information.
In addition, we find empirically that if we replace µ̂g with a constant value, e.g., 2, it also enhances the performance for
most setups except for the case when δ = 0. When δ = 0, set the constant value to be 0 can obtain better results.
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Figure 6: Histogram of estimator for our method for n = 5, m = 10, independent Z, ρ=50%,

D.4. Predefined masks

In order to satisfy Ass. 2.2, i.e. for each latent variable Ci i ∈ [n], all the other latent variables should be measured in at
least one of the groups where Ci is unmeasured, the minimum number of distinct masks is equal to the latent size n, and the
maximum number is up to 2n. In this paper, we consider 3 different strategies to generate masks.

i Consider all 2n possible masks as a mask set Y. For each data ci, i ∈ [N ], we uniformly sample one mask yi from the
mask set Y. This strategy is used in numerical experiments with linear f since we do not need group-wise masks.

ii Define kn possible masks {y1, ..,yn} with the same ratio of measured variables ρ. Define yg, g = [n] by this way:
randomly set ρn elements as 1, the rest are 0s. This strategy is used in numerical experiments with piecewise linear f
(k = 5) and multiple balls experiment (k = 1) due to the necessity of having a specific number of samples from the
same group in each batch for the computation of sample skewness and kurtosis—something strategy i) is incapable of
achieving.

iii Define n possible masks {y1, ..,yn} with different ratio of measured variables ρg , g = [n] from 1 var to 100%. Define
yg this way: set 1-th to (g + ρgn)-th element as 1, the rest are 0s. This is employed in the PartialCausal3DIdent
experiment.
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E. Full experimental results
E.1. Numerical experiments

E.1.1. LINEAR MIXING FUNCTION

We first show the Pearson Correlation matrix Corrn×nπ with the permutation π between ground truth latent variables Z and
the estimator Ẑ = g(X). One figure represents one ablation study in Table 1. We choose one random seed to plot for each
setup. Ground truth Pear. Corr. matrix on the left shows the original linear correlation inside Z, compared with the estimator
on the right-hand side.
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Figure 7: Linear mixing function with linear causal relation and Gaussian noise: ablation study on increasing the latent
dimension n from 5 to 40 and fixing δ = 0σ, ρ = 50, k = 1. For all methods it it harder to learn an increasing number of
latent variables.
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Figure 8: Linear mixing function with linear causal relation and Gaussian noise: ablation study on increasing the density of
causal graphs k from 0 to 3 and fixing n = 10, δ = 0σ, ρ = 50. For all methods it is harder to learn the latent variables in
denser graphs.
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Figure 9: Linear mixing function with linear causal relation and Gaussian noise: ablation study on increasing the ratio of
active (unmasked) variables ρ from 1 variable only to 75% and fixing n = 10, δ = 0σ, k = 1. Learning the latent variables
is harder when there are many active variables.
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Figure 10: Linear mixing function with linear causal relation and Exponential noise: ablation study on increasing the density
of causal graphs k from 0 to 3 and fixing n = 10, δ = 0σ, ρ = 50. For all methods it is harder to learn the latent variables
for denser graphs.
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Figure 11: Linear mixing function with nonlinear causal relation and Gaussian noise: ablation study on increasing the
density of causal graphs k from 0 to 3 and fixing n = 10, δ = 0σ, ρ = 50.

To exclude the natural dependency between latent variables that potentially enhance the value of metric MCC, we provide
additional experiment results with independent latent variables using 20 random seeds in Table 5.

Table 5: Results for the numerical experiments in the linear case when Z are independent.

n CAUSAL GRAPH ρ MCC
5 INDEPENDENT 50 % 0.998±0.002

10 INDEPENDENT 50 % 0.998±0.001
20 INDEPENDENT 50 % 0.997±0.002
40 INDEPENDENT 50 % 0.748±0.145
10 INDEPENDENT 1VAR 0.998 ±0.001
10 INDEPENDENT 50 % 0.998±0.001
10 INDEPENDENT 75 % 0.998 ±0.002

E.1.2. PIECEWISE LINEAR MIXING FUNCTION

In Table 6 and Table 7, we provide the numerical results of averaged MCC and standard deviation over 20 random seeds as
shown in Figure 2. In the second block of Table 6, we provide two additional results of our method (training without mask
information) when Z are independent. In Table 7, the second right column is for training without mask information, and the
most right column is the oracle method, i.e., providing mask information in the training phase. Additionally, to exclude
the natural dependency between latent variables that potentially enhance the value of metric MCC, we provide additional
experiment results with independent latent variables in Table 8.
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Table 6: Results for the numerical experiments in the piecewise linear case for simple settings.

n m k ρ δ MCC (MEAN ± STD)
3 3 0 50 % 0 0.630±0.064
3 3 0 50 % 2 0.755±0.068
3 3 0 50 % 3 0.769±0.075
3 3 0 50 % 5 0.813±0.070
3 3 0 50 % 10 0.872±0.071
3 3 1 50 % 0 0.649±0.059
3 3 1 50 % 2 0.756±0.065
3 3 1 50 % 3 0.783±0.082
3 3 1 50 % 5 0.836±0.091
3 3 1 50 % 10 0.877±0.074

Table 7: Results for the numerical experiments in the piecewise linear case for the dependent variable case.

n m k ρ δ MCC (MEAN ± STD) MCC (MEAN ± STD) ORACLE
5 10 1 50 % 2 0.469±0.050 0.898±0.018

10 10 1 50 % 2 0.349±0.030 0.799±0.020
20 10 1 50 % 2 0.280±0.017 0.753±0.015
40 10 1 50 % 2 0.217±0.025 0.782±0.012
10 10 1 50 % 2 0.349±0.030 0.799±0.020
10 10 2 50 % 2 0.337±0.030 0.789±0.021
10 10 3 50 % 2 0.345±0.028 0.785±0.022
10 3 1 50 % 2 0.466±0.038 0.867±0.007
10 10 1 50 % 2 0.349±0.030 0.799±0.020
10 20 1 50 % 2 0.267±0.031 0.552±0.035
10 10 1 1VAR 2 0.402±0.027 0.908±0.013
10 10 1 50 % 2 0.349±0.030 0.799±0.020
10 10 1 75 % 2 0.352±0.037 0.695±0.026
10 10 1 50 % 0 0.332±0.040 0.185±0.036
10 10 1 50 % 3 0.368±0.028 0.856±0.015
10 10 1 50 % 5 0.388±0.029 0.930±0.010
10 10 1 50 % 10 0.405±0.027 0.980±0.007

30



A Sparsity Principle for Partially Observable Causal Representation Learning

Table 8: Results for the numerical experiments in the piecewise linear case for the independent variable case.

n m k ρ δ MCC (MEAN ± STD) MCC (MEAN ± STD) ORACLE
5 10 0 50 % 2 0.462±0.065 0.910±0.014

10 10 0 50 % 2 0.352±0.028 0.807±0.022
20 10 0 50 % 2 0.296±0.018 0.732±0.011
40 10 0 50 % 2 0.246±0.013 0.746±0.015
10 3 0 50 % 2 0.523±0.026 0.865±0.008
10 10 0 50 % 2 0.352±0.028 0.807±0.022
10 20 0 50 % 2 0.269±0.023 0.519±0.028
10 10 0 1VAR 2 0.412±0.027 0.906±0.016
10 10 0 50 % 2 0.352±0.028 0.807±0.022
10 10 0 75 % 2 0.340±0.028 0.719±0.017
10 10 0 50 % 0 0.318±0.026 0.236±0.040
10 10 0 50 % 3 0.366±0.029 0.852±0.020
10 10 0 50 % 5 0.388±0.027 0.926±0.014

For each setup in Table 7, we choose one random seed to plot the heatmap of the Pearson Correlation matrix Corrn×nπ with
the permutation π . One figure represents one ablation study of one parameter. Ground truth Pear. Corr. matrix on the left
shows the original linear correlation inside Z, compared with the estimator on the right-hand side.
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Figure 12: Piecewise linear mixing function with linear causal relation and Gaussian noise: ablation study on increasing the
latent dimension n from 5 to 40 and fixing δ = 2.0σ, m = 10, ρ = 50, k = 1. The case with higher n is more complicated
to learn the latent variables.
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Figure 13: Piecewise linear mixing function with linear causal relation and Gaussian noise: ablation study on increasing the
number of Leaky-ReLU layers (m− 1) from 3 to 20 and fixing n = 10, δ = 2.0σ, ρ = 50, k = 1. The case with larger m
is more complicated to learn the latent variables due to a greater extent of nonlinearity.
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Figure 14: Piecewise linear mixing function with nonlinear causal relation and Gaussian noise: ablation study on increasing
the density of causal graphs k from 0 to 3 and fixing n = 10, m = 10, δ = 2.0σ, ρ = 50. In the case with a denser graph, it
is more complicated to learn the latent variables.
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Figure 15: Piecewise linear mixing function with linear causal relation and Gaussian noise: ablation study on increasing the
ratio of active (unmasked) variables ρ from 1 variable only to 75% and fixing n = 10, m = 10, δ = 2.0σ, k = 1. Learning
the latent variables is more complicated in the case with a larger portion of active variables.
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Figure 16: Piecewise linear mixing function with linear causal relation and Gaussian noise: ablation study on increasing
the distance between masked value and mean of latents from 0.0σ to 10.0σ, where σ is the standard deviation of latents,
and fixing n = 10, m = 10, ρ = 50, k = 1. Learning the latent variables is more complicated in the case with a smaller
distance.
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E.1.3. TEST ON INDEPENDENT LATENT VARIABLES

To exclude the effect of the inherent causal relation, which might increase the value of metric MCC, we additionally test our
estimated encoder g when the unmasked causal variables are independent with each other, and implement the same ablation
study as Table 1 for linear mixing function and Table 7 for piecewise linear mixing function. As we can see, in Table 9,
comparing the right two columns, there is no significant difference, which provides evidence that the MCC obtained by our
method does not come from the inherent causal relation among latents.

Table 9: Results of testing on independent latents for linear mixing functions with δ = 0. The bold font indicates which
parameters are varying in each block of rows.

n k SCM ρ MCC (TABLE 1) MCC (TEST ON INDEPENDENT LATENTS)
5 1 LIN. GAUSS 50 % 0.997±0.002 0.991±0.010

10 1 LIN. GAUSS 50 % 0.996±0.001 0.992±0.004
20 1 LIN. GAUSS 50 % 0.987±0.029 0.985±0.031
40 1 LIN. GAUSS 50 % 0.714±0.153 0.718±0.142
10 0 INDEP. GAUSS 50 % 0.998±0.001 0.998±0.010
10 1 LIN. GAUSS 50 % 0.996±0.001 0.992±0.004
10 2 LIN. GAUSS 50 % 0.904±0.113 0.893±0.122
10 3 LIN. GAUSS 50 % 0.793±0.142 0.744±0.179
10 0 INDEP. EXP 50 % 0.998±0.001 0.998±0.001
10 1 LIN. EXP 50 % 0.998±0.002 0.996±0.002
10 2 LIN. EXP 50 % 0.910±0.108 0.895±0.123
10 3 LIN. EXP 50 % 0.825±0.123 0.776±0.156
10 1 NONLINEAR 50 % 0.997±0.001 0.994±0.005
10 2 NONLINEAR 50 % 0.997±0.001 0.996±0.003
10 3 NONLINEAR 50 % 0.996±0.001 0.994±0.004
10 1 LIN. GAUSS 1VAR 0.998 ±0.002 0.993±0.005
10 1 LIN. GAUSS 50 % 0.996±0.001 0.992±0.004
10 1 LIN. GAUSS 75 % 0.877 ±0.096 0.925±0.068
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Figure 17: Linear mixing function with linear causal relation and Gaussian noise: ablation study on increasing the latent
dimension n from 5 to 40 and fixing δ = 0σ, ρ = 50, k = 1. The case with higher n is more complicated to learn the latent
variables.
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Figure 18: Linear mixing function with linear causal relation and Gaussian noise: ablation study on increasing the density of
causal graphs k from 0 to 3 and fixing n = 10, δ = 0σ, ρ = 50. The case with a denser graph is more complicated to learn
the latent variables.
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Figure 19: Linear mixing function with linear causal relation and Gaussian noise: ablation study on increasing the ratio of
active (unmasked) variables ρ from 1 variable only to 75% and fixing n = 10, δ = 0σ, k = 1. Learning the latent variables
is more complicated in the case with a larger portion of active variables.
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Figure 20: Linear mixing function with linear causal relation and Exponential noise: ablation study on increasing the density
of causal graphs k from 0 to 3 and fixing n = 10, δ = 0σ, ρ = 50. The case with a denser graph is more complicated to
learn the latent variables.
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Figure 21: Linear mixing function with nonlinear causal relation and Gaussian noise: ablation study on increasing the
density of causal graphs k from 0 to 3 and fixing n = 10, δ = 0σ, ρ = 50. The case with a denser graph is more complicated
to learn the latent variables.
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Table 10: Results for the numerical experiments in the piecewise linear case for training on dependent variable but testing
on independent variable case.

n m k ρ δ MCC(TABLE 7) MCC(TEST ON INDEPENDENT LATENTS)
5 10 1 50 % 2 0.898±0.018 0.923±0.021

10 10 1 50 % 2 0.799±0.020 0.807±0.023
20 10 1 50 % 2 0.753±0.015 0.800±0.022
40 10 1 50 % 2 0.782±0.012 0.869±0.013
10 10 1 50 % 2 0.799±0.020 0.807±0.023
10 10 2 50 % 2 0.789±0.021 0.836±0.036
10 10 3 50 % 2 0.785±0.022 0.847±0.036
10 3 1 50 % 2 0.867±0.007 0.923±0.034
10 10 1 50 % 2 0.799±0.020 0.807±0.023
10 20 1 50 % 2 0.552±0.035 0.537±0.035
10 10 1 1VAR 2 0.908±0.013 0.946±0.011
10 10 1 50 % 2 0.799±0.020 0.807±0.023
10 10 1 75 % 2 0.695±0.026 0.678±0.030
10 10 1 50 % 0 0.185±0.036 0.232±0.038
10 10 1 50 % 3 0.856±0.015 0.881±0.018
10 10 1 50 % 5 0.930±0.010 0.949±0.009
10 10 1 50 % 10 0.980±0.007 0.986±0.006
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Figure 22: Piecewise linear mixing function with linear causal relation and Gaussian noise: ablation study on increasing the
latent dimension n from 5 to 40 and fixing δ = 2.0σ, m = 10, ρ = 50, k = 1. The case with higher n is more complicated
to learn the latent variables.
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Figure 23: Piecewise linear mixing function with linear causal relation and Gaussian noise: ablation study on increasing the
number of Leaky-ReLU layers (m− 1) from 3 to 20 and fixing n = 10, δ = 2.0σ, ρ = 50, k = 1. The case with larger m
is more complicated to learn the latent variables due to a greater extent of nonlinearity.
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Figure 24: Piecewise linear mixing function with nonlinear causal relation and Gaussian noise: ablation study on increasing
the density of causal graphs k from 0 to 3 and fixing n = 10, m = 10, δ = 2.0σ, ρ = 50. In the case with a denser graph, it
is more complicated to learn the latent variables.
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Figure 25: Piecewise linear mixing function with linear causal relation and Gaussian noise: ablation study on increasing the
ratio of active (unmasked) variables ρ from 1 variable only to 75% and fixing n = 10, m = 10, δ = 2.0σ, k = 1. Learning
the latent variables is more complicated in the case with a larger portion of active variables.
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Figure 26: Piecewise linear mixing function with linear causal relation and Gaussian noise: ablation study on increasing
the distance between masked value and mean of latents from 0.0σ to 10.0σ, where σ is the standard deviation of latents,
and fixing n = 10, m = 10, ρ = 50, k = 1. Learning the latent variables is more complicated in the case with a smaller
distance.
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E.1.4. OVER-PARAMETERIZATION OF THE NUMBER OF CAUSAL REPRESENTATIONS

Our theoretical result assume that we know the number of causal variables in advance, but in practice (and as often also
the case in other CRL methods), we can show empirically that if we overestimate the true number of latent variables, we
will still be able to identify the true causal variables, while some of them will be unused. We provide ablation study below,
which seem to confirm this empirically.

In the experiments below we consider n = 10 ground truth causal variables, and nn latent variables that we estimate, where
nn ≥ n. For all experiments, we consider an average over 3 random seeds. We use a causal graph ER- k, where ER-k
is a graph with n · k edges, δ is the distance between mask value and mean of causal variables and ρ denotes the ratio
of measured variables. For the piecewise linear case m denotes the number of hidden layers in the MLP. We choose one
representative setting for the linear case and one representative setting for the piecewise linear case, and report how the
MCC varies when we increase nn from the original size nn = n to double the size nn = 2n. We report the average MCC
over 3 random seeds and a heatmap of the correlation matrix for each of the settings below.

nn(n = 10) 10(n+ 0) 12(n+ 2) 14(n+ 4) 16(n+ 6) 18(n+ 8) 20(n+ 10)
MCC 0.998±0.001 0.931±0.056 0.965±0.051 0.991±0.001 0.996±0.001 0.978±0.031

Table 11: Average MCCs over 3 random seeds for linear f with n = 10, δ = 0.0σ, ρ=50, k = 1, Linear Gaussian SCM

nn(n = 10) 10(n+ 0) 12(n+ 2) 14(n+ 4) 16(n+ 6) 18(n+ 8) 20(n+ 10)
MCC 0.796±0.026 0.798±0.012 0.804±0.015 0.809±0.012 0.814±0.014 0.816±0.012

Table 12: Average MCCs over 3 random seeds for piecewise f with n = 10, δ = 2.0σ, ρ=50, k = 1, m = 10, Linear
Gaussian SCM

As shown in both Table 11 and Table 12, our method seems to perform similarly well, even if we do not know the true
number of causal variables, but we overestimate them. We provide the heatmaps of the correlation matrix between Z and Ẑ
for one of the seeds with different nn’s in Figure 27 and Figure 28.
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Figure 27: Ablation study on number of overestimated representations nn for linear f
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Figure 28: Ablation study on the number of overestimated representations nn for piecewise linear f
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E.1.5. CAUSAL DISCOVERY ON ESTIMATED LATENT CAUSAL VARIABLES

In this section, we evaluate how can we use the latent causal variables we learn as input to causal discovery methods in order
to learn the causal structure. In causal representation learning often the main difficulty is to identify the causal variables
from the observations, while we can then use standard causal discovery methods to estimate an equivalence class of graphs.
In this case, intuitively we expect that the closer the estimated causal variables are to the ground truth, the closer the learned
graph to the ground truth causal relations.

Since masking might also mask some causal relations in the original graph, we instead consider a group of data without
masked variables and then compare the learned graph to the ground truth. For this task, we additionally assume a few
standard assumptions in causal discovery (Spirtes et al., 2000), e.g. the causal Markov assumption and the causal faithfulness
assumption, which together imply that conditional independences in the data correspond to d-separations in the true
underlying causal graph. For simplicity, we also assume causal sufficiency, which in this case means that there are no
additional latent confounders of the reconstructed latent variables, and there is no selection bias.

We consider a set of different algorithms for different underlying causal models, based on the parametric assumptions we
use in each setting:

• Linear Gaussian SCM: PC algorithm with partial correlation tests with significance threshold α = 0.01 from the
pcalg (Kalisch et al., 2012) package,

• Linear Exponential SCM: Pairwise LiNGAM (Hyvärinen and Smith, 2013),
• Nonlinear SCM: PC algorithm with Hilbert Schmidt Independence Criterion (HSIC) test with significance threshold
α = 0.01 from the kpcalg (Verbyla et al., 2017) package.

While LiNGAM provides in output a Directed Acyclic Graph (DAG), which can be easily compared with the ground truth
DAG, the PC algorithm instead outputs a Completely Partially Oriented DAG (CPDAG). In this case, we consider the
ground truth CPDAG (the CPDAG of the Markov Equivalence Class that contains the ground truth DAG).

We evaluate the Structural Hamming distance (SHD) with respect to the ground truth causal graph for LiNGAM and to the
ground truth CPDAG for PC. For each setting we consider two distances:

• SHDz∗ : the DAG or CPDAG learned with the ground truth causal variables z∗

• SHDẑ the DAG or CPDAG learned with the estimated causal variables ẑ

Since our primary objective is to recover the causal variables, the graph learned with the ground truth Z is the optimal result
we can attain. Therefore we calculate the difference between these two SHDs and we use ∆SHD to denote it. Smaller
∆SHD implies a closer estimated graph to the optimal one.

We provide results for our method for linear mixing functions in Table 13 and for piecewise linear mixing functions in
Table 14. We additionally provide results for the oracle version of our method, which uses the known masks for both settings
in Table 15. All of these results show a negative correlation between higher MCC (and hence more accurate estimated
representations) and lower ∆SHD (and hence more accurate estimated causal graphs w.r.t. to the standard causal discovery
setting). This is even clear in the scatterplot for the linear case, shown in Fig. 29. This aligns with the intuition that more
well-identified representations tend to lead to graph learning that closely mirrors the one learned from ground truth.

Figure 29: MCC-∆shd of all linear mixing function cases.
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Table 13: Results of learning graph for linear mixing functions.

n k SCM ρ SHDz∗ SHDẑ ∆SHD

5 1 LIN. GAUSS 50 % 0.65±1.57 2.40±1.90 1.75
10 1 LIN. GAUSS 50 % 1.9±1.89 5.90±3.06 4.00
20 1 LIN. GAUSS 50 % 7.15±3.92 12.75±5.56 5.60
40 1 LIN. GAUSS 50 % 13.70±4.53 79.60±27.08 65.90
10 1 LIN. GAUSS 50 % 1.9±1.89 5.90±3.06 4.00
10 2 LIN. GAUSS 50 % 16.20±2.38 18.60±4.10 2.40
10 3 LIN. GAUSS 50 % 27.20±2.65 29.25±3.29 2.05
10 1 LIN. EXP 50 % 2.95±2.26 8.20±4.83 5.25
10 2 LIN. EXP 50 % 3.70±2.66 18.65±11.81 14.95
10 3 LIN. EXP 50 % 5.20±4.51 24.85±11.39 19.65
10 1 NONLINEAR 50 % 5.55±2.50 9±2.94 3.45
10 2 NONLINEAR 50 % 14.4±2.04 16.25±3.39 1.85
10 3 NONLINEAR 50 % 23.4±2.44 25.4±3.99 1
10 1 LIN. GAUSS 1VAR 2.1±1.89 4.65±2.89 2.55
10 1 LIN. GAUSS 50 % 1.9±1.89 5.90±3.06 4.00
10 1 LIN. GAUSS 75 % 2.15±1.79 14.70±5.25 12.55

Table 14: Results of learning graph for piecewise linear mixing functions with our method.

n m k ρ δ SHDz∗ SHDẑ ∆SHD

5 10 1 50 % 2 0.85±1.79 7±1.89 6.15
10 10 1 50 % 2 2±2.08 19.45±2.35 17.45
20 10 1 50 % 2 6.8±3.49 46.75±5.09 39.95
40 10 1 50 % 2 13.3±4.44 113.4±6.85 100.1
10 10 1 50 % 2 2±2.08 19.45±2.35 17.45
10 10 2 50 % 2 15.85±2.52 25.3±2.32 9.45
10 10 3 50 % 2 27.8±2.33 30.75±2.05 2.95
10 3 1 50 % 2 2±2.08 19.05±2.66 17.05
10 10 1 50 % 2 2±2.08 19.45±2.35 17.45
10 20 1 50 % 2 2±2.08 19.5±2.06 17.5
10 10 1 1VAR 2 2±2.08 19.5±1.79 17.5
10 10 1 50 % 2 2±2.08 19.45±2.35 17.45
10 10 1 75 % 2 2±2.08 18.8±2.28 16.8
10 10 1 50 % 0 2±2.08 17.9±2.71 15.9
10 10 1 50 % 3 2±2.08 18.9±2.17 16.9
10 10 1 50 % 5 2±2.08 18.95±1.76 16.95
10 10 1 50 % 10 2±2.08 19.05±1.93 17.05
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Table 15: Results of learning graph for piecewise linear mixing functions with oracle method.

n m k ρ δ SHDz∗ SHDẑ ∆SHD

5 10 1 50 % 2 0.85±1.79 7.1±1.97 6.25
10 10 1 50 % 2 2±2.08 21.35±2.68 19.35
20 10 1 50 % 2 6.8±3.49 56.95±4.17 50.15
40 10 1 50 % 2 13.3±4.44 130.85±9.84 117.55
10 10 1 50 % 2 2±2.08 21.35±2.68 19.35
10 10 2 50 % 2 15.85±2.52 26.1±2.77 10.25
10 10 3 50 % 2 27.8±2.33 29.9±2.75 2.1
10 3 1 50 % 2 2±2.08 19.8±2.80 17.8
10 10 1 50 % 2 2±2.08 21.35±2.68 19.35
10 20 1 50 % 2 2±2.08 21.25±2.84 19.25
10 10 1 1VAR 2 2±2.08 21.15±2.72 19.15
10 10 1 50 % 2 2±2.08 21.35±2.68 19.35
10 10 1 75 % 2 2±2.08 21.3±3.24 19.3
10 10 1 50 % 0 2±2.08 19.55±2.87 17.55
10 10 1 50 % 3 2±2.08 21.2±2.74 19.2
10 10 1 50 % 5 2±2.08 20.35±2.74 18.35
10 10 1 50 % 10 2±2.08 19.65±2.76 17.65

E.2. Image dataset: Multiple Balls

Data generation process We use PyGame (Shinners, 2011) to render images with size 64× 64× 3 as shown in Figure 30.
The number of balls b varies from 2 to 8.

For the missing ball setting, we generate the x-coordinates of each ball Cj for j ∈ [b] from a truncated normal distribution
N (0.5, 0.12) with bounds (0.1, 0.9). For the masked position setting, we generate the x and y-coordinates of each ball Ci

for j ∈ [b] independently from a truncated 2-dimensional normal distribution N (µj ,Σj) with bounds (0.1, 0.9)2, where µi
is generated from Unif(0.4, 0.6)2, and Σj = ((0.01, 0.005)(0.005, 0.01)) for all groups. All the aforementioned parameters,
including mean and variance/covariance above, are configured to ensure the majority of the samples are located in interval
[0, 1]. This configuration aims to maintain the truncated distribution as close to a Gaussian distribution as feasible.

For both settings, we generate the masked causal variables as (Zk)Kk=1 = y ·C+ (1− y) ·M ∈ RK×n. For the missing
ball setting, the latent size is equal to the number of balls b. Therefore, we predefine b masks via strategy ii) in App. D.4.
The mask value is set as 0. For the masked position setting, the latent size is 2b since both x and y-coordinates of each ball
are considered. The masked positions for distinct balls are different; avoiding overlap happens if two balls are masked in the
same group. The mask value of each latent is predefined by one of these values {0.05, 0.1, 0.9, 0.95}.

Figure 30: Example images of two settings in multiple ball dataset, based on the rendering code provided by (Ahuja et al.,
2022). (left) Missing ball setting: balls can move along gray paths only and are not visible when they move out of view.
(right) Masked position setting: balls can move freely inside the frame and their coordinates are masked when they have a
specific value M; e.g., the left-bottom position represents a masked version of the x and y coordinate for the olive ball.

E.3. Image dataset: Causal3DIdent

A qualitative visualization of the result for one object class is presented in Fig. 32 where estimated and ground truth latent
are well aligned on the diagonal.
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Group 1

Group 2

Figure 31: Example images from two groups in PartialCausal3DIdent dataset, resampled from Causal3DIdent datasert
provided by (von Kügelgen et al., 2021). In Group 1, the variable object hue is masked to a constant. In Group 2, the
variable background hue is masked to a constant.

Since as we show in Table 3, we did not observe significant performance differences between different object classes,
we conduct an ablation study of the masking value δ only on OBJECT CLASS ID 0. We show the results in Table 16.
Consistent with the observation in numerical experiments, when we increase the value of δ, which measures the distance
between mask value and original mean, our method achieves better identification.

Table 16: MCC on OBJECT CLASS ID=0 regarding various masking values δ with standard deviation σ = 0.1. Results
averaged over three random seeds.

δ 0 2σ 3σ 5σ
MCC (MEAN ± STD) 0.586± 0.056 0.632± 0.044 0.700± 0.039 0.828± 0.011

F. Image credits
The images in Fig. 1 are adapted from a VectorPortal image that is covered by CC BY 4.0. We segmented the cars, and
removed some of them or moved their position in the image.
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Figure 32: Pearson correlation matrix Corrn×nπ with the permutation π between estimated and ground truth latent variables
for PartialCausal3DIdent with masking distance δ = 10σ for all latent variables.
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