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Abstract
Decisions made by machine learning models can
have lasting impacts, making long-term fairness
a critical consideration. It has been observed that
ignoring the long-term effect and directly apply-
ing fairness criterion in static settings can actu-
ally worsen bias over time. To address biases in
sequential decision-making, we introduce a long-
term fairness concept named Equal Long-term
BEnefit RaTe (ELBERT). This concept is seam-
lessly integrated into a Markov Decision Process
(MDP) to consider the future effects of actions
on long-term fairness, thus providing a unified
framework for fair sequential decision-making
problems. ELBERT effectively addresses the tem-
poral discrimination issues found in previous long-
term fairness notions. Additionally, we demon-
strate that the policy gradient of Long-term Ben-
efit Rate can be analytically simplified to stan-
dard policy gradients. This simplification makes
conventional policy optimization methods viable
for reducing bias, leading to our bias mitigation
approach ELBERT-PO. Extensive experiments
across various diverse sequential decision-making
environments consistently reveal that ELBERT-
PO significantly diminishes bias while maintain-
ing high utility. Code is available at https://
github.com/umd-huang-lab/ELBERT.

1. Introduction
The growing use of machine learning in decision-making
systems has raised concerns regarding potential biases af-
fecting different sub-populations, stemming not only from
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immediate but also long-term effects. For instance, ex-
cessively denying loans to disadvantaged individuals can
worsen their future financial standing, thereby further exac-
erbating disparities.

It has been shown that directly imposing static fairness con-
straints1without considering future effects of the current
action/decision can actually exacerbate bias in the long run
(Liu et al., 2018; D’Amour et al., 2020). To explicitly ad-
dress fairness in sequential decision-making settings, recent
efforts (Yin et al., 2023; Wen et al., 2021; Chi et al., 2021)
formulate the long-term effects of actions/decisions in each
time step, in terms of both utility and fairness, using the
framework of Markov Decision Process (MDP).

A predominant long-term fairness notion (Yin et al., 2023;
Chi et al., 2021) models long-term bias by estimating the
accumulation of step-wise biases in the future. Specifically,
this is a ratio-before-aggregation fairness notion, which
aggregates bias of ratios at each time step. An illustrative
example of this can be seen in Figure 1, concerning a loan
application scenario where the bank aims to maximize profit
while ensuring demographic parity. At time t, the bank’s
negative decisions predominantly discouraged the red group,
in contrast to the blue group which experienced significantly
less discouragement. The ratio-before-aggregation notion is
instantiated in Yin et al. (2023) as ( 01− 0

100 )
2+( 100100− 1

1 )
2 =

0, and in Chi et al. (2021) as
(
0
1 − 0

100

)
+
(
100
100 − 1

1

)
= 0. In

both cases, the result suggests unbiased sequential decisions.

Although adopting MDP to model the long-term effects of
actions is a significant step towards achieving long-term
fairness, the prior concept of ratio-before-aggregation in-
advertently leads to temporal discrimination. This occurs
within the same group, where decisions made for individu-
als at different time steps carry unequal importance in terms
of characterizing the long-term unfairness. For instance,
within the red group, when characterizing the long-term
unfairness, each individual is assigned a weight of 1/100 for
rejection at time t, but a weight of 1 for acceptance at time
t+ 1. This implies that each rejected individual at time t is

1An example of static group fairness is demographic parity
(DP) (Dwork et al., 2012).
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Figure 1: (A) A loan application example. At time step
t, the bank approves 0 loans out of 1 blue applicants and
0 loan out of 100 red applicant. At time t + 1, the bank
approves 100 loans out of 100 blue applicants and 1 loan out
of 1 red applicant. (B) Based on a ratio-before-aggregation
notion, our Long-term Benefit Rate calculates the bias as
| 100101 − 1

101 |, suggesting the biased decisions by the bank.

deemed less significant than those accepted at time t + 1.
This issue will be elaborated in Section 2.3.

To address the issue of temporal discrimination, we refer to a
ratio-after-aggregation evaluation metric, recently adopted
in Atwood et al. (2019) for an infectious disease control
application and in D’Amour et al. (2020) for lending and
attention allocation applications. This metric considers the
overall acceptance rate across time, which is the total num-
ber of approved loan over time normalized by the total num-
ber of applicants, rather than the aggregation of step-wise
acceptance rates. In the example in Figure 1, the ratio-after-
aggregation metric computes bias as | 0+100

1+100− 0+1
100+1 | = 99

101 ,
which is nonzero and thus suggests biased bank decisions
over time. However, this evaluation metric, introduced case-
by-case in prior work, has not been modeled into the MDP
formaulation for a unified characterization of long-term
fairness in general sequential decision-making problems.
Consequently, and perhaps more importantly, there is no ex-
isting bias mitigation strategies that consider the long-term
bias effect under the ratio-after-aggregation metric.

In this paper, we introduce Equal Long-term Benefit Rate
(ELBERT), a unified MDP framework that adapts static
group fairness notions to sequential settings in the afore-
mentioned ratio-after-aggregation manner. Specifically, we
define Long-term Benefit Rate, a principled measure for a
group’s long-term well-being, to be the ratio between the
cumulative group supply (e.g., number of approved loans)
and cumulative group demand (e.g., number of applicants),
as shown in Figure 1. ELBERT is a general framework that
can adapt several static fairness notions to their long-term
counterparts through customization of group supply and
group demand.

Furthermore, we propose a novel and principled bias mit-
igation method, ELBERT Policy Optimization (ELBERT-
PO), to reduce the differences of Long-term Benefit Rate
among groups. While the bias defined by ELBERT has been

adopted in various cases, decreasing the bias has proven
difficult since it was unclear how to calculate its gradient as
detailed in Section 3.1. The technical difficulty stems from
the fact that Long-term Benefit Rate does not conform to
the conventional form of cumulative reward used in rein-
forcement learning (RL). To address this, we prove that the
policy gradient (Sutton & Barto, 2018) of Long-term Benefit
Rate can be analytically reduced to the standard policy gra-
dient in RL by deriving a novel fairness-aware advantage
function, making commonly used policy optimization meth-
ods in RL, such as PPO(Schulman et al., 2017), viable for
bias mitigation. Experiments on diverse sequential decision-
making environments show that ELBERT-PO significantly
improves long-term fairness while maintaining high utility.

Summary of Contributions. (1) We propose Equal Long-
term Benefit Rate, which systematically adapts static fair-
ness criteria to fair sequential decision-making that accounts
for long-term future effects of actions. It provides a rigorous
framework that unifies the widespread but previously ad-hoc
application of the ratio-after-aggregation notions. (2) We
develop a principled bias mitigation method ELBERT-PO
by analytically deriving a fairness-aware advantage func-
tion, and proving that standard policy optimization methods
can be adapted for reducing bias using this novel advantage
function. (3) Extensive experiments on diverse sequential
environments show that ELBERT-PO consistently achieves
the lowest bias among all baselines while maintaining high
rewards.

2. ELBERT: Equal Long-term Benefit Rate
for long-term fairness

2.1. Supply-Demand Markov Decision Process for
long-term fairness

Standard MDP. A general sequential decision-making prob-
lem can be formulated as an MDPM = ⟨S,A, µ, T,R, γ⟩
(Sutton & Barto, 2018), where S is the state space (e.g.
credit scores of applicants in the loan approval decision
making mentioned above), µ is the initial state distribu-
tion, A is the action space (e.g. rejection or approval),
T : S×A → ∆(S) is the transition dynamic, R : S×A →
R is the immediate reward function (e.g. bank’s earned
profit) and γ is the discounting factor. The goal of RL is
to find a policy π : S → ∆(A) to maximize cumulative
reward η(π) := Eπ

[∑∞
t=0 γ

tR(st, at)
]
, where s0 ∼ µ,

at ∼ π(·|st), st+1 ∼ T (·|st, at) and γ controls how my-
opic or farsighted the objective is.

Formulating fairness in MDP requires defining the long-
term well-being of each group. This motivates us to rethink
the static notions of group well-being and how to adapt them
to MDP.

Long-term group well-being: introducing supply and
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demand to MDPs.

(a) Supply and demand in static settings. In many static
fairness notions, the formulation of the group well-being
can be unified as the ratio between supply and demand.
For example, equal opportunity (EO) (Hardt et al., 2016)
defines the well-being of group g as P[Ŷ = 1|G = g, Y =

1] = P[Ŷ=1,Y=1,G=g]
P[Y=1,G=g] , where Ŷ ∈ {0, 1} is the binary

decision (loan approval or rejection), Y ∈ {0, 1} is the
target variable (repay or default) and G is the group ID.
The bias is defined as the disparity of the group well-being
across different groups. In practice, given a dataset, the
well-being of group g, using the notion of EO, is calculated
as Sg

Dg
, where the supply Sg is the number of samples with

{Ŷ = 1, Y = 1, G = g} and the demand Dg is the number
of samples with {Y = 1, G = g}.
Note that such formulation in terms of supply and demand
is not only restricted to EO, but is also compatible to other
static fairness notions such as demographic parity (Dwork
et al., 2012), equalized odds (Hardt et al., 2016), accuracy
parity and equality of discovery probability (Elzayn et al.,
2019), etc. We provide additional details in Appendix A.

(b) Adapting to MDP. In the sequential setting, each time
step corresponds to a static dataset that comes with group
supply and group demand. Therefore, to adapt them to MDP,
we assume that in addition to immediate reward R(st, at),
the agent receives immediate group supply Sg(st, at) and
immediate group demand Dg(st, at) at every time step t.
This is formalized as the Supply-Demand MDP (SD-MDP)
as shown in Figure 2 and defined as follows.

Environment

Agent

State
𝒔𝒕

Action
𝒂𝒕

Reward
𝑹𝒕

Supply
𝑺𝒈 𝒕

𝑹𝒕#𝟏
𝒔𝒕#𝟏

𝑺𝒈 𝒕#𝟏
𝑫𝒈 𝒕#𝟏

Demand
𝑫𝒈 𝒕

∀𝒈 ∈ 𝑮

Figure 2: Supply Demand MDP (SD-MDP). In addition
to the standard MDP (in black), SD-MDP returns group
demand and group supply as fairness signals (in green).

Definition 2.1 (Supply-Demand MDP (SD-MDP)). Given
a group index set G and a standard MDP M =
⟨S,A, µ, T,R, γ⟩, a Supply-Demand MDP is MSD =
⟨S,A, µ, T,R, γ, {Sg}g∈G, {Dg}g∈G⟩. Here {Sg}g∈G

and {Dg}g∈G are immediate group supply and group de-
mand function for group g.

Compared with the standard MDP, in SD-MDP, an agent re-
ceives additional fairness signals Sg(st, at) and Dg(st, at)

after taking action at at each time step. To characterize the
long-term group supply and group demand of a policy π,
we define cumulative group supply and group demand as
follows.

Definition 2.2 (Cumulative Supply and Demand). De-
fine the cumulative group supply as ηSg (π) :=

Eπ

[∑∞
t=0 γ

tSg(st, at)
]

and cumulative group demand as
ηDg (π) := Eπ

[∑∞
t=0 γ

tDg(st, at)
]
.

2.2. Long-term fairness metric via a cumulative
perspective: Equal Long-term Benefit Rate
(ELBERT)

In the following definitions, we propose to measure the well-
being of a group by the ratio of cumulative group supply
and group demand and propose the corresponding fairness
metric: Equal Long-term Benefit Rate (ELBERT).

Definition 2.3 (Long-term Benefit Rate). Define the Long-

term Benefit Rate of group g as
ηS
g (π)

ηD
g (π)

. Define the bias of a
policy as the maximal difference of Long-term Benefit Rate
among groups, i.e.,

b(π) = max
g∈G

ηSg (π)

ηDg (π)
−min

g∈G

ηSg (π)

ηDg (π)
. (1)

RL with ELBERT. Under the framework of ELBERT, the
goal of reinforcement learning with fairness constraints is to
find a policy to maximize the cumulative reward and keep
the bias under a threshold δ. In other words,

max
π

η(π)

s.t. b(π) = max
g∈G

ηSg (π)

ηDg (π)
−min

g∈G

ηSg (π)

ηDg (π)
≤ δ.

(2)

Relationship with static fairness notions. Note that in the
special case when the length of time horizon is 1, Long-term
Benefit Rate reduces to Sg

Dg
, i.e., the static fairness notion.

Versatility. By choosing the proper definition of group
supply Sg and group demand Dg, ELBERT is customized
to adapt static notions to sequential decision-making. Sec-
tion 5.1 shows how it covers commonly used fairness met-
rics in several real-world sequential decision-making set-
tings.

Comparison with constrained RL. The constraints in
constrained RL are either step-wise (Wachi & Sui, 2020) or
in the form of cumulative sum across time steps (Altman,
1999). Our constraint in Equation (2) considers all time
steps but is not in the form of cumulative sum. Therefore,
techniques in constrained RL cannot be direct applied. More
detailed comparison is left to Appendix C.
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2.3. Eliminating temporal discrimination within groups

In this section, we demonstrate how ELBERT, as a ratio-
after-aggregation notion, avoids the temporal discrimination
issue that arises from the ratio-before-aggregation approach.

To illustrate the issue of temporal discrimination within
a group in ratio-before-aggregation notions, we consider
two scenarios in Figure 3. Specifically, trajectory A is the
aforementioned motivating example in 1, and trajectory B
is almost identical to trajectory A except for the reversal
of approvals for the red group at two time steps. Under
previous ratio-before-aggregation notions, the long-term
bias is zero for trajectory A and non-zero for trajectory
B. For instance, the notion in Wen et al. (2021) and Chi
et al. (2022) is calculated as ( 01 − 0

100 ) + (100100 − 1
1 ) = 0 in

trajectory A and ( 01 − 1
100 ) + ( 100100 − 0

1 ) ̸= 0 in trajecotry
B. Similarly, the notion in Yin et al. (2023) is calculated
as ( 01 − 0

100 )
2 + ( 100100 − 1

1 )
2 = 0 in trajectory A and ( 01 −

1
100 )

2+( 100100 − 0
1 )

2 ̸= 0 in trajecotry B. Therefore, the bank
aiming to decrease long-term bias prefers trajectory A over
trajectory B. In other words, the bank inadvertently favors
approving red applicants at time t+ 1 over red applicants at
time t, thereby causing discrimination.
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Figure 3: (A) The former trajectory in Figure 1 where the
only approval of red group is assigned to 1 applicant at
t + 1. (B) A new trajectory, where the only difference is
that the approval of red group is assigned to one among 100
applicants at t.

Fortunately, the ratio-after-aggregation approach adopted by
ELBERT inherently avoids temporal discrimination. This
is because Long-term Benefit Rate aggregates the deci-
sions (supply) across time first, before normalizing with
the total number of applications (demand). In the example
above, both trajectories show the same-level of non-zero
bias, | 100101 − 1

101 |. Therefore, in terms of fairness, there is no
distinction between allocating approval to an red applicant
at time t and at time t+ 1, avoiding the issue of temporal
discrimination. This characteristic renders our method a
more suitable option for assessing long-term fairness across
a variety of real-world applications.

3. Achieving Equal Long-term Benefit Rate
In this section, we will develop a bias mitigation algorithm,
ELBERT Policy Optimization (ELBERT-PO) to solve the

RL problem with the fairness considerations in Equation (2).
In Section 3.1, we will formulate the training objective as
a policy optimization problem and lay out the challenge
of computing the policy gradient of this objective. In Sec-
tion 3.2, we demonstrate how to compute the policy gradient
of this objective by reducing it to standard policy gradient.
In Section 3.3, we extend the objective and its solution to
multi-group setting and deal with the non-smoothness of the
maximum and minimum operator in Equation (2).

3.1. Training objective and its challenge

Objective. We first consider the special case of two groups
G = {1, 2}, where Long-term Benefit Rate reduces to∣∣∣∣ ηS

1 (π)

ηD
1 (π)

− ηS
2 (π)

ηD
2 (π)

∣∣∣∣. To solve the constrained problem in Equa-

tion (2), we propose to solve the unconstrained relaxation
of it by maximizing the following objective:

J(π) = η(π)− αb(π)2 = η(π)− α

(
ηS1 (π)

ηD1 (π)
− ηS2 (π)

ηD2 (π)

)2

(3)
where the bias coefficient α is a constant controlling the
trade-off between the return and the bias.

Challenge: policy gradient of b(π). To optimize the objec-
tive above, it is natural to use policy optimization methods
that estimate the policy gradient and use stochastic gradi-
ent ascent to directly improve policy performance. How-
ever, in order to compute the policy gradient ∇πJ(π) of
J(π) in Equation (3), one needs to compute ∇πη(π) and
∇πb(π). Although the term ∇πη(π) is a standard policy
gradient that has been extensively studied in RL (Schulman
et al., 2016), it was previously unclear how to deal with
∇πb(π) = ∇π

(
ηS
1 (π)

ηD
1 (π)

− ηS
2 (π)

ηD
2 (π)

)
. In particular, since b(π)

is not of the form of expected total return, one cannot di-
rectly apply Bellman Equation (Sutton & Barto, 2018) to
compute b(π). Therefore, it is unclear how to leverage stan-
dard policy optimization methods (Schulman et al., 2017;
2015) to the objective function J(π).

3.2. Solution to the objective

In this section, we show how to apply existing policy op-
timization methods in reinforcement learning to solve the
objective in Equation (3). This is done by analytically re-
ducing the objective’s gradient∇πJ(π) to standard policy
gradients.

Reduction to standard policy gradients. For the simplic-
ity of notation, we denote the term b(π)2 in Equation (3)

as a function of Long-term Benefit Rate { η
S
g (π)

ηD
g (π)
}g∈G as

b(π)2 = h
(

ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

)
, where h(z1, z2) = (z1 − z2)

2.

Therefore, J(π) = η(π)−αh
(

ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

)
. The follow-

ing proposition reduces the objective’s gradient∇πJ(π) to
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standard policy gradients.
Proposition 3.1. The gradient of the objective function can
be calculated as

∇πJ(π) =∇πη(π)

− α
∑
g∈G

∂h

∂zg

[
∇πη

S
g (π)

ηDg (π)
− ηSg (π)∇πη

D
g (π)

ηDg (π)2

]
(4)

where ∂h
∂zg

is the partial derivative of h w.r.t. its g-th coordi-

nate, evaluated at
(

ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

)
.

Therefore, in order to estimate ∇πJ(π), one only
needs to estimate the expected total supply and demand
ηSg (π), η

D
g (π) as well as the standard policy gradients

∇πη
S
g (π),∇πη

D
g (π).

Advantage function for policy gradients. It is
common to compute a policy gradient ∇πη(π) using
Eπ{∇π log π(at|st)At}, where At is the advantage func-
tion of the reward R (Sutton & Barto, 2018). De-
note the advantage functions of R, {Sg}g∈G, {Dg}g∈G as
At, {AS

g,t}g∈G, {AD
g,t}g∈G. We can compute the gradient

of the objective function J(π) using advantage functions as
follows.
Proposition 3.2. In terms of advantage functions, the
gradient ∇πJ(π) can be calculated as ∇πJ(π) =

Eπ{∇π log π(at|st)Afair
t }, where the fairness-aware advan-

tage function Afair
t is

Afair
t = At − α

∑
g∈G

∂h
∂zg

[
1

ηD
g (π)

AS
g,t −

ηS
g (π)

ηD
g (π)2

AD
g,t

]
(5)

The detailed derivation is left to Appendix B.1. In prac-
tice, we use PPO (Schulman et al., 2017) with the fairness-
aware advantage function Afair

t to update the policy net-
work. The resulting algorithm, ELBERT Policy Optimiza-
tion (ELBERT-PO), is given in Algorithm 1. In particular,
in line 11-13, the PPO objective JCLIP(θ) is used, where
Êπθ

denotes the empirical average over samples collected
by the policy πθ and ϵ is a hyperparameter for clipping.

3.3. Extension to multi-group setting

Challenge: Non-smoothness in multi-group bias. When
there are multiple groups, the objective is J(π) = η(π)−

αb(π)2 = η(π) − α

(
maxg∈G

ηS
g (π)

ηD
g (π)

−ming∈G
ηS
g (π)

ηD
g (π)

)2

.

However, the max and min operator can cause non-
smoothness in the objective during training. This is because
only the groups with the maximal and minimal Long-term
Benefit Rate will affect the bias term and thus the gradient
of it. This is problematic especially when there are sev-
eral other groups with Long-term Benefit Rate close to the

maximal or minimal values. The training algorithm should
consider all groups and decrease all the high Long-term
Benefit Rate and increase low ones.

Soft bias in multi-group setting. To solve this, we replace
the max and min operator in b(π) with their smoothed ver-
sion controlled by the temperature β > 0 and define the soft
bias bsoft(π):

bsoft(π) =
1

β
log
∑
g∈G

e
β

ηS
g (π)

ηD
g (π)− 1

−β log
∑
g∈G

e
−β

ηS
g (π)

ηD
g (π) (6)

The relationship between the exact and soft bias is charac-
terized by the following proposition:

Proposition 3.3 (Approximation property of the soft bias).
Given a policy π, the number of groups M and the tempera-
ture β, b(π) ≤ bsoft(π) ≤ b(π) + 2 logM

β .

In other words, the soft bias is an upper bound of the exact
bias and moreover, the quality of such approximation is
controllable: the gap between the two decreases as β in-
creases and vanishes when β →∞. We provide the proof
in Appendix B.2. Therefore, we maximize the following

J(π) = η(π)− αbsoft(π)2 (7)

Note that we can write

bsoft(π)2 = h

(
ηS1 (π)

ηD1 (π)
,
ηS2 (π)

ηD2 (π)
, ...,

ηSM (π)

ηDM (π)

)
where

h(z) =

[
1

β
log
∑
g

eβzg − 1

−β log
∑
g

e−βzg

]2

for z = (z1, · · · , zM ). This suggests the formula of
∇πJ(π) in Proposition 3.2 still holds and the training
pipeline still follows Algorithm 1.

4. Related work
Fairness criterion in MDP. A line of work has formu-
lated fairness in the framework of MDP. D’Amour et al.
(2020) propose to study long-term fairness in MDP using
simulation environments and shows that static fairness no-
tions can contradict with long-term fairness. Ratio-before-
aggregation notions (Chi et al., 2022; Wen et al., 2021; Yin
et al., 2023) formulate the long-term bias as the sum of
static biases at each time steps, which inadvertently lead to
temporal discrimination within the same group as demon-
strated in 2.3. In contrast, our proposed ELBERT, based on a
ratio-after-aggregation notion, addresses this issue. Another
work (Yu et al., 2022) assumes that there exists a long-term
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Algorithm 1 ELBERT Policy Optimization (ELBERT-PO)

1: Input: Group set G, bias trade-off factor α, bias function h, temperature β (if multi-group)
2: Initialize policy network πθ(a|s), value networks Vϕ(s), VϕS

g
(s), VϕD

g
(s) for all g ∈ G

3: for k ← 0, 1, ... do
4: Collect a set of trajectories D ← {τk} by running πθ in the environment, each trajectory τk contains τk :←

{(st, at, rt, st+1)} , t ∈ [|τk|]
5: Compute the cumulative rewards, supply and demand η, ηSg , η

D
g of πθ using Monte Carlo

6: for each gradient step do
7: Sample a mini-batch from D
8: Compute advantages At, A

S
g,t, A

D
g,t using the current value networks Vϕ(s), VϕS

g
(s), VϕD

g
(s) and mini-batch for all

g ∈ G

9: Compute ∂h
∂zg

at ( ηS
1

ηD
1
, · · · , ηS

M

ηD
M

)

10: Compute the fairness-aware advantage function:

Afair
t = At − α

∑
g∈G

∂h

∂zg

[
1

ηDg
AS

g,t −
ηSg

(ηDg )2
AD

g,t

]

11: Rt(θ)← πθ(st, at)/πθold(st, at)

12: JCLIP(θ)← Êπθ
[min(Rt(θ)A

fair
t , clip(Rt(θ), 1− ϵ, 1 + ϵ)Afair

t )]
13: Update the policy network θ ← θ + τ∇θJ

CLIP(θ)
14: Fit Vϕ(s), VϕS

g
(s), VϕD

g
(s) by regression on the mean-squared error

15: end for
16: end for

fairness measure for each state and proposes A-PPO to reg-
ularize the advantage function according to the fairness of
the current and the next state. However, the assumption of
Yu et al. (2022) does not hold in general since for a trajec-
tory, the long-term fairness depends on the whole history of
state-action pairs instead of only a single state. Moreover,
A-PPO regularizes the advantage function to encourage the
bias of the next time step to be smaller than the current
one, without considering the whole future. However, our
proposed ELBERT-PO considers the bias in all future steps,
achieving long-term fairness in a principled way.

Long-term fairness in other temporal models. Long-term
fairness is also studied in other temporal models. Liu et al.
(2018) and Zhang et al. (2020b) show that naively impos-
ing static fairness constraints in a one-step feedback model
can actually harm the minority, showing the necessity of
explicitly accounting for sequential decisions. Effort-based
fairness (Heidari et al., 2019; Guldogan et al., 2022) mea-
sures bias as the disparity in the effort made by individuals
from each group to get a target outcome, where the effort
only considers one future time step. Long-term fairness has
also been studied in multi-armed bandit (Joseph et al., 2016;
Chen et al., 2020) and under distribution shifts in dynamic
settings (Zhang et al., 2021; 2020a). In this work, we study
long-term fairness in MDP since it is a general framework
to model the dynamics in real world and allows leveraging
existing RL techniques for finding high-utility policy with

fairness constraints.

5. Experiment
In Section 5.1, we introduce the sequential decision making
environments and their long-term fairness metrics. In par-
ticular, we explain how these metrics are covered by Long-
term Benefit Rate via customizing group supply and demand.
Section 5.2 demonstrates the effectiveness of ELBERT-PO
on mitigating bias for two and multiple groups. In addition,
the ablation study with varying values of the bias coefficient
α is shown in Section 5.3.

5.1. Environments and their long-term fairness criteria

Following the experiments in Yu et al. (2022), we evalu-
ate ELBERT-PO in three environments including (1) credit
approval for lending (D’Amour et al., 2020) , (2) infec-
tious disease control in population networks (Atwood et al.,
2019) and (3) attention allocation for incident monitor-
ing (D’Amour et al., 2020). To better examine the effective-
ness of different methods, we modify the infectious disease
and attention allocation environments to be more challeng-
ing. We give a brief introduction to each environment in the
following. We leave the full description in Appendix D.1
and the experimental results on the original environment
settings as in Yu et al. (2022) in Appendix D.3.
Case 1: Lending. In this environment, a bank decides
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Figure 4: Reward and bias of ELBERT-PO (ours) and three other baselines (A-PPO, G-PPO, R-PPO) in three environments
(lending, infectious disease control, attention allocation). Each column shows the results in one environment. The third row
shows the average reward versus the average bias, where ELBERT-PO consistently appears at the upper-left corner.

whether to accept or reject loan applications and the ap-
plicants arrive one at a time sequentially. There are two
groups among applicants (G = {1, 2}). The applicant at
each time t is from one of the groups gt and has a credit
score sampled from the credit score distribution of group gt.
A higher credit score means higher repaying probability if
the loan is approved. Group 2 is disadvantaged with a lower
mean of the initial credit score distribution compared with
Group 1. As for the dynamics, at time t, the credit score
distribution of group gt shifts higher if its group member
gets load approval (i.e. Ŷt = 1) and repays the loan (i.e.
Yt = 1). The immediate reward is the increment of the bank
cash at each time step.

Fairness criterion. The bias is defined by∣∣∑t 1{Gt=0,Yt=Ŷt=1}∑
t 1{Gt=0,Yt=1} −

∑
t 1{Gt=1,Yt=Ŷt=1}∑

t 1{Gt=1,Yt=1}
∣∣, which is the

long-term extension of EO, where the group well-being is
measured by the true positive rate.

Case 2: Infectious disease control. In this environment,
the agent is tasked with vaccinating individuals within a
social network to minimize the spread of a disease. The
social network consists of individuals V connected with

the edges E, and each individual v ∈ V is from one of
the two groups G = {1, 2}. Every individual has a health
state in being susceptible, infected or recovered, and the
state space of the RL agent is given by the health state of
all individuals. At each time step, the agent chooses no
more than one individual to vaccinate. As for the dynamics,
without vaccination, a susceptible individual gets infectious
with probability that depends on the number of infectious
neighbors and a infected individual recovers with certain
probability. When receiving the vaccine, the individual
directly transit to recovered. Also, a recovered individual
has certain probability to transit to being susceptible again.
The immediate reward is the percentage of individuals in
susceptible and recovered states in the whole network.

Fairness criterion. The fairness criterion is de-
fined as

∣∣∑t vaccinations given1t∑
t newly infected1t

−
∑

t vaccinations given2t∑
t newly infected2t

∣∣ where
vaccinations givengt and newly infectedgt are the number
of vaccinations given to individuals from group g and the
number of new infected individuals from group g at time t.

Case 3: Attention allocation. In this environment, the
agent’s task is to allocate 30 attention units to 5 sites
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(groups) to discover incidents, and each site has different
initial incident rates. The agent’s action is at = {ag,t}5g=1,
where ag,t is the number of allocated attention units for
group g. The number of incidents yg,t is sampled from
Poisson(µg,t) with incident rate µg,t and the number of
discovered incident is ŷg,t = min(ag,t, yg,t). As for the
dynamics, the incident rate changes according to µg,t+1 =
µg,t − dg · ag,t if ag,t > 0 and µg,t+1 = µg,t + dg other-
wise, where the constants dg and dg are the dynamic rates
for reduction and growth of the incident rate of group g. The
agent’s reward is R(st, at) = −

∑
g(yg,t − ŷg,t), i.e., the

negative sum of the missed incidents.

Fairness criterion. The group well-being is defined as the
ratio between the total number of discovered incidents over
time and the total number of incidents, and thus the bias is
defined as maxg∈G

∑
t ŷg,t∑
t yg,t

−ming∈G

∑
t ŷg,t∑
t yg,t

.

Metrics as special cases of ELBERT. All fairness crite-
ria above used by prior works (Yu et al., 2022; D’Amour
et al., 2020; Atwood et al., 2019) are covered by the general
framework of ELBERT as special cases via customizing
group supply and demand. For example, in the lending case,
group supply Dg(st, at) = 1{Gt = g, Yt = 1} and group
demand Sg(st, at) = 1{Gt = g, Yt = Ŷt = 1}. Therefore,
ELBERT-PO can be used as a principled bias mitigation
method for all of these environments, which is demonstrated
in the next section.

5.2. Effectiveness of ELBERT-PO

Baselines. Following Yu et al. (2022), we consider the
following RL baselines. (1) A-PPO (Yu et al., 2022), which
regularizes the advantage function to decrease the bias of
the next time steps but does not consider the biases in all
future steps. (2) Greedy PPO (G-PPO), which greedily
maximizes reward without any fairness considerations. (3)
Reward-Only Fairness Constrained PPO (R-PPO), a heuris-
tic method which injects the historical bias into the imme-
diate reward. In particular, it adds −max(0,∆t − ω) to
the immediate reward Rt at time t, where ∆t is the overall
bias of all previous time steps and ω is a threshold. The
hyperparameters of all methods are given in Appendix D.2.

Results: ELBERT-PO consistently achieves the lowest
bias while maintaining high reward. The performance
of ELBERT-PO and baselines are shown in Figure 4. (1)
Lending. ELBERT-PO achieves the lowest bias of 0.02,
significantly decreasing the bias of G-PPO by 87.5%, R-
PPO and A-PPO by over 75%, while obtaining high reward.
(2) Infectious. ELBERT-PO achieves the lowest bias of
0.01 among all methods. Although R-PPO also achieves the
same low bias, it suffers from much lower reward, indicating
that directly injecting bias into immediate reward can harm
reward maximization. A-PPO obtains a relatively large bias,
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Figure 5: Learning curve of ELBERT-PO on the attention
allocation environment with different α.

suggesting that only considering the bias of the next time
step can be insufficient for mitigating bias that involves the
whole future time steps. Furthermore, ELBERT-PO obtains
the same reward as G-PPO, higher than other bias mitigation
baselines. (3) Allocation. ELBERT-PO achieves the lowest
bias and the highest reward of among all methods. This
shows the effectiveness of ELBERT-PO in the multi-group
setting.

5.3. Effect of the bias coefficient

Figure 5 shows the learning curve with different values of
the bias coefficient α in the attention environment. We ob-
serve that larger α leads to lower bias, and such effect is
diminishing as α becomes larger. In terms of reward, we
find that increasing α leads to slower convergence. This
is expected since the reward signal becomes weaker as α
increases. However, we find that larger α leads to slightly
higher rewards. This suggests that lower bias does not nec-
essarily leads to lower rewards, and learning with fairness
consideration may help reward maximization. More results
on α in other environments as well as how group supply
and demand change during training for all methods can be
found in Appendix D.3.

6. Conclusions and discussions
In this work, we introduce Equal Long-term Benefit Rate
(ELBERT) for adapting static fairness notions to sequen-
tial decision-making. This ratio-after-aggregation notion
avoids the issue of temporal discrimination which arises in
prior ratio-before-aggregation notions. For bias mitigation,
we address the challenge of computing the policy gradient
of Long-term Benefit Rate by analytically reducing it to
the standard policy gradients through the fairness-aware
advantage function, leading to our proposed ELBERT-PO.
Experiments demonstrate that it significantly reduces bias
while maintaining high utility.

One limitation is that ELBERT focuses on long-term adap-
tations of static fairness notions, which mainly consider the
supply-demand ratio but not the demand itself. However, in
real world applications, extra constraints on demand might
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be needed. For example, the demand should not be too large
(e.g. when demand is the number of infected individuals)
or too small (e.g. when demand is the number of qualified
applicants). To address this, we show in Appendix E that
ELBERT-PO also works when additional terms to regularize
demand are incorporated in the objective function.

Impact Statement
This work aims to rigorously formulate long-term fairness
in sequential decision making setting and provide principled
bias mitigation strategies. It holds significant relevance in
real-world sequential decision making scenarios, including
the allocation of medical resources, college admissions, and
the processing of loan applications. Moreover, the miti-
gation strategies we propose have the potential to guide
machine-learning-based systems in avoiding unfair deci-
sions in sequential tasks. Our research contributes to the
development of ethical AI systems that uphold the principles
of justice and equality.
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A. Fairness notions with the supply and demand formulation
In this section, we demonstrate that in the static settings, the supply and demand formulation in Section 2 can cover many
popular fairness notions. This means that the proposed Supply Demand MDP is expressive enough to extend several popular
static fairness notions to the sequential settings. In the following, we give a list of examples to show, in the static setting,
how to formulate several popular fairness criteria as the ratio between the supply and demand. For simplicity, we consider
the agent’s decision to be binary, though the analysis naturally extends to multi-class settings.

Notations. Denote Ŷ ∈ {0, 1} as the binary decision (loan approval or rejection), Y ∈ {0, 1} as the target variable (repay
or default) and G as the group ID.

Demographic Parity. The well-being of a group g in Demographic Parity (DP) (Dwork et al., 2012) is defined as
P[Ŷ = 1|G = g] = P[Ŷ=1,G=g]

P[G=g] and DP requires such group well-being to equalized among groups. In practice, given a

dataset, the well-being of group g is calculated as Sg

Dg
, where the supply Sg is the number of samples with {Ŷ = 1, G = g}

(e.g. the number of accepted individuals in group g) and the demand Dg is the number of samples with {G = g} (e.g. the
total number of individuals from group g).

Equal Opportunity. The well-being of a group g in Equal Opportunity (EO) (Dwork et al., 2012) is defined as P[Ŷ =

1|G = g, Y = 1] = P[Ŷ=1,Y=1,G=g]
P[Y=1,G=g] and EO requires such group well-being to equalized among groups. In practice,

given a dataset, the well-being of group g is calculated as Sg

Dg
, where the supply Sg is the number of samples with

{Ŷ = 1, Y = 1, G = g} (e.g. the number of qualified and accepted individuals in group g) and the demand Dg is the
number of samples with {Y = 1, G = g} (e.g. the number of qualified individuals from group g).

Equality of discovery probability: a special case of EO. Equality of discovery probability (Elzayn et al., 2019) requires
that the discovery probability to be equal among groups. For example, in predictive policing setting, it requires that
conditional on committing a crime (Y = 1), the probability that an individual is apprehended (Ŷ = 1) should be independent
of the district ID (group ID) g. This is a special case of EO in specific application settings.

Equalized Odds. Equalized Odds (Dwork et al., 2012) requires that both the True Positive Rate (TPR) P[Ŷ = 1|G =

g, Y = 1] = P[Ŷ=1,Y=1,G=g]
P[Y=1,G=g] and the False Positive Rate (FPR) P[Ŷ = 1|G = g, Y = 0] = P[Ŷ=1,Y=0,G=g]

P[Y=0,G=g] equalize

among groups. In practice, given a dataset, (a) the TPR of group g is calculated as
ST
g

DT
g

, where the supply ST
g is the number

of samples with {Ŷ = 1, Y = 1, G = g} (e.g. the number of qualified and accepted individuals in group g) and the demand
DT

g is the number of samples with {Y = 1, G = g} (e.g. the number of qualified individuals from group g). (b) The FPR of

group g is calculated as
SF
g

DF
g

, where the supply SF
g is the number of samples with {Ŷ = 1, Y = 0, G = g} (e.g. the number

of unqualified but accepted individuals in group g) and the demand DF
g is the number of samples with {Y = 0, G = g} (e.g.

the number of unqualified individuals from group g).

Extending Equalized Odds to sequential settings using SD-MDP. The long-term adaption of Equalized Odds can
be included by the Supply Demand MDP via allowing it to have two sets of supply-demand pairs: for every group
g, (DT

g , S
T
g ) and (DF

g , S
F
g ). In particular, define the cumulative supply and demand for both supply-demand pairs:

the cumulative group supply for TPR ηS,Tg (π) := Eπ

[∑∞
t=0 γ

tST
g (st, at)

]
and cumulative group demand for TPR as

ηD,T
g (π) := Eπ

[∑∞
t=0 γ

tDT
g (st, at)

]
. The cumulative group supply for FPR ηS,Fg (π) := Eπ

[∑∞
t=0 γ

tSF
g (st, at)

]
and

cumulative group demand for FPR as ηD,F
g (π) := Eπ

[∑∞
t=0 γ

tDF
g (st, at)

]
. Since the bias considers both TPR and FPR, we

define the bias for both: bT (π) = maxg∈G
ηS,T
g (π)

ηD,T
g (π)

−ming∈G
ηS,T
g (π)

ηD,T
g (π)

and bF (π) = maxg∈G
ηS,F
g (π)

ηD,F
g (π)

−ming∈G
ηS,F
g (π)

ηD,F
g (π)

.
The goal of RL with Equalized Odds constraints can be formulated as
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max
π

η(π)

s.t. bT (π) = max
g∈G

ηS,Tg (π)

ηD,T
g (π)

−min
g∈G

ηS,Tg (π)

ηD,T
g (π)

≤ ϵ

bF (π) = max
g∈G

ηS,Fg (π)

ηD,F
g (π)

−min
g∈G

ηS,Fg (π)

ηD,F
g (π)

≤ ϵ.

(8)

In practice, we treat the hard constraints as regularization and use the following objective function

J(π) = η(π)− αbT (π)2 − αbF (π)2 (9)

where α is a trade-off constant between return and fairness. The gradient∇π(Jπ) can still be computed using techniques
presented in 3, since both bias terms bT (π) and bF (π) are still in the form of ratio between cumulative supply and demand.

Accuracy Parity. Accuracy Parity defines the well-being of group g as P[Ŷ = Y |G = g] = P[Ŷ=Y,G=g]
P[G=g] , which is the

accuracy of predicting Y using Ŷ among individuals from the group g. In practice, this is computed by Sg

Dg
, where the

supply Sg is the number of samples with {Ŷ = Y,G = g} (e.g. the number of individuals with correct predictions in group
g) and the demand Dg is the number of samples with {G = g} (e.g. the total number of individuals from group g).

B. Mathematical derivations
B.1. Fairness-aware advantage function

In this section, we show how to apply existing policy optimization methods to solve the objective in Equation (3). This is
done by analytically reducing the policy gradient∇πb(π) of the bias to standard policy gradients.

Gradient of the objective. For the simplicity of notation, we denote the term b(π)2 in Equation (3) as a function of

Long-term Benefit Rate { η
S
g (π)

ηD
g (π)
}g∈G as b(π)2 = h

(
ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

)
, where h(z1, z2) = (z1 − z2)

2. Therefore, J(π) =

η(π)− αh
(

ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

)
. By chain rule, we can compute the gradient of the objective as follows.

∇πJ(π) = ∇πη(π)− α
∑
g∈G

∂h

∂zg
∇π

(
ηSg (π)

ηDg (π)

)
(10)

where ∂h
∂zg

is the partial derivative of h w.r.t. its g-th coordinate, evaluated at
(

ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

)
. Note that ∇πη(π) in

Equation (10) is a standard policy gradient, whereas∇π

(
ηS
g (π)

ηD
g (π)

)
is not.

Reduction to standard policy gradient. For∇π

(
ηS
g (π)

ηD
g (π)

)
, we apply the chain rule again as follows

∇π

(
ηSg (π)

ηDg (π)

)
=

1

ηDg (π)
∇πη

S
g (π)−

ηSg (π)

ηDg (π)2
∇πη

D
g (π) (11)

Therefore, in order to estimate ∇π(
ηS
g (π)

ηD
g (π)

), one only needs to estimate the expected total supply and demand ηSg (π), η
D
g (π)

as well as the standard policy gradients∇πη
S
g (π),∇πη

D
g (π).

Advantage function for policy gradient. It is common to compute a policy gradient ∇πη(π) using
Eπ{∇π log π(at|st)At}, where At is the advantage function of the reward R (Sutton & Barto, 2018). Denote the ad-

vantage functions of R, {Sg}g∈G, {Dg}g∈G as At, {AS
g,t}g∈G, {AD

g,t}g∈G. ∇π

(
ηS
g (π)

ηD
g (π)

)
in Equation (11) can thus be

written as
∇π

(
ηSg (π)

ηDg (π)

)
= Eπ

{
∇π log π(at|st)(

1

ηDg (π)
AS

g,t −
ηSg (π)

ηDg (π)2
AD

g,t)

}
(12)
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By plugging Equation (12) into Equation (10), we obtain the gradient of the objective J(π) using advantage functions as
follows

∇πJ(π) = Eπ

∇π log π(at|st)

At − α
∑
g∈G

∂h

∂zg

(
1

ηDg (π)
AS

g,t −
ηSg (π)

ηDg (π)2
AD

g,t

) (13)

Therefore,∇πJ(π) = Eπ{∇π log π(at|st)Afair
t }, where Afair

t = At − α
∑

g∈G
∂h
∂zg

(
1

ηD
g (π)

AS
g,t −

ηS
g (π)

ηD
g (π)2

AD
g,t

)
is defined

as the fairness-aware advantage function.

B.2. Relationship between the soft bias and the bias

We would like to show the mathematical relationship between the soft bias and bias, as shown in Proposition 3.3. This is
done by analyzing the max and min operator as well as their soft counterparts through the log sum trick, which is also used
in prior work (Xu et al., 2023). We restate the full proposition and present the proof below.

Proposition B.1. Given a policy π, the number of groups M and the temperature β, define the soft bias as

bsoft(π) =
1

β

log∑
g∈G

exp

(
β
ηSg (π)

ηDg (π)

)
+ log

∑
g∈G

exp

(
−β ηSg (π)

ηDg (π)

) .

The bias is defined as

b(π) = max
g∈G

ηSg (π)

ηDg (π)
−min

g∈G

ηSg (π)

ηDg (π)
.

We have that

b(π) ≤ bsoft(π) ≤ b(π) +
2 logM

β
.

Proof. First consider the first term 1
β log

∑
g∈G exp

(
β

ηS
g (π)

ηD
g (π)

)
in the soft bias bsoft(π). We have that

1

β
log
∑
g∈G

exp

(
β
ηSg (π)

ηDg (π)

)
>

1

β
log exp

(
βmax

g∈G

ηSg (π)

ηDg (π)

)
= max

g∈G

ηSg (π)

ηDg (π)
(14)

On the other hand, we have that

1

β
log
∑
g∈G

exp

(
β
ηSg (π)

ηDg (π)
) ≤ 1

β
logM exp(βmax

g∈G

ηSg (π)

ηDg (π)

)
= max

g∈G

ηSg (π)

ηDg (π)
+

logM

β
(15)

Therefore, maxg∈G
ηS
g (π)

ηD
g (π)

< 1
β log

∑
g∈G exp

(
β

ηS
g (π)

ηD
g (π)

)
≤ maxg∈G

ηS
g (π)

ηD
g (π)

+ logM
β .

Similarly, it can be shown that ming∈G
ηS
g (π)

ηD
g (π)

− logM
β ≤ 1

−β log
∑

g∈G exp

(
−β ηS

g (π)

ηD
g (π)

)
< ming∈G

ηS
g (π)

ηD
g (π)

.

By subtracting the two, we conclude that b(π) ≤ bsoft(π) ≤ b(π) + 2 logM
β .

C. Connection to constrained RL
In this section, we compare our proposed ELBERT with the previous works of constrained Reinforcement Learning (RL).
Prior formulations of constrained RL can be mainly categorized into two groups as follows. We will explain that neither of
them can be directly applied to solve our fairness objective in Equation (2) in the ELBERT framework.
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Cumulative cost constraints The first category is learning a policy with cost constraints that are in the form of cumulative
sum, usually known as constrained MDPs (CMDPs) (Altman, 1999). It is formulated as a tupleM = ⟨S,A, µ, T,R,C, γ⟩.
In addition to the components in the standard MDP, there is an extra cost function C : S ×A → R. The feasible policy is
subject to the cumulative cost under a threshold δ. Mathematically, the goal is formulated as

max
π

η(π) s.t. ηC(π) = Eπ

[ ∞∑
t=0

γtC(st, at)

]
≤ δ. (16)

A series of works (Satija et al., 2020; Zhou et al., 2022) has studied the problem in Equation (16). Notably, methods for
solving CMDPs rely on Bellman equation to evaluate the value function or the policy gradient of the cumulative cost.
Specifically, the cost function in Equation (16) is similar to the reward in standard MDPs and thus the cumulative cost can
be reformulated as the expectation of state value function of cost over states, i.e., ηC(π) = Es∼µ[V

π
C (s)]. Here the state

value function

V π
C (s) = Eπ

[ ∞∑
t=0

γtC(st, at)

∣∣∣∣π, s0 = s

]
(17)

satisfies the Bellman equation

V π
C (s) =

∑
a

π(a|s)
∑
s′

T (s′|s, a)[R(s, a) + γV π
C (s′)] (18)

which can be used to evaluate the value function or the policy gradients of the cumulative cost (Sutton & Barto, 2018).

However, in the ELBERT framework, the constraint term maxg∈G
ηS
g (π)

ηD
g (π)
−ming∈G

ηS
g (π)

ηD
g (π)

does not have a Bellman equation.

Although both of ηSg (π), η
D
g (π) have Bellman equation since they are in the form of cumulative sum, it was previously

unclear how to estimate the policy gradient of their ratio
ηS
g (π)

ηD
g (π)

. To adress this, in Section 3.2 we propose the ELBERT
Policy Optimization (ELBERT-PO) framework that analytically derives the policy gradient of the constraint term.

Step-wise safety constraints The second category is learning a policy that transits over only “safe” states, where the risk
is less than a threshold δ at every timestep (Wachi & Sui, 2020). Mathematically, the goal is formulated as

max
π

η(π) s.t. C(st) ≤ δ, ∀t, (19)

where C : S → R is the risk function. This constrained RL framework has step-wise constraints, which is different from

ELBERT where the fairness constraint maxg∈G
ηS
g (π)

ηD
g (π)

− ming∈G
ηS
g (π)

ηD
g (π)

≤ δ considers all future time steps. Therefore,
techniques for this category of constrained RL cannot be directly applied in the ELBERT framework.

D. Experimental Details
D.1. Full description of the environments

Lending We consider the case of credit approval for lending in a sequential setting. As the agent in this scenario, a
bank decides whether to accept or reject loan requests from a stream of applicants who arrive one-by one in a sequential
manner. At each time t, an applicant from one of the two groups arrives. More specifically, the applicant’s group ID gt
is sampled uniformly from G = {1, 2}. Given the current applicant’s group ID gt ∈ {0, 1}, the corresponding credit
score ct ∈ {1, 2, · · · , C} is sampled from the credit distribution µt,gt ∈ ∆(C), where ∆(C) denotes the set of all
discrete distributions over {1, 2, · · · , C}. We note here that the credit score distributions of both groups, µt,1 and µt,2

are time-varying and will introduce their dynamics in detail later. Regardless of their group IDs gt, the applicants with
higher credit score is more likely to repay (i.e., Yt = 1), whether the loan is approved (i.e., Ŷt = 1) or not (i.e., Ŷt = 0).
Group 2 is disadvantaged with a lower mean of initial credit score compared to Group 1 at the beginning of the sequential
decision-making process. The agent makes the decision Ŷt ∈ {0, 1} using the observation gt and ct. With Ŷt and Yt, the
agent gets an immediate reward Rt (agent’s earned cash at step t), and the credit score distribution of the group gt changes
depending on Ŷt and Yt. Specifically, the credit score of the current applicant shifts from ct to a new score c′t, leading to the
change of the credit score distribution of group gt as follows, where the constant ϵ is the dynamic rate.

µt+1,gt(c
′
t)− µt,gt(c

′
t) = µt,gt(ct)− µt+1,gt(ct) = ε ≥ 0. (20)
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The fairness criterion is the long-term extension of Equal Opportunity and the group well-being is measured by the true
positive rate. Specifically, the bias of a policy is defined as follows.∣∣∣∣∑t 1{Gt = 0, Yt = Ŷt = 1}∑

1{Gt = 0, Yt = 1} −
∑

t 1{Gt = 1, Yt = Ŷt = 1}∑
1{Gt = 1, Yt = 1}

∣∣∣∣ (21)

Infectious disease control: original version. In this environment, the agent is tasked with vaccinating individuals within
a social network to minimize the spread of a disease (Atwood et al., 2019). We first introduce the original set up used in
(Yu et al., 2022) and in the next paragraph, we modify the environment to become more challenging. In this environment,
individuals from two groups G = {1, 2} are formulated as the nodes v ∈ V in a social network N connected with the edges
E. Every individual has a health state from {HS , HI , HR} for being susceptible, infected and recovered. The state space of
the RL agent is characterized by the health states of all individuals, i.e. S = {HS , HI , HR}|V |. A random individual in N
gets infected at the beginning of an episode. At each time step, the agent chooses one individual or no one to vaccinate and
therefore the action space is the set of all individuals and the null set V ∪ ∅. As for the dynamics, without vaccination, a
susceptible individual gets infectious with probability that depends on the number of infectious neighbors. Specifically,
without the vaccine, a susceptible individual v will get infected with probability of 1− (1− τ)IN (v,H), where 0 < τ ≤ 1 and
IN (v,H) is the number of infected individuals that are connected to the individual v. τ = 0.1 is used. For those individuals
in the susceptible state and receiving an vaccine, they will directly transit to the recovery state. A infected individual will get
recovered with probability ρ = 0.005 without vaccination, and stay infected if vaccinated. The immediate reward is the
percentage of health individuals (including being susceptible and recovered) in the whole network at the current step.

The fairness criterion is defined as∣∣∣∣∑t vaccinations given1t∑
t newly infected1t

−
∑

t vaccinations given2t∑
t newly infected2t

∣∣∣∣ (22)

where vaccinations givengt and newly infectedgt are the number of vaccinations given to individuals from group g and the
number of newly infected individuals from group g at time t.

Infectious disease control: harder version. In the original setting used in (Yu et al., 2022), the recovery state is absorbing:
the individual in the recovery state will not be susceptible or infected again. To make the environment more challenging, we
modify the environment so that the recovered individuals will become susceptible again with probability µ = 0.2. This
modification inject more stochasticity into the environment and makes learning more challenging. Other parameters are kept
the same as the original settings. Note that the results in Section 5 is on this harder environment.

Attention allocation: original version. In the original version of this environment used in (Yu et al., 2022), the agent’s task
is to allocate 6 attention units to 5 sites (groups) to discover incidents, where each site has a different initial incident rate. The
agent’s action is at = {ag,t}5g=1, where ag,t is the number of allocated attention units for group g. The number of incidents
yg,t is sampled from Poisson(µg,t) with incident rate µg,t and the number of discovered incident is ŷg,t = min(ag,t, yg,t).
The incident rate changes according to µg,t+1 = µg,t − d · ag,t if ag,t > 0 and µg,t+1 = µg,t + d otherwise, where the
dynamic rate d is a constant. The agent’s reward is R(st, at) =

∑
g ŷg,t − ζ

∑
g(yg,t − ŷg,t), where the coefficient ζ

balances between the discovered and missed incidents. In the original version, ζ = 0.25 and d = 0.1. The initial incident
rates are given by

{µg,0}5g=1 = {8, 6, 4, 3, 1.5}. (23)

The group well-being is defined as the ratio between the total number of discovered incidents over time and the total number
of incidents, and thus the bias is defined as

max
g∈G

∑
t ŷg,t∑
t yg,t

−min
g∈G

∑
t ŷg,t∑
t yg,t

. (24)

Attention allocation: harder version. To modify the environment to be more challenging, we consider a more general
environment by introducing more complexity. Different from the original setting in (Yu et al., 2022) where the dynamic
rate is the same among groups, we consider a more general case where the dynamic rates vary among different groups.
Moreover, for the group g, the dynamic rate for increasing incident rate dg is different from that for decreasing incident
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rate dg. Specifically, the incident rate changes according to µg,t+1 = µg,t − dg · ag,t if ag,t > 0 and µg,t+1 = µg,t + dg
otherwise, where the constants dg and dg are the dynamic rates for reduction and growth of the incident rate of group g. The
parameters are given by the following.

{dg}5g=1 = {0.004, 0.01, 0.016, 0.02, 0.04}, {dg}5g=1 = {0.08, 0.2, 0.4, 0.8, 2} (25)

Meanwhile, we increase the number of attention units to allocate from 6 to 30 to expand the action space for more difficulty
and modify the initial incident rates to

{µg,0}5g=1 = {30, 25, 22.5, 17.5, 12.5}. (26)

The agent’s reward is R(st, at) = −ζ
∑

g(yg,t − ŷg,t), i.e., the opposite of the sum of missed incidents. Here ζ = 0.25.
Note that the reward function in this harder version is different from the original setting.

Explanation of the harder environment. The new version of the attention environment is more challenging for learning a
fair policy with high rewards due to the following reasons. (1) The higher number of attention units indicates the larger action
space in which searching for the optimal policy will be more challenging. (2) For all groups, the increasing dynamic rates
are much higher than the decreasing dynamic rates, making it harder for the incident rate to decrease. (3) The disadvantaged
groups, i.e., the groups with higher initial incident rates, have lower dynamic rates for both decreasing and increasing
incident rate. This makes learning a fair policy harder since lower decreasing dynamic rates make the incident rates harder
to decrease, and lower increasing dynamic rates means the policy could allocate less units to these groups without harming
the reward too much, causing increasing bias. Note that the experiment in the attention environment in Section 5 uses this
harder environment.

Summary of all environments (1) Lending. (2) Original Attention. (3) Harder Attention. (4) Original Infectious.
(5) Harder Infectious. Note that the results in Section 5 are on (1), (3) and (5). Results of other environments are
in Appendix D.3.

D.2. Hyperparameters

For the learning rate, we use 10−6 in the original attention allocation environment and 10−5 in other four environments. We
train for 2× 106 time steps in the lending environment, 107 time steps in the original infectious disease control environment,
2 × 107 time steps in the original attention allocation environment, and 5 × 106 time steps in two harder environments
(infectious disease control and attention allocation).

Table 1: Hyperparameters of ELBERT-PO and two baseline methods (R-PPO and A-PPO).

Environments ELBERT-PO R-PPO A-PPO

Lending α = 2× 105 ζ1 = 2
β1 = β2 = 0.25

ω = 0.005

Infectious disease control
Original α = 10

ζ1 = 0.1
β1 = β2 = 0.1

ω = 0.05
Harder α = 50

Attention allocation
Original α = 50

β = 20 ζ1 = 10
β1 = β2 = 0.15

ω = 0.05
Harder α = 2× 104

β = 20
ζ1 = 20

Before listing the hyperparameters for baselines, we first briefly introduce two baselines R-PPO and A-PPO used in (Yu
et al., 2022). In (Yu et al., 2022), it is assumed that there exists a fairness measure function ∆ so that ∆(s) measures the
bias of the state s. In practice, ∆(st) is computed using the bias up to time t, which depends on the previous state action
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pairs. R-PPO directly modifies the reward function so that a larger bias results in smaller immediate reward. Specifically,
R-PPO modifies the reward function into

RR-PPO(st, at) = R(st, at) + ζ1∆(st). (27)

A-PPO modifies the advantage function to encourage the bias at the next time step to be smaller than the current step.
Specifically, it modifies the standard advantage function Â(st, at) into

ÂA-PPO(st, at) = Â(st, at) + β1 min(0,−∆(st) + ω) + β2

{
min(0,∆(st)−∆(st+1)) if ∆(st) > ω

0 otherwise
(28)

The hyperparameters for R-PPO and A-PPO in each environment are shown in Table 1.

All experiments are run on NVIDIA GeForce RTX 2080 Ti GPU.

D.3. More experimental results

Results on original attention and infectious disease control environments. The performance of ELBERT-PO and
baselines in the original versions of the attention and infectious disease control environments are shown in Figure 6. (1)
Infectious (original). ELBERT-PO achieves the highest reward among all baselines, including G-PPO. As for the bias,
ELBERT-PO, R-PPO and A-PPO obtains almost the same low bias. This suggests that the original infectious disease control
environment is not challenging enough to distinguish the bias mitigation ability between ELBERT-PO and the baselines. (2)
Attention (original). In this environment, we find that G-PPO, without any fairness consideration, achieves very low bias
(around 0.05). This indicate that the original attention environment is too easy in terms of bias mitigation, and thus it must
be modified to be more challenging. All methods obtain almost the same low bias. The results on the original version of both
environments motivate us to modify them to be more challenging. The experiments in Section 5 shows that ELBERT-PO
has huge advantage in bias mitigation on more challenging environments.

(a) Infectious disease control, original
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Figure 6: Rewards and bias of ELBERT-PO (ours) and three other RL baselines (A-PPO, G-PPO, and R-PPO) in two
original environments (infectious disease control and attention allocation) from (Yu et al., 2022).

Ablation on the bias coefficient α. The learning curve of rewards and bias from ELBERT-PO with various values of the
bias coefficient α in different environments are shown in Figure 7. (1) Rewards. In most cases, increasing α leads to slower

17



Adapting Static Fairness to Sequential Decision-Making: Bias Mitigation Strategies towards Equal Long-term Benefit Rate

convergence in rewards. However, increasing α can either increase the reward (lending), decrease the reward (original
and harder infectious) or be irrelevant to reward (original attention allocation). This shows that whether or not there is an
intrinsic trade-off between reward and bias depends on the environment. (2) Biases. Using a relatively α leads to lower bias.
However, when α is too large, the bias might increase again. This may be due to the instability of the bias term when α is
too large.
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Figure 7: Learning curve of ELBERT-PO on four environments (lending, original and harder infectious disease control, and
original attention allocation) with different α. The learning curve on the harder attention allocation environment is shown in
Figure 5.

Ablation on the temperature β of the soft bias. The learning curves of rewards and bias with various values of temperature
β of the soft bias in the harder version of attention allocation environment are shown in Figure 8. We observe that (1) when
β is very small (β = 1), the bias is relatively large. This is because as shown in Proposition 3.3, the gap between the soft bias
and bias is larger when β is smaller, and therefore minimizing the soft bias may not be effective in minimizing the true bias.
(2) When β is very large (β = 100), at the beginning of training, the bias decreases slightly slower than when β is moderate
(β = 20). Also, the reward is observed to be less stable when β = 100. This is probably due to the non-smoothness of
optimization, since when β is very large, the soft bias is very close to the bias, which is non-smooth and only depends on the
maximal and minimal group benefit rate. (3) Despite of the slight difference in convergence rate, the bias converges to the
same value for β = 20 and β = 100. This indicates that ELBERT-PO is not sensitive to β, provided that β is reasonably
large.
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Figure 8: Learning curve of ELBERT-PO on the harder version of the attention allocation environment with different β.

Supply and demand of each group over training time steps. To explore how ELBERT-PO minimizes the bias, we examine
how the supply and demand of the advantaged and disadvantaged groups vary over training steps. In the multi-group setting,
at each training step we consider the most advantaged and disadvantaged group. The corresponding results of ELBERT-PO
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and the other three baseline methods in three main environments (lending, harder infectious, and harder attention), are
shown in Figure 9. (1) Lending. The bias is reduced mainly by both decreasing demand and increasing supply of the
disadvantaged group. When using ELBERT-PO, in addition to reducing the bias, the group benefit rates of both groups
actually increase (but their difference decreases). (2) Infectious (harder). The demand of both groups seems not influenced
much by decision-making system. The bias is reduced mainly by increasing the supply of the disadvantaged group and
decreasing supply of the advantaged group. (3) Attention (harder). In this case, the bias is reduced largely by increasing
the demand of the advantaged group and decreasing the demand of the disadvantaged group. To sum up, the bias is reduced
in different ways on different environments.
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Figure 9: Group demands and supplies of advantaged group 0 and disadvantaged group 1 with ELBERT-PO (ours) and
three other RL baselines (A-PPO, G-PPO, and R-PPO) in three environments (lending, harder infectious disease control
and harder attention allocation). Each row shows the results of one method and each column shows the results on one
environment.
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E. Addressing Potential Limitation
Demand in the static and long-term settings In the static setting, static fairness notions (such as Demographic Parity
and Equal Opportunity) only consider the supply-demand ratio and do not explicitly consider the absolute value of demand
itself. This is because the demand is typically not considered as controllable by the decision maker in the static setting. Our
ELBERT framework adapts static fairness notions to long-term settings, and consider the ratio between cumulative supply
and demand. The ELBERT does not explicitly consider the absolute value of demand either. Note that in the long-term
setting, demand in the future time steps can be affected by the decision maker.

Overall potential limitation One limitation of ELBERT is that it focuses on long-term adaptations of static fairness
notions, which mainly consider the supply-demand ratio but not the absolute value of demand itself. However, in real world
applications, extra constraints on demand might be needed. For example, the demand should not be too large (e.g. when
demand is the number of infected individuals in the infectious environment) or too small (e.g. when demand is the number
of qualified applicants in the lending environment).

Specifically, in ELBERT framework and in all the metrics used by prior works (Yu et al., 2022; D’Amour et al., 2020;
Atwood et al., 2019), reducing the bias typically encourages the Long-term Benefit Rate of the disadvantaged group to
increase, which can decrease its group demand. Although decreasing the demand of the disadvantaged group is beneficial in
some cases (e.g. decreasing the number of infected individual in the infectious environment), overly decreasing demand can
be problematic in other cases (e.g. when demand is the number of qualified applicants in the lending environment) due to
real world consideration.

Solution In the following, we show that ELBERT-PO still works when we incorporate additional terms to regularize
demand in the objective function. For illustration, assume that we would like the demand of the disadvantaged group (group
1) to be not too small (e.g. in the lending environment). Therefore, we can add a regularization term ηD1 (π) to the objective
function to maximize:

J reg(π) = η(π)− αb(π)2 + ζηD1 (π) = η(π)− α(
ηS1 (π)

ηD1 (π)
− ηS2 (π)

ηD2 (π)
)2 + ζηD1 (π), (29)

where ζ controls the regularization strength for keeping the demand of group 1 from being too small.

As in Section 3.2, we need to compute its policy gradient in order to use standard policy optimization algorithms like
PPO. Note that this is easy since the extra regularization term ηD1 (π) is in the form of a standard cumulative reward with
known policy gradient formula. Therefore, combining with the policy gradient formula without the regularization term
in Equation (5), we have that:

∇πJ
reg(π) = Eπ

{
∇π log π(at|st)

[
At − α

∑
g∈G

∂h

∂zg
(

1

ηDg (π)
AS

g,t −
ηSg (π)

ηDg (π)2
AD

g,t) + ζAD
1,t)
]}

(30)

Therefore, we only need to use the demand-regularized version of the fairness-aware advantage function Afair Reg
t =

At − α
∑

g∈G
∂h
∂zg

( 1
ηD
g (π)

AS
g,t −

ηS
g (π)

ηD
g (π)2

AD
g,t) + ζAD

1,t and apply Algorithm 1.

Demand in our experiments In Figure 9 in Appendix D.3, we visualize how demand and supply changes during training
for all methods in the three environments. Note that in all algorithms the demand is not regularized. We did not notice any
aforementioned problematic and dramatic change in demand of the disadvantaged group. Specifically, (1) Lending. The
demand (number of qualified applicants) of the disadvantaged group only mildly decreases using methods with fairness
considerations (ELBERT-PO, A-PPO and R-PPO). The supply of the disadvantaged group increases a lot. (2) Infectious. The
demand of the disadvantaged group is barely affected by all algorithms. (3) Attention. The demand (number of incidents) of
the disadvantaged group goes down when using methods with fairness considerations. Although the demand regularization
technique above is not needed in these environments, it might be crucial in other applications.
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Impact Statements
The swift advancement of AI systems brings with it significant challenges that demand meticulous oversight. Vulnerabilities
to attacks during both training (Xu et al., 2024; Chen et al., 2017) and inference phases (Zou et al., 2023; Szegedy et al., 2013),
alongside risks of privacy violations (Yao et al., 2024), copyright infractions (An et al., 2024; Kirchenbauer et al., 2023),
and the reinforcement of social biases (Mehrabi et al., 2021), highlight the need for vigilant management. Implementing
effective and proactive safeguarding measures is imperative to address these risks comprehensively and ensure the ethical
and responsible utilization of AI technologies.

Our work is dedicated to advancing the fairness dimension of trustworthy machine learning, with a particular focus on the
relatively unexplored concept of long-term fairness. This work aims to rigorously formulate long-term fairness in sequential
decision making setting and provide principled bias mitigation strategies. It holds significant relevance in real-world
sequential decision making scenarios, including the allocation of medical resources, college admissions, and the processing
of loan applications. Moreover, the mitigation strategies we propose have the potential to guide machine-learning-based
systems in avoiding unfair decisions in sequential tasks. Our research contributes to the development of ethical AI systems
that uphold the principles of justice and equality.
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