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Abstract

Soft pseudo-labels, generated by the softmax pre-
dictions of the trained networks, offer a proba-
bilistic rather than binary form, and have been
shown to improve the performance of deep neural
networks in supervised learning. Most previous
methods adopt classification loss to train a clas-
sifier as the soft-pseudo-label generator and fail
to fully exploit their potential due to the misalign-
ment with the target of soft-pseudo-label genera-
tion, aimed at capturing the knowledge in the data
rather than making definitive classifications. Nev-
ertheless, manually designing an effective objec-
tive function for a soft-pseudo-label generator is
challenging, primarily because datasets typically
lack ground-truth soft labels, complicating the
evaluation of the soft pseudo-label accuracy. To
deal with this problem, we propose a novel frame-
work that alternately trains the predictive model
and the soft-pseudo-label generator guided by a
meta-network-parameterized label enhancement
objective. The parameters of the objective func-
tion are optimized based on the feedback from
both the performance of the predictive model and
the soft-pseudo-label generator in the learning
task. Additionally, the framework offers versa-
tility across different learning tasks by allowing
direct modifications to the task loss. Experiments
on the benchmark datasets validate the effective-
ness of the proposed framework. Source code is
available at https://github.com/palm-ml/SEAL
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1. Introduction
Soft pseudo-labels, i.e., the soft labels that are not originally
included in the training dataset but generated by the soft-
max predictions of the trained networks, are of paramount
importance for state-of-the-art deep learning methods. Nu-
merous previous researches (Zhang et al., 2019; Hinton
et al., 2015) have demonstrated the success of soft pseudo-
labels in improving the generalization performance of deep
neural networks (DNNs) in supervised learning. As pseudo-
labels could improve the predictive performance of deep
neural networks, they have been successfully applied across
various domains, including computer vision (Lukov et al.,
2022; Algan & Ulusoy, 2022), natural language processing
(Sun et al., 2019; Ngo et al., 2022), and data mining (Li
et al., 2015; Xu et al., 2020).

Self-knowledge distillation (Zhang et al., 2019) utilizes a
DNNs classifier’s predictions as the soft pseudo-labels to
train the model itself to improve the test accuracy. On-
line distillation (Zhang et al., 2018) adopts an ensemble
of classifiers’ predictions as the soft pseudo-label to learn
mutually from each other. Label enhancement (Xu et al.,
2023) adopts Graph Convolutional Network (GCN) to gen-
erate soft pseudo-labels to deal with the multi-label prob-
lem. In addition, soft pseudo-labels are adopted to learn
with weak supervision. PENCIL (Yi & Wu, 2019) utilizes
back-propagation to probabilistically update and correct soft
pseudo-labels via updating the network parameters to deal
with noisy labels in the training dataset. To identify the true
label, partial label learning (Lv et al., 2020) generates soft
pseudo-labels to strengthen the weight of the correct label
among the candidate label set for training in each epoch.

Most previous methods adopt classification loss to train a
classifier as the soft-pseudo-label generator, which is not
aligned with the target of soft-pseudo-label generation. The
objective of training a classifier is maximizing the general-
ization of the classifier itself while training a soft-pseudo-
label generator is aimed at capturing the knowledge in the
data to generate the appropriate soft pseudo-labels for im-
proving the performance of the student models. Therefore,
despite making an effort to tune the generated soft pseudo-
labels, previous methods usually do not unleash the full po-
tential of soft pseudo-labels for improving the performance
of deep neural networks. Nevertheless, manually designing

1



Aligned Objective for Soft-Pseudo-Label Generation in Supervised Learning

an effective objective function for a soft-pseudo-label gen-
erator is challenging, primarily because datasets typically
lack ground-truth soft labels, complicating the evaluation of
the soft pseudo-label accuracy.

To deal with the problem, instead of focusing on manu-
ally designing an explicit loss for a classifier to output soft
pseudo-labels, we propose a novel framework named SEAL,
i.e., Soft-psEudo-lAbeL generator with a learnable label en-
hancement (Xu et al., 2019; 2020) objective, to alternately
train the predictive model and the soft-pseudo-label gen-
erator guided by a meta-network-parameterized objective
function. Specifically, a meta-network dynamically adjusts
the parameters of the loss function used for a soft-pseudo-
label generator. This optimization is informed by feedback
from both the predictive model and the soft-pseudo-label
generator, based on their performance in the learning task,
creating a feedback loop that refines the training process.
Additionally, our framework offers versatility across differ-
ent learning tasks by allowing direct modifications to the
task loss, making it suitable for a range of applications. Our
contributions can be summarized as follows:

• We propose a novel framework named SEAL to generate
soft pseudo-labels for improving the performance of deep
neural networks in supervised learning via inducing a
soft-pseudo-label generator optimized by a loss function
parameterized by a meta-network. Extensive experiments
validate the effectiveness of SEAL.
• We theoretically demonstrate that the soft pseudo-labels

could enable the predictive model to achieve a larger
sample margin for classes. This expansion, in turn, results
in a more robust and tight generalization of the predictive
model when trained using soft pseudo-labels.

• SEAL is flexible to learning tasks as the task loss designed
for the supervised learning problems can be modified
directly. We empirically show that the framework can
be applied to partial label learning problems and achieve
state-of-the-art learning performance.

2. Related Work
In supervised learning, the generation process of soft
pseudo-labels exists in many mainstream algorithms, in-
cluding knowledge distillation, self-knowledge distillation,
label enhancement, and label smoothing.

In knowledge distillation (Hinton et al., 2015), a large
teacher model is trained on the dataset with the original hard
label and generates soft pseudo-labels to teach a lightweight
student model. Self-distillation (Zhang et al., 2019) gener-
ates soft pseudo-labels by the model itself, which claims
that the soft pseudo-labels can be regarded as the model’s
deepest section’s output used to guide the training of shal-
low sections. Xu et al. (Xu & Liu, 2019) leverage distorted

versions of images to generate soft pseudo-labels for the
current batch images. Yun et al. (Yun et al., 2020) intro-
duce class-wise self-distillation that randomly chooses a
different sample of the same class to generate a soft pseudo-
label for the current sample. Building on this, Zhang et al.
(Zhang et al., 2021a) propose to generate soft pseudo-labels
based on the statistics of the model prediction for the target
category. Taking a different approach, Kim et al. (Kim
et al., 2021) suggest generating soft pseudo-labels adap-
tively by combining the ground-truth and past predictions
from the model itself. Some methods also have low training
costs for generating soft pseudo-labels. Liang et al. (Liang
et al., 2022) propose an efficient self-distillation method that
uses the on-the-fly prediction of a network to generate soft
pseudo-labels that conform to a distribution. Additionally,
Shen et al. (Shen et al., 2022) rearrange the sequential sam-
pling by constraining half of each mini-batch coinciding
with the previous iteration. The soft pseudo-labels are gen-
erated from the previous iteration, which is computationally
efficient.

Label smoothing (Szegedy et al., 2016) prevents the net-
work from becoming over-confident by regulating the model
training by substituting one-hot labels with smoothed alter-
natives, which can also be regarded as soft pseudo-labels.
Rather than using a uniform distribution, low-rank adap-
tive label smoothing (Ghoshal et al., 2021) adopts a more
informative noise distribution to generate the soft pseudo-
label for each class. To address the challenges in multi-label
learning (Zhang & Zhou, 2014), Label enhancement (LE)
(Xu et al., 2020) recovers label distribution for training
multi-label classifiers, which could also be regarded as soft
pseudo-labels. The Graph-Laplacian-based LE method (Xu
et al., 2019) utilizes a local similarity matrix to maintain
the structural integrity of the feature space, thereby convert-
ing discrete labels into soft labels. Zhang et al. (Zhang
et al., 2021b) implemented a label propagation technique
to disseminate labeling-importance information through-
out the network, facilitating the generation of soft pseudo-
labels. The manifold-based LE (Hou et al., 2016) lever-
ages the locally linear embedding technique to derive soft
pseudo-labels. Low-rank representation LE method (Tang
et al., 2020) captures the global relationships among samples
and predicts implicit label correlations for generating soft
pseudo-labels. Furthermore, Zhu et al. (Zhu et al., 2020) in-
corporate both the structural relationships between instances
and privileged information to generate soft pseudo-labels.

Soft pseudo-labels are commonly employed to serve as
a kind of supervision refinement technique in weakly-
supervised learning, such as partial label learning (PLL)
(Lv et al., 2020; Zhang & Yu, 2015) where the correct label
is hidden in candidate label set. Yao et al. (Yao et al., 2020)
generate soft pseudo-labels by assembling the model predic-
tions of different epochs and regard them as the auxiliary
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supervision information for the next epoch. Progressive
identification-based methods (Lv et al., 2020; Feng et al.,
2020) normalize the softmax output on candidate labels to
create soft pseudo-labels. Xu et al. (Xu et al., 2021) treat the
soft pseudo-label as a latent variable and utilize variational
inference to approximate the poster of the soft labels. Wang
et al. (Wang et al., 2022) generate soft pseudo-labels by as-
sessing the similarity between contrastive embeddings and
each class prototype. Meanwhile, the consistency-based
method (Wu et al., 2022) proposes bi-level optimization
for generating soft pseudo-label. In the further analysis of
our experiments, we will demonstrate that our framework
could deal with weakly-supervised data by taking the PLL
experiment as an example.

3. Proposed Method
3.1. Preliminaries

First of all, we briefly introduce some necessary notations.
Let X = Rq be the q-dimensional instance space and Y =
{1, 2, ..., c} be the label space with c class labels. Given the
training setD = {(xi, yi)|1 ≤ i ≤ n}where xi denotes the
q-dimensional instance and yi ⊆ Y denotes the ground-truth
label associated withxi. In this paper, we aim to find a multi-
class classifier f : X 7→ ∆c−1 in the function class F with
the training setD, where ∆c−1 represents the c-dimensional
simplex. For each training example (xi, yi), we use the log-
ical label vector li = [l1i , l

2
i , . . . , l

c
i ]
> ∈ {0, 1}c to represent

whether j is the ground-truth label, i.e., lji = 1 if j = yi,
otherwise lji = 0. The soft pseudo-label of xi is denoted
by si = [s1i , s

2
i , . . . , s

c
i ]
> ∈ [0, 1]c where

∑c
j=1 s

j
i = 1.

Then L = [l1, l2, . . . , ln] and S = [s1, s2, . . . , sn] repre-
sent the initial label matrix and soft pseudo-label matrix,
respectively.

3.2. Overview

SEAL alternately trains the predictive model and the
soft-pseudo-label generator guided by a meta-network-
parameterized objective function. The meta-network dy-
namically adjusts the parameters of the objective function
used for a soft-pseudo-label generator. This optimization is
informed by feedback from both the predictive model and
the soft-pseudo-label generator, based on their performance
in the learning task, creating a feedback loop that refines
the training process. Additionally, our framework offers
versatility across different learning tasks by allowing direct
modifications to the task loss.

SEAL forges a link between the predictive model’s parame-
ters and the meta-network’s parameters by utilizing the soft-
pseudo-label generator as a conduit within the meta-learning
framework at each iteration. The process is initiated by
cloning the parameters from both the predictive model and

soft-pseudo-label generator only for meta-learning purposes.
Subsequently, the meta-network optimizes the duplicate pa-
rameters of the pseudo-label model, making the updated
duplicate parameters depend on the meta-network’s parame-
ters. This is followed by optimizing the predictive model’s
parameters using the soft pseudo-labels produced by the
soft-pseudo-label generator by with the updated duplicate
parameters, thereby making the predictive model’s updated
duplicate parameters also depend on the meta-network’s pa-
rameters. The task loss then evaluates the output of the pre-
dictive model using the updated duplicate parameters, and
the gradient is backpropagated towards the meta-network.
Upon finishing the meta-learning step, the refined meta-
network is further employed to optimize the soft-pseudo-
label generator to improve the predictive model.

3.3. The SEAL Framework

To train the predictive DNNs f parameterized by φ, we
minimize the following empirical risk estimator R̂(f) by
leveraging the original label li and soft pseudo-label si of
each instance xi:

R̂(f) =
1

n

n∑

i=1

(`(f(xi;φ), li) + λ`(f(xi;φ), si)) , (1)

where ` is a cross-entropy function, and the multiplicative
factor λ is used to balance the supervision signal provided
by the original label li and soft pseudo-label si. The soft
pseudo-label si is generated by a soft-pseudo-label genera-
tor g parameterized by ψ, i.e.,

si = g(xi;ψ). (2)

where the architecture of g is the same as f .

Instead of manually designing an explicit loss for a clas-
sifier to output soft pseudo-labels, SEAL proposed a meta-
network-parameterized objective function for training the
soft-pseudo-label generator g to align with the target of soft-
pseudo-label generation. The parameterized objective func-
tion is represented by h parameterized by a meta-network ω
(Bechtle et al., 2020). Then the soft-pseudo-label generator
g is optimized by minimizing

L(g) =
1

n

n∑

i=1

h(g(xi;ψ), li;ω). (3)

SEAL alternately trains the predictive model f , the soft-
pseudo-label generator g, and the parameterized objective h
in a meta-learning process.

Firstly, we begin with copying the parameters of the pre-
dictive model and soft-pseudo-label generator with φ′ = φ
and ψ′ = ψ, which are only used for the meta-learning
process. Then, we optimize the parameters ψ′ of the soft-
pseudo-label generator g via using the following parametric
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objective function Lm:

Lm(g(X;ψ′),L) =
1

n

n∑

i=1

h(g(xi;ψ
′), li;ω), (4)

After the parameter ψ′ is optimized to the optimal param-
eter ψ′?, ψ′? will always depend on the parameters ω of
the meta-network h, which we could explicitly express the
dependency as ψ′?(ω).

Next, let S′ = [s′1, s
′
2, . . . , s

′
n] denote soft pseudo-labels

generated by the soft-pseudo-label generator g(·;ψ′?) ac-
cording to Eq. (2). We optimize the parameters φ′ of the
predictive model f via the loss function Lpl as follows:

Lpl(f(X;φ′),S′) =
1

n

n∑

i=1

`pl(f(xi;φ
′), s′i), (5)

where `pl serves as a bridge between the predictive
model f and soft-pseudo-label generator g. Note that
Lpl(f(X;φ′),S′)) also perform back-propagation on S′,
which allows the optimal parameters φ′? after updating to
be dependent on the parameters ψ′ of the soft-pseudo-label
generator g, i.e., φ′?(ψ′?), and further dependent on the
parameters ω of the meta-network h, i.e., φ′?(ψ′?(ω)).

Finally, upon finishing the optimization of the parameters
φ′ of the predictive model f ′, we use the following task loss
Lt to optimize the parameters ω of the meta-network h:

Lt(f(X;φ′?),L) =
1

n

n∑

i=1

`t(f ′(xi;φ
′?), li), (6)

where `t is a specified loss function to some specified task.

Overall, the meta-learning objective can be formulated as
the optimization problem as follows:

min
ω
Lt(f ′(X;φ′?),L)

s.t. φ′? = arg min
φ′
Lpl(f ′(X;φ′),S′)

ψ′? = arg min
ψ′
Lm(g′(X;ψ′),L)

(7)

Here, to solve the optimization of Eq. (7), we adopt a
batch-style strategy to update ψ′, φ′ and ω through a single
optimization loop, respectively, to guarantee the efficiency
of the algorithm. We employ stochastic gradient descent
(SGD) optimization to optimize Eq. (4) (5) and (6). Specif-
ically, in each iteration k of training, the training set D is
shuffled into I mini-batches, containing m training samples
{(xi,yi)|1 ≤ i ≤ m}. Firstly, the updating equation of
the soft-pseudo-label generator parameters ψ′[k−1] can be
formulated by moving along the direction of the objective
loss in Eq. (4) into the new ψ′[k] on a mini-batch training

data as follows:

ψ′[k] = ψ′[k−1]

− α

m

m∑

i=1

∂h(g′(xi;ψ
′[k−1]), li;ω

[k−1])

∂ψ′[k−1]
,

(8)

where α is the step size. Secondly, the updating equation for
the predictive model parameters φ′[k−1] can be expressed
by adjusting them in the direction of the objective loss in
Eq. (5) on a mini-batch of training data, resulting in the new
parameter set φ′[k], as follows:

φ′[k] = φ′[k−1] − β

m

m∑

i=1

∂`pl(f ′(xi;φ
′[k−1]), s′i)

∂φ′[k−1]
, (9)

where β is the step size and s′i = g(xi;ψ
′[k]). Thirdly, the

iterative update for the predictive model parameters ω[k−1]

can be expressed by aligning them with the direction of the
objective loss in Eq. (6) on a mini-batch of training data,
yielding the refined parameter set ω[k], as outlined below:

ω[k] = ω[k−1] − κ

m

m∑

i=1

∂`t(f ′(xi;φ
′[k−1]), li)

∂ω[k−1] , (10)

where κ is the step size. Finally, we update the soft-pseudo-
label generator parameters ψ[k−1] via the updated meta-
network h on a mini-batch training data as follows:

ψ[k] =ψ[k−1]

− α
m

m∑

i=1

∂h(g(xi;ψ
[k−1]), li;ω

[k])

∂ψ[k−1] ,
(11)

where we keep the step size the same as that in Eq. (8).

In this way, as the soft-pseudo-label generator parameters
ψ and meta-network parameters ω are updated iteratively,
the soft pseudo-labels S produced by the soft-pseudo-label
generator g is also refined to contribute to the training of the
predictive model step by step. The algorithmic description
of SEAL is presented in Algorithm 1.

3.4. Practical Implementation

Gradual increase of λ. In the risk estimator Eq. (1), we
use a balancing factor λ during the whole training procedure,
which is suggested not to be fixed. At the beginning of the
training phase, the meta-network h is not prepared to train
the soft-pseudo-label generator g to produce reliable soft
pseudo-labels, which will lead to a performance drop of the
classifier. Hence, we apply a linear ramp-up function to
increase λ from a small weight to the given λe during the
first T ′ epochs:

λ(t) = min{ t
T ′
λe, λe}. (12)
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Algorithm 1 SEAL Algorithm
Require: The training set D = {(xi, li)|1 ≤ i ≤ n},

epoch T , iteration I;
1: for t = 1, . . . , T do
2: Shuffle the training set D = {(xi, li)|1 ≤ i ≤ n}

into I mini-batches;
3: for k = 1, . . . , I do
4: Copy the parameters of the predictive model and

soft-pseudo-label generator withφ′[k−1] = φ[k−1]

and ψ′[k−1] = ψ[k−1];
5: Update ψ′[k−1] to ψ′[k] by Eq. (8);
6: Update φ′[k−1] to φ′[k] by Eq. (9);
7: Update ω[k−1] to ω[k] by Eq. (10);
8: Update ψ[k−1] to ψ[k] by Eq. (11);
9: Obtain the soft pseudo-labels si for each example

xi by Eq. (2);
10: Update the predictive model parameters φ by for-

ward computation and back-propagation with the
empirical risk estimator in Eq. (1);

11: end for
12: end for
Ensure: The predictive model f(·;φ).

This dynamic strategy gradually makes the second term in
Eq. (1) with soft pseudo-labels dominate in the whole risk
estimator, as the meta-network h is being trained during the
first T ′ epochs,

Chioces of `pl. We use the bidirectional Kullback-Leibler
(KL) divergence loss as `pl to optimize φ′ in Eq. (5):

`pl(f(xi;φ
′), s′i) = KL(s′i||f(xi;φ

′))

+ KL(f(xi;φ
′)||s′i),

(13)

Chioces of `t. For supervised learning, considering the
top-k prediction, we use the following loss as the task loss
`t to optimize ω in Eq. (6):

`t(f(xi;φ
′?), li) =

− log
( c∑

k=1

P (j)
( k∑

j=1

Qj,yi(f(xi;φ
′?))
))
,

(14)

where P (j) is the given prior of the top-j, and Qj,yi is the
predicted probability of yi being the j-th best prediction
for xi. We employ the library provided by (Petersen et al.,
2022) to estimate Qj,yi .

SEAL is flexible to learning tasks as the task loss designed
for the supervised learning problems can be modified di-
rectly. For example, we could utilize the following loss via
considering the consistency between the feature and label
spaces (Wu et al., 2022) as the task loss `t in SEAL to deal

with partial label learning (Zhang et al., 2017) :

`t(f(xi;φ
′?), li) =

K∑

k=1

KL(ui||f(xki ;φ′?)), (15)

where {x1
i ,x

2
i , . . . ,x

K
i } denotes a K-augmentation set for

the instance xi, and ui = [ui1, ui2, . . . , uic] with

uij =
(
∏K
k=1 fj(x

k
i ;φ′?))

1
K

∑c
o=1(

∏K
k=1 fo(x

k
i ;φ′?))

1
K

. (16)

3.5. Theoretical Analysis

We will theoretically demonstrate that the soft pseudo-labels
could enable the predictive model to achieve a larger sample
margin for classes, which results in a more robust and tight
generalization of the predictive model when trained using
soft pseudo-labels.

Let Z = [z>1 , z
>
2 , . . . ,z

>
n ] ∈ R denote the feature ma-

trix extracted by the backbone of the classifier, Θ =
[θ>1 ,θ

>
2 , . . . ,θ

>
c ] represent the parameters of the last classi-

fier layer, implemented with a linear layer. Let Pj(x) denote
the class-conditional distribution, i.e., Pj(x) = P (x|y =
j), and [j] = {i|yi = j} denote the sample indices corre-
sponding to class j. We define the margin for a class j as
follows:

γj = min
i∈[j]

θ>j zi −max
j′ 6=j

θ′>j zi. (17)

Let G(F ,X ,Y) denote the generalization error bound in-
duced from the class margin γ (Cao et al., 2019). Then under
the assumption about the extracted features in Appendix A,
we could obtain the following theorem:

Theorem 3.1. Let Θ be the parameters of the last model
layer trained by Gradient Descend starting from random
initialization. Suppose that at epoch T , ∀k ∈ Y with
k 6= p, θk arrives at the optimal prototype vk. Then, we
fix the extracted features {zi|1 ≤ i ≤ n} and the proto-
type except θp to continue the training process for θp. Let
Gs(F ,X ,Y), Gh(F ,X ,Y) denote the generalization error
bound based on the class margin derived from the empiri-
cal risk estimators with soft pseudo-labels and initial hard
labels, respectively. At epoch T ′ > T , we could have

Gs(F ,X ,Y) < Gh(F ,X ,Y).

The proof of Theorem 3.1 is provided in Appendix A. The-
orem 3.1 shows that the expected generalization error of
the model trained on proper soft pseudo-labels could be
bounded by a smaller upper bound than the model trained
on initial hard labels.
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Table 1. Classification accuracy of each comparing approach (mean ± std). The best performance is shown in boldface. •/◦ indicates
whether the performance of SEAL is statistically superior/inferior to the comparing algorithm on each dataset (pairwise t-test at 0.05
significance level).

Methods CIFAR-10 CIFAR-100 TinyImageNet

CE 91.36± 0.33%• 68.11± 0.45%• 54.28± 0.27%•
LSR 91.62± 0.28% 68.96± 0.60%• 54.74± 0.28%•
TF-KDself 91.66± 0.04% 70.44± 0.26% 54.34± 0.34%•
TF-KDreg 91.14± 0.35%• 69.47± 0.56%• 54.11± 0.37%•
CS-KD 91.38± 0.14%• 68.63± 0.17%• 55.67± 0.58%•
PS-KD 91.23± 0.22%• 68.39± 0.81%• 54.35± 0.75%•
DLB 91.29± 0.23%• 68.48± 0.40%• 53.61± 0.19%•
USKD 91.47± 0.15%• 69.33± 0.66%• 55.33± 0.32%•
SEAL 91.79 ± 0.11% 70.72 ± 0.17% 56.76 ± 0.22%

4. Experiments
4.1. Datasets

We employ three benchmark datasets for multi-class clas-
sification including CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009), and TinyImageNet (Le & Yang, 2015),
to evaluate the proposed approach. Both CIFAR-10 and
CIFAR-100 consist of a total of 60, 000 images with reso-
lutions of 32× 32 pixels, distributed across 10 classes and
100 classes, respectively. The TinyImageNet dataset
is a subset of ILSVRC-2012 (Russakovsky et al., 2015)
and contains 200 classes. Each class is represented by
500 training samples and 50 testing samples, all resized
to 64 × 64. In our preprocessing routine, training images
from all datasets underwent random cropping and resizing to
a uniform 32× 32 pixel format post-normalization, whereas
test images were solely normalized. We allocated 10% of
the training data from each dataset for validation purposes.

4.2. Baselines

We compare the performance of SEAL with seven soft-
pseudo-label approaches:

• LSR (Szegedy et al., 2016): A label-smoothing regular-
ization approach which replaces the one-hot encoded true
label with a smoothed distribution that assigns some prob-
abilities to incorrect labels.

• TF-KDself (Yuan et al., 2020): A self-training knowledge
distillation approach which trains the student model in a
normal way to obtain a pre-trained model and uses it to
generate soft labels to train itself.

• TF-KDreg (Yuan et al., 2020): A teacher-free knowledge
distillation approach which uses manually designed soft
labels that the probability of a correct class is much higher
than that of an incorrect one.

• CS-KD (Yun et al., 2020): A class-wise self-distillation
approach which matches or distills the predictive distribu-

tion of the model between different samples of the same
label.

• PS-KD (Kim et al., 2021): A progressive self-distillation
approach which adjusts the training targets progressively
by combining the ground-truth and past predictions from
the model itself.

• DLB (Shen et al., 2022): An efficient self-distillation
approach which distills the on-the-fly generated smooth
labels in the previous iteration after rearranging the sam-
pling sequence.

• USKD (Yang et al., 2023): A self-distillation approach
generates customized soft labels for both target and non-
target classes without a teacher.

In addition, we also compare the performance of SEAL
against CE, which directly uses initial binary labels to train
the model with cross-entropy loss.

We employ ResNet-20, ResNet-44 and ResNet-18 for
CIFAR-10, CIFAR-100 and TinyImageNet as back-
bone respectively. For the meta-network, we follow (Bechtle
et al., 2020; Raymond et al., 2023) and use a small feedfor-
ward neural network with two hidden layers and 40 hidden
units. Smooth leaky ReLU activations are used in the hid-
den layers and smooth Softplus activation is used in the
output layer. We configure the total number of epochs as
200 and set the batch size to 128. We employ the SGD
optimizer with a momentum of 0.9 and a weight decay of
1× 10−4, where the initial learning rate is established at 0.1
with a decay factor of 10%. Additionally, we incorporate
standard data augmentation techniques, including Random
Horizontal Flipping and Random Cropping.

4.3. Experimental Results

Table 1 shows the classification accuracy of each compara-
tive approach for different benchmark datasets. We perform
5 trials with different random seeds and the reported metrics
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Figure 1. The test accuracy of SEAL and CE on corrupted benchmark datasets with noisy rate τ ∈ {0.1, 0.3, 0.5}

include both the mean and standard deviation. The best
performance is shown in boldface. •/◦ indicates whether the
performance of SEAL is statistically superior/inferior to the
comparing algorithm on each dataset (pairwise t-test at 0.05
significance level). As shown in table 1, it is impressive to
observe that:

• SEAL achieves the best performance against all the com-
paring approaches on all benchmark datasets.

• SEAL achieves superior or at least comparable per-
formance to other approaches on CIFAR-10 and
CIFAR-100.

• SEAL achieves superior to other approaches on
TinyImageNet and exceeds the performance of the
second-best algorithm by 1.09%.

• With the growing complexity of datasets, our approach
demonstrates progressively superior performance.

Additionally, to prove the robustness to label noise of
our method, we manually corrupt the benchmark datasets
with symmetric noisy labels under the noisy ratio τ ∈
{0.1, 0.3, 0.5}. Subsequently, for each selected training
instance, we replace its correct label with another possible
label to create a noisy label. Figure 1 illustrates the curves
of test accuracy comparing the baseline CE with SEAL un-
der different noisy rate τ on the benchmark datasets. It can
be observed from the figure that SEAL achieves higher test
accuracy against CE in all scenarios and the performance of
SEAL is robust in the last half of the training stage. These
observations demonstrate that SEAL is robust to label noise.

4.4. Further Analysis

4.4.1. ABLATION AND CONVERGENCE STUDY

To show the helpfulness of the meta-network-parameterized
objective function in SEAL, the vanilla variant of SEAL,
i.e., SEAL-NM, is adopted to conduct the ablation study.
For SEAL-NM, the meta-network-parameterized objective

Table 2. Classification accuracy (mean ± std) of SEAL and its
variant on the benchmark datasets. The best performance is shown
in boldface. •/◦ indicates whether the performance of SEAL is
statistically superior/inferior to the comparing algorithm on each
dataset (pairwise t-test at 0.05 significance level).

Datasets SEAL SEAL-NM

CIFAR-10 91.79 ± 0.11% 91.41± 0.33%•
CIFAR-100 70.72 ± 0.17% 68.63± 0.42%•
TinyImageNet 56.76 ± 0.22% 55.31± 0.64%•
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Figure 2. Convergence of the generated soft pseudo-label matrix
S on CIFAR-100.

function is replaced by the cross-entropy loss. Table 2
shows that SEAL achieves superior performance to SEAL-
NM on all datasets, which demonstrates the usefulness of
the meta-network-parameterized objective function in SEAL
for improving the performance of the classifier.

Besides, Figure 2 illustrates the soft pseudo-labels generated
by soft-pseudo-label generator in SEAL converges with the
number of epochs on CIFAR-100, which shows that the
the soft pseudo-labels in SEAL could converge efficiently.
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Table 3. Classification accuracy (meanstd) of each comparing algorithm in terms of the different proportion of false positive candidate
labels. The best performance (the larger the better) is shown in boldface. •/◦ indicates whether the performance of SEAL is statistically
superior/inferior to the comparing algorithm on each dataset (pairwise t-test at 0.05 significance level).

Methods CIFAR-10 CIFAR-100
Flipping Probability 0.3 0.5 0.7 0.9 0.03 0.05 0.1

PRODEN 91.27 0.33 • 90.42 0.14 • 89.26 0.33 • 84.02 1.16 • 65.03 0.69 • 64.28 0.50 • 64.04 0.24 •
CC 89.75 0.50 • 87.57 0.35 • 84.88 0.25 • 79.96 0.54 • 64.75 0.37 • 63.84 0.89 • 61.66 0.24 •

VALEN 89.19 0.49 • 88.36 0.30 • 87.29 0.43 • 44.75 1.96 • 66.77 0.99 • 65.97 0.87 • 65.27 0.18 •
CAVL 89.23 3.64 • 88.26 4.06 • 53.38 2.81 • 13.19 2.33 • 57.75 2.35 • 47.07 3.19 • 25.83 1.71 •
IDGP 92.07 0.32 • 91.04 0.13 • 88.37 2.50 • 47.76 1.51 • 68.19 0.02 • 67.68 0.29 • 62.39 1.74 •
PICO 88.14 0.25 • 86.00 0.24 • 76.47 1.65 • 25.63 6.25 • 60.50 0.39 • 58.69 0.52 • 37.91 1.56 •
PLCR 90.90 0.14 • 90.39 0.21 • 89.31 0.39 • 81.39 2.79 • 67.01 0.33 • 65.78 0.64 • 62.46 0.37 •
SEAL 92.93 0.29 91.98 0.28 89.88 0.34 85.36 0.41 71.27 0.40 68.75 0.67 67.21 1.31

4.4.2. LEARNING WITH PARTIAL LABELS

In this subsection, we utilize SEAL to deal with partial
label learning (PLL) (Zhang et al., 2016) by modifying the
task loss as Eq. (15). Adopting the same experimental
settings in previous PLL work (Lv et al., 2020; Wang et al.,
2022; Feng et al., 2020), we manually corrupt CIFAR-10
and CIFAR-100 into partially labeled versions by flipping
negative labels to false positive labels with the probability
{0.3, 0.5, 0.7, 0.9} and {0.03, 0.05, 0.1}, respectively. The
performance of SEAL is compared against seven deep PLL
methods:

• PRODEN (Lv et al., 2020): A progressive identification
approach which approximately minimizes a risk estimator
and identifies the true labels in a seamless manner;

• CC (Feng et al., 2020): A classifier-consistent approach
which also uses the loss correction strategy to learn the
classifier that approaches the optimal one;

• VALEN (Xu et al., 2021): An instance-dependent PLL
approach which recovers the latent label distribution via
variational inference methods;
• CAVL (Zhang et al., 2022): A progressive identification

approach which exploits the class activation value to iden-
tify the true label in candidate label sets.

• IDGP (Qiao et al., 2023): A disambiguation approach
which builds the model upon a decompositional genera-
tion process of candidate labels.

• PICO (Wang et al., 2022): A data-augmentation-based
method which identifies the true label via contrastive
learning with learned prototypes for image datasets.

• PLCR (Wu et al., 2022): A data-augmentation-based
method which identifies the true label via consistency
regularization with random augmented instances.

Here, we employ a ResNet-32 as the backbone. The to-
tal number of epochs is set to 200. We use SGD op-
timizer with a momentum of 0.9 and weight decay of

1 × 10−3. Learning rates are chosen from the orders of
magnitude {10−2, 10−3, 10−4} guided by the performance
on the validation dataset. Common data augmentations are
applied, including Random Horizontal Flipping, Random
Cropping, Cutout (Devries & Taylor, 2017), and Auto Aug-
ment (Cubuk et al., 2019).

Table 3 illustrates the classification accuracy comparing the
PLL baselines with SEAL under different flipping probabil-
ity of negative labels to false positive labels on CIFAR-10
and CIFAR-100. By changing the task loss in our frame-
work SEAL, we successfully adapt to the PLL task and
demonstrate significantly superior performances against all
the PLL baselines on all settings.

5. Conclusion
In this paper, we propose a novel framework SEAL that
trains the predictive model using soft pseudo-labels gener-
ated by the specialized soft-pseudo-label generator with a
meta-network-parameterized objective. SEAL alternately
trains the predictive model and the soft-pseudo-label gen-
erator guided by a meta-network-parameterized objective
function. The meta-network dynamically adjusts the param-
eters of the objective function used for a soft-pseudo-label
generator. This optimization is informed by feedback from
both the predictive model and the soft-pseudo-label genera-
tor, based on their performance in the learning task. SEAL
is flexible to learning tasks as the task loss designed for the
supervised learning problems can be modified directly. Ex-
periments validate the effectiveness of the proposed method.
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A. Appendix
We starts with introducing some necessary notations. Let Z = [z>1 , z

>
2 , . . . ,z

>
n ] ∈ R2×n denote the feature matrix extracted

by the backbone of the classifier, Θ(t) = [θ>1 (t),θ>2 (t), . . . ,θ>c (t)] ∈ Ra×c represent the parameters at the t-th epoch of
the last classifier layer, implemented with a linear layer. Following (Zhou et al., 2022), we refer to θj as the prototype of the
class j. Let W = [w1,w2, . . . ,wn]> ∈ Rn×c denote the label matrix for supervision, i.e., W = L if we use hard labels,
otherwise W = S. For multi-class learning, we use softmax operation and cross-entropy loss function. Hence, the
empirical risk estimator at the t-th epoch is as follows:

L(t) = − 1

n

n∑

i=1

c∑

j=1

wji log
eθ

>
j (t)zi

∑c
k=1 e

θ>
k (t)zi

. (18)

Let Pj(x) denote the class-conditional distribution, i.e., Pj(x) = P (x|y = j), and [j] = {i|yi = j} denote the sample
indices corresponding to class j. We define the margin for a class j as follows:

γj = min
i∈[j]

θ>j zi −max
j′ 6=j

θ′>j zi. (19)

Let Lγj ,j denote the margin loss on examples from class j:

Lγj ,j [f ] = Ex∼Pj(x)I[max
j′ 6=j

fj′(x) > fj(x)− γj ], (20)

and L̂γ,j denote its empirical variant:

L̂γ,j [f ] =
1

|[j]|
∑

i∈[j]

I[max
j′ 6=j

fj′(xi) > fj(xi)− γj ]. (21)

Here, for convenience, we let fj(xi) = θ>j zi denote the logits of the model without the softmax operation. For a
hypothesis class F , let R̂j(F) denote the empirical Rademacher complexity of its class j margin:

R̂j(F) =
1

|[j]|Eσ


sup
f∈F

∑

i∈[j]

σi[fj(xi)−max
j′ 6=j

fj′(xi)]


 (22)

where σ is a vector of i.i.d. uniform from {+1,−1} bits. According to (Cao et al., 2019), we have the following theorem of
class-balanced generalization error bound:

Theorem 1. With probability 1− δ over the randomness of the training data, for class sample margins γ1, . . . , γc > 0, let

G(F ,X ,Y =
1

c

c∑

j=1

(
L̂γj ,j [f ] +

4

γj
R̂j(F) + εj(γj)

)
, (23)

where εj(γj) =

√
log log2(

2maxx∈X ,f∈F |f(x)|
γj

)+log 2c
δ

|[j]| is typically a low-order term in |[j]|. For all hypotheses f ∈ F , we will
have balanced-class generalization bounded by:

Px,y[fy(x) < max
j 6=y

fj(x)] ≤ G(F ,X ,Y, {γ1, ..., γc}). (24)

Lemma A.1. Suppose that the γp in {γ1, ..., γc} is replace by γ′p to obtain G′(F ,X ,Y), which satisfies γ′p > γp, then we
have G′(F ,X ,Y) < G(F ,X ,Y).
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Proof. According to the definition of the class margin in Eq. (19), for the first term of Eq. (23) we have

L̂γj ,j [f ] =
1

|[j]|
∑

i∈[j]

I[max
j′ 6=j

fj′(xi) > fj(xi)− γj ]

=
1

|[j]|
∑

i∈[j]

I[fj(xi)−max
j′ 6=j

fj′(xi) < min
i∈[j]

θ>j zi −max
j′ 6=j

θ′>j zi]

=
1

|[j]|
∑

i∈[j]

I[
1

|[j]|
∑

i∈[j]

I[min
i∈[j]

θ>j zi −max
j′ 6=j

θ′>j zi < min
i∈[j]

θ>j zi −max
j′ 6=j

θ′>j zi]

= 0.

(25)

For the second term, the Rademacher complexity R̂j(F) will typically scale as
√

C(F)
|[j]| , which C(F) denotes some

complexity measure of F , only related to F and the number of the instances belonging to class j. Hence, 4
γj
R̂j(F) will

increase as γj decreases. So does the third term εj(γj).

Then, we have

G(F ,X ,Y) =
1

c


∑

j 6=p

L̂γj ,j [f ] +
4

γj
R̂j(F) + εj(γj) +

(
L̂γp,p[f ] +

4

γp
R̂p(F) + εp(γp)

)



=
1

c


∑

j 6=p

L̂γj ,j [f ] +
4

γj
R̂j(F) + εj(γj) +

( 4

γp
R̂p(F) + εp(γp)

)



>
1

c


∑

j 6=p

L̂γj ,j [f ] +
4

γj
R̂j(F) + εj(γj) +

( 4

γ′p
R̂p(F) + εp(γ

′
p)
)



=
1

c


∑

j 6=p

L̂γj ,j [f ] +
4

γj
R̂j(F) + εj(γj) +

(
L̂γ′

p,p
[f ] +

4

γ′p
R̂p(F) + εp(γ

′
p)
)



= G′(F ,X ,Y)

(26)

Hence, we obtain G′(F ,X ,Y) < G(F ,X ,Y), and complete the proof.

We make an assumption on the distribution of the extracted features as follows:

Assumption 1. For p ∈ Y , let vp =
1

|[p]|
∑
i∈[p] zi

|| 1
|[p]|

∑
i∈[p] zi||

. The extracted features {zi|1 ≤ i ≤ n} satisfy: (1) ∀1 ≤ i ≤ n,

||zi|| = 1 and ∀i, j ∈ [p], z>i zj > 0. (2) ∀i ∈ [p], ∃j ∈ [p], zj = ||zj + vp||vp − zi. (3) ∀p, q ∈ Y with p 6= q, ∀i ∈ [p]
and j ∈ [q], v>p zi ≥ v>q zi and v>p zi ≥ v>p zj . (4) ∀p ∈ Y , ∀d ∈ ∆c−1 with p = arg maxk d

k,
∑
i∈[p]

∑
j∈[p] d

mz>i zj >∑
i/∈[p]

∑
j∈[p](1− dp)z>i zj .

Here, vp is a normalized center of the extracted features belongs to class p. (1) means that the extracted feature zi has been
normalized to a hypersphere with a radius of 1 (Zhou et al., 2022), and for two extracted features belongs to the same class,
they do not go into opposite directions (Wang & Ma, 2022). (2) means that for each extracted feature of each class p, there
is a symmetric point zj about the vector vp. (3) means that vq can be considered as the optimal prototype of each class q,
and the extracted features {zi|1 ≤ i ≤ n} have the separability (Li & Liang, 2018). (4) is an assumption that the correlation
between the extracted features belonging to the same class is stronger than that ones belonging to different classes.

Let ∠(·, ·) denote the angle between two vectors. Let op = arg mini∈[p] v
>
p zi, and zop can be seen as the edge sample of

the class p. According to Assumption 1, there also exists o′p ∈ [p], such that v>p zop = v>p zo′p . Then, we make the following
assumption about the prototypes:

Assumption 2. ∀k ∈ Y with k 6= p, θk = vk, and the normalized prototype θp satisfy: (1) ||θp|| = 1; (2) ∠(θp, zop) +
∠(θp,vp) = ∠(zop ,vp); (3) ∀q = arg minq 6=p ∠(vp,vq),∠(vq, zo′p) < ∠(vq, zop). (4) ∀q ∈ Y with q 6= p, ∀i ∈ [q], for
q′ = arg maxq′ 6=q θ

′>
q zi, p 6= q′.

13
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Here, (1) means that the final prototypes used to classify the extracted features are also on a hypersphere with a radius of 1
(Zhou et al., 2022). (2) means that the prototype θp lies between the vp and zo′p . (3) means that the prototype vq , which is
nearest to vp, is closer to zo′p than zop . (4) means that the change of θp will only have effect on γp.

Then, we could obtain the following lemma:

Lemma A.2. Under Assumption 2, suppose that Θ with θp and Θ′ with θ′p satisfy Assumption 2, and θ>p vp − θ′>p vp > 0,
we have γp − γ′p > 0.

Proof. The class margin γp and γ′p could be computed as γp = θ>p zo′p − θ>q zo′p and γ′p = θ′>p zo′p − θ>q zo′p with some
q 6= p, according to Assumption 2. Then we have:

γp − γ′p = θ>p zo′p − θ′>p zo′p
= cos∠(θp, zo′p)− cos∠(θ′p, zo′p)

= cos
(
∠(θp,vp) + ∠(vp, zo′p)

)
− cos

(
∠(θ′p,vp) + ∠(vp, zo′p)

) (27)

Since θ>p vp − θ′>p vp > 0, we could get ∠(θp,vp) < ∠(θ′p,vp). Hence, γp − γ′p > 0.

Theorem 2. Let Θ be the parameters of the last model layer trained by Gradient Descend starting from random initialization.
Suppose that at epoch T , ∀k ∈ Y with k 6= p, θk arrives at the optimal prototype vk. Then, we fix the extracted features
{zi|1 ≤ i ≤ n} and the prototype except θp to continue the training process for θp. Let Gs(F ,X ,Y), Gh(F ,X ,Y) denote
the generalization error bound based on the class margin derived from the empirical risk estimators with soft pseudo-labels
and initial hard labels, respectively. At epoch T ′ > T , we could have

Gs(F ,X ,Y) < Gh(F ,X ,Y).

.

Proof. ∀p ∈ Y , the gradient of L(t) with respect to θ>p (t) can be derived as follows:

∂L(t)

∂θ>p (t)
=

1

n

n∑

i=1


∑

j 6=p

wji
e(θp(t)−θj(t))

>zi

1 +
∑
k 6=j e

(θk(t)−θj(t))>zi
− wpi

∑
k 6=p e

(θk(t)−θj(t))>zi

1 +
∑
k 6=p e

(θk(t)−θj(t))>zi


 z>i (28)

Let Lh and Ls denote the risk estimators using the hard labels and soft labels, respectively. The gradient difference ∆(t)
with respect to the prototype θp(t) between them can be derived as follows:

∆(t) =
∂Lh(t)

∂θ>p (t)
− ∂Ls(t)
∂θ>p (t)

=
1

n

n∑

i=1

(∑

j 6=p

(lji − sji )
e(θp(t)−θj(t))

>zi

1 +
∑
k 6=j e

(θk(t)−θj(t))>zi
− (lpi − spi )

∑
k 6=p e

(θk(t)−θj(t))>zi

1 +
∑
k 6=p e

(θk(t)−θj(t))>zi

)
z>i

=
1

n

( ∑

i∈[m]

(∑

j 6=p

(lji − sji )
e(θp(t)−θj(t))

>zi

1 +
∑
k 6=j e

(θk(t)−θj(t))>zi
− (lpi − spi )

∑
k 6=p e

(θk(t)−θj(t))>zi

1 +
∑
k 6=p e

(θk(t)−θj(t))>zi

)
z>i

+
∑

i/∈[m]

(∑

j 6=p

(lji − sji )
e(θp(t)−θj(t))

>zi

1 +
∑
k 6=j e

(θk(t)−θj(t))>zi
− (lpi − spi )

∑
k 6=p e

(θk(t)−θj(t))>zi

1 +
∑
k 6=p e

(θk(t)−θj(t))>zi

)
z>i

)

=
1

n

(∑

i∈[p]

(spi − 1)z>i +
∑

i/∈[p]

spi z
>
i

)

(29)

We investigate the difference between the prototype θp(T ′) and θp(T ) when the parameters are trained by Gradient Decent
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with the step size η > 0:

θp(T
′) = θp(T

′ − 1)− η ∂L(T ′ − 1)

∂θp(T ′ − 1)

= θp(T
′ − 2)− η ∂L(T ′ − 1)

∂θp(T ′ − 1)
− η ∂L(T ′ − 2)

∂θp(T ′ − 2)

= θp(T )−
T ′−1∑

r=T

η
∂L(r)

∂θp(r)
.

(30)

Hence, we could obtain:

θp(T
′)− θp(T ) =

T ′−1∑

r=T

η(− ∂L(r)

∂θp(r)
). (31)

We transpose both sides of Eq. (31) and then right-multiply with the vector vp:

θ>p (T ′)vp − θ>p (T )vp =

T ′−1∑

r=T

η(− ∂L(r)

∂θp(r)
)>vp. (32)

Let θhp and θsp denote the prototypes updated by Lh and Ls, respectively. Based on Eq. (32), we could obtain:

θs>p (T ′)vp − θh>p (T ′)vp =

T ′−1∑

r=T

η(
∂Lh(r)

∂θhp (r)
− ∂Ls(r)
∂θsp(r)

)>vp. (33)

Due to that si ∈ ∆c−1, we could obtain the following according to Assumption 1.(4)

θs>p (T ′)vp − θh>p (T ′)vp > 0. (34)

According to Lemma A.1 and A.2, we have γs
p > γh

p and finally obtain Gs(F ,X ,Y) < Gh(F ,X ,Y).
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