
BiSHop: Bi-Directional Cellular Learning for Tabular Data
with Generalized Sparse Modern Hopfield Model

Chenwei Xu * 1 Yu-Chao Huang * 2 Jerry Yao-Chieh Hu * 1 Weijian Li 1 Ammar Gilani 1 Hsi-Sheng Goan 2 3 4

Han Liu 1 5

Abstract
We introduce the Bi-Directional Sparse Hopfield
Network (BiSHop), a novel end-to-end frame-
work for tabular learning. BiSHop handles the
two major challenges of deep tabular learning:
non-rotationally invariant data structure and fea-
ture sparsity in tabular data. Our key motiva-
tion comes from the recently established con-
nection between associative memory and atten-
tion mechanisms. Consequently, BiSHop uses
a dual-component approach, sequentially pro-
cessing data both column-wise and row-wise
through two interconnected directional learning
modules. Computationally, these modules house
layers of generalized sparse modern Hopfield
layers, a sparse extension of the modern Hop-
field model with learnable sparsity. Methodolog-
ically, BiSHop facilitates multi-scale represen-
tation learning, capturing both intra-feature and
inter-feature interactions, with adaptive sparsity
at each scale. Empirically, through experiments
on diverse real-world datasets, BiSHop surpasses
current SOTA methods with significantly fewer
HPO runs, marking it a robust solution for deep
tabular learning. The code is available on GitHub;
future updates are on arXiv.

*Equal contribution 1Department of Computer Science,
Northwestern University, Evanston, IL, USA 2Department
of Physics and Center for Theoretical Physics, National
Taiwan University, Taipei, Taiwan 3Center for Quantum Sci-
ence and Engineering, National Taiwan University, Taipei,
Taiwan 4Physics Division, National Center for Theoretical
Sciences, Taipei, Taiwan 5Department of Statistics and Data
Science, Northwestern University, Evanston, IL, USA. Cor-
respondence to: Chenwei Xu <cxu@northwestern.edu>,
Yu-Chao Huang <r11222015@ntu.edu.tw>, Jerry
Yao-Chieh Hu <jhu@u.northwestern.edu>, Weijian
Li <weijianli@u.northwestern.edu>, Ammar Gilani
<ammargilani2024@u.northwestern.edu>, Hsi-Sheng
Goan <goan@phys.ntu.edu.tw>, Han Liu <han-
liu@northwestern.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
The field of developing deep learning architectures for
tabular data has recently experienced rapid advancements
(Somepalli et al., 2022; Gorishniy et al., 2021; Arik and Pfis-
ter, 2021; Huang et al., 2020). The primary driving force
behind this trend is to overcome the limitations of the cur-
rent dominant methods for tabular data: tree-based methods.
Although tree-based methods excel in tabular learning, they
cannot integrate with deep learning architectures. Therefore,
pursuing deep tabular learning is not just a matter of enhanc-
ing performance but is also crucial to bridging the existing
gap. Recent research has proposed new methodologies in
deep tabular learning. However, a recent tabular benchmark
study (Grinsztajn et al., 2022) reveals that tree-based meth-
ods still surpass deep learning models. This is due to two
main challenges in deep tabular learning, as highlighted by
Grinsztajn et al. (2022, Section 5.3 & 5.4):

(C1) Non-Rotationally Invariant Data Structure: The
non-rotationally invariant structure of tabular data
weakens the effectiveness of deep learning models
that have rotationally invariant learning procedures.

(C2) Feature Sparsity: Tabular datasets are generally
sparser than typical datasets used in deep learning,
which makes it challenging for deep learning models
to learn from uninformative features.

Inspired by the hierarchical and interconnected nature of
the human brain (Presigny and Fallani, 2022; Krotov, 2021),
we introduce the Bi-Directional Sparse Hopfield Network
(BiSHop), a Hopfield-based deep learning framework tai-
lored for tabular data. To address the non-rotationally invari-
ant data structure of tabular data (C1), our model employs
a dual-component design, named the Bi-directional Sparse
Hopfield Module (BiSHopModule). This design mirrors
the human brain’s memory mechanisms, where different re-
gions work collaboratively to form and retrieve associative
memories. Our model uses bi-directional learning through
two separate Hopfield models, focusing on column-wise and
row-wise patterns separately. This approach incorporates
the tabular data’s inherent structure as an inductive bias.

For tackling the features sparsity in tabular data (C2), we
utilize the generalized sparse modern Hopfield model (Wu

1

https://github.com/MAGICS-LAB/BiSHop
https://arxiv.org/abs/2404.03830
mailto:cxu@northwestern.edu
mailto:r11222015@ntu.edu.tw
mailto:jhu@u.northwestern.edu
mailto: weijianli@u.northwestern.edu
mailto:ammargilani2024@u.northwestern.edu
mailto:goan@phys.ntu.edu.tw
mailto:hanliu@northwestern.edu
mailto:hanliu@northwestern.edu

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

Cat Emb

XcatXcat XnumXnum

Num Emb

Concat

Encoder

Decoder

MLP

Patch Emb

× N× N

× N× N

Decoder Building Block

Encoder Building Block

BiSHopModule

BiSHopModule
Information Flow

LayerNorm GSH

MLP LayerNorm

Figure 1. High-Level Visualization of BiSHop’s Pipeline.

et al., 2024b). The generalized sparse modern Hopfield
model is an extension to the sparse modern Hopfiled model
(Hu et al., 2023) and modern Hopfiled model (Ramsauer
et al., 2021) with the learnable sparsity. It offers robust
representation learning and seamlessly integrates with exist-
ing deep learning architectures, ensuring focus on crucial
information. Furthermore, inspired by brain’s multi-level
organization of associative memory, we stack multiple lay-
ers of the generalized sparse modern Hopfield model within
BiSHopModule. As a result, each layer learns represen-
tations at unique scales, adjusting its sparsity accordingly,
adding (C2) as another inductive bias to the model.

At its core, BiSHop facilitates multi-scale representation
learning (Shi et al., 2022), capturing both intra-feature and
inter-feature dynamics while adjusting sparsity for each
scale. The model identifies representations across various
scales in all directions, whether column-wise or row-wise.
These refined representations are subsequently concatenated
for downstream inference, ensuring a holistic bi-directional
learning approach tailored for tabular data.

Contributions. Our contributions are twofold:

• Methodologically, we propose BiSHop, a novel deep-
learning model for tabular data. BiSHop integrates two
inductive biases (C1, C2) using the BiSHopModule and a
hierarchical learning structure. The BiSHopModule uti-
lizes the generalized sparse modern Hopfield model (Wu
et al., 2024b) for tabular feature learning, enabling multi-
scale sparsity learning with superior noise-robustness. We
also present a hierarchical two-joint design to handle the
intrinsic structure of tabular data with learnable sparsity
and multi-scale cellular learning. Additionally, we adopt
tabular embedding (Huang et al., 2020; Gorishniy et al.,
2021; 2022) to enhance representation learning for both
numerical and categorical features.

• Experimentally, we conduct comprehensive experiments
on diverse real-world datasets as well as a tabular bench-
mark (Grinsztajn et al., 2022). This encompasses a total
of 18 classification tasks and 11 regression tasks. We
compare BiSHop with both SOTA tree-based and deep

learning methods. Our results show that BiSHop outper-
forms baselines across most of tested datasets, including
both regression and classification tasks.

Related Works. Appendix B includes the discussions of
related works. Notations. We denote vectors by lowercase
bold letters, and matrices by upper bold letters For vectors
a, b, we define their inner product as ⟨a,b⟩ = aTb. We
use the shorthand [I] to represent the index set {1, · · · , I}
with I being a positive integer. For matrices, we denote
the spectral norm as ∥·∥, which aligns with the l2-norm for
vectors. We denote the memory patterns by ξ ∈ Rd and the
query pattern by x ∈ Rd, and Ξ := [ξ1, · · · , ξM] ∈ Rd×M

as shorthand for memory patterns {ξµ}µ∈[M].

2. Background: Dense and Generalized Sparse
Modern Hopfield Model

This section provides a concise overview of the modern
Hopfield model (Ramsauer et al., 2021) and the generalized
sparse modern Hopfield model (Wu et al., 2024b). Wu et al.
(2024b) presents an extension to (Hu et al., 2023; Ramsauer
et al., 2021), utilizing the Tsallis α-entropy (Tsallis, 1988)

2.1. (Dense) Modern Hopfield Models

Let x ∈ Rd be the query pattern and Ξ = [ξ1, · · · , ξM] ∈
Rd×M the memory patterns. The aim of Hopfield models
(Hopfield, 1982; 1984; Krotov and Hopfield, 2016; Demir-
cigil et al., 2017; Krotov and Hopfield, 2021) is to store
these memory patterns Ξ and retrieve a specific memory
ξµ when given a query x. These models comprise two pri-
mary components: an energy function E(x) that encodes
memories into its local minima, and a retrieval dynamics
T (x) that fetches a memory by iteratively minimizing E(x)
starting with a query.

Ramsauer et al. (2021) propose the (dense/vanilla) modern
Hopfield model with a specific set of E and T , and inte-
grate it into deep learning architectures via its connection
with attention mechanism, offering enhanced performance,
and theoretically guaranteed exponential memory capacity.
Specifically, they introduce a Hopfield energy function:

2

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

E(x) = − lse(β,ΞTx) +
1

2
⟨x,x⟩ , (2.1)

and the corresponding memory retrieval dynamics:

TDense(x) = Ξ · Softmax(βΞTx) = xnew.

The function lse (β, z) := log
(∑M

µ=1 exp{βzµ}
)
/β is the

log-sum-exponential for any given vector z ∈ RM and
β > 0. Surprisingly, their findings reveal:

• The TDense dynamics converge to memories provably and
retrieve patterns accurately in just one step.

• The modern Hopfield model from (2.1) possesses an ex-
ponential memory capacity in pattern size d.

• Notably, the one-step approximation of TDense mirrors the
attention mechanism in transformers, leading to a novel
architecture design: the Hopfield layers.

2.2. Generalized Sparse Modern Hopfield Model

This section follows (Wu et al., 2024b, Section 3). For self-
containedness, we also summarize the useful theoretical
results of (Wu et al., 2024b) in Appendix C.

Associative Memory Model. Let z,p ∈ RM , and ∆M :=
{p ∈ RM

+ |
∑M

µ pµ = 1} be the (M − 1)-dimensional unit
simplex. Wu et al. (2024b) introduce the generalized sparse
Hopfield energy as a new associative memory model

E(x) = −Ψ⋆
(
βΞTx

)
+

1

2
⟨x,x⟩ , (2.2)

where Ψ⋆(z) :=
∫
dzα-EntMax(z), and α-EntMax(·) is

defined as follows.

Definition 2.1 ((Peters et al., 2019)). The variational form
of α-EntMax is defined as

α-EntMax(z) := ArgMax
p∈∆M

[pTz−Ψα(p)], (2.3)

where Ψα(·) is the Tsallis entropic regularizer

Ψα(p) :=

{
1

α(α−1)

∑M
µ=1

(
pµ − pαµ

)
, α ̸= 1,∑M

µ=1 pµ ln pµ, α = 1,
for α ≥ 1.

The corresponding memory retrieval dynamics is given as

Lemma 2.1 (Retrieval Dynamics, Lemma 3.2 of (Wu et al.,
2024b)). Given t as the iteration number, the generalized
sparse modern Hopfield model exhibits a retrieval dynamic

T (xt) = Ξα-EntMax(βΞTxt) = xt+1, (2.4)

which ensures a monotonic decrease of the energy (2.2).

This model also enjoys nice memory retrieval properties:

Lemma 2.2 (Convergence of Retrieval Dynamics T ,
Lemma 3.3 of (Wu et al., 2024b)). Given the energy func-
tion E and retrieval dynamics T defined in (2.2) and (2.3),
respectively. For any sequence {xt}∞t=0 generated by the

iteration xt′+1 = T (xt′), all limit points of this sequence
are stationary points of E.

Lemma 2.2 ensures the (asymptotically) exact memory re-
trieval of this model ((2.2) and (2.4)), Thus, it serves as a
well-defined associative memory model.

In essence, Wu et al. (2024b) present this sparse extension
of the modern Hopfield model through a construction of
both E and T by convex conjugating the Tsallis entropic
regularizers. This model not only adheres to the condi-
tions for a well-defined modern Hopfield model, but also
equips greater robustness (Corollary C.1.2) and retrieval
speed (Theorem C.1 and Corollary C.1.1) than the modern
Hopfield model (Ramsauer et al., 2021), see Appendix C.2
for details. In Figure 4, we also provide proof-of-concept ex-
perimental validations on tabular datasets for Theorem C.1,
Corollary C.1.1 and Corollary C.1.2.

Generalized Sparse Modern Hopfield (GSH) Layers for
Deep Learning. Importantly, the generalized sparse modern
Hopfield model serves as a valuable component in deep
learning due to its connection to the transformer attention
akin to its cousins. Next, we review such connections and
the Generalized Sparse Modern Hopfield (GSH) layers.

Following (Wu et al., 2024b; Hu et al., 2023; Ramsauer et al.,
2021), X and Ξ are defined in the associative space, embed-
ded from the raw query R and memory patterns Y, respec-
tively, using X⊤ = RWQ := Q and Ξ⊤ = YWK := K
with matrices WQ and WK . By transposing T from (2.4)
and applying WV such that V := KWV , we obtain:

Z := QnewWV = α-EntMax(βQK⊤)V, (2.5)

introducing an attention mechanism with the α-EntMax
activation function. Substituting R and Y back in, the Gen-
eralized Sparse Modern Hopfield (GSH) layer is formulated
as:

GSH(R,Y) = α-EntMax(βRWQW
⊤
KY⊤)YWKWV .

This allows the seamless integration of the generalized
sparse modern Hopfield model into deep learning archi-
tectures. Concretely, the GSH layer takes matrices R, Y
as inputs, with the weight matrices WQ, WK , WV . De-
pending on its configuration, it offers several functionalities:

1. Memory Retrieval: In this learning-free setting, weight
matrices WK , WQ, and WV are set as identity matri-
ces. Here, R represents the query input, and Y denotes
the stored memory patterns for retrieval.

2. GSH: This configuration takes R and Y as inputs. In-
tending to substitute the attention mechanism, the weight
matrices WK , WQ, and WV are rendered learnable.
Furthermore, R, Y, and Y serve as the sources for
query, key, and value respectively. To achieve a self-

3

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

attention-like mechanism, R is set equal to Y.

3. GSHPooling: With inputs Q and Y, this layer uses Q
as a static prototype pattern, while Y contains patterns
over which pooling is desired. Given that the query
pattern is replaced by the static prototype pattern Q, the
only learnable weight matrices are WK and WV .

4. GSHLayer: The GSHLayer takes the query R as its sin-
gle input. It includes learnable weight matrices WK

and WV , which function as our stored patterns and their
corresponding projections. This design ensures that our
key and value are decoupled from the input. In practice,
we set WQ and Y as identity matrices.

In this work, we utilize GSH and GSHPooling layers1 .

3. Methodology
As in Figure 1, BiSHop uses three distinct parts to integrate
two pivotal inductive biases in tabular data: non-rotationally
invariant data structures (C1) and sparse information in
features (C2) (Grinsztajn et al., 2022, Section 5.3 & 5.4):

• A joint Tabular Embedding layer is designed to process
categorical and numerical data separately.

• The Bi-Directional Sparse Hopfield Module (BiSH-
opModule) leverages the generalized sparse modern
Hopfield model. This module incorporates the non-
rotationally invariant bias through two interconnected
GSH blocks for row-wise and column-wise learning.

• Stacked BiSHopModules for hierarchical learning, ad-
dressing sparse features. Each layer in the stack mod-
ule captures information at different scales, allowing for
scale-specific sparsity.

We provide a detailed breakdown of each part as follows.

3.1. Tabular Embedding

Tabular embedding consists of three parts: categorical em-
bedding Ecat, numerical embedding Enum, and patch em-
bedding Epatch. The categorical embedding not only learns
the representations within individual categorical features but
also capture the inter-relation among all categorical features.
The numerical embedding represents each numerical feature
with a one-hot-like representation and thus benefits neural
network learning numerical features. The patch embedding
captures localized feature information by aggregating across
feature dimensions, at the same time reducing computation
overhead. Starting from this section, we denote x ∈ RN

any given tabular data point with N features. We suppose
each x has N num numerical feature xnum and N cat categor-
ical feature xcat, where x = (xnum,xcat). The categorical
embedding Ecat and numerical embedding Enum transforms

1https://github.com/MAGICS-LAB/STanHop

xcat and xnum to a embedding dimension G, separately. The
patch embedding Epatch then reduces G to the patch embed-
ding dimension P .

Categorical Embedding. For categorical embedding Ecat,
we use learnable column embedding proposed by Huang
et al. (2020). For a tabular data point x = (xnum,xcat), the
column embedding only acts on the categorical features xcat,
denoted as Ecat(xcat). It comprises a shared embedding
Eshared(xcat) for all categorical features and N cat individ-
ual embeddings for each categorical feature {xcat

i }i∈[N cat],
where [N cat] = {1, · · · , N cat}. We denote the shared em-
bedding dimension as Gshared and the individual embed-
ding dimension as Gind, where G = Gshared + Gind. The
shared embedding Eshared(xcat) ∈ RN cat×Gshared

represents
each categorical feature differently. The individual em-
bedding Eind = {Eind

1 , · · · ,Eind
N cat} represents each cate-

gory within one categorical feature differently. Each indi-
vidual embedding Eind

i (·) ∈ R1×Gind
is a scalar-to-vector

map acting on each categorical feature {xcat
i }i∈[N cat]. To

obtain the final categorical embedding, we first concate-
nate all individual embeddings row-wise: Eind(xcat) :=
Concat([Eind

1 (xcat
1), . . . ,Eind

N cat(xcat
N cat)], axis = 0) ∈

RN cat×Gind
. Then, we concatenate the shared embedding

with all individual embeddings column-wise: Ecat(xcat) :=

Concat([Eshared(xcat),Eind(xcat)], axis = 1) ∈ RN cat×G.
Eind represents the unique category in each feature and
Eshared represents the unique feature. Ecat enables our model
to capture both the relationship between each feature and
each category, with the flexibility to train shared and indi-
vidual components separately.

Numerical Embedding. We employ the numerical embed-
ding method as described in Gorishniy et al. (2021; 2022).
The numerical embedding Enum only acts on the numeri-
cal features xnum, as in Enum(xnum) ∈ RN num×G. Given a
numerical feature {xnum

i }i∈[N num], the embedding process
begins by determining G quantiles. To start, we determine
G quantiles for each numerical feature. Quantiles represent
each numerical data distribution by dividing it into equal
parts. For a numerical feature {xnum

j }j∈N num , we first sort
all its values in the training data, xnum

j , in ascending order.
Then, we split the sorted data into G equal parts, where
each part contains an equal fraction of the total data points.
We define the boundaries of these parts as bj,0, · · · , bj,G,
where bj,0 is the smallest value in xnum

j . We express the em-
bedding for a specific value xj as a G-dimensional vector,
Enum

j (xj) = (ej,1, · · · , ej,G) ∈ RG. We compute the value
of each ej,g, where 1 ≤ g ≤ G according to the following
function:

ej,g :=

0, if xj < bj,g−1 and g > 1,

1, if xj ≥ bj,g and g < G,
xj−bj,g−1

bj,g−bj,g−1
, otherwise.

4

https://github.com/MAGICS-LAB/STanHop

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

GSH

LayerNorm

MLP

LayerNorm

GSHPooling

GSH

LayerNorm

MLP

LayerNorm

XpatchXpatch
QQ

Column-Wise Row-Wise

(c): BiSHopModule

(b): Patch Embedding

Column-Wise Row-Wise

Finest Grain

Coarser Grain

Coarsest Grain

LayerNorm

MLPLayerNorm

Column-Wise Row-Wise

Column-Wise Row-Wise

Column-Wise Row-Wise

GSH

LayerNorm

MLPLayerNorm

GSH

(d): Hierarchical Multi-Cell Learning

EposEpos:

Encoder Decoder

(a): Tabular Embedding

EindEind
NcatNcat

PP

GsharedGsharedGindGind
EsharedEshared

EnumEnumNnumNnum
0.1

1

-1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0.3

0

1

0

0

0

2.8

NN

LL

EpatchEpatch
LL

GG

Figure 2. BiSHop. (a) Tabular Embedding: For a given input feature x = (xcat,xnum) ∈ RN=Ncat+Nnum
, the tabular embedding

produces embeddings denoted as Eemb(x) ∈ RN×G. (b) Patch Embedding: Using the combined numerical and categorical embeddings
Eemb(x) ∈ RN×G, the patch embedding gathers embedding information, subsequently reducing dimensionality from G to P = ⌈G/L⌉
for all N features using a stride length of L. (c) BiSHopModule: The Bi-Directional Sparse Hopfield Module (BiSHopModule) leverages
the generalized sparse modern Hopfield model. It integrates the tabular structure’s inductive bias (C1) by deploying interconnected
row-wise and column-wise GSH layers. (d) Hierarchical Cellular Learning Module: Employing a stacked encoder-decoder structure,
we facilitate hierarchical cellular learning where both the encoder and decoder consist of the BiSHopModule across H layers. This
arrangement enables BiSHop to derive refined representations from both directions across multiple scales. These representations are then
concatenated for downstream inference, ensuring a holistic bi-directional cellular learning specially tailored for tabular data.

For the final embedding, we have Enum(xnum) ∈ RN num×G.
We denote this numerical embedding as piece-wise linear
embedding. This technique normalizes the scale of numeri-
cal features and captures the quantile information for each
data point within the numerical feature. It enhances the
representation of numerical feature in deep learning. Con-
catenating Enum(xnum) with Ecat(xcat) row-wise, we obtain:
Eemb(x) := Concat (Enum(xnum),Ecat(xcat), axis = 0),
where Eemb(x) ∈ RN×G. Namely, we call each point
Eemb

n,g (x) as a single cell. The categorical and numerical
embedding is in Figure 2 (a).

Patch Embedding. Motivated by (Nie et al., 2023; Zhang
and Yan, 2023; Qin et al., 2022), we adopt patch embed-
ding (shown in Figure 2 (b)) to enhance the awareness of
both local and non-local patterns, capturing intricate details
often missed at the single-cell level. Specifically, we di-
vide embeddings into patches that aggregate multiple cells.
To simplify the computation process, we transpose the nu-
merical and categorical embedding dimensions. For con-
venience, we denote the previous embedding outcomes as
Xemb := (Eemb(x))⊤ ∈ RG×N . The patch embedding
Epatch reduces the embedding dimension G by a stride fac-
tor L, leading to a new and smaller patched embedding
dimension P := ⌈G/L⌉, where ⌈·⌉ is the ceiling func-
tion. Furthermore, we introduce a new embedding dimen-
sion Dmodel to represent each patch’s hidden states. The
patched embedding is Epatch(Xemb) ∈ RP×N×Dmodel

. For
future computation, we flip the patch dimension and fea-
ture dimension, resulting final output of patch embedding

Xpatch := (Epatch(Xemb))⊤ ∈ RN×P×Dmodel
. This patch em-

bedding method enhances our model’s ability to interpret
and integrate detailed local and broader contextual infor-
mation from the data, crucial for in-depth analysis in deep
learning scenarios. For the Xpatch, we denote it as having N
rows (features) and P columns (embeddings).

3.2. Bi-Directional Sparse Hopfield Module

By drawing parallels with the intricate interplay of dif-
ferent parts in the brain (Presigny and Fallani, 2022), we
present the core design of the BiSHop framework, the Bi-
Directional Sparse Hopfield Module (BiSHopModule), as
visualized in Figure 2 (c). The BiSHopModule incorporates
the generalized sparse modern Hopfield model and inte-
grates the inductive bias of tabular structure (C1) through a
unique structure of stacked row-wise and column-wise GSH
blocks. Specifically, the row-wise GSH focuses on capturing
the embedding details for individual features, whereas the
column-wise GSH aggregates information across all features.
We denote Xpatch

n,p , where n ∈ [N] and p ∈ [P], as the ele-
ment in the n-th row (feature) and p-th column (embedding).

Column-Wise Block. The column-wise GSH block (purple
block on the LHS of Figure 2 (c)) captures hidden informa-
tion across the embedding dimension P for each feature.
The process begins by passing the patch embeddings of the
n-th row of Xpatch, Xpatch

n,: , where n ∈ [N], to the GSH layer
for self-attention. This process is then followed by adding
the original patch embeddings (similar to the residual con-

5

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

nection in the standard transformer). Next, we pass the
output above through one LayerNorm layer, a Multi-Layer
Perception (MLP) layer, and another LayerNorm to obtain
the final output of the column-wise block, Xcol:

X̂patch
n,: := LayerNorm

(
Xpatch

n,: + GSH(Xpatch
n,: ,Xpatch

n,:)
)
,

Xcol := LayerNorm
(
X̂patch + MLP(X̂patch)

)
,

This sequence of operations ensures the effective transfor-
mation of the embeddings, facilitating the extraction of
meaningful information from the feature space (Shi et al.,
2021; 2024).

Row-Wise Block. The row-wise GSH block (pink block on
the RHS of 2 (c)) captures information across the feature
dimension N . For each feature, we apply both GSHPooling
and GSH layers to its embedding dimensions. Specifically,
we use C learnable pooling vectors in each feature dimen-
sion to aggregate information across all embedding dimen-
sions, forming a pooling matrix Q ∈ RC×P×Dmodel

. We
represent the pooling at p-th embedded dimension as the
p-the columns of Q, Q:,p, where p ∈ [P]. The process
begins by pooling the row-wise output Xrow

:,p using Q:,p in
the GSHPooling step. Next, we combine this pooled output
with the row-wise output again, and add the row-wise output
to the result. Following this, we pass the output through a
LayerNorm layer, an MLP layer, and another LayerNorm
layer. This sequence of operations yields the final output of
the row-wise block:

Q̂:,p := GSHPooling(Q:,p,X
col
:,p),

X̂row
:,p := GSH(Xcol

:,p, Q̂:,p),

X
row

:= LayerNorm(X̂row +Xcol),

Xrow := LayerNorm(X
row

+ MLP(X
row

)),

This Q pooling matrix design aggregates information from
all patch embedding dimensions, and by setting C ≪ N , it
significantly reduces computational complexity.

Together with the row-wise block, we summarize the entire
BiSHopModule as a function:

BiSHopModule(·) : RP×N → RP×N ,

where the input is Xpatch and the output is Xrow.

3.3. Stacked BiSHopModules for Multi-Scale Learning
with Scale-Specific Sparsity

Motivated by the human brain’s multi-level organization of
associative memory (Presigny and Fallani, 2022; Krotov,
2021), we utilize a hierarchical structure to learn multi-
scale information similar to (Zhang and Yan, 2023; Zhou
et al., 2021). This is illustrated in Figure 2 (d). This struc-
ture consists of two main components: the encoder and the
decoder, both of which incorporate H layers of BiSHop-

Modules. Specifically, the encoder captures coarser-grained
information across different scales, while the decoder makes
forecasts based on the information encoded by the encoder.

Encoder. The encoder (pink block on LHS of Figure 2 (d))
encodes data at multiple levels of granularity. To accomplish
this multi-level encoding, we use H stacked BiSHopMod-
ules. These modules help in processing and understanding
the data from different perspectives. We also employ a
learnable merging matrix (Liu et al., 2021) to aggregate r
adjacent patches of Xpatch. We denote the merging matrix at
layer h ∈ [H] as Emerge

h ∈ Rr×1, which refines its input em-
beddings to be coarser at each level. We refer to h-th level
encoder output as Xenc,h and input as Xenc,h−1. Concretely,
at level h, we use Emerge

h to aggregate r adjacent embed-
ding vectors from Xenc,h−1, producing a coarser embedding
X̂enc,h−1. We then pass X̂enc,h−1 through the BiSHopMod-
ules, resulting in the output encoded embedding, denoted
as Xenc,h. It is worth noting that Xenc,0 = Xpatch. This
granularity-decreasing process is iteratively applied across
all layers in 1 ≤ h ≤ H . We summarize the merging
procedure at level h as:

X̂enc,h
n,p := Emerge

h

(
Xenc,h

n,r×p, . . . ,X
enc,h
n,r×(p+1)

)
, 0 ≤ p ≤ P

rh
,

for 0 ≤ h ≤ H − 1, and then

Xenc,h := BiSHopModule(X̂enc,h−1), for 1 ≤ h ≤ H.

Decoder. The decoder (yellow block on RHS of Figure 2
(d)) captures information from each level of encoded data.
To accomplish this, we utilize H stacked BiSHopModules
and employ a positional embedding matrix Epos ∈ RP×S to
extract encoded information for prediction, where S repre-
sents the number of extracted feature used for future forecast.
Specifically, at the first level, we use the learnable matrix
Epos to decode S different representations through BiSH-
opModules, obtaining Xpos,0. We then pass Xpos,0 through
GSH with the corresponding encoded data, followed by the
addition to the encoded data at the h-th level Xenc,h. Next,
we process the output through one LayerNorm layer, one
MLP layer, and another LayerNorm layer, as follows:

Xpos,h :=

{
BiSHopModule(Epos), h = 0,

BiSHopModule(Xdec,h−1), 1 ≤ h ≤ H.

X̂dec,h := GSH(Xpos,h,Xenc, h), 1 ≤ h ≤ H,

X
dec,h

:= LayerNorm(X̂dec,h +Xpos,h),

Xdec,h := LayerNorm(X
dec,h

+ MLP(X
dec,h

)).

For the final prediction, we flatten Xdec,H and pass it to a
new MLP predictor.

Learnable Sparsity at Each Scale. Drawing inspiration
from the dynamic sparsity observed in the human brain
(Stokes et al., 2013; Leutgeb et al., 2005; Willshaw et al.,

6

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

1969), the parameter α for each GSH layer is a learnable
parameter by design (Wu et al., 2024b; Correia et al., 2019),
which allows BiSHopModule to adapt to different sparsity
for different resolutions. Namely, the learned representa-
tions at each scale are equipped with scale-specific sparsity.

4. Experimental Studies
In this section, we compare BiSHop with SOTA tabular
learning methods, following the tabular learning benchmark
paper (Grinsztajn et al., 2022). We summarize our experi-
mental results in Table 1 and Table 2.

4.1. Experimental Setting

Our experiment consists of two parts: firstly, we bench-
mark commonly used datasets in the literature; secondly, we
follow the tabular benchmark (Grinsztajn et al., 2022), ap-
plying it to a broader range of datasets on both classification
and regression tasks.

Datasets I. In the first experimental setting, we evaluate
BiSHop on 9 common classification datasets used in previ-
ous works (Grinsztajn et al., 2022; Somepalli et al., 2022;
Gorishniy et al., 2021; Huang et al., 2020). These datasets
vary in characteristics: some are well-balanced, and oth-
ers show highly skewed class distributions; We set the
train/validation/test proportion of each dataset as 70/10/20%.
Please see Appendix D.1 for datasets’ details.

Datasets II. In the second experimental setting, we test
BiSHop in the tabular benchmark (Grinsztajn et al., 2022).
The datasets compiled by this benchmark consist of 4
OpenML suites:

• Categorical Classification (CC, suite id: 334),

• Numerical Classification (NC, suite id: 337),

• Categorical Regression (CR, suite id: 335),

• Numerical Regression (NR, suite id: 336).

Both CC and CR include datasets with numerical and cate-
gorical features, whereas NC and NR only contain numerical
features. Due to limited computational resources, we ran-
domly select one-third of the datasets from each suite for
evaluation. We evaluate BiSHop on each suit with 3-6 dif-
ferent datasets and truncate to 10,000 training samples for
larger datasets (corresponding to medium-size regimes in
the benchmark). For these datasets, we allocate 70% of the
data for the training set (7,000 samples). Of the remaining
30%, we allocate 30% for the validation set (900 samples),
and the rest 70% for the test set (2,100 samples). All sam-
ples are randomly chosen from the original datasets and
undergo the identical preprocessing steps of the previous
benchmark (Grinsztajn et al., 2022).

Metrics. We use the AUC score for the 1st experimental
setting, aligned with literature. For the 2nd experimental

setting, we use accuracy for classification and the R2 score
for regression tasks, aligned with Grinsztajn et al. (2022).

Baselines I. In the first experimental setting, we select 5
deep learning and 3 tree-based baselines, including (i) DL-
based method such as MLP, TabNet, TabTransformer, FT-
Transformer (Gorishniy et al., 2021), SAINT (Somepalli
et al., 2022), TabPNF (Hollmann et al., 2022), TANGOS
(Jeffares et al., 2023), T2G-FORMER (Yan et al., 2023), and
(ii) tree-based methods such as LightGBM, CatBoost, and
XGBoost (Chen et al., 2015). For each dataset, we conduct
up to 200 random searches on BiSHop to report the score of
the best hyperparameter configuration. We stop HPOs when
observing the best result. Baselines and benchmark datasets’
results are quoted from competing papers when possible
and reproduced otherwise. We report the reproduced results
in Appendix D. Notably, we quote the best result from all
baselines if multiple results are available.

Baselines II. In the second experimental setting, we refer-
ence baselines results2 from the benchmark paper (Gorish-
niy et al., 2021), comprising 4 deep learning methods and
3 tree-based methods, including (i) DL-based method such
as MLP, ResNet (He et al., 2016), FT-Transformer (Gorish-
niy et al., 2021), SAINT (Somepalli et al., 2022) and (ii)
tree-based methods such as RandomForest, GradientBoost-
ingTree (GBDT), and XGBoost (Chen et al., 2015). We
select the best results of each method from the benchmark
(Grinsztajn et al., 2022). Notably, these best results use 400
HPOs according to Grinsztajn et al. (2022).

Setup. BiSHop’s default parameter settings are as follows:
Embedding dimension G = 32; Stride factor L = 8; Num-
ber of pooling vectors C = 10; Number of BiSHopModules
H = 3; Number of aggregations in the encoder r = 4;
Number of representations decoded S = 24; Dropout = 0.2;
Learning rate 5× 10−5. For numerical embedding, we only
gather quantile information from the training data to process
the embedding function. For hyperparameter tuning, we
use the “sweep” feature of Weights and Biases (Biewald
et al., 2020). Notably, due to computational constraints, we
manually end the HPO once our method surpasses the best
performance observed in the benchmarks. We report the
search space for all hyperparameters in Table 7 and other
training details in Appendix D.2. We conduct the optimiza-
tion on training/validation sets and report the average test set
scores over 3 iterations, using the best-performing configu-
rations on the validation set. Implementation and training
details are provided in the appendix.

Results. We summarize our results of the Baselines I in
Table 1 and the results of the Baselines II in Table 2. In
Table 1, BiSHop outperforms both tree-based and deep-
learning-based methods by a significant margin in most

2https://github.com/LeoGrin/tabular-benchmark

7

https://github.com/LeoGrin/tabular-benchmark

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

Table 1. BiSHop versus SOTA Tabular Learning Methods (Dataset I). We evaluate BiSHop against predominant SOTA methods,
including deep learning methods (MLP, TabNet, TabTransformer, FT-Transformer, SAINT, TabPFN, TANGOS, T2G-FORMER) and
tree-based methods (LightGBM, CatBoost, XGBoost), across various datasets. We report the average AUC scores (in %) of 3 runs, with
variances omitted as they are all ≤ 1.3%. Results quoted from (Liu et al., 2022; Somepalli et al., 2022; Borisov et al., 2022; Huang et al.,
2020) are marked with ⋆, ∗, †, and ‡, respectively. If multiple results are available across different benchmark papers, we quote the best
one. When unavailable, we reproduce the baseline results independently. Hyperparameter optimization employs the “sweep” feature
of Weights and Biases (Biewald et al., 2020), with 200 iterations of random search for each setting. Our results indicate that BiSHop
outperforms both tree-based and deep-learning-based methods by a significant margin.

Adult Bank Blastchar Income SeismicBump Shrutime Spambase Qsar Jannis

MLP 72.5‡ 92.9‡ 83.9‡ 90.5‡ 73.5‡ 84.6‡ 98.4‡ 91.0‡ 82.59
TabNet 90.49 91.76∗ 79.61∗ 90.72∗ 77.77 84.39 99.80 67.55∗ 87.81
TabTransformer 73.7‡ 93.4‡ 83.5‡ 90.6‡ 75.1‡ 85.6‡ 98.5‡ 91.8‡ 82.85
FT-Transformer 90.60 91.83 86.06 92.15 74.60 80.83 100.00 92.04 89.02
SAINT 91.6† 93.30∗ 84.67∗ 91.67∗ 76.6⋆ 86.47∗ 98.54∗ 93.21∗ 85.52
TabPFN 88.48 88.17 84.03 88.59 75.32 83.30 100 93.31 78.34
TANGOS 90.23 88.98 85.74 90.44 73.52 84.32 100 90.83 83.59
T2G-FORMER 85.96⋄ 94.47 85.40 92.35 82.58 86.42 100 94.86 73.68⋄

LightGBM 92.9† 93.39∗ 83.17∗ 92.57∗ 77.43 85.36∗ 100.00 92.97∗ 87.48
CatBoost 92.8† 90.47∗ 84.77∗ 90.80∗ 81.59 85.44∗ 100.00 93.05∗ 87.53
XGBoost 92.8† 92.96∗ 81.78∗ 92.31∗ 75.3⋆ 83.59∗ 100.00 92.70∗ 86.72

BiSHop 92.97 93.95 88.49 92.97 91.88 87.99 100.00 96.14 90.63

datasets. In Table 2, BiSHop achieves optimal or near-
optimal results with fewer than 10% numbers (on average)
of HPO in a tabular benchmark (Grinsztajn et al., 2022).

4.2. Ablation Studies

We conduct the following sets of ablation studies on
Datasets I align with Grinsztajn et al. (2022).

Changing Feature Sparsity. In Figure 3, we change feature
sparsity on our datasets following Grinsztajn et al. (2022,
Figure 4 & 5). Firstly, we compute the feature importance
using Random Forest. Secondly, we remove features in both
increasing (solid curves) and decreasing (dashed curves)
order of feature importance. For each order, we report the
average AUC score over all datasets at each percentage for
BiSHop, XGBoost, and LighGBM. Our results indicate that
BiSHop has the capacity to handle sparse features.

Rotation Invariance. In Table 19, we conduct experiments
by rotating the datasets and BiSHopModule’s direction, both
individual rotation and combined rotation:

(R1) Rotate the two Directions (Row- and Column-wise).

(R2) Rotate the Datasets.

(R3) Rotate the two Directions and the Datasets.

Our results indicate (i) BiSHop is robust against column-row
switch in BiSHopModule, and (ii) BiSHop addresses the
Non-Rotationally Invariant Data Structure challenge (C1).

We report the average AUC score over all datasets for each
rotation scenario. First, we assess (R1), where the results
show a marginal (< 1%) performance drop across datasets.
To further discuss the rotational invariance problem, we

Figure 3. Changing Feature Sparsity. Following (Grinsztajn
et al., 2022), we remove features in three ways: randomly (red),
in increasing order of feature importance (purple), and in decreas-
ing order of feature importance (blue), with feature importance
determined by random forest. We report the average AUC score
across all datasets for BiSHop, XGBoost, and LightGBM. The
results highlight BiSHop’s capability in handling sparse features.

assess (R2) following the procedure outlined in Grinsztajn
et al. (2022, Section 5.4). The results for (R2) do not indicate
a significant drop in performance. Additionally, the results
for (R3) validate the findings from both (R1) and (R2). Our
results confirm that BiSHop addresses (C1).

Hierarchy of BiSHopModule. In Table 20, we assess the
impacts of stacking different layers of BiSHopModule. We
report the average AUC over Datasets I for different layers
of BiSHopModule. Our results indicate that 4 layers of
BiSHopModule marginally maximize the performance.

Component Analysis. In Table 17, we remove each com-

8

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

Table 2. BiSHop versus SOTA Tabular Learning Methods (Dataset II). Following the benchmark (Grinsztajn et al., 2022), we evaluate
BiSHop against SOTA methods, including deep learning methods (MLP, ResNet, FT-Transformer, SAINT) and tree-based methods
(GBDT, RandomForest, XGBoost), across various datasets. We randomly select a total of 19 datasets encompassing four different tasks:
categorical classification (CC), numerical classification (NC), categorical regression (CR), and numerical regression (NR). CC and CR
contain both categorical and numerical features, while NC and NR contain only numerical features. Baseline results are quoted from the
benchmark paper (Grinsztajn et al., 2022). We report with the best Accuracy scores for CC and NC, and R2 score for CR and NR, (both in
%) obtained through HPO. We also report the number of HPOs used in BiSHop. Hyperparameter optimization of our method employs the
“sweep” feature of Weights and Biases (Biewald et al., 2020). In the 19 different datasets, BiSHop delivers 11 optimal and 8 near-optimal
results (within a 1.3% margin), using less than 10% (on average) of the number of HPOs used by the baselines.

Dataset ID BiSHop # of HPOs FT-Transformer GBDT MLP RandomForest ResNet SAINT XGBoost

CC
361282 66.08 16 65.63 65.76 65.32 65.53 65.23 65.52 65.70
361283 72.69 1 71.90 72.09 71.41 72.13 71.4 71.9 72.08
361286 69.80 10 68.97 68.62 69.06 68.49 69.00 68.87 68.20

CR

361093 98.98 23 98.06 98.34 98.07 98.25 98.04 97.77 98.42
361094 99.98 64 99.99 100 99.99 100 99.97 99.98 100
361099 94.12 64 94.09 94.26 93.71 93.69 93.71 93.75 94.77
361104 99.94 70 99.97 99.98 99.98 99.98 99.96 99.9 99.98
361288 57.96 93 57.48 55.75 58.03 55.79 58.3 57.09 55.75

NC

361055 78.29 4 77.73 77.52 77.41 76.35 77.53 77.41 75.91
361062 98.82 15 98.50 98.16 94.70 98.24 95.22 98.21 98.35
361065 86.32 2 86.09 85.79 85.6 86.55 86.3 86.04 86.19
361273 60.76 9 60.57 60.53 60.50 60.49 60.54 60.59 60.67
361278 73.05 2 72.67 72.35 72.4 72.1 72.41 72.37 72.16

NR

361073 99.51 8 99.51 99.0 97.31 98.67 96.19 99.51 99.15
361074 87.96 34 91.83 85.07 91.81 83.3 91.56 91.86 90.76
361077 82.4 53 73.28 83.97 83.72 83.72 71.85 70.1 83.66
361079 60.76 19 53.09 57.45 48.62 50.16 51.77 46.79 55.42
361081 98.67 13 99.69 99.65 99.52 99.31 99.67 99.38 99.76
361280 56.98 96 57.48 54.87 58.46 55.27 57.81 56.84 55.49

Score mean 81.21 - 80.34 80.48 80.3 79.84 79.81 79.68 80.65

Rank

mean 2.79 - 3.58 4.21 4.74 5.53 5.05 5.26 3.84
min 1 - 1 1 1 1 1 1 1
max 8 - 6 8 8 8 8 8 8
med. 1 - 4 4 5 6 5 5 3

ponent one at a time. We report the implementation details
in Appendix E.1. For each removal, we report averaged
AUC scores over all datasets. Overall, each component con-
tributes to varying degrees of performance improvement.

Comparison with the Dense Modern Hopfield Model.
In Appendix E.2, we compare the performance of Sparse
Hopfield Models, Dense Hopfield Models, and Attention
Mechanisms. Our results that the generalized Sparse Hop-
field Model outperforms the other two methods.

Convergence Analysis. In Appendix E.3, we compare the
converging rate of Sparse and Dense Hopfield Models. Our
results indicate that the generalized sparse modern Hopfield
model converges faster than the Dense Model.

Appendix E includes all details of ablation experiments.

5. Conclusion
We address the gap highlighted by Grinsztajn et al. (2022)
where deep learning methods trail behind tree-based meth-
ods. We present the Bi-Directional Sparse Hopfield Model

(BiSHop) for deep tabular learning, inspired by the recent
intersection of Hopfield models with attention mechanisms.
Leveraging the generalized sparse Hopfield layers as its
core component, BiSHop effectively handles the challenges
of deep tabular learning, by incorporating two important
inductive biases of tabular data (C1, C2).

Comparing with Existing Works. Empirically, our model
consistently surpasses SOTA tree-based and deep learning
methods by 3% across common benchmark datasets. More-
over, our model achieves optimal or near-optimal results
with only 16% number of HPOs, compared with methods
in the tabular benchmark (Grinsztajn et al., 2022). We
deem these results as closing the performance gap between
DL-based and tree-based tabular learning methods, making
BiSHop a promising solution for deep tabular learning.

Limitation. One notable limitation of our study is the non-
utilization of the external memory capabilities inherent in
modern Hopfield models. We see the integration of these
capabilities, especially in memory-augmented large models,
as a compelling direction for future research.

9

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

Impact Statement
Our work aim at addressing the long standing problem of
tabular learning of DL-based model. We do not expect any
negative social impact of our work.

Acknowledgments
JH would like to thank Dino Feng and Andrew Chen for
enlightening discussions, the Red Maple Family for support,
and Jiayi Wang for facilitating experimental deployments.
CX would like to thank Yibo Wen for helpful comments.
The authors would also like to thank the anonymous review-
ers and program chairs for their constructive comments.

JH is partially supported by the Walter P. Murphy Fellow-
ship. HL is partially supported by NIH R01LM1372201,
NSF CAREER1841569, DOE DE-AC02-07CH11359, DOE
LAB 20-2261 and a NSF TRIPODS1740735. H.-S.G. ac-
knowledges support from the National Science and Technol-
ogy Council, Taiwan under Grants No. NSTC 113-2119-M-
002 -021, No. NSTC112-2119-M-002-014, No. NSTC 111-
2119-M-002-007, and No. NSTC 111-2627-M-002-001,
from the US Air Force Office of Scientific Research under
Award Number FA2386-20-1-4052, and from the National
Taiwan University under Grants No. NTU-CC-112L893404
and No. NTU-CC-113L891604. H.-S.G. is also grateful
for the support from the “Center for Advanced Computing
and Imaging in Biomedicine (NTU-113L900702)” through
The Featured Areas Research Center Program within the
framework of the Higher Education Sprout Project by the
Ministry of Education (MOE), Taiwan, and the support from
the Physics Division, National Center for Theoretical Sci-
ences, Taiwan. This research was supported in part through
the computational resources and staff contributions provided
for the Quest high performance computing facility at North-
western University which is jointly supported by the Office
of the Provost, the Office for Research, and Northwestern
University Information Technology. The content is solely
the responsibility of the authors and does not necessarily
represent the official views of the funding agencies.

References
Ami Abutbul, Gal Elidan, Liran Katzir, and Ran El-Yaniv.

Dnf-net: A neural architecture for tabular data. arXiv
preprint arXiv:2006.06465, 2020. URL https://arxiv.org/
abs/2006.06465.

Sercan Ö Arik and Tomas Pfister. TabNet: Attentive inter-
pretable tabular learning. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, pages
6679–6687, 2021. URL https://arxiv.org/abs/1908.07442.

Andreas Auer, Martin Gauch, Daniel Klotz, and Sepp
Hochreiter. Conformal prediction for time series with

modern hopfield networks. Advances in Neural Infor-
mation Processing Systems (NeurIPS), 36, 2024. URL
https://arxiv.org/abs/2303.12783.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020. URL https://arxiv.org/abs/2004.
05150.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve
Jegou, and Leon Bottou. Birth of a transformer: A
memory viewpoint. Advances in Neural Information
Processing Systems (NeurIPS), 36, 2023. URL https:
//arxiv.org/abs/2306.00802.

Lukas Biewald et al. Experiment tracking with weights and
biases. Software available from wandb. com, 2:233, 2020.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes
Haug, Martin Pawelczyk, and Gjergji Kasneci. Deep
neural networks and tabular data: A survey. IEEE Trans-
actions on Neural Networks and Learning Systems, 2022.

Johannes Brandstetter. Blog post: Hopfield networks is all
you need. https://ml-jku.github.io/hopfield-layers/, 2021.
Accessed: April 4, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. Advances
in neural information processing systems (NeurIPS), 33:
1877–1901, 2020. URL https://arxiv.org/abs/2005.14165.

Thomas F Burns. Semantically-correlated memories in
a dense associative model. In Forty-first International
Conference on Machine Learning (ICML), 2024. URL
https://arxiv.org/abs/2404.07123.

Thomas F Burns and Tomoki Fukai. Simplicial hopfield
networks. In The Eleventh International Conference on
Learning Representations (ICLR), 2023. URL https://
openreview.net/forum?id= QLsH8gatwx.

Ljubomir Buturović and Dejan Miljković. A novel method
for classification of tabular data using convolutional neu-
ral networks. BioRxiv, pages 2020–05, 2020.

Vivien Cabannes, Elvis Dohmatob, and Alberto Bietti.
Scaling laws for associative memories. In The Twelfth
International Conference on Learning Representations
(ICLR), 2024a. URL https://openreview.net/forum?id=
Tzh6xAJSll.

Vivien Cabannes, Berfin Simsek, and Alberto Bietti. Learn-
ing associative memories with gradient descent. arXiv
preprint arXiv:2402.18724, 2024b. URL https://arxiv.
org/abs/2402.18724.

10

https://arxiv.org/abs/2006.06465
https://arxiv.org/abs/2006.06465
https://arxiv.org/abs/1908.07442
https://arxiv.org/abs/2303.12783
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2306.00802
https://arxiv.org/abs/2306.00802
https://ml-jku.github.io/hopfield-layers/
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2404.07123
https://openreview.net/forum?id=_QLsH8gatwx
https://openreview.net/forum?id=_QLsH8gatwx
https://openreview.net/forum?id=Tzh6xAJSll
https://openreview.net/forum?id=Tzh6xAJSll
https://arxiv.org/abs/2402.18724
https://arxiv.org/abs/2402.18724

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

Hamza Chaudhry, Jacob Zavatone-Veth, Dmitry Krotov,
and Cengiz Pehlevan. Long sequence hopfield mem-
ory. Advances in Neural Information Processing Systems
(NeurIPS), 36, 2023. URL https://arxiv.org/abs/2306.
04532.

Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich,
Yuan Tang, Hyunsu Cho, Kailong Chen, Rory Mitchell,
Ignacio Cano, Tianyi Zhou, et al. Xgboost: extreme
gradient boosting. R package version 0.4-2, 1(4):1–4,
2015.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever.
Generating long sequences with sparse transformers.
arXiv preprint arXiv:1904.10509, 2019. URL https:
//arxiv.org/abs/1904.10509.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, et al. Palm: Scaling language modeling with
pathways. arXiv preprint arXiv:2204.02311, 2022. URL
https://arxiv.org/abs/2204.02311.

Gonçalo M Correia, Vlad Niculae, and André FT Mar-
tins. Adaptively sparse transformers. In Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 2174–2184, 2019. URL https://arxiv.org/
abs/1909.00015.

Mete Demircigil, Judith Heusel, Matthias Löwe, Sven
Upgang, and Franck Vermet. On a model of associa-
tive memory with huge storage capacity. Journal of
Statistical Physics, 168:288–299, 2017. URL https:
//arxiv.org/abs/1702.01929.

Andreas Fürst, Elisabeth Rumetshofer, Johannes Lehner,
Viet T Tran, Fei Tang, Hubert Ramsauer, David Kreil,
Michael Kopp, Günter Klambauer, Angela Bitto, et al.
Cloob: Modern hopfield networks with infoloob out-
perform clip. Advances in neural information process-
ing systems (NeurIPS), 35:20450–20468, 2022. URL
https://arxiv.org/abs/2110.11316.

Josh Gardner, Zoran Popovic, and Ludwig Schmidt. Bench-
marking distribution shift in tabular data with tableshift.
Advances in Neural Information Processing Systems
(NeurIPS), 36, 2024. URL https://arxiv.org/abs/2312.
07577.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and
Artem Babenko. Revisiting deep learning models for
tabular data. Advances in Neural Information Processing
Systems (NeurIPS), 34:18932–18943, 2021. URL https:
//arxiv.org/abs/2106.11959.

Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On
embeddings for numerical features in tabular deep learn-
ing. Advances in Neural Information Processing Sys-
tems (NeurIPS), 35:24991–25004, 2022. URL https:
//arxiv.org/abs/2203.05556.

Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil
Shlenskii, Akim Kotelnikov, and Artem Babenko. TabR:
Unlocking the power of retrieval-augmented tabular deep
learning, 2023. URL https://arxiv.org/abs/2307.14338.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux.
Why do tree-based models still outperform deep learning
on typical tabular data? Advances in Neural Information
Processing Systems (NeurIPS), 35:507–520, 2022. URL
https://arxiv.org/abs/2207.08815.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 770–778, 2016. doi: 10.1109/
CVPR.2016.90. URL https://arxiv.org/abs/1512.03385.

Noah Hollmann, Samuel Müller, Katharina Eggensperger,
and Frank Hutter. TabPFN: A transformer that solves
small tabular classification problems in a second. In The
Eleventh International Conference on Learning Repre-
sentations (ICLR), 2022. URL https://arxiv.org/abs/2207.
01848.

Benjamin Hoover, Yuchen Liang, Bao Pham, Rameswar
Panda, Hendrik Strobelt, Duen Horng Chau, Mo-
hammed J Zaki, and Dmitry Krotov. Energy trans-
former. In Thirty-seventh Conference on Neural In-
formation Processing Systems (NeurIPS), 2023. URL
https://arxiv.org/abs/2302.07253.

John J Hopfield. Neural networks and physical systems with
emergent collective computational abilities. Proceedings
of the national academy of sciences, 79(8):2554–2558,
1982.

John J Hopfield. Neurons with graded response have col-
lective computational properties like those of two-state
neurons. Proceedings of the national academy of sciences,
81(10):3088–3092, 1984.

Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei
Xu, Bo-Yu Chen, and Han Liu. On sparse modern hop-
field model. In Thirty-seventh Conference on Neural
Information Processing Systems (NeurIPS), 2023. URL
https://arxiv.org/abs/2309.12673.

Jerry Yao-Chieh Hu, Pei-Hsuan Chang, Robin Luo, Hong-
Yu Chen, Weijian Li, Wei-Po Wang, and Han Liu. Outlier-
efficient hopfield layers for large transformer-based mod-
els. In Forty-first International Conference on Machine

11

https://arxiv.org/abs/2306.04532
https://arxiv.org/abs/2306.04532
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/1909.00015
https://arxiv.org/abs/1909.00015
https://arxiv.org/abs/1702.01929
https://arxiv.org/abs/1702.01929
https://arxiv.org/abs/2110.11316
https://arxiv.org/abs/2312.07577
https://arxiv.org/abs/2312.07577
https://arxiv.org/abs/2106.11959
https://arxiv.org/abs/2106.11959
https://arxiv.org/abs/2203.05556
https://arxiv.org/abs/2203.05556
https://arxiv.org/abs/2307.14338
https://arxiv.org/abs/2207.08815
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2207.01848
https://arxiv.org/abs/2207.01848
https://arxiv.org/abs/2302.07253
https://arxiv.org/abs/2309.12673

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

Learning (ICML), 2024a. URL https://arxiv.org/abs/2404.
03828.

Jerry Yao-Chieh Hu, Bo-Yu Chen, Dennis Wu, Feng Ruan,
and Han Liu. Nonparametric modern hopfield models.
arXiv preprint arXiv:2404.03900, 2024b. URL https:
//arxiv.org/abs/2404.03900.

Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu.
On computational limits of modern hopfield models: A
fine-grained complexity analysis. In Forty-first Interna-
tional Conference on Machine Learning (ICML), 2024c.
URL https://arxiv.org/abs/2402.04520.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar
Karnin. TabTransformer: Tabular data modeling using
contextual embeddings. arXiv preprint arXiv:2012.06678,
2020. URL https://arxiv.org/abs/2012.06678.

Alan Jeffares, Tennison Liu, Jonathan Crabbé, Fergus Imrie,
and Mihaela van der Schaar. TANGOS: Regularizing
tabular neural networks through gradient orthogonaliza-
tion and specialization. In The Eleventh International
Conference on Learning Representations (ICLR), 2023.
URL https://arxiv.org/abs/2303.05506.

Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davu-
luri. Dnabert: pre-trained bidirectional encoder repre-
sentations from transformers model for dna-language in
genome. Bioinformatics, 37(15):2112–2120, 2021.

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif
Grabocka. Well-tuned simple nets excel on tabular
datasets. Advances in neural information processing
systems (NeurIPS), 34:23928–23941, 2021. URL https:
//arxiv.org/abs/2106.11189.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei
Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. Light-
gbm: A highly efficient gradient boosting decision
tree. Advances in neural information processing systems
(NeurIPS), 30, 2017.

Leo Kozachkov, Ksenia V Kastanenka, and Dmitry Kro-
tov. Building transformers from neurons and astrocytes.
bioRxiv, pages 2022–10, 2022.

Dmitry Krotov. Hierarchical associative memory. arXiv
preprint arXiv:2107.06446, 2021. URL https://arxiv.org/
abs/2107.06446.

Dmitry Krotov. A new frontier for hopfield networks. Na-
ture Reviews Physics, 5(7):366–367, Jul 2023. ISSN
2522-5820. doi: 10.1038/s42254-023-00595-y. URL
https://doi.org/10.1038/s42254-023-00595-y.

Dmitry Krotov and John J Hopfield. Dense associative
memory for pattern recognition. Advances in neural in-
formation processing systems (NeurIPS), 29, 2016. URL
https://arxiv.org/abs/1606.01164.

Dmitry Krotov and John J. Hopfield. Large associative
memory problem in neurobiology and machine learning.
In International Conference on Learning Representations
(ICLR), 2021. URL https://arxiv.org/abs/2008.06996.

Jill K Leutgeb, Stefan Leutgeb, Alessandro Treves, Retsina
Meyer, Carol A Barnes, Bruce L McNaughton, May-Britt
Moser, and Edvard I Moser. Progressive transformation
of hippocampal neuronal representations in “morphed”
environments. Neuron, 48(2):345–358, 2005.

Guang Liu, Jie Yang, and Ledell Wu. PTab: Using the pre-
trained language model for modeling tabular data. arXiv
preprint arXiv:2209.08060, 2022. URL https://arxiv.org/
abs/2209.08060.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference
on computer vision, pages 10012–10022, 2021. URL
https://arxiv.org/abs/2103.14030.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. Deja vu: Con-
textual sparsity for efficient llms at inference time. In
International Conference on Machine Learning (ICML),
pages 22137–22176. PMLR, 2023. URL https://arxiv.org/
abs/2310.17157.

Duncan McElfresh, Sujay Khandagale, Jonathan Valverde,
Vishak Prasad C, Ganesh Ramakrishnan, Micah Gold-
blum, and Colin White. When do neural nets outperform
boosted trees on tabular data? Advances in Neural Infor-
mation Processing Systems (NeurIPS), 36, 2024. URL
https://arxiv.org/abs/2305.02997.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant
Kalagnanam. A time series is worth 64 words: Long-term
forecasting with transformers. In International Confer-
ence on Learning Representations (ICLR), 2023. URL
https://arxiv.org/abs/2211.14730.

Inkit Padhi, Yair Schiff, Igor Melnyk, Mattia Rigotti,
Youssef Mroueh, Pierre Dognin, Jerret Ross, Ravi Nair,
and Erik Altman. Tabular transformers for modeling
multivariate time series. In ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 3565–3569. IEEE, 2021.
URL https://arxiv.org/abs/2011.01843.

12

https://arxiv.org/abs/2404.03828
https://arxiv.org/abs/2404.03828
https://arxiv.org/abs/2404.03900
https://arxiv.org/abs/2404.03900
https://arxiv.org/abs/2402.04520
https://arxiv.org/abs/2012.06678
https://arxiv.org/abs/2303.05506
https://arxiv.org/abs/2106.11189
https://arxiv.org/abs/2106.11189
https://arxiv.org/abs/2107.06446
https://arxiv.org/abs/2107.06446
https://doi.org/10.1038/s42254-023-00595-y
https://arxiv.org/abs/1606.01164
https://arxiv.org/abs/2008.06996
https://arxiv.org/abs/2209.08060
https://arxiv.org/abs/2209.08060
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2310.17157
https://arxiv.org/abs/2310.17157
https://arxiv.org/abs/2305.02997
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/2011.01843

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

Fabian Paischer, Thomas Adler, Vihang Patil, Angela
Bitto-Nemling, Markus Holzleitner, Sebastian Lehner,
Hamid Eghbal-Zadeh, and Sepp Hochreiter. History
compression via language models in reinforcement learn-
ing. In International Conference on Machine Learn-
ing (ICML), pages 17156–17185. PMLR, 2022. URL
https://arxiv.org/abs/2205.12258.

Ben Peters, Vlad Niculae, and André F. T. Martins. Sparse
sequence-to-sequence models. In Anna Korhonen, David
Traum, and Lluı́s Màrquez, editors, Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 1504–1519, Florence, Italy, July
2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1146. URL https://arxiv.org/abs/1905.
05702.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neu-
ral oblivious decision ensembles for deep learning on
tabular data. In International Conference on Learning
Representations (ICLR), 2020. URL https://arxiv.org/abs/
1909.06312.

Charley Presigny and Fabrizio De Vico Fallani. Colloquium:
Multiscale modeling of brain network organization. Re-
views of Modern Physics, 94(3):031002, 2022.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev,
Anna Veronika Dorogush, and Andrey Gulin. CatBoost:
unbiased boosting with categorical features. Advances
in neural information processing systems (NeurIPS), 31,
2018. URL https://arxiv.org/abs/1706.09516.

Lianke Qin, Aravind Reddy, Zhao Song, Zhaozhuo Xu, and
Danyang Zhuo. Adaptive and dynamic multi-resolution
hashing for pairwise summations. In 2022 IEEE Inter-
national Conference on Big Data (Big Data), pages 115–
120. IEEE, 2022. URL https://arxiv.org/abs/2212.11408.

Jiezhong Qiu, Hao Ma, Omer Levy, Wen-tau Yih, Sinong
Wang, and Jie Tang. Blockwise self-attention for long
document understanding. In Trevor Cohn, Yulan He, and
Yang Liu, editors, Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 2555–2565,
Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.findings-emnlp.232.
URL https://arxiv.org/abs/1911.02972.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner,
Philipp Seidl, Michael Widrich, Lukas Gruber, Markus
Holzleitner, Thomas Adler, David Kreil, Michael K
Kopp, Günter Klambauer, Johannes Brandstetter, and
Sepp Hochreiter. Hopfield networks is all you need. In
International Conference on Learning Representations
(ICLR), 2021. URL https://arxiv.org/abs/2008.02217.

Philipp Seidl, Philipp Renz, Natalia Dyubankova, Paulo
Neves, Jonas Verhoeven, Jorg K Wegner, Marwin Segler,
Sepp Hochreiter, and Gunter Klambauer. Improving few-
and zero-shot reaction template prediction using modern
hopfield networks. Journal of chemical information and
modeling, 62(9):2111–2120, 2022.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. A theoretical
analysis on feature learning in neural networks: Emer-
gence from inputs and advantage over fixed features. In
International Conference on Learning Representations
(ICLR), 2021. URL https://arxiv.org/abs/2206.01717.

Zhenmei Shi, Jiefeng Chen, Kunyang Li, Jayaram Raghu-
ram, Xi Wu, Yingyu Liang, and Somesh Jha. The trade-
off between universality and label efficiency of repre-
sentations from contrastive learning. In The Eleventh
International Conference on Learning Representations
(ICLR), 2022. URL https://arxiv.org/abs/2303.00106.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. Provable
guarantees for neural networks via gradient feature learn-
ing. Advances in Neural Information Processing Systems
(NeurIPS), 36, 2024. URL https://arxiv.org/abs/2310.
12408.

Gowthami Somepalli, Avi Schwarzschild, Micah Goldblum,
C. Bayan Bruss, and Tom Goldstein. SAINT: Improved
neural networks for tabular data via row attention and
contrastive pre-training. In NeurIPS 2022 First Table
Representation Workshop, 2022. URL https://arxiv.org/
abs/2106.01342.

Mark G Stokes, Makoto Kusunoki, Natasha Sigala, Hamed
Nili, David Gaffan, and John Duncan. Dynamic coding
for cognitive control in prefrontal cortex. Neuron, 78(2):
364–375, 2013.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler.
Efficient transformers: A survey. ACM Computing Sur-
veys, 55(6):1–28, 2022. URL https://arxiv.org/abs/2009.
06732.

Constantino Tsallis. Possible generalization of boltzmann-
gibbs statistics. Journal of statistical physics, 52:479–487,
1988.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems (NeurIPS), 30,
2017. URL https://arxiv.org/abs/1706.03762.

Michael Widrich, Bernhard Schäfl, Milena Pavlović, Hubert
Ramsauer, Lukas Gruber, Markus Holzleitner, Johannes
Brandstetter, Geir Kjetil Sandve, Victor Greiff, Sepp
Hochreiter, et al. Modern hopfield networks and attention

13

https://arxiv.org/abs/2205.12258
https://arxiv.org/abs/1905.05702
https://arxiv.org/abs/1905.05702
https://arxiv.org/abs/1909.06312
https://arxiv.org/abs/1909.06312
https://arxiv.org/abs/1706.09516
https://arxiv.org/abs/2212.11408
https://arxiv.org/abs/1911.02972
https://arxiv.org/abs/2008.02217
https://arxiv.org/abs/2206.01717
https://arxiv.org/abs/2303.00106
https://arxiv.org/abs/2310.12408
https://arxiv.org/abs/2310.12408
https://arxiv.org/abs/2106.01342
https://arxiv.org/abs/2106.01342
https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/1706.03762

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

for immune repertoire classification. Advances in Neural
Information Processing Systems (NeurIPS), 33:18832–
18845, 2020. URL https://arxiv.org/abs/2007.13505.

David J Willshaw, O Peter Buneman, and Hugh Christopher
Longuet-Higgins. Non-holographic associative memory.
Nature, 222(5197):960–962, 1969.

Dennis Wu, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and
Han Liu. Uniform memory retrieval with larger capacity
for modern hopfield models. In Forty-first International
Conference on Machine Learning (ICML), 2024a. URL
https://arxiv.org/abs/2404.03827.

Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen,
and Han Liu. STanhop: Sparse tandem hopfield model for
memory-enhanced time series prediction. In The Twelfth
International Conference on Learning Representations
(ICLR), 2024b. URL https://arxiv.org/abs/2312.17346.

Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large
language models have compositional ability? an in-
vestigation into limitations and scalability. In ICLR
2024 Workshop on Mathematical and Empirical Un-
derstanding of Foundation Models, 2024. URL https:
//openreview.net/forum?id=4XPeF0SbJs.

Jiahuan Yan, Jintai Chen, Yixuan Wu, Danny Z Chen, and
Jian Wu. T2G-Former: organizing tabular features into
relation graphs promotes heterogeneous feature interac-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 10720–10728, 2023. URL
https://arxiv.org/abs/2211.16887.

Tzu-Hsien Yang, Sheng-Cian Shiue, Kuan-Yu Chen, Yan-
Yuan Tseng, and Wei-Sheng Wu. Identifying pirna targets
on mrnas in c. elegans using a deep multi-head attention
network. BMC bioinformatics, 22(1):1–23, 2021.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer
utilizing cross-dimension dependency for multivariate
time series forecasting. In The Eleventh International
Conference on Learning Representations (ICLR), 2023.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen,
Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian,
Christopher Ré, Clark Barrett, et al. H2O: Heavy-hitter
oracle for efficient generative inference of large language
models. Advances in Neural Information Processing
Systems (NeurIPS), 36, 2023. URL https://arxiv.org/abs/
2306.14048.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang,
Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Be-
yond efficient transformer for long sequence time-series
forecasting. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pages 11106–11115,
2021. URL https://arxiv.org/abs/2012.07436.

Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao
Yao, Wotao Yin, Rong Jin, et al. Film: Frequency im-
proved legendre memory model for long-term time series
forecasting. Advances in Neural Information Process-
ing Systems (NeurIPS), 35:12677–12690, 2022. URL
https://arxiv.org/abs/2205.08897.

Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ra-
mana V Davuluri, and Han Liu. DNABERT-2: Effi-
cient foundation model and benchmark for multi-species
genomes. In The Twelfth International Conference on
Learning Representations (ICLR), 2024. URL https:
//arxiv.org/abs/2306.15006.

14

https://arxiv.org/abs/2007.13505
https://arxiv.org/abs/2404.03827
https://arxiv.org/abs/2312.17346
https://openreview.net/forum?id=4XPeF0SbJs
https://openreview.net/forum?id=4XPeF0SbJs
https://arxiv.org/abs/2211.16887
https://arxiv.org/abs/2306.14048
https://arxiv.org/abs/2306.14048
https://arxiv.org/abs/2012.07436
https://arxiv.org/abs/2205.08897
https://arxiv.org/abs/2306.15006
https://arxiv.org/abs/2306.15006

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

Supplementary Material

• Appendix A: Table of Notations
• Appendix B: Related Works
• Appendix C: Supplementary Theoretical Backgrounds
• Appendix D: Experimental Details
• Appendix E: Additional Numerical Experiments

A. Table of Notations

Table 3. Table of Notations.

Notation Description

a,b, c . . . Vectors
A,B,C . . . Matrices
⟨a,b⟩ Inner product of vectors a and b, defined as aTb
[I] Index set {1, · · · , I} for a positive integer I
∥·∥2 Spectral norm for matrices (aligned with l2-norm for vectors)

ξ ∈ Rd Memory patterns (keys)
x ∈ Rd State/configuration/query pattern
Ξ := [ξ1, · · · , ξM] ∈ Rd×M Shorthand for stored memory (key) patterns {ξµ}µ∈[M]

n = ∥x∥ Norm of the query pattern
m = Maxµ∈[M] ∥ξµ∥ Maximum norm among the memory patterns
ΞTx M -dimensional overlap vector (⟨ξ1,x⟩ , · · · , ⟨ξµ,x⟩ , · · · , ⟨ξM ,x⟩) in RM[
ΞTx

]
κ

The κ-th element of ΞTx
κ The number of non-zero element of Sparsemax

n Norm of x, denoted as n := ∥x∥
m Largest norm of memory patterns, denoted as m := Maxµ∈[M] ∥ξµ∥
R The minimal Euclidean distance across all possible pairs of memory patterns, R := 1

2 Minµ,ν∈[M] ∥ξµ − ξν∥
Sµ The sphere centered at the memory pattern ξµ with finite radius R
x⋆
µ The fixed point of T covered by Sµ, i.e. x⋆

µ ∈ Sµ

∆µ The separation of a memory pattern ξµ from all other memory patterns Ξ
∆̃µ The separation of ξµ at a given x from all memory patterns Ξ

E(·) Embeddings
x ∈ RN Single tabular data point with N features (starting from Section 3).
Concat([A,B], axis = 0) Concatenations of A,B through first dimension (axis = 1 for concatenation through second dimension)
X The internal embedding matrix of x.
⌈·⌉ Ceiling function
Xi,j The element of i-th rows and j-th columns in X

15

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

B. Related Works
Machine Learning for Tabular Data. Tabular data is a common data type across various domains such as time series
prediction, fraud detection, physics, and recommendation systems. The state-of-the-art machine learning models for
tabular data are tree-based models, particularly the family of gradient boosting decision trees (GBDT) (Chen et al., 2015;
Prokhorenkova et al., 2018; Ke et al., 2017). In recent years, as deep learning model architectures have thrived in the natural
language processing (NLP) and computer vision (CV) domains, many attempts have been made to adapt and apply these
successful architectures, such as Multi-layer Perceptron (MLP) (Kadra et al., 2021), Convolutional Neural Networks (CNN)
(Buturović and Miljković, 2020), and Transformers (Huang et al., 2020; Padhi et al., 2021; Somepalli et al., 2022), to tabular
data. Additionally, another line of work in deep learning involves creating differentiable tree-based models to enhance the
capabilities of existing GBDT models (Arik and Pfister, 2021; Abutbul et al., 2020; Popov et al., 2020). However, unlike
their dominance in NLP and CV, these deep learning models have struggled to surpass the performance of GBDTs on tabular
data (Borisov et al., 2022; Grinsztajn et al., 2022). Recent work, such as TabR (Gorishniy et al., 2023), shows some marginal
advantages over GBDTs on certain datasets For small datasets, TabPFN (Hollmann et al., 2022), utilizing Prior-Data Fitted
Networks, performs better than tree-based methods. However, the memory and runtime usage scale quadratically with the
training inputs. T2G-FORMER (Yan et al., 2023) fails to surpass XGBoost but performs better than other deep learning
methods by learning feature relations. TANGOS (Jeffares et al., 2023) narrows the gap between deep learning models and
tree-based models by applying specific regularization techniques during neural network training. To date, no deep learning
model for tabular data has uniformly outperformed tree-based models

Modern Hopfield Models and Attention Mechanisms. Classical Hopfield models (Hopfield, 1984; 1982; Krotov and
Hopfield, 2016) are quintessential representations of the human brain’s associative memory, primarily functioning to store
and retrieve specific memory patterns. Recently, there has been a resurgence of interest in associative memory models
within the machine learning field (Burns, 2024; Burns and Fukai, 2023; Bietti et al., 2023; Cabannes et al., 2024b;a;
Krotov, 2023; 2021; Krotov and Hopfield, 2021; Ramsauer et al., 2021), attributed to advances in understanding memory
storage capacities (Wu et al., 2024a; Chaudhry et al., 2023; Demircigil et al., 2017; Krotov and Hopfield, 2016), innovative
architectures (Hoover et al., 2023; Seidl et al., 2022; Fürst et al., 2022; Ramsauer et al., 2021), and their biologically
plausibility (Kozachkov et al., 2022; Krotov and Hopfield, 2021). Notably, modern Hopfield models (Hu et al., 2024b;a; Wu
et al., 2024a;b; Hu et al., 2023; Ramsauer et al., 2021)3 demonstrate not only a strong connection to transformer attention
mechanisms in deep learning but also superior performance and a theoretically guaranteed exponential memory capacity
Their applicability spans diverse areas such as large language models (Hu et al., 2024a), immunology (Widrich et al., 2020),
time series forecasting (Wu et al., 2024b; Auer et al., 2024), reinforcement learning (Paischer et al., 2022), and vision
models (Fürst et al., 2022). In this context, this work emphasizes refining this line of research towards sparser models.
We posit that this effort is crucial in guiding future research towards Hopfield-driven design paradigms and bio-inspired
computing systems.

Sparse Attention. The attention mechanisms of transformers have demonstrated unparalleled performance in many
domains, such as large language models (Xu et al., 2024; Liu et al., 2023; Zhang et al., 2023; Chowdhery et al., 2022;
Brown et al., 2020), time series prediction (Zhou et al., 2022; 2021), and biomedical science (Zhou et al., 2024; Yang et al.,
2021; Ji et al., 2021). However, the standard transformer architecture relies heavily on a dense quadratic attention score
matrix. This structure presents computational challenges, especially for longer sequences, given its O(n2) complexity for
an input sequence of length n. In response to this challenge, a wealth of research has introduced sparse variants of attention
mechanisms and transformers, aiming to strike a balance between computational efficiency and model expressiveness. For a
comprehensive review, readers may refer to (Tay et al., 2022). Generally, these sparse attention/transformer methodologies
fall into two categories:

1. Structured-Sparsity Attentions (Beltagy et al., 2020; Qiu et al., 2020; Child et al., 2019): These methods utilize
structured, predetermined patterns in the attention matrix. Typically, each sequence token attends to a predetermined
subset of tokens instead of the entire sequence.

2. Dynamic Sparsity via Normalization Maps (Peters et al., 2019; Correia et al., 2019; Krotov and Hopfield, 2016):
In contrast to structured sparsity, these methods dynamically determine sparsity, centering on the most relevant input
elements. Despite potentially retaining a space complexity of O(n2), they dynamically tailor sparsity patterns to the
data, bolstering scalability and clarity.
3For an in-depth tutorial, see (Brandstetter, 2021).

16

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

This work aligns more closely with the second category, as we employ the generalized sparse modern Hopfield model (Wu
et al., 2024b) by substituting the softmax function in the modern Hopfield models with sparsity-inducing alternatives. A
theoretical analysis of the efficiency of modern Hopfield models can be found in (Hu et al., 2024c).

C. Supplementary Theoretical Backgrounds
To highlight the computational benefits of the generalized sparse modern Hopfield model, we quote relevant results from
(Wu et al., 2024b) here.

C.1. Definition of Memory Storage and Retrieval and Separation of Patterns

We adopt the formal definition of memory storage and retrieval from (Ramsauer et al., 2021) for continuous patterns.

Definition C.1 (Stored and Retrieved). Assuming that every pattern ξµ is surrounded by a sphere Sµ with finite radius
R := 1

2 Minµ,ν∈[M] ∥ξµ − ξν∥, we say ξµ is stored if there exists a generalized fixed point of T , x⋆
µ ∈ Sµ, to which all

limit points x ∈ Sµ converge to, and Sµ ∩ Sν = ∅ for µ ̸= ν. We say ξµ is ϵ-retrieved by T with x for an error.

We then introduce the definition of pattern separation for later convenience.

Definition C.2 (Pattern Separation). Let’s consider a memory pattern ξµ within a set of memory patterns Ξ.
1. The separation metric ∆µ for ξµ with respect to other memory patterns is the difference between its self-inner product

and the maximum inner product with any other pattern

∆µ = ⟨ξµ, ξµ⟩ − Max
ν,ν ̸=µ

⟨ξµ, ξν⟩ . (C.1)

2. Given a specific pattern x, the relative separation metric ∆̃µ for ξµ with respect to other patterns in Ξ is defined as:

∆̃µ = Min
ν,ν ̸=µ

(⟨x, ξµ⟩ − ⟨x, ξν⟩) . (C.2)

C.2. Supplementary Theoretical Results for Generalized Sparse Modern Hopfield Model

Theorem C.1 (Retrieval Error, Theorem 3.1 of (Wu et al., 2024b)). Let TDense be the retrieval dynamics of the dense modern
Hopfield model (Ramsauer et al., 2021). It holds ∥T (x)− ξµ∥ ≤ ∥TDense(x)− ξµ∥ for all µ.

Theorem C.1 implies two computational advantages:

Corollary C.1.1 (Faster Convergence). Computationally, Theorem C.1 suggests that T converges to fixed points using
fewer iterations than Tdense for the same error tolerance. This means that T retrieves stored memory patterns more quickly
and efficiently than its dense counterpart.

Corollary C.1.2 (Noise-Robustness). In cases of noisy patterns with noise η, i.e. x̃ = x+η (noise in query) or ξ̃µ = ξµ+η
(noise in memory), the impact of noise η on the sparse retrieval error ∥T (x)− ξµ∥ is linear for α ≥ 2, while its effect on
the dense retrieval error ∥TDense(x)− ξµ∥ (or ∥T (x)− ξµ∥ with 2 ≥ α ≥ 1) is exponential.

Remark C.1. Corollary C.1.1 does not imply computational efficiency. The proposed model’s sparsity falls under the
category of sparsity-inducing normalization maps (Tay et al., 2022; Peters et al., 2019; Correia et al., 2019; Krotov and
Hopfield, 2016). This means that, during the forward pass, the space complexity remains at O(n2), on par with the dense
modern Hopfield model.
Remark C.2. Nevertheless, Corollary C.1.1 suggests a specific type of “efficiency” related to faster memory retrieval
compared to the dense Hopfield model. In essence, a retrieval dynamic with a smaller error converges faster to the fixed
points (stored memories), thereby enhancing efficiency.

17

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

D. Experimental Details
Computational Hardware. All experiments are conducted on the platforms equipped with NVIDIA GEFORCE RTX
2080 Ti, Tesla A100 SXM GPU, and INTEL XEON SILVER 4214 @ 2.20GHz.

D.1. Additional Details on Datasets

We describe all the datasets used in our experiments in Table 4 and provide the download links to each dataset in Table 6.

Table 4. Details of Datasets. We summarize the statistics of 9 datasets we have used in Baseline I, 8 of which involve binary classification
and 1 of which involve multi-class classification (4 classes).

Adult Bank Blastchar Income SeismicBump Shrutime Spambase Qsar Jannis

Numerical 6 7 3 6 14 6 58 41 54
Categorical 8 9 16 8 4 4 0 0 0
Train 34190 31648 4923 34189 1809 7001 3221 738 58613
Validation 9769 9042 1407 9768 517 2000 920 211 16747
Test 4884 4522 703 4885 258 1000 461 106 8373
Task type Bi-Class Bi-Class Bi-Class Bi-Class Bi-Class Bi-Class Bi-Class Bi-Class Multi-Class

Table 5. Details of Datasets. We summarize the statistics of 19 datasets covering four suite: categorical classification (CC), numerical
classification (NC), categorical regression (CR), and numerical regression (NR).

Dataset ID Dataset Name # of Categorical # of Numerical

CC
361282 albert 11 21
361283 default-of-credit-card-clients 2 20
361286 compas-two-years 9 3

CR

361093 analcatdata supreme 5 3
361094 visualizing soil 1 4
361099 Bike Sharing Demand 5 7
361104 SGEMM GPU kernel performance 6 4
361288 abalone 1 8

NC

361055 credit 0 10
361062 pol 0 26
361065 MagicTelescope 0 10
361273 Diabetes130US 0 7
361278 heloc 0 22

NR

361073 pol 0 27
361074 elevators 0 17
361077 Ailerons 0 34
361079 house 16H 0 17
361081 Brazilian houses 0 9
361280 abalone 0 8

The links to the four OpenML suites from (Grinsztajn et al., 2022) are CC: 4, NC5, CR6, NR7

4https://www.openml.org/search?type=benchmark&sort=date&study type=task&id=300
5https://www.openml.org/search?type=benchmark&study type=task&sort=tasks included&id=298
6https://www.openml.org/search?type=benchmark&study type=task&sort=tasks included&id=299
7https://www.openml.org/search?type=benchmark&study type=task&sort=tasks included&id=297

18

https://www.openml.org/search?type=benchmark&sort=date&study_type=task&id=300
https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=298
https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=299
https://www.openml.org/search?type=benchmark&study_type=task&sort=tasks_included&id=297

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

Table 6. Dataset Sources.

Dataset URL

Adult http://automl.chalearn.org/data
Bank https://archive.ics.uci.edu/ml/datasets/bank+marketing
Blastchar https://www.kaggle.com/blastchar/telco-customer-churn
Income https://www.kaggle.com/lodetomasi1995/income-classification
SeismicBumps https://archive.ics.uci.edu/ml/datasets/seismic-bumps
Shrutime https://www.kaggle.com/shrutimechlearn/churn-modelling
Spambase https://archive.ics.uci.edu/ml/datasets/Spambase
Qsar https://archive.ics.uci.edu/dataset/254/qsar+biodegradation
Jannis http://automl.chalearn.org/data

19

http://automl.chalearn.org/data
https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://www.kaggle.com/blastchar/telco-customer-churn
https://www.kaggle.com/lodetomasi1995/income-classification
https://archive.ics.uci.edu/ml/datasets/seismic-bumps
https://www.kaggle.com/shrutimechlearn/churn-modelling
https://archive.ics.uci.edu/ml/datasets/Spambase
https://archive.ics.uci.edu/dataset/254/qsar+biodegradation
http://automl.chalearn.org/data

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

D.2. Baselines

We evaluate BiSHop by comparing it to SOTA tabular learning methods, specifically selecting top performers in recent
studies (Grinsztajn et al., 2022; Somepalli et al., 2022; Gorishniy et al., 2021).

• LightGBM (Ke et al., 2017).

• CatBoost (Prokhorenkova et al., 2018).

• XGBoost (Chen et al., 2015).

• MLP (Somepalli et al., 2022).

• TabNet (Arik and Pfister, 2021).

• TabTransformer (Huang et al., 2020).

• FT-Transformer (Gorishniy et al., 2021).

• SAINT (Somepalli et al., 2022).

• TabPFN (Hollmann et al., 2022). We implement TabPFN using 32 data permutations for ensemble, as in the original
paper setting and truncate the training set to 1024 instances.

• T2G-FORMER (Yan et al., 2023). We implement T2G-FORMER by applying quantile transformation from the
Scikit-learn library to Baseline I datsets, aligning with the default setting in. The hyperparameter space is at Table 14.

• TANGOS (Jeffares et al., 2023). We adapted the official TANGOS source code to include the datasets from Baseline I
alongside the original datasets. The hyperparameter space is at Table 15.

Selection of Benchmark. We select Grinsztajn et al. (2022) as our benchmark for several reasons. Unlike other benchmarks
that focus solely on tasks such as classification (Gardner et al., 2024), this benchmark encompasses both regression and
classification tasks. Additionally, it provides results from 400 hyperparameter optimization (HPO) trials, ensuring a thorough
hyperparameter search for each model. In contrast, some methods, such as (McElfresh et al., 2024), restrict HPO to 10
hours on a specific GPU, which can be insufficient for deep-learning-based methods like BiSHop that require more training
time compared to tree-based methods. Moreover, comparing models under the same time constraints on different GPUs is
inherently unfair.

D.3. Implementation Details

Data Prepossessing. We initially transform the categorical features into discrete values (e.g., 0, 1, 2, 3) and retain the raw
numerical features without any processing. For tree-based method baselines, we employ the built-in categorical embedding
method for categorical features. For deep learning baselines, we further encode the categorical features using one-hot
encoding.

Evaluation. For each model’s hyperparameter configuration, we run 3 experiments using the best configuration and report
the average AUC score on the test set.

20

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

D.4. Training Details

Table 7. BiSHop Hyperparameter Space.

Parameter Distribution Default

Number of representation decoded [2, 4, 8, 16, 24, 32, 48, 64, 128, 256, 320] 24
Stride factor [1, 2, 4, 6, 8, 12, 16, 24] 8

Embedding dimension [16, 24, 32, 48, 64, 128, 256, 320] 32
Number of aggregation in encoder [2, 3, 4, 5, 6, 7, 8] 4

Number of pooling vector [5, 10, 15] 10
Dimension of hidden layers (Dmodel) [64, 128, 256, 512, 1024] 512

Dimension of feedforward network (in MLP) [128, 256, 512, 1024] 256
Number of multi-head attention [2, 4, 6, 8, 10, 12] 4

Number of Encoder [2, 3, 4, 5] 2
Number of Decoder [0, 1] 2

Learning rate LogUniform[(1e-6, 1e-4) 5e-5
ReduceLROnPlateau factor=0.1, eps=1e-6 factor=0.1, eps=1e-6

Learning Rate Scheduler. We use ReduceLROnPlateau to fine-tune the learning rate to improve convergence and model
training progress.

Optimizer. We use the Adam optimizer to minimize cross-entropy. The coefficients of the Adam optimizer, betas, are set
to (0.9, 0.999).

Patience. We continue training until there are Patience = 20 consecutive epochs where the validation loss doesn’t
decrease, or we reach 200 epochs. Finally, we evaluate our model on the test set with the last checkpoint.

HPO. We report the number of HPO for each dataset from baseline I in Table 9. We report hyperparameter configurations
for CatBoost in Table 10, LightGBM in Table 11, TabNet in Table 12, XGBoost in Table 13, T2G-Former in Table 14,
Tangos in Table 15. We follow the same procedure of HPOs for Tangos and T2G-Former in Yan et al. (2023) and Jeffares
et al. (2023), including the number of trials. For other methods, we follow the same settings as BiSHop.

Hyperparameter Importance Analysis. During random hyperparameter search, we observe that learning rate is the most
important hyperparameter (see Table 8). We use WandB ”sweep” features (Biewald et al., 2020) to calculate the importance
of each hyperparameter. Our findings agree with (Grinsztajn et al., 2022) suggesting that learning rate is the most important
hyperparameter for both neural network and gradient-boosted trees.

Table 8. Hyperparameter Importance Scores. The importance is calculate from features importance in RandomForest, averaging across
all datasets. This results highlight learning rate is the most crucial hyperparameter.

Hyperparameter RF Importance
Learning rate 0.17
Dropout 0.10
Number of heads 0.08
Number of aggregation 0.06
Dimension of hidden layers 0.06
Dimension of feed-forward network 0.13
Number of pooling factor 0.05
Number of encoder layer 0.05
Number of representation decoded 0.10

21

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

Table 9. Number of HPO in Baseline I.

Dataset # of HPO

Adult 36
Bank 26
Blastchar 52
Income 174
SeismicBumps 200
Shrutime 16
Spambase 1
Qsar 67
Jannis 137

Table 10. Hyperparameter Configurations for CatBoost.

Parameter Distribution Default

Depth UniformInt[3,10] 6
L2 regularization coefficient UniformInt[1,10] 3
Bagging temperature Uniform[0,1] 1
Leaf estimation iterations UniformInt[1,10] None
Learning rate LogUniform[1e-5, 1] 0.03

Table 11. Hyperparameter Configurations for LightGBM.

Parameter Distribution Default

Number of estimators [50, 75, 100, 125, 150] 100
Number of leavs UniformInt[10, 50] 31
Subsample UniformInt[0, 1] 1
Colsample UniformInt[0, 1] 1
Learning rate LogUniform[1e-1,1e-3] None

Table 12. Hyperparameter Configurations for TabNet.

Parameter Distribution Default

n d UniformInt[8,64] 8
n a UniformInt[8,64] 8
n steps UniformInt[3,10] 3
Gamma Uniform[1.0,2.0] 1.3
n independent UniformInt[1,5] 2
Learning rate LogUniform[1e-3, 1e-1] None
Lambda sparse LogUniform[1e-4, 1e-1] 1e-3
Mask type entmax sparsemax

22

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

Table 13. Hyperparameter Configurations for XGBoost.

Parameter Distribution Default

Max depth UniformInt[3,10] 6
Minimum child weight LogUniform[1e-4,1e2] 1
Subsample Uniform[0.5,1.0] 1
Learning rate LogUniform[1e-3,1e0] None
Colsample bylevel Uniform[0.5,1.0] 1
Colsample bytree Uniform[0.5,1.0] 1
Gamma LogUniform[1e-3,1e2] 0
Alpha LogUniform[1e-1,1e2] 0

Table 14. Hyperparameter Configurations for T2G-FORMER.

Parameter Distribution Default

layers UniformInt[1,3] None
Feature embedding size UniformInt[64,512] None
Residual Dropout Const(0.0) None
Attention Dropout Uniform[0, 0.5] None
FNN Dropout Uniform[0, 0.5] None
Learning rate (main backbone) LogUniform[3e-5, 3e-4] None
Learning rate (column embedding) LogUniform[5e-3, 5e-2] None
Weight decay LogUniform[1e-6, 1e-3] None

Table 15. Hyperparameter Configurations for TANGOS.

Parameter Distribution Default

λ1 LogUniform[0.001,10] None
λ2 LogUniform[0.0001,1] None

23

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

E. Additional Numerical Experiments
E.1. Component Analysis

We separately remove each component of BiSHop to assess its impact on performance. We use the default hyperparameters
as specified in Table 7 for the remaining components. We report the average AUC score of three runs using the default
parameters for all datasets in Table 17.

• Without Cat Emb: We remove both individual and shared embedding methods as described in the tabular embedding
section, replacing them with PyTorch’s embedding layers (torch.nn.Embedding) while keeping the embedding
dimension unchanged.

• Without Num Emb: We remove the Piecewise Linear Encoding method for numerical features, directly con-
catenating numerical features with the output of categorical embedding as detailed in Section 3.1.

• Without Patch Embedding: We remove the patch embedding method by setting the stride factor L to 1.

• Without Decoder: We remove the decoder blocks in BiSHop and pass the encoded data directly to MLP predictor.

• Without BiSHopModule: We replace the column-wise block and row-wise block in the BiSHop module with a MLP of
hidden size 512.

The results demonstrate that each component contributes to varying degrees to the BiSHop model, with numerical embedding,
decoder blocks, and the BiSHopModule being the most significant contributors.

Table 17. Component Ablation. In the ablation study, we remove one component at a time. By evaluating different crucial components
in BiSHop, we prove that each component contributes to various degrees of model performance. In particular, numerical embedding,
decoder blocks, and the BiSHopModule contribute the most.

Data BiSHop w/o Cat Emb w/o Num Emb w/o Patch Emb w/o Decoder w/o BiSHopModule

Adult 91.74 90.91 89.40 91.32 88.18 91.28
Bank 92.73 90.88 77.21 91.14 91.93 91.98

Blastchar 88.49 87.92 88.81 86.75 84.28 85.38
Income 92.43 91.01 90.38 91.56 91.44 91.36

SeismicBumps 91.42 90.03 87.85 89.33 80.75 79.34
Shrutime 87.38 86.49 81.75 81.32 86.26 85.41
Spambase 100 100 100 100 100 100

Qsar 92.85 91.15 94.69 91.50 93.04 91.65
Jannis 89.66 87.95 87.50 87.62 86.58 86.10

Average 91.86 90.82 88.62 90.06 89.16 89.17

24

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

E.2. Comparison with the Dense Modern Hopfield Model

Using the default hyperparameters of BiSHop, we evaluate its performance with three distinct layers: (i) GSH (generalized
sparse modern Hopfield model), (ii) Hopfield (dense modern Hopfield model (Ramsauer et al., 2021)), and (iii) Attn
(attention mechanism (Vaswani et al., 2017)). We report the average AUC score over 10 runs in Table 18.

Table 18. Comparing the Performance of Sparse versus Dense Modern Hopfield Models and Attention Mechanism. We contrast
the performance of our generalized sparse modern Hopfield model with that of the dense modern Hopfield model and the attention
mechanism. We achieve this by substituting the GSH layer with the Hopfield layer from (Ramsauer et al., 2021) and the Attn layer from
(Vaswani et al., 2017). We report the average AUC score (in %) over 10 runs, with variances omitted as they are all ≤ 1.1%. The results
indicates the superior performance of our proposed generalized sparse modern Hopfield model across datasets.

AUC (%) Adult Bank Blastchar Income SeismicBump Shrutime Spambase Qsar Jannis Mean AUC

GSH 91.74 92.73 88.49 92.43 91.42 87.38 100 92.85 89.66 91.86
Hopfield 91.72 92.60 85.31 91.65 78.63 86.81 100 91.27 85.04 89.23
Attn 91.44 92.46 83.14 91.46 78.42 83.04 100 89.88 88.28 88.68

E.3. Convergence Analysis

We calculate the validation loss and AUC score using the same default parameters and compare them with the dense modern
Hopfield model. For ease of presentation, we plot the results of six datasets (Blastchar, Shrutime, Income, Bank, Qsar, and
Jannis). We use the same hyperparameters for each dataset for both GSH and Hopfield. The results, averaged over 30
runs, are shown in Figure 4. The results indicate that GSH converges faster and achieves an AUC score that is equal to or
higher than Hopfield.

Figure 4. Convergence Analysis. We plot the validation loss and AUC score curves of the generalized sparse Hopfield model (GSH) and
the dense Hopfield model (Hopfield). The results, as shown by the solid lines for GSH, indicate that the sparse Hopfield model converges
faster and yields superior accuracy compared to the dense Hopfield model.

25

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

E.4. Rotation Experiments

In Table 19, we conduct the following experiments on rotating the datasets and the BiSHopModule’s direction, both
individually and in combination:

(R1) Rotate the 2 Directions (Row-wise and Column-wise). To validate the effectiveness of the bi-directional design in
BiSHop, we conduct experiments by rotating these directions and reporting the performance and average results. The
results indicate that the direction of BiSHop is vital for performance.

(R2) Rotate the Datasets. Following the experimental setup in (Grinsztajn et al., 2022), we randomly rotate datasets using
a randomly generated special orthogonal matrix. The results indicate that BiSHop is robust against data rotation.

(R3) Rotate the 2 Directions and the Datasets. To further validate our findings, we apply both (R1) and (R2). The results
show a drop in performance across nearly every dataset and align with our findings in (R1) and (R2).

The average AUC score across all datasets is reported for each type of rotation.

Table 19. Comparing the Performance of Default BiSHop with Various Configurations on BiSHop Module and Datasets. We
apply the following configurations to BiSHopModule and datasets to validate BiSHop’s ability to tackle (C1): rotate the 2 directions (R1),
rotate the datasets (R2), and combined column-wise, row-wise, and rotate the 2 directions and the datasets (R3).

Method/Dataset Adult Bank Blastchar Income SeismicBumps Shrutime Spambase Qsar Jannis Average

BiSHop 91.74 92.73 88.49 92.43 91.42 87.38 100 92.85 89.66 91.86
(R1) 91.52 92.04 88.38 91.69 89.81 85.83 100 93.65 86.55 91.05
(R2) 91.67 92.21 88.51 91.41 92.74 87.68 100 93.08 85.03 91.37
(R3) 91.44 92.07 85.68 91.62 89.92 85.85 100 94.18 87.1 90.88

E.5. Hierarchy of BiSHopModule

In Table 20, we assess the impact of stacking different layers of BiSHopModule. We report the average AUC over all
datasets for different layers of BiSHopModule.

Details. We progressively increase the layers within BiSHopModule from 1 to 8 in the Encoder and Decoder layers,
keeping other parameters at their default settings. This approach allows us to examine how adding more layers affects the
model’s performance.

Results. Table 20 summarizes the performance in AUC, averaged over all datasets for various layers. The results suggest
that 4 layers are the optimal setting to maximize performance.

Table 20. Performance Comparison with Stacking Various Layers of BiSHopModule. We vary different layers of BiSHopModule in
the encoder-decoder structure. The results suggest 4 layers of BiSHopModule may maximize the model performance.

Layer/Dataset Adult Bank Blstchar Income SeismicBumps Shrutime Spambase Qsar Jannis Average

1 layer 91.52 92.32 88.55 91.58 92.20 86.33 100 94.03 84.39 91.21
2 layers 91.56 92.21 88.71 91.66 90.83 87.5 100 93.77 82.84 91.00
3 layers 91.65 92.38 88.47 91.50 93.11 87.34 100 93.08 85.09 91.40
4 layers 91.58 92.28 88.54 91.47 92.98 87.24 100 93.52 85.40 91.45
5 layers 91.57 92.17 88.55 91.47 90.12 87.69 100 93.37 84.93 91.10
6 layers 91.65 92.26 88.48 91.46 92.47 85.05 100 91.14 85.11 90.85
7 layers 91.54 92.16 87.88 91.47 93.04 87.26 100 92.05 84.69 91.12
8 layers 91.56 91.96 88.09 91.54 93.04 82.98 100 93.88 84.71 90.86

E.6. Component Analysis for Regression Datasets

We conduct ablation studies on 3 regression datasets to further validate the importance of various components in BiSHop.
We randomly select 3 datasets from ’CR’ in 4.1 ‘Datasets II’ from our paper. For all experiments, we follow the same
procedure as detailed in E.1. We use R2 for evaluation.

26

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

Details. We remove different components from BiSHop for the randomly selected regression tasks from ’CR’ in 4.1
‘Datasets II’ since ’CR’ includes both categorical and numerical features. This ablation study is presented alongside the
classification task analysis in E.1 to validate the importance of various component design philosophies in BiSHop.

Results. We summarize the R2 score in Table 21. Different components in BiSHop contribute to various degrees of
performance enhancement. Notably, BiSHopModule and CatEmb have the most significant impact on regression tasks.

Table 21. Component Ablation. We remove each component at one time and keep all other settings the same for regression datasets. For
the experimental results, we prove that each component contributes to the model performance.

Data BiSHop w/o Cat Emb w/o Num Emb w/o Patch Emb w/o Decoder w/o BiSHopModule

361094 99.72 99.75 99.83 99.32 99.79 97.81
361288 54.91 54.09 54.67 50.7 53.93 51.41
361292 52.91 39.73 51.3 52.76 51.56 34.14

Average 69.18 64.52 68.60 67.59 68.43 61.12

27

BiSHop: Bi-Directional Cellular Learning for Tabular Data with Generalized Sparse Modern Hopfield Model

F. Computational Time
Computational Complexity. We summarize the computational complexity for each function used in BiSHop in Table 22.
Here we use the same notation as introduced in the main paper: N cat represents the number of categorical features; N num

represents the number of numerical features; N = N num + N cat represents the total number of features; G represents
the embedding dimension; P represents the patch embedding dimension; Dmodel represents the hidden dimension; len(Q)
represents the size of the query pattern; C represents the number of pooling vectors; and len(Y) represents the size of the
memory pattern.

Table 22. Computational Complexity.

Function Name Time Complexity

Categorical Embedding O(G×N cat)
Numerical Embedding O(G×N cat)

Patch Embedding O(N × P ×Dmodel)
GSH O(len(Y)× len(Q)×Dmodel)

GSHPooling O(len(Q)× C ×Dmodel × P 2)
Merging O(N × P × (Dmodel)2)

Computationally Time. For each dataset and hyperparameter configuration, the average training time for BiSHop varies
from 30 minutes to 2 hours. Based on different hyperparameter settings, the number of our model parameters varies from
107 to 108.

28

