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Abstract
Universal Adversarial Perturbations (UAPs) are
imperceptible, image-agnostic vectors that cause
deep neural networks (DNNs) to misclassify in-
puts with high probability. In practical attack
scenarios, adversarial perturbations may undergo
transformations such as changes in pixel inten-
sity, scaling, etc. before being added to DNN
inputs. Existing methods do not create UAPs ro-
bust to these real-world transformations, thereby
limiting their applicability in practical attack sce-
narios. In this work, we introduce and formulate
UAPs robust against real-world transformations.
We build an iterative algorithm using probabilistic
robustness bounds and construct UAPs robust to
transformations generated by composing arbitrary
sub-differentiable transformation functions. We
perform an extensive evaluation on the popular
CIFAR-10 and ILSVRC 2012 datasets measuring
our UAPs’ robustness under a wide range com-
mon, real-world transformations such as rotation,
contrast changes, etc. We further show that by us-
ing a set of primitive transformations our method
generalizes well to unseen transformations such
as fog, JPEG compression, etc. Our results show
that our method can generate UAPs up to 23%
more robust than state-of-the-art baselines.

1. Introduction
Deep neural networks (DNNs) have achieved impressive
results in many application domains such as natural lan-
guage processing (Abdel-Hamid et al., 2014; Brown et al.,
2020), medicine (Esteva et al., 2017; 2019), and computer vi-
sion (Simonyan and Zisserman, 2014; Szegedy et al., 2016).
Despite their performance, they can be fragile in the face
of adversarial perturbations: small imperceptible changes
added to a correctly classified input that make a DNN mis-
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classify. While there is a large amount of work on generating
adversarial perturbations (Szegedy et al., 2013; Goodfellow
et al., 2014; Madry et al., 2017; Carlini and Wagner, 2017;
Xiao et al., 2018a; Dong et al., 2018; Croce and Hein, 2019;
Wang et al., 2019; Zheng et al., 2019; Andriushchenko et al.,
2019; Tramèr et al., 2020), these works depend upon un-
realistic assumptions about the power of the attacker: the
attacker knows the DNN input in advance, generates input-
specific perturbations in real-time and exactly combines
the perturbation with the input before being processed by
the DNN. Thus, we argue that these threat models are not
realizable in many real-world applications.

Practically feasible adversarial perturbations. In this
work, we consider a more practical adversary to reveal real-
world vulnerabilities of state-of-the-art DNNs. We assume
that the attacker (i) does not know the DNN inputs in ad-
vance, (ii) can only transmit additive adversarial perturba-
tions, and (iii) their transmitted perturbations are susceptible
to modification due to real-world effects. Examples of at-
tacks in our threat model include adding stickers to the
cameras for fooling image classifiers (Li et al., 2019b) or
transmitting perturbations over the air for deceiving audio
classifiers (Li et al., 2019a). Note that our threat model is
distinct from directly generating adversarial examples (i.e.
creating physical adversarial objects (Athalye et al., 2018))
which require access to the original input. In Appendix
A, we further discuss how our threat model compares to
simultaneously transforming the input.

The first two requirements in our threat model can be
fulfilled by generating Universal Adversarial Perturbations
(UAPs) (Moosavi-Dezfooli et al., 2017). Here the attacker
can train a single adversarial perturbation that has a high
probability of being adversarial on all inputs in the training
distribution. However, as our experimental results show,
the generated UAPs need to be combined with the DNN
inputs precisely, otherwise they fail to remain adversarial.
In practice, changes to UAPs are likely due to real-world
effects. For example, a sticker applied to a camera can
undergo changes in contrast due to weather conditions or a
transmitted perturbation in audio can change due to noise in
the transmission channel. This non-robustness reduces the
efficacy of attacks created with existing methods (Moosavi-
Dezfooli et al., 2017; Shafahi et al., 2020; Li et al., 2019b;a).

1



Robust UAPs

Panda

Gibbon

 + Robust UAP
Attacker

?

?

?

Training
Dataset

❌
Misclassification

Robust UAP

Transformed

✔
Correct Classification

Standard UAP

Transformed

Input

Figure 1. Robust UAP Threat Model: Input Agnostic + Robust to Transmission Transformation

This work: Robust UAPs. To overcome the above limita-
tion, we propose the concept of robust UAPs: perturbations
that have a high probability of remaining adversarial on
inputs in the training distribution even after applying a set
of real-world transformations. The optimization problem
in generating robust UAPs (Moosavi-Dezfooli et al., 2017)
is made challenging as we are looking for perturbations
that are adversarial for a set of inputs as well as to a set of
potentially unknown transformations applied to the pertur-
bations. To address this challenge, we make the following
main contributions:

• We introduce Robust UAPs and formulate their generation
as an optimization problem. We separate our threat model
into two scenarios depending on whether the transforma-
tion set is known apriori.

• We design a new method, RobustUAP, for constructing
robust UAPs. Our method is general and constructs UAPs
robust to any transformations generated by composing
arbitrary sub-differentiable transformation functions. We
provide an algorithm for computing provable probabilistic
bounds on the robustness of our UAPs against many prac-
tical transformations. We show that in the vision domain
we can use a set of primitive transforms (adapted from
Modas et al. (2022)) to create Universally Robust UAPs.

• We perform an extensive evaluation of RobustUAP on
state-of-the-art models for the CIFAR-10 (Krizhevsky
et al., 2009) and ILSVRC 2012 (Deng et al., 2009)
datasets. We compare the robustness of our UAPs under
compositions of challenging real-world transformations,
such as rotation, contrast change, etc. We show that on
both datasets, the UAPs generated by RobustUAP are
significantly more robust, achieving up to 23% more ro-
bustness, than the UAPs generated from the baselines.
Furthermore, we show that RobustUAP significantly out-
performs UAP in a real-world wireless setting.

Our work is complementary to the development of real-
world attacks (Li et al., 2019a;b) in various domains, which

require modeling how the universal perturbations change
during transmission. RobustUAP can improve the effi-
ciency of such attacks by constructing perturbations more
robust to real-world transformations than existing methods.
Our results using primitive transformations in vision suggest
that we can forego domain-specific modeling in other do-
mains given a good set of primitives for that domain. Finally,
our preliminary results on adversarial training with robust
UAPs suggest that robustness against practical adversaries
such as robust UAPs can be achieved without sacrificing as
much accuracy as standard adversarial training.

2. Background
In this section, we provide necessary background definitions
and notation used in the rest of our work. For the remainder
of the paper, let µ ⊂ Rd be the input data distribution,
x ∈ µ be an input point with the corresponding true label
y ∈ R, and f : Rd → Rd′ be our target classifier. We define
fk(x) to be the kth element of f(x) and allow f̂(x) =
argmaxk fk(x) to directly refer to the classification label.
We use v to reference input-specific perturbations and u to
reference UAPs, vr and ur refer to their robust variants. We
provide formal definitions in Appendix B.

Adversarial Examples and Perturbations. An adver-
sarial example is a misclassified data point that is close (in
some norm) to a correctly classified data point (Goodfel-
low et al., 2014; Madry et al., 2017; Carlini and Wagner,
2017). In this paper, we consider examples x′ generated as
x′ = x+ v where v is an adversarial perturbation.

Universal Adversarial Perturbations. UAPs are sin-
gle vector, input-agnostic perturbations (Moosavi-Dezfooli
et al., 2017). They differ from traditional adversarial attacks,
which create perturbations dependent on each input sample.
To measure UAP performance, we introduce the notion of
universal adversarial success rate (ASRU ), which measures
the probability that a perturbation u when added to x, sam-
pled from µ, causes a change in classification under f . Thus
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Figure 2. Robust UAPs (left) cause a classier to misclassify on most of the data distribution even after transformations are applied on them.
Standard UAPs (right) are not robust to transformations and have a low probability of remaining UAPs after transformation.

a perturbation, u, is a UAP given two conditions: its ASRU
is greater than a given threshold, γ, and its norm is small
(additive perturbations with small lp-norm do not affect the
semantic content of the image). We pose the construction
of UAPs as an expectation minimization problem:

argmax
u

E
x∼µ

[δ(f̂(x+ u), f̂(x))] s.t. ||u||p < ϵ (1)

where δ(a, b) = 0 if a = b and 1 otherwise.

3. Robust Universal Adversarial Perturbations
In this section, we first define our notion of transformation
sets and neighborhoods in order to define robust UAPs.
Here, when we are referencing transformation sets as the
ones applied during transmission, if these are unknown,
we detail our method for overcoming this in Section 4.1.
Formal definitions of all terms can be found in Appendix B.

Transformation Sets and Neighborhoods. We define a
transformation set, T , as all transforms, τ , which can be
made by composing from a predefined set of bijective sub-
differentiable transformation functions. The neighborhood,
NT (v), of a point v is all points, v′ reachable from v using
transformations from T and which still satisfy ||v′||p < ϵ.

Example 3.1. Let T be all transformations represented by
a rotation of ±30◦ and scaling of up to a factor of 2, in
this case one τ ∈ T could be {rotation of 8◦ and scaling a
factor of 1.2} in that order and NT (v) would include any
point obtained by applying a transformation τ ∈ T on v
which still satisfies ||τ((v))||p < ϵ.

Robust UAPs. In order to define robust UAPs we intro-
duce robust universal adversarial success rate. The robust
universal adversarial success rate, ASRR, measures the
probability that a neighbor of ur is also an UAP on µ, i.e.
after transformation it maintains high universal ASR above
some threshold γ.

Definition 3.2. A robust UAP, ur, is one which most points
within a neighborhood of ur when added to most points
in µ fool the classifier, f . ur satisfies ||ur||p < ϵ and

ASRR(f, µ, T, γ,ur) > ζ, where ζ is the minimum robust
UAP probability threshold.

In order to construct robust UAPs, we can pose the following
expectation maximization problem:

argmax
ur

E
u′

r∈NT (ur),x∼µ
[δ(f̂(x+ u′

r), f̂(x))] s.t. ||ur||p < ϵ

(2)

Here I : Rd → R denotes an indicator function. Taking the
expected value over x ∼ µ maximizes the UAP condition
for the transformed perturbation u′

r while u′
r ∈ NT (ur)

maximizes over the neighborhood. The composition of
these conditions in Equation 2 makes it computationally
harder than maximizing over only the transformation set, as
in EOT (Athalye et al., 2018), or than maximizing over only
the data distribution, as in Equation 1.

4. Generating Robust UAP
In this section we discuss how we deal with both known and
unknown transformation sets, then describe our approach
for optimizing Equation 2. As it would be computationally
prohibitive to precisely compute the expected value, we
estimate the expected value per batch, x̂ ⊂ µ, and random
set of transformations sampled from T , τ̂ ⊂ T . We then
get a Lagrangian relaxation of Equation 2 (see in Appendix
C). We describe our two threat models and some intuitive
baselines for optimizing Equation 2. We then present our
new algorithm, RobustUAP.

4.1. Known vs Unknown Transformation Sets

In the above section, we have assumed that the transforma-
tions applied during transmission is known to the attacker
and used to train the UAP. However, in a real-world attack
scenario the attacker may not know precisely what trans-
formations its perturbation will undergo. In such scenarios,
they may want their attack to be robust to unseen perturba-
tions. In this case, we propose generating robust UAPs using
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a set of primitive transformations. For the image domain,
we draw from existing work in the data augmentation area.
In their paper, PRImitives of Maximum Entropy (PRIME),
Modas et al. (2022) define three primitive transformations:
spectral, spatial, and color. Using random combinations of
these transformations to train, they find that they are able
to generalize well to unseen transformations such as frost,
JPEG compression, motion blur, etc. We can use these prim-
itive transformations to generate robust UAPs and we show
that in practice this generates robust UAPs which generalize
well to a variety of unseen transforms. In other domains, we
hope that this work helps to inspire finding similar primitive
transformation sets.

4.2. Baseline Algorithms

We propose two baseline algorithms for generating robust
UAPs. The first method is momemtum based Stochastic
Gradient Descent (SGD). We can directly solve Equation 2
using gradient descent. The second baseline is leveraging
the standard UAP algorithm from Moosavi-Dezfooli et al.
(2017), but instead of computing an adversarial perturbation
at each point, we compute a robust adversarial perturbation
at each point. More details about both of these baseline
algorithms can be found in Appendix G. Both of these algo-
rithms can be seen as naively combining the EoT and UAP
algorithms, in the next section we describe RobustUAP
our algorithm which takes a more principled approach at
robust UAP generation.

4.3. Robust UAP Algorithm

The baseline algorithms have two fundamental limitations:
(i) they rely on random sampling over the symbolic transfor-
mation region, but the sampling strategy does not explicitly
try to maximize the robustness of the generated UAP over
the entire symbolic region, and (ii) they do not estimate
robustness on unsampled transformations. As a result, the
baselines yield suboptimal UAPs (as confirmed by our ex-
periments below). To overcome these limitations, we create
a method to compute probabilistic bounds for expected ro-
bustness on an entire symbolic region. We leverage this
method for approximating expected robustness. We make
a simplifying assumption that NT (ur) has a well-defined,
sampleable probability density function (PDF) as we cannot
bound robustness for arbitrary transformations. Our experi-
ments show that even though our assumptions do not hold
for all the transformation sets considered in this work, they
significantly improve the robustness of our generated UAPs.
Our approximation of the expected robustness relies on the
following theorem:

Theorem 4.1. Given a perturbation ur, a neural network
f , a finite set of inputs X, a set of transformations T ,
and minimum universal adversarial success rate γ ∈ R.

Algorithm 1 Robust UAP Algorithm
1: Initialize ur ← 0, n← ⌈ 1

2ψ2 ln
2
ϕ⌉

2: repeat
3: for B ⊂ X do
4: For i = 1 . . . n sample τi ∼ T
5: if ER(f,B, T, γ,ur, ψ, ϕ) < ζ then
6: ∆ur ← 0
7: repeat
8: Compute LB,τ = 1

|B|×n
∑|B|
i=1

∑n
j=1

L[f(Bi + τj(ur +∆ur)), f(Bi)]
9: ∆ur = Pp,ϵ(∆ur + αsign(∇LB,τ ))

10: until ER(f,B, T, γ,ur +∆ur, ψ, ϕ) < ζ
11: ur ← Pp,ϵ(ur +∆ur)
12: end if
13: end for
14: until ER(f,X, T, γ,ur, ψ, ϕ) < ζ

Let p(γ) = Pu′
r∼NT (ur)(ASRU (f,X,u

′
r) > γ). For

i ∈ 1 . . . n, let ui
r ∼ NT (ur) be random variables with

a well defined PDF and I : Rd → R be the indicator
function, let

p̂n(γ) =
1

n

n∑
i=1

I(ASRU (f,X,u
i
r) > γ) (3)

For accuracy level, ψ ∈ (0, 1), and confidence, ϕ ∈ (0, 1),
where (0, 1) is the open interval between 0 and 1. If n ≥
1

2ψ2 ln
2
ϕ then

P (|p̂n(γ)− p(γ)| < ψ) ≥ 1− ϕ (4)

The proof of this theorem can be found in Appendix D. The-
orem 4.1 states that with enough samples from the neigh-
borhood of a perturbation, ur, the adversarial success rate
of ur on the entire neighborhood is arbitrarily close to the
adversarial success rate of ur on sampled transformations
with probability greater than 1− ϕ.

Leveraging Theorem 4.1, we create EstRobustness
which given accuracy, ψ, and confidence, ϕ, returns the
ASRR on a finite set of inputs with probabilistic robust-
ness guarantees under the assumptions of Theorem 4.1. The
pseudocode for EstRobustness is in Appendix J.

Our algorithm: RobustUAP. We leverage Theorem 4.1
and EstimateRobustness to develop RobustUAP,
the pseudocode for which is seen in Algorithm 1. Simi-
lar to the SGD baseline, we approximate the expectation
in Equation 2 in batches. We first sample transformations
from the PDF of the neighborhood. We set the number
of transformations, n, based on Theorem 4.1 to satisfy the
desired confidence level and accuracy. For each gradient
step, we compute the mean loss over the current batch and
set of sampled transforms (line 8). For each set of batch
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Table 1. Robust ASR of RobustUAP compared to the three baselines.

DATASET TRANSFORMATION SET
STANDARD SGD STANDARD ROBUST

UAP UAP RP UAP

R(20) 0.0% 69.9% 2.9% 93.2%
ILSVRC T (2, 2) 35.9% 96.1% 38.8% 97.1%
2012 Sc(5), R(5), B(5, 0.01) 22.3% 85.4% 43.7% 96.1%

R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 0.0% 63.1% 2.9% 86.4%

CIFAR-10
R(30), B(2, 0.001) 0.0% 64.1% 2.9% 75.7%
R(2), Sh(2) 42.7% 88.3% 52.4% 96.1%
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 0.0% 58.3% 7.8% 79.6%

and sampled transformations, instead of making a single
gradient update like SGD, we use Projected Gradient De-
scent (PGD) to iteratively compute a more robust update
to the universal perturbation and end only when the esti-
mated robustness on the batch satisfies a given threshold
(line 10). At the end of each epoch, we check the robustness
across the entire training set and transformation space using
EstRobustness (ER) and stop when we have reached
the desired performance (line 14).

5. Evaluation
We empirically evaluate our method RobustUAP and
three baseline approaches (SGD, StandardUAP RP,
StandardUAP (Moosavi-Dezfooli et al., 2017)) on pop-
ular models from the vision domain. We show that
RobustUAP is more robust on both uniform random noise
and compositions of real-world transformations such as ro-
tation, scaling, etc. We did not have the hardware to print
high resolution transparent stickers so we could not produce
real-world results in the vision domain. We show that train-
ing RobustUAP on a set of primitive transforms results in
a universally robust UAP which generalizes well to unseen
transformations allowing for successful attacks without the
need for domain specific modeling.

Experimental evaluation. We consider two popular image
recognition datasets: CIFAR-10(Krizhevsky et al., 2009)
and ILSVRC 2012(Deng et al., 2009). We evaluate on a
pretrained VGG16 (Simonyan and Zisserman, 2014) and
Inception-v3 (Szegedy et al., 2016) network on CIFAR-10
and ILSVRC 2012 respectively. For both we evaluate on
a random subset (1000 images) for the test set. All exper-
iments were performed on a desktop PC with a GeForce
RTX(TM) 3090 GPU and a 16-core Intel(R) Core(TM) i9-
9900KS CPU @ 4.00GHz.

We report the results for l2-norm with ϵ = 100 for ILSVRC
2012 and ϵ = 10 for CIFAR-10. These values were cho-
sen based on the values presented by the original UAP pa-
per (Moosavi-Dezfooli et al., 2017). We use an image nor-
malization function given by our pretrained models and thus
scaled our ϵ values accordingly. We note that the ϵ-values
are significantly smaller than the image norms resulting in

imperceptible perturbations that do not affect the semantic
content of the image. Due to the hardness of the optimiza-
tion problem, for the same norm value, the effectiveness of a
UAP is less than input-specific perturbations; however, craft-
ing input-specific perturbations requires making unrealistic
assumptions about the power of the attacker as mentioned in
the introduction and therefore we do not consider them part
of our threat model which aims to generate practically feasi-
ble perturbations. We use ψ = 0.05 and ϕ = 0.05 resulting
in n = 738 for generating samples for our RobustUAP
algorithm as well as reporting robust ASR in our evaluation.
The UAPs are trained on 2,000 images, other parameters for
evaluation are given in Appendix K. Error bars/variances
are reported in Appendix AE.

5.1. Robustness to Random Noise

We first generate UAPs robust against uniform random noise.
The results and future discussion can be found in Appendix
O. Since our neighborhood has a well-defined PDF we get
robustness guarantees from EstimateRobustness, in
the following sections we consider semantic and unknown
transformations and do not have the same guarantees.

5.2. Robustness to Semantic Transformations

Next, we consider transformation sets generated by compos-
ing five popular semantic transformations in existing liter-
ature (Athalye et al., 2018; Balunović et al., 2019): bright-
ness/contrast, rotation, scaling, shearing, and translation.

We use a variety of different compositions to show that
our algorithm works under different conditions, and base
our parameters for the transformations on (Balunović et al.,
2019). For our experiments, R(θ) corresponds to rotations
with angles between ±θ; T (x, y), to translations of ±x
horizontally and ±y vertically; Sc(p) to scaling the image
between ±p%; Sh(m) to shearing by shearing factor be-
tween ±m%; and B(α, β) to changes in contrast between
±α% and brightness between ±β. Further details about
these transformations can be seen in Appendix E. We con-
sider compositions of different subsets and ranges of these
transformations shown in Table 1 including composing all
transformations together. The hardness of generating robust
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Figure 3. For each method, a point (x, y) in the corresponding line represents the percentage of sampled UAPs (y%) with Universal ASR
> x for the different semantic transformations on ILSVRC.

UAPs depends on the effect that the transformation set has
on the UAP (i.e. random noise has a relatively small effect
compared to rotation). The hardness also increases with the
number of transformations in the composition as well as the
range of parameters for each individual transformation. For
example, generating robust UAPs is harder for the compo-
sition shown in the first and last row for ILSVRC 2012 in
Table 1 compared to the second and third row. The same is
true for generating a UAP robust to uniform random noise.

Robust ASR (ASRR). Figure 3 shows performance of
UAPs obtained by applying 738 randomly sampled transfor-
mations to the original UAPs generated by different meth-
ods on ILSVRC, similar graphs for CIFAR-10 can be found
in Appendix M. The RobustUAP algorithm outperforms
all others in each case, we observe that for these harder
transformation sets StandardUAP loses its effectiveness
completely. In Table 1 we compare robust universal ad-
versarial success rate ASRR with γ = 0.6, in other words,
we are finding the percentage of sampled neighbors of the
perturbation that are still UAPs with 60% effectiveness on
the testing set. We provide average ASRU scores as well as
ASRR for different γ levels in Appendix N.

Our RobustUAP algorithm achieves at least 53.4% higher
robust ASR when compared to the standard UAP algorithm
on both datasets and all transformation sets. Furthermore,
our RobustUAP algorithm significantly outperforms both
robust baseline approaches. Except for the T (2, 2) case
which we observe to be the easiest, RobustUAP achieves
at least 11.6% performance gain over the baselines. SGD is
the best performing baseline and achieves high robust ASR
on relatively easier transformation sets performing within

1% of RobustUAP on T (2, 2). On harder transformation
sets, this gap widens considerably, see Table 1.

5.3. Universally Robust UAPs

Using the set of primitive transformations discussed by
PRIME, we generate robust UAPs on ILSVRC using the
same parameters as above. For each sampled transform,
we randomly apply three transformations from identity,
spectral, spatial, and color. This means that we can get
multiple of the same transformation or even no transfor-
mation. We follow the setup from PRIME for the param-
eters of each transformation type. Table 2 shows the ro-
bust ASR when training a RobustUAP on PRIME, Affine
(R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001)), and Fog trans-
formation sets and how they perform on common corrup-
tions (Modas et al., 2022; Kar et al., 2022; Hendrycks and
Dietterich, 2018). Although prime does not inherently con-
tain any specific affine or common corruption in its training
it has generally high robustness (>58.3%) against all trans-
formation sets tested. We observe that training on the target
transformation set does bring higher robustness than train-
ing on PRIME (i.e. Affine-trained robust UAP has best per-
formance on Gaussian, Contrast, Affine while Fog-trained
robust UAP has best performance on fog); however, we
find that PRIME has much better performance on unseen
transformations (i.e. Fog-trained or Affine-trained robust
UAP on JPEG). Our results suggest that a set of good primi-
tive transformations is sufficient for generating universally
robust UAPs that generalize well to unseen transformations.

Table 2. Robust ASR (%) of RobustUAP trained on PRIME, Affine (R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001)), and Fog when
applied to Prime, Affine, and common corruption transforms

EVALUATION CORRUPTION SET

TRAIN NOISE BLUR WEATHER DIGITAL
SET PRIME AFF. GAUS. SHOT IMP. DEFO. GLASS MOTI. ZOOM SNOW FOG FROST BRIGHT CONTR. ELAST. PIXEL JPEG

PRIME 68.4 58.3 72.1 81.3 88.6 66.5 75.2 81.0 74.6 77.8 78.8 65.3 85.3 90.4 74.2 69.2 73.3
AFFINE 10.1 86.4 91.2 93.2 85.4 45.1 31.4 76.1 92.4 65.2 70.1 50.1 80.1 94.1 39.1 30.5 37.3

FOG 1.5 0.1 10.2 11.3 9.3 15.1 7.6 10.1 5.5 69.5 95.2 21.3 10.1 12.6 18.4 2.8 3.9
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Figure 4. Comparison of UAPs on ILSVRC 2012 generated with
(a) StandardUAP, (b) RobustUAP, (c) Standard UAP RP,
(d) RobustUAP, and (e) RobustUAP generated on Prime. Note
that the size of each perturbation is ≥ 99.7 (bound is 100).

5.4. Visualization

We visualize UAPs generated with our three robust algo-
rithms on the same transformation set and dataset in Figure
4. We further visualize UAPs generated with different algo-
rithms transformed randomly from R(10), T (2, 2), Sh(2),
Sc(2), B(2, 0.001) and added to images in ILSVRC 2012
in Appendix AD. Our robust UAPs have a similar level
of imperceptibility to standard UAPs and robust UAPs af-
fect the model classification after transformation with high
probability, unlike standard UAPs.

5.5. Transferability of Robust UAPs

We evaluate the transferability of RobustUAP. Previ-
ous works on UAPs (Moosavi-Dezfooli et al., 2017)
show that UAPs are transferable across different mod-
els. Here, we will evaluate whether robust UAPs ex-
hibit the same behavior for robustness. The robust
UAPs studied here are generated with RobustUAP
on R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) for ILSVRC-
2012 with γ = 0.6. We use a variety of models: Inception-
v3 (Szegedy et al., 2016), MobileNet (Howard et al., 2017),
Inception-v3 trained to be robust on R(20) (InceptionR20),
Inception-v3 trained to be robust on horizontal flips (In-
ceptionHF), and ViT (Dosovitskiy et al., 2020). Table 3
shows us that our robust UAPs are transferable between
different architectures. Our results show that robust UAPs
transfer their robustness properties between architectures
and models. Ignoring ViT, on all of the Inception and Mo-
bileNet models, the generated UAPs maintain at least 65%
robust ASR when transferred to each other. ViT maintains
at least 32% robustness when transferred to or from the
other convolution-based models. In Appendix U we check

the transferability between different domains (ImageNet-
C (Hendrycks and Dietterich, 2018) and ILSVRC-2012).

5.6. Robustness against Robust UAPs

Traditional methods for robustness, such as adversarial
training, focus on being robust in scenarios where the
attacker is powerful (i.e. PGD), but with this comes a
significant tradeoff in accuracy. In a preliminary study
of practical robustness, we train for robustness against
practical attacks such as Robust UAP, while maintain-
ing high accuracy and faster training times. We perform
our experiments on CIFAR-10, with a VGG16 model ar-
chitecture, and with our most challenging transformation
set (R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001)). We use a
batch-wise variant of our robust UAP algorithm to do adver-
sarial training. With this training method, our model obtains
a Robust ASR of 0.4% and an accuracy of 90.1%. In con-
trast, standard adversarial training obtains a Robust ASR of
0.2% and an accuracy of 83.5%. Our training method ob-
tains almost the same practical robustness without a signifi-
cant reduction in accuracy. Further, our adversarial training
method with robust UAP takes 12 minutes while standard
adversarial training takes 48 minutes, which is one indi-
cation that our proposed training method is more efficient.
We believe that further study can improve the robustness,
accuracy, and efficiency of this type of training allowing
more practically robustness while sacrificing less accuracy.

5.7. RobustUAP vs SGD Performance.

Previous sections highlight SGD as the most competitive
algorithm to RobustUAP in terms of performance. In
Appendix W, we report the runtimes for the different al-
gorithms and observe that SGD runs four times as fast as
RobustUAP. Although this seems to suggest that SGD is
more efficient, we further investigate restricting the run-
time of RobustUAP. We first add results to the ILSVRC
2012 part of Table 1 by also computing RobustUAP per-
formance when limited to the same amount of time that
SGD takes. Table 4 shows that RobustUAP outperforms
SGD even when its compute time is limited with up to
9% more robustness on our most challenging transfor-
mationR(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001). Further-

Table 3. Robust ASR when UAP is learned on source model and transfered to target model.
TARGET MODEL

SOURCE MODEL INCEPTION MOBILENET INCEPTIONR20 INCEPTIONHF VIT

INCEPTION 86.4% 65.2% 75.2% 78.5% 35.1%
MOBILENET 74.3% 86.2% 67.3% 68.6% 38.3%
INCEPTIONR20 80.1% 67.3% 81.3% 73.1% 32.0%
INCEPTIONHF 77.8% 70.9% 75.8% 83.8% 34.6%
VIT 41.2% 32.4% 43.2% 39.7% 88.5%
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Table 4. Robust ASR of RobustUAP restricted to the same amount of compute time as SGD.

TRANSFORMATION SET
SGD ROBUST RESTRICTED

UAP ROBUST UAP

R(20) 69.9% 93.2% 72.9%
T (2, 2) 96.1% 97.1% 96.9%
Sc(5), R(5), B(5, 0.01) 85.4% 96.1% 86.3%
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 63.1% 86.4% 72.0%

more, in Appendix X, we measure SGD’s performance when
varying the number of iterations and we observe that SGD’s
performance flatlines and does not reach the performance of
RobustUAP even when allowed to run for longer. Finally,
we note that since UAPs only need to be computed a single
time and can be done in advance, the runtime considerations
are not as big of a factor for most practical use cases.

5.8. Robust UAPs in Real-World Wireless Setting

We show the practical applicability of our attack in the wire-
less domain. ML-based methods have become increasingly
popular for both communication and sensing applications
(Liu et al., 2021; Ayyalasomayajula et al., 2020) in the wire-
less domain. We show that we can successfully attack a
real-world system, FIRE (Liu et al., 2021), by using the
robust UAP algorithm. FIRE uses an end-to-end ML based
approach and its model is a variant of variational autoen-
coders (VAEs). FIRE is deployed at a base station and aims
to predict the downlink channel without client feedback
which is an important task for 5G. In this attack scenario,
we propose an attacker transmit a UAP over the air to dis-
rupt FIRE’s ability to perform downlink channel prediction
when deployed at a base station. While our attacker knows
the model that FIRE is using it does not have real-time
access to the base station or the client and thus could not
perform a standard adversarial attack. Furthermore, trans-
mitted signals undergo changes due to a variety of noise
and transformation before being received at the base station
and the attacker must take this into account. We consider
Carrier Frequency Offset (CFO) and hardware detection
delay to model the transformations applied on the UAPs
during transmission. Using an attacker with a single trans-
mission antenna we can attack a base station running FIRE
which has 4 antennas. While moving around a client in a
variety of different locations we record the drop in Signal-
to-Noise Ratio (SNR) of the predicted channel. Our robust
UAPs are able to produce a median drop of 4.06 dB which
is twice the drop compared to Gaussian noise (1.84 dB).
Furthermore, when using a standard UAP we find the per-
formance to be similar to Gaussian noise (1.91 dB). This
reinforces our claim that while UAPs address some of the
issues with standard adversarial perturbations, transforma-
tions in the real-world severely degrade the effectiveness
of UAPs rendering them unsuitable for real-world attacks.
These results further show that Robust UAPs can improve

upon this and provide significant performance loss against
real-world systems.

5.9. Additional Experiments

In Appendix P, we show how our robust UAPs compare to
standard UAPs on the non-robust universal ASR metric. In
Appendix Q, we evaluate our methods on ResNet18 (He
et al., 2015) and MobileNet (Howard et al., 2017) for
CIFAR-10 and ILSVRC 2012 respectively as well as show-
ing results on MNIST (Deng, 2012) and Fashion MNIST
(Xiao et al., 2017). The results follow the same trends as
those reported in Table 1. To address additional real-world
transformations, we investigate fog perturbations from (Kar
et al., 2022) in Appendix R. In Appendix Y, we show that
our methods work well for targetted robust UAPs. In Ap-
pendix Z, we show that RobustUAP has good data effi-
ciency and obtains good performance with less data. The
recent popularity of transformer based models has also led
us to show that our methods work on transformer based net-
works, results in Appendix AA. In Appendix AB, we find
that traditional model robustness does not seem to effect
ability to create robust UAPs. In Appendix V, we com-
pare standard UAP to Robust UAP performance on models
trained for single adversarial perturbation robustness. In Ap-
pendix S, we provide additional data on using scaling and
hue transformation sets. In Appendix T, we show how using
different transformation sets in training affects robustness
on an unseen transformation set. Finally, In Appendix AC,
we perform an ablation study on optimization strategy and
show that SGD outperforms other popular optimizers.

6. Related Work
UAP Algorithms. Most works focusing on UAPs (Moosavi-
Dezfooli et al., 2017; Mopuri et al., 2018; Zhang et al.,
2020a; Khrulkov and Oseledets, 2018; Akhtar et al., 2018;
Hendrik Metzen et al., 2017; Zhang et al., 2020b) generate
singular vectors and do not consider perturbation robust-
ness. Bahramali et al. (2021) introduces a perturbation gen-
erator model (PGM) for the wireless domain which creates
UAPs. They show that both adversarial training and noise
subtracting defenses used in the wireless domain are highly
effective in mitigating the effects of a single vector UAP
attack; they further show that their method of generating a
set of UAPs is an effective way for an attacker to circumvent
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these defenses. Although PGM provides a method for effi-
ciently sampling unique UAPs, it is not robust to real-world
transformations. In contrast, our method enables efficient
sampling of UAPs that are robust to transformations.

Robust Adversarial Examples. The following papers in-
troduce notions of robustness under different viewpoints
and environmental conditions for constructing realizable
adversarial examples. This is a different threat model com-
pared to the additive perturbations discussed in this paper.
Luo et al. (2018) constructs adversarial examples which
minimize human detectability, further introducing the idea
of robustness for adversarial examples. They show that
their attacks are robust against jpeg compression. Their
work demonstrates a successful physical attack under stable
conditions and poses. Hu (2022) proposes using lasers to
disrupt street sign classification; their method is focused
on singular objects viewed from different viewpoints rather
than universality over different signs. Zhong et al. (2022)
creates shadows which are adversarial for sign classification
and robust to image transformations, but their method is
not universal. Athalye et al. (2018) introduce Expectation
over Transformation (EOT) and use it to print real-world
objects which are adversarial given a range of physical and
environmental conditions. Sharif et al. (2016), Eykholt et al.
(2018), Feng et al. (2023), Casper et al. (2022), Komkov
and Petiushko (2021), Brown et al. (2017), Wu et al. (2020),
Thys et al. (2019), and Hu et al. (2021) all create printable
physical adversarial patches which are robust to a set of
domain specific transformations.

Robust Adversarial Perturbations. Li et al. (2019a) gen-
erates music which prevents voice assistants from picking
up its wake word. Li et al. (2019b) generates a targeted
adversarial sticker which changes an image classifier’s clas-
sification from one pre-specified class to another. Both
of these methods rely on specific use cases and are tai-
lored towards generating adversaries coming from strict
distributions, e.g. (Li et al., 2019a) generates guitar music
while (Li et al., 2019b) generates a small grid of dots. Li
et al. (2023) proposes an inaudible perturbation for attacking
speech recognition; their method models transformations in
the audio domain. These works build on algorithms akin to
our baseline approaches and are limited in scope to domain
specific transformations. Our work provides a framework
for improving robustness against a wide range of transforma-
tions in diverse domains and can be leveraged for improving
the effectiveness of these attacks.

7. Limitations
We outline the limitations of our work. Firstly, we note that
our methods do not have a way to address non-differentiable
transformations. We hope that future work leverages meth-
ods such as REINFORCE which do not have a dependence
on differentiability (Williams, 1992). We also note that

in some threat models (where the source and perturbation
are simultaneously transformed) we do not support non-
distrbutive transformations. Secondly, RobustUAP is less
effective against models trained with standard adversarial
training since to have a UAP one needs to generate standard
adversarial examples. However, currently, robustly trained
models are seldom used since adversarial attacks are hard to
realize (i.e. UAPs) and these models come with a significant
reduction in accuracy. Our preliminary research suggests
that defending against practical attacks such as robust UAP
does not come with the same tradeoff, allowing for more
practical robustness while retaining similar accuracy.

8. Conclusion
In this paper, we demonstrate that standard UAPs fail to
be universally adversarial under transformation. We pro-
pose a new method, RobustUAP, to generate robust UAPs
based upon obtaining probabilistic bounds on UAP robust-
ness across an entire transformation space. We show that
RobustUAP works for both known and unknown transfor-
mation sets. Our experiments provide empirical evidence
that our principled approach generates UAPs that are more
robust than those from the existing/baseline methods. Our
preliminary work suggests that robustness against practical
adversaries such as robust UAPs may require much less
tradeoff with accuracy and we hope that inspires research
into robustness against practical attacks.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. We understand that our proposed
methods could cause harm/expose vulnerabilities of exist-
ing deployed ML methods. We hope that by showing the
existence of robust UAPs in safety and security critical appli-
cations of ML we will spawn further research into practical
robustness against real-world implementable attacks.
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Appendix

A. UAP Transformation vs. UAP + Input Transformation
In this section, we discuss how our threat model of perturbations which may undergo transformation compares to a threat
model where the source input is also transformed. Let’s consider two cases, one in which the source image and target image
are perturbed separately (i.e. f(τ1(v) + τ2(x)))) and one in which the source image and UAP are perturbed simultaneously
(i.e. f(τ2(τ1(v)+x)))). In the first case, we argue that since the universal attacker is naı̈ve about the input this case is similar
to the dynamic we consider in the paper (i.e. f(τ(v) + x)) as in either case our attacker has no knowledge of what the input
is. If τ2(x) is in-distribution for f then a properly trained robust UAP would have a high probability of being robust to τ2(x).
If τ2(x) is out-of-distribution for f then f acting on τ2(x) is inherently less robust and thus would with high probability be
worse when attacked with v. For the second case, if we assume that transformations are distributive or associative then we
have f(τ2(τ1(v)) + tau2(x)) which is just the first case (while two perturbations is not the same as one, the composition
is functionally similar). While this will not hold for all transformations it holds for the transformations considered in this
paper (affine transformations, additive noise, etc.), we leave non-distributive, non-associative transformations in the second
case for future work. Using ILSVRC and our Inception-v3 model we experiment with both cases drawing tau1, tau2 from
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001). For case 1, we get a robust ASR of 91.2% and for case 2, we get a robust ASR
of 87.3%. These numbers are actually both higher than our original result of 86.4% as our model is not inherently robust to
transformation so although the transformations are not adversarially chosen they still degrade the accuracy of the model
helping our attacker.

Furthermore, if applying UAPs/RobustUAPs to transformed standard images the question shifts more to whether or not
the original model is robust to transformation rather than if the original model is robust to UAPs. Using ILSVRC and our
Inception-v3 model we draw τ from R(10), T(2, 2), Sh(2), Sc(2), B(2, 0.001). Let ASRP be the ASR over the test dataset
when applying a randomly drawn τ to perturbed inputs (i.e. f(τ(x+ u))). We find that standard UAP has an ASRP of
75.6% and RobustUAP has an ASRP of 91.7% (Table 1 gives Robust ASR of 0.0% and 86.4% for UAP and RobustUAP
respectively). This shows that RobustUAP retains a performance increase over UAP even when transforming the perturbed
image.

B. Definitions
In this section, we will formally define the terms used in the main body of the paper. We first start with adversarial examples.

Definition B.1. Given a correctly classified point x, a distance function d(·, ·) : Rd × Rd → R, and bound ϵ ∈ R, x′ is an
adversarial example iff d(x′,x) < ϵ and f̂(x′) ̸= y.

We distinguish between adversarial examples and perturbations. An adversarial perturbation added to the point it is
attacking is an adversarial example, x′ = x+ v. We can construct v by solving the following optimization problem:

argmin
v
||v||p s.t. f̂(x+ v) ̸= f̂(x) (5)

Here, we are looking for the smallest v such that f ’s classification changes from the original output (assuming f correctly
classified x).

Next, we define the adversarial success rate which measures whether or not a given perturbation is adversarial.

Definition B.2. Given a datapoint x, and perturbation v, adversarial success, AS, is defined as

AS(f, x, v) = 1− δ(f̂(x+ v), f̂(x)) (6)

Here, δ(i, j) refers to the Kronecker Delta function (Agarwal, 2013), formally,

δ(i, j) =

{
0 if i ̸= j

1 if i = j
(7)

With AS, we measure whether v changes f ’s classification of x.

13



Robust UAPs

Using the definition of adversarial success we can now define universal adversarial success rate.

Definition B.3. Given a data distribution µ, and perturbation u, universal adversarial success rate, ASRU , for u, is

ASRU (f, µ,u) = P
x∼µ

(f̂(x+ u) ̸= f̂(x)) (8)

Using Definition B.3, we formally define a UAP.

Definition B.4. A universal adversarial perturbation is a vector u ∈ Rd which, when added to almost all datapoints in µ
causes the classifier f to misclassify. Formally, given γ, a bound on universal ASR, and lp-norm with corresponding bound
ϵ, u is a UAP iff ASRU (f, µ,u) > γ and ||u||p < ϵ.

Now, we move onto definitions pertaining to robust UAPs. We start by formally defining transformation sets and neighbor-
hoods.

Definition B.5. A transformation, τ , is a composition of bijective sub-differentiable transformation functions. A transfor-
mation set, T , is a set of distinct transformations. A point v′ is in the neighborhood NT (v), of v, if there is a transform in
T that maps v to v′ and ||v′||p < ϵ. Formally,

v′ ∈ NT (v) ⇐⇒ ∃τ ∈ T s.t. τ(v) = v′ (9)

Finally, we formally define robust universal adversarial success rate.

Definition B.6. Given a data distribution µ, transformation set T , universal ASR level γ, bound ϵ on lp-norm, and
perturbation ur, robust universal adversarial success rate, ASRR, is defined as,

ASRR(f, µ, T, γ,ur) = P
u′

r∼NT (ur)
(ASRU (f, µ,u′

r) > γ ∧ ||u′
r||p < ϵ) (10)

C. Lagrangian Relaxation of Robust UAP Optimization Problem
We can approximate Equation 2 using Lagrangian relaxation to get the following optimization objective.

1

|x̂| × |τ̂ |

|x̂|∑
i=1

u′
r∈NT (ur)∑

v′

L[f(x̂i + ur
′), f(x̂i)]− λ||ur||p (11)

D. Proof of Theorem 4.1
This proof relies heavily on similar proofs provided by Chernoff (1952) and by Alippi (2014). We refer to the reader to these
texts for further details. In our proof, we show how to adapt universal ASR to these proofs.

Proof. The bound on n is derived via the Chernoff inequality applied to p̂n(γ) and E[p̂n(γ)] = p(γ) (Chernoff, 1952;
Alippi, 2014). Equation 4 holds since computing universal ASR is Lebesgue measurable over the data distribution and since
we assume NT (ur) has a well defined PDF.

E. Semantic Transformations
In this section, we discuss the semantic transformations used in the paper. Brightness and contrast can be represented via
bias (β) and gain (α > 0) parameters respectively. Formally, if x is the original image, then the transformed image, x′, can
be represented as

x′ = αx+ β (12)

Rotation, scaling, shearing, and translation are all affine transformations acting on the coordinate system, c, of the images
instead of the pixel values, x. In order to recover the pixel values and differentiate over the transformation, we will need
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sub-differentiable interpolation, see Appendix F. For finite dimensions, affine transformations can be represented as a linear
coordinate map where the original coordinates are multiplied by an invertible augmented matrix and then translated with
additional bias vector. Below, we give the general form for an affine transformation given augmented matrix A, bias matrix
b, and input coordinates c. We can compute the output coordinates, c′, as

[
c′

1

]
=

[
[ccc|c] A b

0 . . . 0 1

] [
c
1

]
(13)

Below, we give the augmented matrix A and additional bias matrix b for rotation, scaling, shearing, and translation.

Rotation, R(θ), by θ degrees:

A =

(
cos θ − sin θ
sin θ cos θ

)
, b =

(
0
0

)
(14)

Scaling, Sc(p), by p%:

A =

(
1 + p

100 0
0 1 + p

100

)
, b =

(
0
0

)
(15)

Shearing, Sh(m), by shear factor m%:

A =

(
1 1 + m

100
0 1

)
, b =

(
0
0

)
(16)

Translation, T (x, y), by x pixels horizontally and y pixels vertically:

A =

(
0 0
0 0

)
, b =

(
x
y

)
(17)

F. Interpolation
Affine transformations may change a pixel’s integer coordinates into non-integer coordinates. Interpolation is typically
used to ensure that the resulting image can be represented on a lattice (integer) pixel grid. For this paper, we will be using
bilinear interpolation, a common interpolation method which achieves a good trade-off between accuracy and efficiency
in practice and is commonly used in literature (Xiao et al., 2018b; Balunović et al., 2019). Let xi,j , x′i,j represent the
pixel value at position i, j for the original and transformed image respectively. Let c′xi,j , c

′y
i,j represent the x-coordinate

and y-coordinate of the pixel at i, j after transformation. We define our transformed image by summing over all pixels
n,m ∈ [1 . . . H]× [1 . . .W ] where H and W represent the height and width of the image.

x′i,j =

H∑
n

W∑
m

xn,mmax(0, 1− |c′xi,j −m|)max(0, 1− |c′yi,j − n|) (18)

This interpolation can be computed for each channel in the image. While interpolation is typically not differentiable, in order
to generate adversarial examples using standard techniques we need a differentiable version of interpolation. (Jaderberg
et al., 2015) introduces differentiable image sampling. Their method works for any interpolation method as long as the
(sub-)gradients can be defined with respect to x, c′i,j . For bilinear interpolation this becomes,

∂x′i,j
∂xn,m

=

H∑
n

W∑
m

max(0, 1− |c′xi,j −m|)max(0, 1− |c′yi,j − n|) (19)

∂x′i,j
∂c′xi,j

=

H∑
n

W∑
m

xn,mmax(0, 1− |c′yi,j − n|)


1 if m ≥ |c′xi,j −m|
−1 if m < |c′xi,j −m|
0 otherwise

(20)
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G. Baseline Algorithms
G.1. Stochastic Gradient Descent

The first baseline directly solves Equation 2 using gradient descent. Since we are solving a constrained optimization
problem, we cannot use gradient descent directly. Instead, we can solve the Lagrangian-relaxed form of the problem
(adding a weighted norm term to the minimization problem), as in (Carlini and Wagner, 2017; Athalye et al., 2018), using a
momentum based Stochastic Gradient Descent (SGD). Shafahi et al. (2020) suggests that this is an effective method for
generating standard UAPs. Our SGD algorithm is in Appendix H. In order to implement it, we replace the δ-function with a
loss function, L. We iteratively converge towards the inner expectation by computing it in batches, and towards the outer
expectation by sampling a large number of transformations. Given that we would like to estimate on a batch, x̂ ⊂ µ, and a
random set of transformations sampled from T , τ̂ ⊂ T , we can approximate using Equation 11.

G.2. Standard UAP Algorithm with Robust Adversarial Perturbations

For our second baseline, we leverage the standard UAP algorithm from Moosavi-Dezfooli et al. (2017) (see Appendix I
for the algorithm). The standard UAP algorithm takes each input, xi, computes the smallest additive change, ∆u, to the
current perturbation, u, that would make u+∆u an adversarial perturbation for xi. Intuitively, over time the algorithm will
approach a perturbation that works on most inputs in the training dataset. We modify this approach by computing robust
adversarial perturbations rather than standard adversarial perturbations. At each point xi, we compute the smallest additive
change, ∆ur, to the current robust adversarial perturbation, ur, that would make ur +∆ur a robust adversarial perturbation
for xi. We search for robust adversarial perturbations by optimizing the expectation that a point in the neighborhood of vr is
adversarial while restricting the perturbation to an lp norm of ϵ.

H. SGD Algorithm
Our SGD UAP algorithm is based on standard momentum based SGD while optimizing over the objective proposed in 2,
the algorithm details can be seen in Algorithm 2.

Algorithm 2 Stochastic Gradient Descent UAP Algorithm
1: Initialize ur ← 0,∆ur ← 0
2: repeat
3: for B ∈ X do
4: Sample t̂ ⊂ T
5: ∆ur ← α∆ur − ν

|x̂|×|t̂|
∑|x̂|
i=1

∑|t̂|
j=1∇L[f(x̂i + t̂j(ur)), f(x̂i)]

6: Update the perturbation with projection:
7: u← Pp,ϵ(ur +∆ur)
8: end for
9: until ASRR(f,X, T, γ,ur) < ζ

I. Iterative UAP Algorithm
Moosavi-Dezfooli et al. (2017) introduces an iterative UAP algorithm, the algorithm can be seen in Algorithm 3.

J. Estimate Robustness Algorithm
In this section, we give our algorithm for estimating the robustness of a UAP.

K. Experiment Parameters
In our experiments, we have capped all algorithms at 5 epochs or if they have achieved an ASRR of 0.95. The UAPs are
trained with the same transformation set that they are evaluated on. For algorithms running PGD internally, we have capped
the number of iterations to 40.
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Algorithm 3 Iterative Universal Perturbation Algorithm (Moosavi-Dezfooli et al. (2017))
1: Initialize u← 0
2: repeat
3: for xi ∈ X do
4: if f̂(xi + u) = f̂(xi) then
5: Compute minimal adversarial perturbation:
6: ∆u← argminr ||r||2 s.t. f̂(xi + u+ r) ̸= f̂(xi)
7: Update the perturbation with projection:
8: u← Pp,ϵ(u+∆u)
9: end if

10: end for
11: until ASRU (f,X,u) < γ

Algorithm 4 EstRobustness
1: Draw n = ⌈ 1

2ψ2 ln
2
ϕ⌉ samples τi ∼ T

2: Return p̂n(γ) = 1
n

∑n
i I(ASRU (f,X, τi(ur)) > γ)

L. Further Evaluation of Uniform Noise
A table of results for uniform random noise can be seen in Table 5.

Table 5. Robust ASR with uniform random noise, γ = 0.8.

DATASET TRANSFORMATION SET
STANDARD SGD STANDARD ROBUST

UAP UAP RP UAP

ILSVRC U(0.1) 81.6% 94.2% 91.3% 99.0%
2012 U(0.3) 10.7% 68.9% 42.7% 96.1%

CIFAR-10 U(0.1) 66.0% 98.1% 96.1% 100%
U(0.3) 5.8% 96.1% 47.6% 100%

M. UAP performance against semantic transformations on CIFAR-10
In this section, we show similar results as shown in ILSVRC-2012 but on CIFAR-10. Here, we again see that RobustUAP
outperforms all other baselines.

N. Average ASRU and ASRR with different γ’s
We provide additional metrics computed on the same set of transformations, datasets, and models as in Table 1. In Table
6, we present the Average ASRU rather than ASRR. The average shows us that our RobustUAP algorithm creates UAPs
which after transformation on average are better UAPs than all other algorithms. We observe that the average shows us that
even standard UAPs aren’t completely ineffective after transformation they just have a very low chance of being highly
effective.

In Table 7, we present ASRR computed at γ = [0.5, 0.7] rather than γ = 0.6. This table shows a similar story to above, and
shows that our algorithm produces better results under a variety of success thresholds.

O. Robustness to Random Noise
First, we show that our algorithm generates UAPs robust against uniform random noise. Here our neighborhood is defined
as an L∞ ball of radius ϵ around the perturbation. U(ϵ) represents noise drawn uniformly from such a ball. Figure 6 shows
the performance of each algorithm. For example, the RobustUAP algorithm achieves a ASRU of 0.9 greater than 97%
of the time under U(0.1) on CIFAR-10, where all other algorithms achieve 0.9 at most 30% of the time. RobustUAP

17



Robust UAPs

0 0.2 0.4 0.6 0.8 1

(a) R(30),B(2,0.001)

0

25

50

75

100

0 0.2 0.4 0.6 0.8 1

(b) R(2),Sh(2)

StandardUAP
SGD
StandardUAP_RP
RobustUAP

0 0.2 0.4 0.6 0.8 1

(c) R(10),T(2,2),Sh(2),Sc(2),B(2, 0.001)
%

of
Sa

m
pl

es

Universal ASR

Figure 5. For each method, a point (x, y) in the corresponding line represents the percentage of sampled UAPs (y%) with Universal ASR
> x for the different semantic transformations on CIFAR-10.

Table 6. Average Universal ASR of our Robust UAP algorithms and the standard UAP (Moosavi-Dezfooli et al., 2017) method.

DATASET TRANSFORMATION SET
STANDARD SGD STANDARD ROBUST

UAP UAP RP UAP

R(20) 16.3% 71.5% 24.7% 81.3%
ILSVRC T (2, 2) 52.6% 82.6% 55.4% 85.4%
2012 Sc(5), R(5), B(5, 0.01) 44.9% 76.3% 58.5% 82.2%

R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 13.6% 64.8% 29.0% 75.3%

CIFAR-10
R(30), B(2, 0.001) 9.9% 66.8% 22.2% 73.4%
R(2), Sh(2) 57.1% 78.8% 61.2% 82.9%
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 16.2% 61.2% 32.6% 76.4%

outperforms all other algorithms for both noise sizes. StandardUAP has a lower mean and higher variance in universal
ASR and is much less robust to transformation. A table of Robust ASR results for γ = 0.8 can be seen in Appendix L. Our
Robust ASR results are guaranteed to be ±0.05 from the actual result with a probability of 95%. For example, we estimate
that RobustUAP has ASRR of 96.1% for U(0.3), we are guaranteed that the true robustness is > 91.1% with a probability
of 95%. Note that we get robustness guarantees from EstRobustness as our neighborhood has a well-defined PDF.
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Figure 6. For each method, a point (x, y) in the corresponding line represents the percentage of sampled UAPs (y%) with Universal ASR
> x for U(0.1) and U(0.3) on ILSVRC and CIFAR-10.

P. Comparison on non-Robust Universal ASR metric
We compare our robust UAPs to standard UAPs on the non-robust universal ASR metric, see Table 8. All robust UAPs are
generated to be robust against R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001). We observe that at the same l2-norm all robust
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Table 7. Robust ASR of our Robust UAP algorithms and the standard UAP (Moosavi-Dezfooli et al., 2017) method with γ = [0.5, 0.7].

DATASET TRANSFORMATION SET
STANDARD SGD STANDARD ROBUST

UAP UAP RP UAP
0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7

R(20) 1.9% 0.0% 88.3% 58.3% 10.7% 1.0% 98.1% 76.7%
ILSVRC T (2, 2) 51.5% 21.4% 100% 84.5% 57.3% 23.3% 100% 91.3%
2012 Sc(5), R(5), B(5, 0.01) 38.8% 11.7% 96.1% 67.0% 64.1% 25.2% 99.0% 87.4%

R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 1.9% 0.0% 82.5% 38.8% 12.6% 1.0% 95.1% 59.2%

CIFAR-10
R(30), B(2, 0.001) 1.0% 0.0% 80.6% 43.7% 12.6% 1.0% 93.2% 49.5%
R(2), Sh(2) 62.1% 22.3% 96.1% 68.9% 68.0% 30.1% 99.0% 89.3%
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 2.9% 0.0% 67.0% 38.8% 19.4% 1.0% 93.2% 55.3%

UAPs achieve a lower universal ASR than the standard UAP algorithm. This result is not too surprising as solving the
optimization problem for robust UAP is significantly more difficult. We further observe that our RobustUAP algorithm is
the most effective in comparison to the other robust baseline approaches.

Table 8. Universal ASR of our Robust UAP algorithms and the standard UAP method.
DATASET STANDARDUAP SGD STANDARDUAP RP ROBUSTUAP

ILSVRC 2012 95.5% 85.6% 82.3% 91.3%

CIFAR-10 96.2% 89.3% 84.0% 93.7%

Q. Additional Models and Datasets
We also provide additional data on our methods evaluated on the same transformations and datasets but on different models.
In this case, we use ResNet-18 (He et al., 2015) for CIFAR-10 and MobileNet (Howard et al., 2017) for ILSVRC 2012.
Results can be seen in Table 9. We observe similar performance across models suggesting that the performance of the attacks
is more directly tied to transformation set and dataset. We also provide data for additional dataset/model pairs. Using the
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) transformation set we provide results for CIFAR-10 (ShuffleNet (Zhang et al.,
2018)), ILSVRC (CaffeNet (Jia et al., 2014)), MNIST (Deng, 2012) using a CNN with 2 convolutional layers and 2 linear
layers, and Fashion-MNIST (FMNIST) (Xiao et al., 2017) with 4 linear layers (MNIST and FMNIST use ϵ = 5) in Table 10

Table 9. Robust ASR on Resnet-18 for CIFAR-10 and MobileNet for ILSVRC 2012.

DATASET MODEL TRANSFORMATION SET
STANDARD SGD STANDARD ROBUST

UAP UAP RP UAP

MOBILENET

R(20) 8.1% 71.2% 2.6% 85.0%
ILSVRC T (2, 2) 40.9% 98.7% 54.3% 99.6%
2012 Sc(5), R(5), B(5, 0.01) 16.3% 94.5% 44.3% 96.3%

R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 4.1% 75.7% 8.6% 86.2%

CIFAR-10 RESNET-18
R(30), B(2, 0.001) 0.9% 67.8% 6.4% 74.9%
R(2), Sh(2) 49.9% 99.5% 49.1% 99.8%
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 8.0% 70.8% 12.2% 83.8%

R. Common Corruptions
We also evaluate robust UAP against the 2D fog transformations in (Kar et al., 2022). We set the shift intensity of the
fog to be 1 and train our robust UAPs to be robust against random fog perturbations. We observe similar results to the
transformations we experiment with above. The graph of the results can be seen in Figure 7.
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Table 10. Robust ASR for additional datasets/models

DATASET MODEL
STANDARD SGD STANDARD ROBUST

UAP UAP RP UAP

ILSVRC CAFFENET 0.0% 52.1% 8.1% 78.3%
CIFAR10 SHUFFLENET 0.0% 76.7% 12.3% 88.7%
MNIST CNN(2C,2L) 0.0% 25.2% 0.0% 31.2%
FMNIST FC(4L) 0.0% 31.0% 0.0% 35.9%
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Figure 7. For each method, a point (x, y) in the corresponding line represents the percentage of sampled UAPs (y%) with Universal ASR
> x for the different semantic transformations on ILSVRC-2012.

S. Scaling and Hue
We have further added an experiment using Sc(20) and Hue as our transformation set on CIFAR-10 shown in Table 11.

Table 11. Scaling and Hue on CIFAR-10 with VGG16

TRANSFORMATION SET
STANDARD SGD STANDARD ROBUST

UAP UAP RP UAP

Sc(20) 5.4% 85.9% 16.8% 91.3%
HUE 68.1% 91.3% 85.6% 94.2%

T. Robust Transformation Set
We take Robust UAPs generated by [R(20)], [T(2,2)], and [Sc(5), R(5), B(5, 0.01)] and test them on R(10), T(2, 2),
Sh(2), Sc(2), B(2, 0.001) for ILSVRC. We get robust ASRs of 69.5%, 24.6%, and 71.3% when training on R(20), T (2, 2),
and Sc(5), R(5), B(5, 0.01) respectively. This shows that Sc(5), R(5), B(5, 0.01) generates the most robust UAPs when
considering the robustness to the R(10), T(2, 2), Sh(2), Sc(2), B(2, 0.001) transformation set.

U. Transferability to Different Domains
We experimented with Imagenet-C (Hendrycks and Dietterich, 2018) a dataset consisting of common corruptions applied to
ILSVRC in Table 12. This dataset is out-of-distribution for the models we trained on ILSVRC as the images are corrupted
by transformations unseen in the original dataset. RobustUAP trained on Imagenet-C obtains a robust ASR of 81.5%. We
observe that we still get transferability between Imagenet-C and ILSVRC. The transferability is less than we observe across
models trained on the same dataset but still substantial. We observe that transformations trained on Imagenet-C transfer
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better to ILSVRC compared to the other way around (i.e. 61.3% transferring from Imagenet-C to Inception vs. 45.3% the
other way). We will leave further investigation and optimization of dataset-blind robust UAPs for future work.

Table 12. Transferability between Imagenet-C and ILSVRC
DIRECTION INCEPTION MOBILENET INCEPTIONR20 INCEPTIONHF VIT

IMAGENET-C → ILSVRC 61.3 56.1 62.5 67.3 10.1
ILSVRC → IMAGENET-C 45.3 28.6 31.5 41.1 7.3

V. Robustness against Robust (to standard AP) Models
To have UAPs one must be able to at least generate standard adversarial perturbations; thus, UAP performance is generally
poor when attacking models trained to be robust for standard adversarial attacks. However, note that these models (Nie
et al., 2022; Croce et al., 2020) have lower accuracy and are not ideal. The goal of our paper is to highlight a practical
threat model for DNNs and to inspire work in defending against such a threat model. In Section 5.6, we note that one
interesting observation is that training models to be robust against Robust UAPs leads to lower training times and higher
standard accuracy than when performing standard adversarial training. That being said, we also perform experiments on
CIFAR-10 using the R(10), T(2, 2), Sh(2), Sc(2), B(2, 0.001) transformation set. We find an average ASRU of 7.6%, 2.6%,
and 3.1% for RobustUAP on DiffPure (Nie et al., 2022), RobustBench Rank 1, and RobustBench Rank 3 respectively (note
RobustBench Rank 2 is same technique as Rank 1) (Croce et al., 2020). On the same models standard UAP gets an average
ASRU of 0.0%.

W. Algorithm Runtimes
We compare the average runtimes of the different methods on one of our most challenging
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) transformation set on ILSVRC-2012 and n = 738. The results are
in Table 13. We observe that RobustUAP is the slowest algorithm and SGD is the fastest. RobustUAP uses
EstimateRobustness in each loop and thus with high n it requires much more time to compute. The extra computation
enables Robust UAP to obtain better robustness than all baselines. On the same set of transformations and dataset we
observe that one iteration of EstimateRobustness on the entire test set takes on average 19 minutes. When running
EstimateRobustness in the RobustUAP loop, each call takes 36 seconds for a batch size of 32.

Table 13. Average Runtime for Robust UAP algorithms
ALGORITHM TIME(MIN)

STANDARD UAP 37
SGD 32
STANDARD UAP RP 43
ROBUST UAP 118

X. Effect of Compute Time on SGD vs. RobustUAP Performance
We further compare the performance of SGD and RobustUAP by varying the number of SGD iterations. We compute the
robust ASR on ILSVRC for robustness against R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001). Figure 8, shows the robust ASR
achieved by SGD over time, here we observe that SGD’s performance flatlines after a small number of iterations and seems
to be unable to surpass about 65. Here SGD is allowed to continue to run past where it would usually stop (at around 250
iterations), in this experiment we allow it to go to 1250 iterations which is about the same amount of time that RobustUAP
takes to run. RobustUAP is able to achieve a performance of 72 even when restricted to the amount of compute time of
base SGD (It achieves 86.4 when unrestricted). These two results in combination show that RobustUAP is able to find
more robust UAPs than SGD whose performance stabilizes.
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Figure 8. The Robust ASR with γ = 0.6 for SGD over time

Y. Targeted Attack
So far in this paper we have focused on untargeted attacks, i.e. attacks which aim to degrade the general performance
of the model. Targeted attacks are also possible with both standard adversarial attack methods and universal adversarial
perturbation methods. Here, we can simply turn our algorithm from untargeted to targeted by replacing the loss function.
We would like to have target class, A, be classified as target class, B. Instead of maximizing the expected value of the cross
entropy loss we can instead formulate the loss based on maximizing B while minimizing A similar to (Benz et al., 2020).
For ILSVRC 2012, we randomly select a couple of target classes and perform this attack, for each of these cases, we train
our robust UAP to be robust to R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001). Table 14 shows our results for robust ASR with
γ = 0.6. We are measuring our robust ASR of turning class A into class B and observe similar results with RobustUAP
being the most robust followed by SGD. It is also interesting to note that different random combinations lead to more or less
success, i.e. it is easier to turn a dog into another dog than perfume into a padlock.

Table 14. Robust ASR of RobustUAP for target to target attack compared to the three baselines with γ = 0.6.

DATASET TARGET CLASS
STANDARD SGD STANDARD ROBUST

UAP UAP RP UAP

ILSVRC-2012 TOY POODLE → MALTESE DOG 42.4% 99.1% 85.6% 99.8%
PERFUME → PADLOCK 0.0% 63.8% 5.1% 76.4%

Z. Data Efficiency
In this section, we will evaluate the data efficiency of RobustUAP. We use RobustUAP to generate UAPs robust to
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) on ILSVRC-2012 with differing amounts of training data. The results can be
seen in Figure 9. These results show that the algorithm is able to achieve good performance at 500 data points but continues
to improve up to 4000 data points. After that it seems to stagnate.

AA. Transformer-based Models
Recently, transformers have become popular as a new architecture for deep learning models for computer vision tasks. In
this section, we evaluate the effectiveness of robust UAPs against one such model, ViT (Dosovitskiy et al., 2020). Benz et al.
(2021) has shown that standard UAPs are still effective against transformer based architectures. In Table 15 we can see
that we get similar results compared to our results on Inception and MobileNet. This shows that our methods work against
transformer based models as well.
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Figure 9. Robust ASR with γ = 0.6 for RobustUAP with differing amounts of training data

Table 15. Robust ASR of RobustUAP compared to the three baselines for ViT

DATASET MODEL TRANSFORMATION SET
STANDARD SGD STANDARD ROBUST

UAP UAP RP UAP

ILSVRC-2012 VIT R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 2.0% 72.1% 12.9% 88.5%

AB. Robust UAPs against Robustly Trained Networks
In this section, we are interested in seeing whether training networks to be robust against the same transformations that
the UAP is trying to be robust against is helpful. For this, we trained two new Inception-v3 networks. Because of time
limitations, we started with our base Inception-v3 network and fine-tuned it using data augmentations. For the first network
InceptionR20, we augmented the data by adding random rotations within 20 degrees. For the second network InceptionHF,
we augmented the data by adding horizontal flips. We then crafted UAPs robust against rotations and flips on InceptionR20
and InceptionHF respectively. The results can be seen in Table 16. We can compare the R(20) results to those from our
normal inception network. We postulate that since the network has received some additional robustness training it is harder
to attack, and thus we should see slightly lower robustness scores. However, it seems that training the network to be robust
to R(20) does not significantly effect the ability to create robust UAPs. The horizontal flips seems like it might be too easy
of a transformation as even standard UAP performs quite well for robust ASR.

Table 16. Robust ASR of RobustUAP compared to the three baselines for robust networks.

DATASET MODEL TRANSFORMATION SET
STANDARD SGD STANDARD ROBUST

UAP UAP RP UAP

ILSVRC-2012 INCEPTIONR20 R(20) 6.3% 72.4% 10.2% 81.3%
INCEPTIONHF HF 81.3% 99.5% 89.7% 99.6%

AC. Ablation on optimization strategy
In this section, we study the effect of using different optimizers in addition to SGD. We use a variety of standard PyTorch
optimizers, Adam, Adamax, Adagrad, and RMSProp. We formulate the optimization problem in the same way but instead
use these algorithms in order to optimize our perturbation. We compute these results on ILSVRC-2012 with Inception-v3
and use R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) as the transformation set and with γ = 0.6. The results can be seen in
Table 17. We see that the optimization strategy has some affect on the results and that SGD performs the best. We also
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found that SGD performed marginally faster than the rest of the approaches.

Table 17. Comparison of different optimization strategies.
OPTIMIZER ASRR

SGD 63.1%
ADAM 59.7%
ADAMAX 60.1%
ADAGRAD 62.3%
RMSPROP 58.3%

AD. Visualization of Robust UAPs vs UAP vs RobustUAP w/ Primatives
We visualize UAPs generated with different algorithms transformed randomly from R(10), T (2, 2), Sh(2),
Sc(2), B(2, 0.001) and added to images in ILSVRC 2012 in Figure 10.

Figure 10. Examples of perturbed images with labels. The top row is unperturbed ILSVRC 2012 test set images, the second row has a
randomly transformed robust UAP added to it, the third row has a randomly transformed robust UAP trained with Prime added to it, and
the bottom row has a randomly transformed standard UAP added to it. Labels calculated using Inception-v3.

AE. Error Bars
In this section, we will provide error bars/standard deviations for results reported in the paper.

AE.1. Table 1

First, we report the standard deviations for Table 1 which we obtain by learning each UAP 10 times then evaluating them on
each their respective dataset/transformation set combinations.

AE.2. Table 2

First, we report the standard deviations for Table 2 which we obtain by learning each UAP 10 times then evaluating them on
each their respective dataset/transformation set combinations.
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AE.3. Remaining Values

We find that the standard deviations are pretty similar across both tables reported and in some testing of the remaining
results. For time reasons we have left the remaining standard deviations out as we don’t find them informative. We are
happy to provide these numbers for any results in the main body or appendix of the paper.

Table 18. Standard Deviation of Robust ASR values reported in Table 1

DATASET TRANSFORMATION SET
STANDARD SGD STANDARD ROBUST

UAP UAP RP UAP

R(20) 1.1% 7.2% 10.2% 1.5%
ILSVRC T (2, 2) 11.4% 1.8% 6.3% 2.3%
2012 Sc(5), R(5), B(5, 0.01) 10.1% 5.2% 7.4% 3.1%

R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 0.0% 8.6% 4.9% 2.8%

CIFAR-10
R(30), B(2, 0.001) 0.2% 7.5% 9.0% 5.2%
R(2), Sh(2) 11.3% 5.5% 8.2% 0.9%
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 1.8% 6.8% 5.1% 3.7%
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Table 19. Robust ASR (%) of RobustUAP trained on PRIME, Affine (R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001)), and Fog when
applied to Prime, Affine, and common corruption transforms

EVALUATION CORRUPTION SET

TRAIN NOISE BLUR WEATHER DIGITAL
SET PRIME AFF. GAUS. SHOT IMP. DEFO. GLASS MOTI. ZOOM SNOW FOG FROST BRIGHT CONTR. ELAST. PIXEL JPEG

PRIME 3.7 4.6 6.1 3.2 4.6 1.3 3.8 4.9 6.7 2.4 7.5 4.3 1.4 5.2 3.1 4.6 2.7
AFFINE 9.7 5.9 3.0 2.7 5.2 8.7 7.6 5.2 0.7 11.2 6.9 6.6 5.2 0.6 3.8 9.6 6.8

FOG 3.1 5.2 4.7 6.6 4.6 1.9 8.4 3.5 5.1 17.8 1.6 12.1 4.0 3.6 7.3 1.1 12.6
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