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Abstract
Finding and describing sub-populations that are
exceptional in terms of a target property has
important applications in many scientific dis-
ciplines, from identifying disadvantaged demo-
graphic groups in census data to finding conduc-
tive molecules within gold nanoparticles. Cur-
rent approaches to finding such subgroups require
pre-discretized predictive variables, do not per-
mit non-trivial target distributions, do not scale
to large datasets, and struggle to find diverse re-
sults. To address these limitations, we propose
SYFLOW, an end-to-end optimizable approach in
which we leverage normalizing flows to model ar-
bitrary target distributions and introduce a novel
neural layer that results in easily interpretable sub-
group descriptions. We demonstrate on synthetic
data, real-world data, and via a case study, that
SYFLOW reliably finds highly exceptional sub-
groups accompanied by insightful descriptions.

1. Introduction
The majority of modern machine learning focuses on find-
ing global models that perform well on predictive tasks such
as classification. In this domain, deep neural networks of-
ten achieve state-of-the-art performance, at the expense of
human-interpretable insight.

Orthogonal to the advances in predictive modeling, many
scientific applications require descriptive modeling such as
finding sub-populations that are somehow exceptional, and
providing a human-interpretable description for these. Ap-
plications of finding such subgroups range from identifying
disadvantaged demographic groups in census data (Boll
& Lagemann, 2019; Ortiz & Cummins, 2011) to learning
those combinations of properties that single out materials
with desirable properties (Sutton et al., 2020).
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The common denominator in such applications is to present
the relevant subgroups to a domain expert. In other words,
not only do we require to find subsets with exceptional be-
havior, but also, that these can clearly be interpreted by the
respective audience. That is, we have a joint optimization
task of learning simple descriptions of sub-populations for
which the property of interest is (locally) exceptionally dis-
tributed compared to the rest of the dataset. Typically, such a
description is a conjunction of predicates, each based on the
features of the dataset. For example on census data, where
wage is the target property, a subgroup could be “Women
without higher education” (Fig. 1a) have an exceptionally
low salary compared to the overall population (Fig. 1b).

Since the introduction of subgroup discovery by Klösgen,
many approaches have been proposed (Atzmueller, 2015).
However, these have not kept up with the recent advances
in machine learning and suffer from three main limitations.
First, due to combinatorial optimization, these methods are
limited to small datasets. Second, most methods assume
that the target follows a simple distribution, e.g. normal or
binomial distribution. Although there are proposals to learn
a proxy of the target distribution, their results are less inter-
pretable. Third, existing methods require a pre-quantization
of the continuous features, which is independent of the opti-
mization procedure. As we show in our experiments, this
greatly influences the quality of the results.

To overcome these limitations, we propose SYFLOW. Our
key contributions are as follows:

(i) We formulate subgroup discovery as a continuous op-
timization problem based on KL-divergence. This
enables first-order optimization, which significantly
improves runtime and performance.

(ii) We leverage Normalizing Flows (Rezende & Mo-
hamed, 2015a) to accurately learn the target distri-
bution from data, enabling us to deal with intricate
real-world distributions.

(iii) We propose a neuro-symbolic rule layer to learn inter-
pretable subgroup descriptions and the corresponding
discretization in an end-to-end fashion.

We extensively evaluate SYFLOW on synthetic and real-
world data. We show that SYFLOW accurately and reliably
learns and characterizes exceptional subgroups, even for
complex target distributions. We demonstrate that in con-
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(a) Wages Subgroup S: “Women without
higher education” earn significantly less.
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(b) Exceptional distribution in sub-
group (blue) vs. overall (green).
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Y : HOMO-LUMO gap

Odd #Atoms ∧ #Atoms > 8
Odd #Atoms ∧ % 4-bonds < 0.6 ∧ % 2-bonds < 0.9
Even #Atoms ∧ 3-D Planarity ∧ Gyration < 1.00

Even #Atoms ∧ % 0-bonds < 0.01 ∧ 2-bonds > 0.43

∧ Gyration < 1.00 ∧ % 1 bond < 0.3

(c) SYFLOW learns subgroups of gold molecules with
exceptional electron configurations.

Figure 1. Subgroups. SYFLOW learns subgroups, named subpopulations of which the distribution of the target variable is exceptional. In
(a) SYFLOW precisely describes the subgroup of “Women without higher education”, whose distribution of the target quantity wage is
significantly lower (b). In general, SYFLOW is applicable on any data with non-trivial target distributions, e.g. material science (c).

trast to the state-of-the-art baselines, SYFLOW identifies
diverse sets of subgroups. To showcase SYFLOW’s strength
on real-world tasks, we perform a case study in the do-
main of materials science, where we search for characteris-
tics of gold clusters with exceptional conductivity (Fig. 1c)
and reactivity. In both cases, SYFLOW identifies physically
meaningful subgroups and their respective descriptions.

2. Preliminaries
We consider a dataset of n pairs (x, y), where y ∈ Y rep-
resents a property of interest, the target property, and
x ∈ Rm is a feature vector. From a statistical perspective,
we assume (x, y) is a realization of a pair of random vari-
ables (X, Y ) ∼ P (X, Y ). We denote random variables by
capitals, write p for their density, and P for their law.

We are interested in learning subgroups for which the con-
ditional distribution of the target attribute PY |S=1 is excep-
tional compared to PY . A subgroup membership function,
or rule, σ(x) ∈ {0, 1} determines whether a sample x
belongs to the subgroup (1) or not (0). Formally, it is a con-
junction σ : x 7→ ∧mi=1π(xi) of Boolean-valued predicates
π : R → {0, 1}, where each predicate defines an interval
over which its output is 1, e.g. “18 < age < 65”.

To permit continuous optimization, we consider soft predi-
cates π̂ ∈ [0, 1]. These are smooth functions that model the
probability of a sample x to be inside an interval α < x < β.
We can control the steepness of the transition via a temper-
ature parameter t. We write s(x) ∈ [0, 1] to denote a soft
rule based on soft predicates, and S ∈ {0, 1} for the indi-
cator (random) variable that s defines, i.e. P(S = 1 | X =
x) = s(x). Note that by reducing t to 0 we again obtain
binary predicates and rules that are easy to interpret.

3. Method
In this section, we introduce SYFLOW for learning ex-
ceptional subgroups by end-to-end maximization of KL-
divergence. We first give an overview and then the details.

3.1. Overview

A subgroup is characterized by a membership function σ,
which is commonly constrained to be a directly interpretable
rule σ, i.e. a logical conjunction over predicates π. Find-
ing the rule that identifies the most exceptional conditional
distribution of the target is an NP-hard combinatorial prob-
lem (Boley & Grosskreutz, 2009).

We propose to take a different, end-to-end optimizable ap-
proach to learning subgroups. To this end, we propose a
continuous relaxation of the binary-valued rule function
that is designed to be differentiable, avoiding the need for
pre-discretization, yet giving directly interpretable results.
We propose to optimize the exceptionality of a subgroup in
terms of KL-divergence between the conditional distribu-
tion PY |S=1 and the marginal distribution PY of the target,
where we model these distributions non-parametrically us-
ing Normalizing Flows – with the added benefit that we
have a single solution for univariate or multivariate targets.

As our entire framework is differentiable, we can optimize
all components with gradient descent, which as we will see
is often both faster and more performant than combinatorial
approaches. Finally, our framework naturally enables itera-
tively learning multiple non-redundant subgroups by regu-
larizing with the similarity of already learned subgroups.

3.2. Differentiable Rule Induction

Subgroup membership σ : x 7→ ∧mi=1π(xi;αi, βi) is de-
fined by a logical conjunction over binary predicates π,
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Figure 2. Example soft predicate (a) and soft rule (b).

where we use one predicate per feature. Predicates for fea-
tures that are not relevant for a subgroup are always true.

Our key idea is to redefine the subgroup membership func-
tion in probabilistic terms, such that we obtain a function
that acts akin to logical conjunctions while at the same time
it is differentiable and therewith can be learned using a
gradient-descent-based method. In particular, we propose
to associate each feature Xi with a soft predicate πi

π̂(xi;αi, βi, t) =
e

1
t (2xi−αi)

e
1
t xi + e

1
t (2xi−αi) + e

1
t (3xi−αi−βi)

(1)

where we adapt the idea of approximate and differentiable
splits from deep decision trees (Yang et al., 2018), we use
a lower and upper bound α, β ∈ R, and introduce a tem-
perature parameter t > 0 that controls the steepness of the
function at these bounds. The lower the temperature, the
less soft the predicate, and in the limit of t→ 0 a soft pred-
icate converges to a strict predicate. In Fig. 2a we show
an example soft predicate for different temperatures. For
smaller t, the soft predicate closely approximates the strict
predicate, except for a negligible region around the bounds.

Theorem 1 Given its lower and upper bounds αi, βi ∈ R,
the soft predicate of Eq. (1) applied on x ∈ R converges to
the crisp predicate that decides whether x ∈ (α, β),

lim
t→0

π̂(xi;αi, βi, t) =


1 if αi < xi < βi

0.5 ifxi = αi ∨ xi = βi

0 otherwise
.

We provide the proof for the general case in Appendix A.

The soft predicate π̂ provides a differentiable, adaptable
binning function. Next, we propose to combine the predi-
cates π̂ for each feature xi into a soft rule s that acts akin to
logical conjunctions but remains differentiable. It is possi-
ble to model a logical conjunction using multiplication, but
this leads to vanishing gradients (Hochreiter, 1998), which
is problematic especially for non-trivial amounts of soft
predicates (features). The harmonic mean

M(x) =
p∑m

i=1 π̂(xi;αi, βi, t)−1
,

behaves as desired for strictly binary predicates,
i.e. ∃π̂(xi;αi, βi, t) = 0 ⇒ M(x) = 0 and
∀π̂(xi;αi, βi, t) = 1 ⇒ M(x) = 1, but tends to
break down when given many soft predicates, e.g. for a very
high dimensional feature space. To avoid this, we propose
to instead use the weighted harmonic mean to model logical
conjunctions, and construct the soft rule function s as

s(x;α, β, a, t) =

∑m
i=1 ai∑m

i=1 aiπ̂(xi;αi, βi, t)−1
. (2)

The weights a ∈ Rm, which are constrained to be positive
through a ReLU function, allow the conjunction layer to dis-
able unnecessary predicates. Wherever ai > 0, the weights
do not affect behavior for strictly binary predicates.

In Fig. 2b, we show an example subgroup membership
function for a soft rule s . The subgroup here is characterized
by a conjunction of two predicates on X1 and X2, i.e. a box,
with a gradual, smooth transition from subgroup inclusion
to exclusion at the boundaries.

In general, our formulation of a soft rule is completely
flexible in regards to the thresholds of the binned features,
and for t→ 0 is asymptotically equivalent to a strict rule.

3.3. Differentiable Density Estimation

Besides a differential rule function, we require accurate
estimations of the conditional resp. marginal distributions
of the target. We deviate from existing work by taking
a differentiable non-parametric approach in the form of
Normalizing Flows. These are an increasingly popular class
of density estimators (Rezende & Mohamed, 2015b; Dinh
et al., 2017; Papamakarios et al., 2021). The fundamental
idea behind a normalizing flow is to start with a distribution
with a known density function, e.g. a Gaussian distribution
with pN , and fit an invertible function f to transform it onto
the target density.

Our method, SYFLOW, allows to seamlessly use any nor-
malizing flow architecture. In this work, our architecture
of choice are Neural Spline Flows (Durkan et al., 2019),
which use expressive yet invertible piece-wise, polynomial
spline functions. In general, the idea is to train the func-
tion f so that pY ≈ f(pN ). Given a sample y, we can
compute the likelihood of that point under the current func-
tion f as pf(N)(y) = pN (f−1(y))|det

(
δf−1(y)

δy

)
|. Thus,

given a sample of P (Y ), we can maximize the likelihood
of pf(N)(y) and hence fit pf(N) ≈ pY .

3.4. Differentiable Exceptionality Measure

We now have a differentiable rule function s and versatile
density estimate pY resp. pY |S=1 of the target distribution.
Next, we propose a differentiable measure of exceptionality
between the conditional target distribution and the marginal
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target distribution. We adopt the Kullback-Leibler (KL)
divergence and show how we can reformulate it towards this
goal. We start with the standard definition,

DKL (PY |S=1∥PY ) =

∫
y∈Y

pY |S=1(y) log

(
pY |S=1(y)

pY (y)

)
dy .

(3)
Here, the soft rule s does not explicitly appear, although we
need it to take gradients wrt. the parameters. Towards this,
we rewrite the first occurrence of pY |S=1 in Eq. (3) as

pY |S=1(y) =

∫
x∈Rm

pY |S=1,X(y,x)pX|S=1(x)dx

=

∫
x∈Rm

pY |S=1,X(y,x)
pS=1|X(x)pX(x)

P (S = 1)
dx ,

(4)

by using the rules of marginal probability resp. Bayes’ rule.
We will first approximate Eq. (4), and then show how to
estimate the KL divergence of Eq. (3) for its optimization.

To this end, we first note that the subgroup indicator S
takes two discrete values, indicating whether x belongs
to the subgroup. The rule function s(x) is deterministic
in the limit of t → 0 as per Theorem 1. We use this to
partition the domain of integration Rm into Rm

∈ := {x ∈
Rm|st→0(x) = 1} and Rm

/∈ := {x ∈ Rm|st→0(x) = 0}.
Under the following four assumptions, we can bound the
approximation of density pY |S=1 in Eq. (4). First, we assume
that both pX and pY |S=1,X are upper bounded by the finite
constants CX > 0 and CY > 0, respectively. Secondly, we
assume that in a subset Rm

/∈⊂ ⊂ Rm
/∈ , where s is neither zero

or one, i.e. the yellow region in Figure 2b, is negligible.
Lastly, we assume that Rm

/∈⊂ covers almost all of the non-
membership domain Rm

/∈ and the probability mass in this
area is also negligible. Formally, we assume

pX(x) ≤ CX, (5)
pY |S=1,X ≤ CY , (6)∫

x∈Rm
/∈⊂

pS=1|X(x)dx ≤ ϵ1 , (7)∫
x∈Rm

/∈ \Rm
/∈⊂

pX(x)dx < ϵ2 . (8)

Theorem 2 When Eqs. (5), (6), (7), and (8) hold, it is

pY |S=1(y)−
∫
x∈Rm

∈

pY |S=1,X(y,x)dx ≤
CY (ϵ2 + CXϵ1)

P (S = 1)
.

Further, during learning, this bound becomes tighter until it
asymptotically vanishes, assuming a decreasing annealing
schedule for the temperature parameter.

We postpone the proof to Appendix B.

For an element of the subgroup x ∈ Rm
∈ pS=1|x is either

zero or one, up to a negligible region (Ass. 7). We further
approximate the target property conditional for x ∈ Rm

∈

pY |X(y,x) = pY |S=1,X(y,x)pS=1|X(x)

+ pY |S=0,X(y,x)pS=0|X(x)

≈ pY |S=1,X(y,x),

The approximation follows from a case distinction on
pS=1|x . This allows us to approximate the subgroup-
conditional target distribution from Eq. (4) as

pY |S=1(y) =

∫
x∈Rm

∈

pY |S=1,X(y,x)
pS=1|X(x)pX(x)

P (S = 1)
dx

≈
∫
x∈Rm

∈

pY,X(y,x)
pS=1|X(x)

P (S = 1)
dx . (9)

Finally, we replace Eq. (9) into Eq. (3) to obtain our final
approximation

DKL (PY |S=1∥PY |S=1) ≈∫
y∈Y

∫
x∈Rm

∈

pY,X(y,x)
pS=1|X(x)

P (S = 1)
dx log

(
pY |S=1(y)

pY (y)

)
dy .

From this point onward, we can use the standard Monte
Carlo estimation of this integral. This gives

DKL (PY |S=1∥PY ) ≈
1

ns

n∑
k=1

s(x(k)) log

(
pY |S=1(y

(k))

pY (y(k))

)
,

where pY and pY |S=1 stand for the models trained from the
normalizing flows, s is our subgroup membership model
(see Sec. 3.2) and ns is estimated as 1

n

∑n
i=1 s(x

(i)). Our
approximation is directly computable given the density esti-
mates pY and pY |S=1 from the normalizing flows. Crucially
this allows us to update the subgroups rule s as to maxi-
mize its exceptionality/KL-Divergence. Finally, we can now
deal with some fine tuning of the objective to discover both
representative and diverse subgroups.

3.5. Rule Generality and Diversity

The KL-divergence measures dissimilarity between two dis-
tributions. Naively maximizing it, however, has a drawback
as we could easily craft a small subgroup consisting of the
single most deviating sample on its own, defined by a rule
with a very narrow scope and relatively low value. Thus, we
employ a common technique in subgroup discovery (Boley
et al., 2017) in order to steer the results towards larger sub-
groups: we multiply the statistic of dissimilarity with the
size of the subgroup nγ

s . The power γ tunes the trade-off in
the importance of subgroup exceptionality and size.
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As we will show in our experiments, traditional subgroup
discovery approaches often find sets of nearly identical
subgroups. In the typical top-k scheme, the best-scored
subgroups are often slight variations of the same rule. To
encourage SYFLOW to learn subgroups with diverse dis-
tributions, we introduce a regularizer, based on the KL-
divergence of the current subgroup S to the previously found
subgroups Sk to our objective. Hence, summarizing all the
above, we obtain as our final objective our variant of the
size-corrected KL (van Leeuwen & Knobbe, 2011):

DWKL (PY |S=1∥PY ) =

nγ
s D̂KL (PY |S=1∥PY ) + λ

k∑
j=1

D̂KL

(
PY |S=1

∥∥PY |Sj=1

)
.

(10)

The parameter λ controls the strength of the regularizer.

3.6. Full Model

In the previous sections, we detailed our rule learning ar-
chitecture with differentiable thresholding and aggrega-
tion (Sec. 3.2). We described how to use Neural Spline
Flows to obtain non-parametric density estimates (Sec. 3.3),
and finally derived Objective (10), a size aware Kullback-
Leibler Divergence that allows us to optimize our rule
function s(x) with gradient descent. Together these make
up the components of our SYFLOW architecture for sub-
group discovery with normalizing flows. Given a dataset
{(x(k), y(k))}Nk=1 ∼ P (X, Y ), SYFLOW undergoes the fol-
lowing three steps for each sample (x(k), y(k)):

1. Feature Thresholding: All continuous features x(k)
i are

thresholded with learned parameters αi and βi using the
soft-binning from Eq. (2). Thereby we obtain a predicate
vector π̂(x(k);α, β, t) ∈ [0, 1]p.

2. Subgroup Rule: We employ weights ai to com-
bine the individual predicates π̂(x

(k)
i ) into a conjunction

s(x;α, β, a, t). This rule represents the probability of sub-
group membership P(S = 1|X = x(k)).

3. Distribution Exceptionality: We estimate the likelihood
of pY (y

(k)) and pY |S=1(y
(k)) with two separately fitted nor-

malizing flow models. Then, according to Objective (10),
we can estimate the KL-Divergence between the current
subgroup and the general distribution.

By repeating the aforementioned steps over all samples
(x(k), y(k)) and summing up the results, Objective (10)
gives us a differentiable estimate of the KL-Divergence
in regards to the subgroup rule s(x). We optimize s(x)
using standard gradient descent techniques with the Adam
optimizer (Kingma & Ba, 2015). After the subgroup rule

has been updated, we again update the normalizing flow of
the subgroups density as described in Sec. 3.3, and repeat
this process for a user-specified amount of epochs. During
the training, we gradually decrease the temperature t by a
pre-determined schedule to obtain increasingly crisp sub-
group assignments. Finally, at the last epoch, the discovered
subgroup is then the output of the subgroup rule s(x). We
provide a diagram overviewing and the pseudo-code for
SYFLOW in the Appendix C.

4. Related Work
Subgroup Discovery. Traditional approaches for sub-
group discovery (Klösgen, 1996) can be split based on type
of search and on exceptionality measures. Subgroup dis-
covery is NP-hard (Boley & Grosskreutz, 2009) and hence
most proposals resort to greedy heuristics (Duivesteijn et al.,
2016; Atzmueller, 2015) without guarantees. Branch-and-
bound based algorithms (Boley et al., 2017; Kalofolias et al.,
2019) permit results with guarantees for some exception-
ality measures, but generally do not scale beyond tens of
features (Atzmueller & Puppe, 2006).

Most proposals for subgroup discovery assess exception-
ality by comparing the conditional and marginal distribu-
tions of a single univariate target (Song et al., 2016; Helal,
2016). Basic measures of exceptionality include mean-
shift (Grosskreutz & Rüping, 2009) for continuous, and
weighted relative accuracy (Song et al., 2016) for discrete
targets, but there exists a wide range of proposals for many
data types (Kalofolias & Vreeken, 2022). Most, however,
make strong assumptions about the distribution of the target
such as normal (Friedman & Fisher, 1999; Lavrač et al.,
2004), binomial or χ2 (Grosskreutz & Rüping, 2009).

Duivesteijn et al. (2016) generalize subgroup discovery to
multivariate targets by measuring exceptionality via the dif-
ference between models just trained on the subgroup versus
on all of the data. Due to computational costs, only simple
models can be used, leading to a compromise in perfor-
mance. Proença et al. (2022) instead measure exceptionality
using a proxy of KL-divergence based on the Minimum
Description Length (MDL). In contrast, SYFLOW optimizes
KL-divergence directly, can employ any type of normalizing
flow, and is equally suited for uni-/multi-variate targets.

Neural Set Functions (NSFs) (Zaheer et al., 2017; Ou et al.,
2022) are similar in spirit to subgroup discovery, as they also
seek to find exceptional points. However, they significantly
differ in two aspects. First, NSFs are learned using (par-
tial) supervision, while subgroup discovery is unsupervised.
Second, subgroup discovery finds interpretable descriptions,
while NSFs come in a black-box.

Subgroup discovery is also related to slice discovery (Chung
et al., 2019; d’Eon et al., 2022; Eyuboglu et al., 2022) which
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Figure 3. Subgroup Predictive Accuracy. (a) Method comparison in terms of F1-score recovering subgroups in synthetic data. (b) Across
different distributions: SYFLOW outperforms the competition on distributions with higher order moments. (c) With increasing number of
cutpoints, SD-µ matches SYFLOW accuracy around 40 bins, but needs 10× more time.

aims to find subsets of the data where a deep learning model
has high error rates. Slice discovery methods return mem-
bership functions defined on the latent space of the network.
The focus lies on discovering concept-aligned slices rather
than explicit rules on latent features. This makes slice dis-
covery methods not applicable for generic subgroup discov-
ery tasks. In contrast, methods such as SYFLOW can be
useful for slice discovery with appropriate modifications.

Differentiable Rule Induction Classical rule induction
methods aim to find rules of the form “ if X1 = 1 ∧X5 =
1 then Y = 0” through expensive combinatorial optimiza-
tion. Recently, highly scalable differentiable rule induction
methods were proposed based on differentiable analogues of
logical connectives, e.g. conjunctions and disjunctions (Fis-
cher & Vreeken, 2021; Wang et al., 2020) that permit ex-
tracting crisp logical rules after training. Most work in this
direction focuses on learning a global classifier (Yang et al.,
2018; Qiao et al., 2021; Wang et al., 2021; Dierckx et al.,
2023) as opposed to our goal of learning concise rules that
identify exceptional subgroups. In this sense most related
is Walter et al. (2024), who propose a neural architecture
to find conjunctions of binary features that are over resp.
under-expressed for a particular label. In contrast, SYFLOW
considers continuous features, and is not constrained to a
type or number of target variables.

5. Experiments
We evaluate SYFLOW against four state-of-the-art methods
on synthetic and real-world data. We compare against Bump
Hunting (BH, Friedman & Fisher, 1999), subgroup discov-
ery using mean-shift (SD-µ, Lemmerich & Becker, 2018),
subgroup discovery using KL-divergence (SD-KL), and Ro-
bust Subgroup Discovery (RSD, Proença et al., 2022). We
give the hyperparameters in Appendix D and provide the
data generators as well as the code online.1

1https://eda.rg.cispa.io/prj/syflow/

5.1. Synthetic Data

To evaluate on datasets with known ground truth we consider
synthetic data. We begin by generating m feature variables
Xi and the target variable Y from a uniform distribution
U(0, 1) to create a dataset of n = 20 000 samples. Within
this dataset, we plant a rule σ(x) = ∧ciπ(xi;αi, βi) of c
conditions. The hypercube described by the rule is set to
have a volume of 0.1, i.e. 10% of the population. For the
samples within the planted subgroup, we re-sample the
target variable Y using a separate distribution P(Y | S = 1).
We run each experiment five times and report the average.

Target Distribution First, we assess for all methods their
accuracy in recovering the planted subgroup for different
distributions of the target property Y . To this end, we
vary P(Y | S = 1) to be respectively a normal distribu-
tion N (1.5, 0.5), uniform distribution U(0.5, 1.5), expo-
nential distribution Exp(0.5), Rayleigh distribution R(2),
Cauchy distribution C(0, 1), beta distribution B(0.2, 0.2),
and a balanced mixture distribution of two gaussians (Bi-N )
N (−1.5, 0.5) and N (1.5, 0.5). The distribution are shown
in Figure 8 in Appendix G. The number of features m = 10
and complexity c = 4 remains fixed.

For each method, we compute the F1-score between the
ground truth and discovered subgroup labels (i.e. S = 1).
We present the results in Figure 3a; We see that for distri-
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Figure 4. Scalability of SYFLOW and baselines.
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10k 20k 30k 40k 50k 60k

Y : Insurance rate

¬Smoker ∧ Age < 36
¬Smoker ∧ 44 < Age < 64
Smoker

(a) Insurance: SYFLOW rules

10k 20k 30k

Y : Insurance rate

¬Smoker ∧ Age > 18
¬Smoker ∧ Age < 59
¬Smoker

(b) Insurance: SD-KL rules

50k 100k 150k 200k 250k 300k

Y : Wages in $1000

Female ∧ Low Education
Male ∧ White ∧ Age > 38
Male ∧ Educated ∧ Age > 30

(c) Wages: SYFLOW rules

50k 100k 150k 200k 250k 300k

Y : Wages in $1000

Male ∧ Age > 30 ∧ Height > 1.6
Male ∧ Age > 27 ∧ Height > 1.6
Male ∧ Age > 27 ∧ Height > 1.6

(d) Wages: SD-µ rules

Figure 5. Subgroups learned on the Insurance and Wages datasets. Only SYFLOW learns diverse and exceptional subgroups.

butions that are well characterized by their first moment,
i.e. the uniform and normal distribution, SYFLOW, SD-µ
and BH are all able to recover the planted subgroup. On
the exponential, Rayleigh and bi-modal distributions, only
SYFLOW is able to recover the majority of the planted sub-
group. In general, SYFLOW reliably recovers subgroups
independent of the underlying target distribution.

Thresholding Next, we study the efficacy of the differ-
entiable feature thresholding. We generate data as before,
considering only Normal distributions for the target vari-
able Y , and setting m = 50. We compare the accuracy
of SYFLOW against SD-µ, whilst gradually increasing the
amount of bins per feature in the pre-processing for SD-µ.

As we can see in Figure 3b, as the number of cutpoints in-
creases, the F1-score of SD-µ improves. Under 20 cutpoints
SD-µ performs much worse than SYFLOW, while for more
cutpoints it slightly outperforms it in terms of accuracy. At
the same time, as the number of cutpoints increases, SD-µ
runtime increases rapidly (Figure 3c), requiring an order of
magnitude more runtime to perform on par with SYFLOW.

Scalability In the final experiment on synthetic data, we
assess performance and runtime when varying the number
of features. We allow each method up to 24 hours. We
present our results in Figure 4. We observe that all meth-
ods perform remarkably stable in terms of F1-score, as
well as that SYFLOW is significantly faster than all of its
competitors. As a continuous optimization based method,
SYFLOW avoids the typical combinatorial explosion in run-
time, and additionally takes advantage of GPU acceleration.
In comparison, SD-µ, SYFLOWS closest competitor, takes
50 times longer for 1 000 features, whereas RSD does not
finish within 24 hours for more than 100 features.

Hyperparameter Sensitivity Lastly, we study the sen-
sitivity of SYFLOW to its hyperparameters. We report the
average F1-score over all target distributions, varying each
hyperparameter individually whilst keeping the others fixed
as in the previous experiments.

For γ, which controls the trade-off between size and excep-

tionality, SYFLOW works well in a range of γ ∈ [0.4, 1],
with an average F1 score of 0.85 upwards. For the regular-
izer λ, we observe a 0.05 improvement when it is active,
whilst varying its strength between [0.5, 3] does not have a
noticeable impact. Finally, for the predicate temperature t
that controls the softness of the binning, the ideal range by
empirical observation lies in between [0.01, 0.2]. In both
synthetic and real-world experiments we used a temperature
of t = 0.2 which provides good performance across the
board. We provide a detailed analysis in Appendix D.

5.2. Real World Data

We now turn to real-world data, where we evaluate on regres-
sion datasets from the UCI-Machine Learning Repository.2

They provide a variety of target distributions and feature
spaces to search and allow us to qualitatively inspect the
learned rules. On each dataset, we let each method return
5 subgroups. For SYFLOW we report the average over 100
runs and report the standard deviation in Tab. 3. As the
ground truth is unknown, we assess the subgroup quality in
terms of KL-divergence (DKL), the distribution overlap or
Bhattacharyya Coefficient (BC ), and by absolute difference
in mean (AMD). As DKL and AMD are strongly influ-
enced by the size ns of the subgroup, we correct for this.
For a formal definition we refer to Appendix E. In Table 1
we report, per metric, the scores of the best subgroup each
method found.

Across the board, SYFLOW reliably finds exceptional sub-
groups, and is either the best or close to the best method
when it comes to the distribution based exceptionality mea-
sures (DKL and BC ). SD-µ optimizes for mean difference,
and hence it is not surprising that it outperforms SYFLOW
on this metric, but that SYFLOW nevertheless comes so close
in terms of scores is a very positive result indeed.

For the Insurance dataset it is inconclusive which method
learns the most exceptional subgroups; SYFLOW returns the
best subgroup in terms of DKL, SD-KL finds the subgroup
with the largest mean difference. For further analysis, we

2https://archive.ics.uci.edu.
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Table 1. Quantitative results of exceptionality of the subgroups discovered by resp. SYFLOW (ours), SD-KL, SD-µ, RSD, and BH, as
measured KL-Divergence (DKL, higher is better), Bhattacharyya coefficient (BC , lower is better), and absolute mean distance (AMD ,
higher is better).

DKL BC AMD

ours SD-KL SD-µ RSD BH ours SD-KL SD-µ RSD BH ours SD-KL SD-µ RSD BH

Abalone 0.15 0.02 0.12 0 0.05 0.69 0.99 0.93 1 0.87 0.73 0.25 0.84 0 0.16
Airquality 0.22 0.22 0.24 0 0.0 0.65 0.86 0.79 1 1.0 0.37 0.53 0.49 0 0.0
Automobile 0.25 0.24 0.23 0.26 0.21 0.63 0.85 0.79 0.64 0.6 1838 2807 2683 2218 2476
Bike 0.17 0.1 0.15 0.17 0.13 0.64 0.95 0.9 0.67 0.73 584 570 630 432 622
California 0.13 0.06 0.11 0 0.0 0.74 0.97 0.93 1 1.0 0.25 0.3 0.32 0 0.0
Insurance 0.26 0.13 0.26 0 0.19 0.41 0.93 0.52 1 0.84 3846 3973 3845 0 1518
Mpg 0.27 0.26 0.24 0.21 0.24 0.57 0.76 0.8 0.47 0.61 2.99 2.85 2.96 1.66 2.79
Student 0.08 0.03 0.08 0.09 0.04 0.85 0.99 0.94 0.71 0.97 0.46 0.52 0 0.47 0.45
Wages 0.1 0.02 0.1 0 0.03 0.88 0.99 0.9 1 0.99 6043 2994 5916 0 5149
Wine 0.06 0.0 0.06 0 0.01 0.9 1.0 0.97 1 0.97 0.17 0.04 0.19 0 0.04

Avg. rank 1.3 3.6 2.0 3.5 3.6 1.3 4.0 2.9 3.4 2.9 2.6 2.4 1.5 4.5 3.6

plot the best three subgroups found by SYFLOW and SD-KL
in Figure 5a and 5b. The specific rules that SYFLOW finds
are succinct and informative (¬Smoker ∧ Age < 36), and
represent a diverse set of subgroups (low, medium and high
premiums). In contrast, SD-KL finds highly redundant rules,
e.g. ”¬Smoker” and ”¬Smoker ∧ Age > 18”, that all de-
scribe the same subpopulation.

Generally, on all datasets where the target variable is
exponentially distributed (Wages, Insurance, California),
SYFLOW performs well in any measured metric, which
matches the results seen on the exponential synthetic data
(Sec. 5.1). Finally, in Fig. 5c and 5d, we plot the learned sub-
groups on the Wages dataset mentioned in the introduction.
Again, SYFLOW finds diverse subgroups of disadvantaged
demographics (Female ∧ Low Education) and advantaged
groups (Male ∧White ∧ Age > 38), whilst its competitor
find either much less exceptional subgroups (RSD,BH) or
variants of the same subgroup (SD-µ,SD-KL).

Overall, SYFLOW shows versatility in finding exceptional
subgroups across a variety of datasets and metrics. The
discovered rules are succinct and diverse, can scale to large
datasets, and are robust to the underlying target distribu-
tion. In the following, we will use SYFLOW on a specific
application in materials science.

5.3. Case Study: Materials Science

Next, we consider a case study on materials science
data (Goldsmith et al., 2017), an application where learning
diverse exceptional subgroups has a clear scientific benefit.
In particular, we consider a dataset of properties of gold-
nano-clusters. These are key components in photo-voltaics,
as well as in medical applications (Giljohann et al., 2020).
The key goal is to better understand which molecular con-
figurations lead to materials with better properties in terms

of absorbing photons or with which cells they interact.

We first focus on characterizing the HOMO-LUMO gap, the
difference between the highest occupied and lowest unoc-
cupied molecular orbit, which corresponds to the efficiency
in energy absorption of the material for photons of specific
frequencies. Gold nano-clusters are also increasingly used
in medical applications, in which the HOMO-LUMO gap is
crucial to determine their reactivity with other molecules.

We show the subgroups that SYFLOW learns for the HOMO-
LUMO gap in Figure 1c. The discovered subgroups relate to
known ground-truth factors (Goldsmith et al., 2017), i.e. odd
number of atoms leads to low gaps, but also ones with more
complex descriptors such as clusters with an even amount of
atoms that are mostly made up of double bond connections.
SYFLOW provides out of the box interpretable, exceptional
and diverse subgroups on this complex target quantity.

Next, we additionally consider the relative intramolecular
Van der Waals energies as the target quantity. These quan-
tities are important to determine the strength of molecular
binding, e.g. allow a compound to selectively interact with
the intended target. We show the results in Figure 6. It is
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Figure 6. Gold Nano-Clusters. SYFLOW discovers a subgroup of
molecules that have an outstanding joint distribution of Van-der-
Waals energy and HOMO-LUMO gap.
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easy to see that samples fitting subgroup rule s are indeed
exceptional with regard to the overall distribution. More-
over, when we analyze the rule in detail, it makes physical
sense. Molecules of between 8 to 14 atoms with a low (close
to 1) gyration tend to have a significantly higher Van der
Waals energy than those that are more strongly gyrated (i.e.
are less ‘flat’) (Goldsmith et al., 2017).

6. Conclusion
We explored the problem of discovering a diverse set of
exceptional subgroups, where the distribution of the target
within each subgroup differs significantly from the overall
population. Existing works suffer from combinatorial ex-
plosion, can not deal with intricate real world distributions,
and heavily depend on the pre-quantization of the features.
To overcome these limitations, we propose SYFLOW, where
we formulate subgroup discovery as a continuous optimiza-
tion problem. We use normalizing flows to accurately learn
the distribution of the target property, enabling us to deal
with arbitrary distributions. We propose a differentiable
rule learner, which simultaneously learns the subgroup de-
scription and the corresponding discretization. We show
on synthetic and real-world data, including a case study
on gold nano-clusters, that SYFLOW reliably discovers di-
verting subgroups, especially when the target distribution
is complex. In a case study on gold nano-clusters, we find
subgroups that correspond to physically plausible processes.

Limitations

A current limitation of all subgroup discovery methods,
including SYFLOW, is that the description language of con-
junctions of Boolean predicates may be too simple to de-
scribe true subgroups for physical data. We are specifically
interested in exploring how we can extend SYFLOW to per-
form symbolic regression. Furthermore, we are interested
in adapting SYFLOW to deal with structured data, such as
images. We provide first experiments in Appendix I, where
we find that SYFLOW is capable of discovering subgroups
corresponding to the digits 0 and 1 in the MNIST dataset.
Whilst this at the moment requires extensive pre-processing,
we will pursue future work to allow SYFLOW to directly
work with structured data such as images.

Impact Statement
We propose a method, which can assist practitioners in mak-
ing new scientific discoveries. For example, new insights
into gold-cluster can have a potential impact on biomedi-
cal applications. However, when applied to sensitive cen-
sus data, it is important to stress that SYFLOW is based on
correlations and is not designed to make a definite causal
statement. Thus, the results must be handled responsibly.
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A. Proof of Asymptotic Correctness of Soft-Binning
Proof: Consider a real value xi ∈ R and M sorted bin thresholds βi,j ∈ R, i.e. βi,j < βi,j+1. From the thresholds βi,j ,
we construct the bias vector bi ∈ RM+1 defined as

bi = (0,

1∑
j=1

−βi,j , . . . ,

M∑
j=1

−βi,j)
T .

Additionally, we define a weight vector w ∈ RM+1 with wj = j, so that

w = (1, 2, . . . ,M + 1)T .

The soft-binning result z ∈ [0, 1]M+1 is defined as

z = softmax ((wxi + bi)/t) .

Now, let xi be in the l-th bin, i.e. βi,l−1 < xi < βi,l, then we now firstly prove that ∀j ̸= l : zl > zj . We do this by showing
that the l-th logit z̄l = wlxi + bi,l is the largest and hence also has the highest softmax activation.

Firstly, note that the bin thresholds are sorted in order, so that for j < l it also holds that βi,j < βi,l. z̄l is defined as

z̄l = wlxi + bi,l = wlxi −
l−1∑
k=1

βi,k .

We can simply transform z̄l into z̄l−1 by subtracting xi − βi,l−1, so that

z̄l − xi + βi,l = wl−1xi −
l−2∑
k=1

βi,k = z̄l−1 .

Now, as xi is in the l-th bin, we know that βi,l−1 < xi and hence xi − βi,l < 0. For all other j < l βi,j < xi holds, and
hence also z̄l > z̄j .

Now consider the case where j > l. Here, it holds that

z̄l + xi − βi,l+1 = wl+1xi −
l+1∑
k=1

βi,k = z̄l+1 .

In general, we may transform z̄l into z̄j by repeatedly adding xi − βi,k for k ∈ [l + 1, . . . , j]. For all thresholds xi < βi,k

holds. Thus, each time we add a strictly negative number to the logit z̄l, which proves that also here ∀j > l : z̄l > z̄j . Thus,
it holds that ∀j ̸= l : z̄l > z̄j

Lastly, it remains to prove that with temperature t→ 0, z is a one-hot bin encoding, i.e. zl = 1 and ∀j ̸= l : zj = 0. The
soft-binning of zl is defined as

lim
t→0

zl = lim
t→0

exp(z̄l/t)∑M+1
j=1 exp(z̄j/t)

= lim
t→0

1∑M+1
j=1 exp ((z̄j − z̄l)/t)

.

For j = l, the sum term evaluates to exp(z̄l − z̄l)/t = exp(0) = 1. For j ̸= l, it holds that z̄l > z̄j as show previously, and
hence in the limit

lim
t→0

exp(z̄j − z̄j)/t = exp(−∞) = 0 .

Thus, in the limit t→ 0, the denominator sums up to 1 and hence zl = 1, and as the softmax is positive and sums up to zero,
it follows that ∀j ̸= l : zj = 0. □
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B. Proof of Theorem 2
Theorem 2 When Eqs. (5), (6), (7), and (8) hold, it is

pY |S=1(y)−
∫
x∈Rm

∈

pY |S=1,X(y,x)dx ≤
CY (ϵ2 + CXϵ1)

P (S = 1)
.

Further, during learning, this bound becomes tighter until it asymptotically vanishes, assuming a decreasing annealing
schedule for the temperature parameter.

Proof: We first recall that, under our model, pS=1|X(x) = st→0(x;α, β) for some α, β ∈ Rn, and is therefore a smooth
function of x. Intuitively, there are two regions of interest within Rm

/∈ : one within which it transitions from the value of
almost 1 to that of almost 0, which is the region Rm

/∈ \ R
m
/∈⊂, and a saturation region, where pS=1|x → 0 super-exponentially,

which is the region Rm
/∈⊂. The particular thresholds that define these regions are not important, and any reasonable scheme

leads to vanishing bounds ϵ1, ϵ2.

More formally, using the partitioning of Rn, we can split the integral of Eq. (4) into

pY |S=1(y) =

∫
x∈Rm

∈

pY |S=1,X(y,x)
pS=1|X(x)pX(x)

P (S = 1)
dx+

∫
x∈Rm

/∈

pY |S=1,X(y,x)
pS=1|X(x)pX(x)

P (S = 1)
dx ,

with the goal to upper bound (and hence ignore) the second term, which we consider as an error. This second term can be
now bounded as∫

x∈Rm
/∈

pY |S=1,X(y,x)
pS=1|X(x)pX(x)

P (S = 1)
dx ≤

1

P (S = 1)

∫
x∈Rm

/∈

CY pS=1|X(x)pX(x)dx ≤

CY

P (S = 1)

∫
x∈Rm

/∈ \Rm
/∈⊂

pS=1|X(x)︸ ︷︷ ︸
≤1

pX(x)dx+

∫
x∈Rm

/∈⊂

pS=1|X(x) pX(x)︸ ︷︷ ︸
≤CX

dx

 ≤
CY

P (S = 1)

[∫
x∈Rm

/∈ \Rm
/∈⊂

pX(x)dx+ CX

∫
x∈Rm

/∈⊂

pS=1|X(x)dx

]
≤

CY (ϵ2 + CXϵ1)

P (S = 1)
,

where pS=1|X ≤ 1 since S is a discrete random variable.

We argue about the second part by claiming that both bounds ϵ1 and ϵ2 vanish during learning. Indeed, the form
s(x)→ pS=1|X(x) satisfies the assumption of Eq. (7) for a steep enough temperature parameter t, while it is also learning
the correct domain Rm

/∈ , so that indeed the assumption of Eq. (8) is satisfied, both with inexorably diminishing bounds ϵ1
and ϵ2, respectively. □
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C. Algorithm and Hyperparameters
In this section, we provide pseudocode for SYFLOW.

Algorithm 1: fit flow({x(1), . . . , x(n)},{y(1), . . . , y(n)},s,p,p̄)

1 logL ← 1
n

∑n
i=1 log[p(y

(i)) · s(x(i)) + p̄(y(i)) · (1− s(x(i)))];
2 loss← − logL;
3 loss.backwards();
4 Update p;

Algorithm 2: SYFLOW(X , Y , epochsFlowY
, epochsFlowYs

, lrFlow ,lrs,priors, γ, λ, t)

1 pY ← Neural Spline Flow;
2 for i← 1 to epochsFlowY

do
3 logL ← 1

n

∑n
i=1 log[pY (y

(i))];
4 loss← − logL;
5 loss.backwards();
6 Update pY ;
7 end
8 αi ← minXi;
9 βi ← maxXi;

10 ai ← 1;
11 Rule(x)← s(x;α, β, a, t);
12 pY |S=1 ← Neural Spline Flow;
13 pY |S=0 ← Neural Spline Flow;
14 for i← 1 to epochsFlowY

do
15 Compute subgroup membership probabilities s(x(i));
16 KL← 1

n

∑n
i=1 s(x

(i)) · (log[pY |S=1(y
(i))]− log[pY (y

(i))]);
17 ns ← 1

n

∑n
i=1 s(x

(i));
18 Weighted-KL← KL · s̄γ ;
19 Regularizer← 0;
20 for pSGk

in priors do
21 Regularizer← Regularizer +

∑n
i=1 s(x

(i)) · (log[pY |S=1(y
(i))]− log[pY |SGk=1(y

(i))]);
22 end
23 Regularizer← λ

|priors| ·Regularizer ;
24 loss← −Weighted-KL −Regularizer;
25 loss.backwards();
26 Update rule s to minimize objective/maximize weighted, regularized KL;
27 fit flow({x(1), . . . , x(n)},{y(1), . . . , y(n)},s,pY |S=1,pY |S=0);
28 if (t = epochsFlowYs

/2) ∨ (t = epochsFlowYs
· 3/4) then

29 t← t/2;
30 end
31 end
32 return Rule, pY |S=1;
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D. Hyperparameters for experimental evaluation
For all methods we optimize their respective hyperparameters such to maximize the measures used to evaluate the
experiments. Since, BH has no hyperparameters no fine-tuning is required.

D.1. Synthetic experiments

We used one hyperparameter setting for all synthetic experiments For SYFLOW the hyperparameter setting is: t = 0.2,
γ = 0.5, λ = 0.5, lrFlow = 5 × 10−2, lrs = 2 × 10−2, epochsFlowY

= 2000 and epochsFlowYs
= 1500. For SD-µ, SD-KL

and RSD, we used 20 cutpoints and a beamwidth of 100, while γ is set to 1.0. Although γ has for all approaches the same
functionality i.e. control the size of the subgroup, the absolute value of a γ has drastically different meanings. As SYFLOW
outputs a soft assignment, we require a smaller alpha to achieve the same effect. For example, if SYFLOW assigns 0.9, then
contribution to the size correction for γ = 0.5 is

√
0.9 ≈ 0.95, thus we require a smaller γ.

D.2. Real world data

For the experiments on Kaggle and UCI data (i.e. Section 5.2), we used for SYFLOW: t = 0.2, γ = 0.3, λ = 2.0,
lrFlow = 5 × 10−2, lrs = 2 × 10−2, epochsFlowY

= 1000 and epochsFlowYs
= 1000. For SD-µ, SD-KL and RSD, we used

20 cutpoints, a beamwidth of 100, and while γ = 1.0. For the experiments on gold cluster data present in Figure 1c, we
used epochsFlowY

= 7000, epochsFlowYs
= 3000, λ = 10.0 and γ = 0.2 For the case study, we used epochsFlowY

= 3000,
epochsFlowYs

= 2000, λ = 5 and γ = 0.2.

E. Evaluation metric
To objectively evaluate the discovered subgroups on real-world data, we use Bhattacharyya coefficient (BC), KL-divergence
(KL) and absolute mean distance (AMD) between the distribution of the subgroup PY |S=1 and overall distribution of PY .
KL and AMD are size corrected, since both metrics are heavily influenced by the size of the subgroup. We use histograms
to estimate the probability distributions. The edges of the bins are computed using the Freedman Diaconis Estimator,
which is robust to outliers and less sensitive towards distribution shapes. For the subgroup distribution PY |S=1 and overall
distribution PY , the metrics are formally defined as

BC (PY |S=1, PY ) =
∑
y∈Y

√
pY |S=1(y)pY (y)

DKL(PY |S=1, PY ) =
∑
y∈Y

pY |S=1(y) log(
pY |S=1(y)

pY (y)
)

AMD(Ys,Y) =

∣∣∣∣∣∣
 1

|Ys|
∑
y∈Ys

y

−
 1

|Y|
∑
y∈Y

y

∣∣∣∣∣∣ .

In the last definition, with slight abuse of notation, we used Ys to denote all points in the subgroup. For the Table 1, we size
corrected KL and AMD using γ = 1. Note, this is exactly the metric that SD-µ and SD-KL optimize.

F. Rule Complexity Experiment
We study how SYFLOW learns subgroups of increasing complexity. This is achieved by increasing the number of predicates
in a generated rule up to ten. We keep the target distribution fixed to a Normal distribution.

We present our results in Figure 7; Here, as the complexity of the rule increases, the accuracy of all methods generally
decreases as the task becomes progressively harder. Amongst all methods, SYFLOW recovers the planted subgroup with the
highest accuracy. In particular, SYFLOW improves the most over its competitors on the more complex subgroups.

G. Target distributions for synthetic experiment
In Figure 8, we show the different target distributions for the first synthetic experiment.
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Figure 7. F1 under increasingly complex rules, higher is better
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Figure 8. Here, we show the different target distributions for second synthetic experiment in Section 5.

H. Subgroup descriptions
We show in Table 2 further examples of subgroups found on the real life datasets. For each method we select the first
subgroup that the respective method found. Since BH did not find relevant subgroups for most datasets, we do not consider
it in the table.

I. Subgroup Discovery on Image Data
One of the defining characteristics of SYFLOW is its ability to give an interpretable rule for each subgroup. Hence, we
focus our experiments on tabular data where we can directly interpret the learned rules. Still, SYFLOW also has potential
applications with structured data such as images. We conduct a preliminary experiment on the MNIST dataset (LeCun et al.,
1998) using the digits 0 and 1 only. As the target variable Y , we use pixel values of the downsampled, normalized image in
14× 14 resolution as a vector Y ∈ R196. For the feature variable X , preprocessing is required for the rule learner because
of the high variability between individual pixel values. Instead, we use the two-dimensional t-SNE embedding of the pixel
values as features X ∈ R2.

We show in Figure 9 the discovered subgroups for the digits 0 and 1. SYFLOW is able to learn a subgroup of resp. the digit 0
and the digit 1, and the sampled images from the subgroup distributions closely resemble the digits. The corresponding
descriptors are boxes around the regions of the t-SNE embedding where the digit is located. This shows that in principle,
SYFLOW can be applied to image data. Future work could focus on extending SYFLOW to directly work with image data,
for example by using convolutional neural networks to learn the subgroups and giving up the interpretability of the rules, or
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Dataset Method Rule

Abalone

SYFLOW 0.20 < whole-weight < 2.83 ∧ 0.13 < viscera-weight < 0.60 ∧ 0.26 < shell-weight < 1.00 ∧ sex-I =0

RSD shell-weight ≥ 0.43 ∧ 0.46 ≤ diameter < 0.49 ∧ shucked-weight < 0.55 ∧ whole-weight ≥ 1.03

SD-KL shell-weight < 0.48

SD-µ height ≥ 0.10 ∧ shucked-weight ≥ 0.16 ∧ shell-weight ≥ 0.11 ∧ shell-weight ≥ 0.19

Airquality

SYFLOW 404.67 < NOx(GT) < 1479.00 ∧ -44.90 < NO2(GT) < 340.00

RSD PT08.S4(NO2) ≥ 2026.0 ∧ PT08.S3(NOx) < 373.0 ∧ month ≥ 11.0

SD-KL PT08.S1(CO) < 1285.0 ∧ NMHC(GT) < 185.0 ∧ PT08.S2(NMHC) < 1068.0 ∧ NOx(GT) < 326.0
∧ NOx(GT) ≥ -200.0 ∧ PT08.S5(O3) < 1780.0

SD-µ PT08.S1(CO) ≥ 956.0 ∧ PT08.S2(NMHC) ≥ 979.0 ∧ PT08.S5(O3) ≥ 704.0 ∧ PT08.S5(O3) ≥ 917.0

Automobile

SYFLOW

If 159.42 < length < 208.10 ∧ 60.64 < width < 72.00 ∧ 2684.19 < curb-weight < 4066.00 ∧ 64.84 < engine-size < 270.46
∧ 7.00 < compression-ratio < 19.11 ∧ 16.00 < highway-mpg < 31.72

∧ jaguar=0 ∧ mercedes-benz=0 ∧ plymouth=0 ∧ subaru=0 ∧ fuel-type-gas=1 ∧ engine-location-front=1
∧ engine-location-rear=0 ∧ engine-type-ohcf=0 ∧ fuel-system-2bbl=0∧ fuel-system-mpfi=1

RSD engine-size ≥ 201.5

SD-KL highway-mpg ≥ 29.0 ∧ audi=0 ∧ bmw=0 ∧ wheel-base < 104.90 ∧ width < 66.90
∧ body-style-convertible=0 ∧ engine-size < 161.0

SD-µ highway-mpg < 30.0 ∧ honda=0 ∧ isuzu=0 ∧ plymouth=0 ∧ subaru=0 ∧ curb-weight ≥ 2385.0 ∧ fuel-system-mfi=0

Bike

SYFLOW holiday=0 ∧ 1.00 < weathersit < 2.35 ∧ 0.47 < atemp < 0.78 ∧ 0.18 < hum < 0.83 ∧ season-1=0

RSD temp < 0.2

SD-KL temp ≥ 0.26 ∧ atemp ≥ 0.28 ∧ hum < 0.87 ∧ windspeed < 0.34 ∧ season-1=0

SD-µ temp ≥ 0.40 ∧ temp ≥ 0.43 ∧ hum < 0.82

California

SYFLOW 0.50 < MedInc < 2.4

RSD MedInc ≥ 7.4 ∧ 35.0 ≤ HouseAge < 38.0 ∧ -121.19 ≤ Longitude < -118.34 ∧ AveBedrms ≥ 0.96

SD-KL MedInc < 5.11 ∧ MedInc < 6.16 ∧ HouseAge < 52.0 ∧ AveOccup ≥ 2.08

SD-µ MedInc ≥ 3.32 ∧ AveOccup < 3.89 ∧ AveOccup < 4.33 ∧ Latitude < 37.99 ∧ Longitude < -117.08

Insurance

SYFLOW 44.00 < age < 64.00 ∧ smoker=0

RSD smoker=1 ∧ bmi ≥ 30.0 ∧ age ≥ 59.0

SD-KL smoker=0

SD-µ smoker=1

Mpg

SYFLOW 3.35 < cylinders < 5.25

RSD weight ≥ 3845.0 ∧ 71.0 ≤ model-year < 74.5

SD-KL displacement ≥ 151.0 ∧ weight ≥ 2671.0 ∧ weight ≥ 3085.0

SD-µ cylinders=4.0 ∧ weight < 2807.0 ∧ weight < 4278.0

Student

SYFLOW
school=1 ∧ address=0 ∧ failures=0 ∧ schoolsup=1 ∧ nursery=0 ∧

higher=0 ∧ internet=1∧ 1.00 < Dalc < 3.34 ∧ Medu-1=0∧ Fedu-1=0

RSD failures =1 ∧ famsize=1 ∧ absences < 1 ∧ famsup=0

SD-KL failures=0

SD-µ school=0 ∧ higher=0 ∧ absences < 16 ∧ absences < 18 ∧ failures=0 ∧ schoolsup=1

Wages

SYFLOW sex=0 ∧ 10.68 < ed < 18.00 ∧ 29.86 < age < 95.00

RSD ed ≥ 18.0 ∧ 37.0 ≤ age < 43.0 ∧ sex=0 ∧ height < 70.25

SD-KL race-other=0.0

SD-µ height ≥ 65.05 ∧ height ≥ 65.79 ∧ sex=0 ∧ age ≥ 30.0

Wine

SYFLOW 0.23 < volatile acidity < 1.10 ∧ 0.99 < density < 1.04 ∧ 8.00 < alcohol < 10.12

RSD alcohol ≥ 12.75 ∧ 29.0 < free sulfur dioxide < 41.0 ∧ pH < 3.24 ∧ 0.26 ≤ citric acid¡0.34 ∧ residual sugar ≥ 1.4

SD-KL free sulfur dioxide ≥ 11.0

SD-µ fixed acidity < 8.30 ∧ alcohol ≥ 10.40 ∧ free sulfur dioxide ≥ 11.0 ∧ total sulfur dioxide < 195.0 ∧ density < 1.00

Table 2. Symbolic subgroup descriptions for real life datasets in Section 5.2
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Table 3. We show the standard deviation for the 100 reruns of SYFLOW on real world data.

Dataset DKL BC AMD

abalone 0.01 0.02 0.04
airquality 0.01 0.02 0.02
automobile 0.02 0.04 239.14
bike 0.0 0.01 73.98
california 0.01 0.04 0.02
insurance 0.01 0.1 320.22
mpg 0.0 0.0 0.08
student 0.02 0.05 0.1
wages 0.0 0.02 172.48
wine 0.01 0.03 0.03

Figure 9. Subgroup discovery on the MNIST dataset with features X obtained by 2D t-SNE embedding. The discovered subgroups
resemble the digits 0 and 1 resp.

by using an image-targeted normalizing flow architecture to model the subgroup distribution.

J. Sensitivity of SYFLOW

We here provide preliminary results for the average F1 score across the different target distributions, shown in Figure D.
Overall, SYFLOW performs well with a variety of different hyperparameters, and gives the end user room for customization
in regards to the desired size of the subgroups through γ and the diversity between subgroups through λ. When it comes to
discovering underlying subgroup structures, as demonstrated in the experiments, SYFLOW does so reliably for a wide range
of parameters.

In Table 3, we show the standard deviations of SYFLOW for the 100 runs on real world data.
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Figure 10. Here we conduct a sensitivity analysis of the hyperparameters of SYFLOW. Subgroup size weighting γ: SYFLOW works well
in a range of values for γ ∈ [0.4, 1]. Regularization strength λ: Using the regularizer improves the F1 score by 0.05, whilst varying its
strength between [0.5, 3] does not have a noticeable impact on accuracy. Predicate temperature/softness t: the starting temperature
controls the softness of the binning function. Its ideal range by empirical observation lies in between [0.01, 0.2]. Setting it too high
can result in un-crisp binning functions, which in turn results in an inaccurate subgroup assignment yielding a worse F1 score. In both
synthetic and real-world experiments we used a temperature of t = 0.2 which provides good performance across the board

19


