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Abstract
We study an online contextual dynamic pric-
ing problem, where customers decide whether
to purchase a product based on its features and
price. We introduce a novel approach to model-
ing a customer’s expected demand by incorporat-
ing feature-based price elasticity, which can be
equivalently represented as a valuation with het-
eroscedastic noise. To solve the problem, we pro-
pose a computationally efficient algorithm called
"Pricing with Perturbation (PwP)", which enjoys
an O(

√
dT log T ) regret while allowing arbitrary

adversarial input context sequences. We also
prove a matching lower bound at Ω(

√
dT ) to

show the optimality regarding d and T (up to
log T factors). Our results shed light on the re-
lationship between contextual elasticity and het-
eroscedastic valuation, providing insights for ef-
fective and practical pricing strategies.

1. Introduction
Contextual pricing, a.k.a., Feature-based dynamic pricing,
considers the problem of setting prices for a sequence of
highly specialized or individualized products. With the
growth of e-commerce and the increasing popularity of on-
line retailers as well as customers, there has been a growing
interest in this area (see, e.g., Amin et al., 2014; Qiang &
Bayati, 2016; Javanmard & Nazerzadeh, 2019; Shah et al.,
2019; Cohen et al., 2020; Xu & Wang, 2021; Bu et al.,
2022).

Formulated as a learning problem, the seller has no prior
knowledge of ideal prices but is expected to learn on the
fly by exploring different prices and adjusting their pric-
ing strategy after collecting every demand feedback from
customers. Different from non-contextual dynamic pricing
(Kleinberg & Leighton, 2003) where identical products are
sold repeatedly, a contextual pricing agent is expected to
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generalize from one product to another in order to success-
fully price a previously-unseen product. A formal problem
setup is described below:

Contextual pricing. For t = 1, 2, ..., T :
1. A product occurs, described by a context xt ∈ Rd.
2. The seller (we) proposes a price pt ≥ 0.
3. The customer reveals a demand 0 ≤ Dt ≤ 1.
4. The seller gets a reward rt = pt · Dt.

Here T is the time horizon, and the (random) demand Dt is
drawn from a distribution determined by context (or feature)
xt and price pt. The sequence of contexts {xt} can be
either independently and identically distributed (iids) or
chosen arbitrarily by an adversary. The seller’s goal is to
minimize the cumulative regret against the sequence of
optimal prices.

Existing works on contextual pricing usually assumes lin-
earity on the demand, but they fall into two camps. On
the one hand, the "linear demand" camp (Qiang & Bayati,
2016; Ban & Keskin, 2021; Bu et al., 2022) assumes the
demand Dt as a (generalized) linear model. A typical model
is Dt = λ(αpt + xT

t β) + ϵt. Here α < 0 is a parameter
closely related to the price elasticity. We will rigorously
define a price elasticity in Appendix A.1 according to Parkin
et al. (2002), where we also show that α is the coefficient
of elasticity. Besides of α, other parameters like β ∈ Rd

captures the base demand of products with feature xt, ϵt is
a zero-mean demand noise, and λ is a known monotonically
increasing link function. With this model, we have a noisy
observation on the expected demand, which is reasonable
as the same product is offered many times in period t. On
the other hand, the "linear valuation" camp (Cohen et al.,
2020; Javanmard & Nazerzadeh, 2019; Xu & Wang, 2021)
models a buyer’s valuation yt as linear and assumes a bi-
nary demand Dt = 1[pt ≤ yt]. All three works listed above
assume a linear-and-noisy model with yt = x⊤

t θ∗ + Nt,
where θ∗ ∈ Rd is an unknown linear parameter that cap-
tures common valuations and Nt is an idiosyncratic noise
assumed to be iid.

Interestingly, the seemingly different modeling principles
are closely connected to each other. In the "linear valuation"
camp, notice that a customer’s probability of "buying" a
product equals E[Dt], which is further given by
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E[Dt|p] = P[yt ≥ p] := S(p− x⊤
t θ∗),

where S is the survival function of Nt (i.e. S(w) =
1 − CDF(w) for w ∈ R). This recovers a typical linear
demand model by taking λ(w) = S(−w) with α = −1
and β = θ∗. In other words, the distribution of Nt com-
pletely characterizes the demand function λ(·) and vice
versa.

However, the "linear demand" camp is not satisfied with
a fixed α = −1, while the "linear valuation" camp are
skeptical about an observable demand Dt even with zero-
mean iid noise. One common limitation to both models
is that neither captures how feature xt affects the price
elasticity.

Our model. To address this issue, we propose a natural
model that unifies the perspectives of both groups. Also, we
resolve the common limitation by modeling heteroscedas-
ticity, where we assume that the elasticity coefficient α is
linearly dependent on feature xt. This contextual modeling
originates from the fact that different products have differ-
ent price elasticities (Anderson et al., 1997), and a linear
elasticity is widely adopt in literature (Bijmolt et al., 2005).
A detailed discussion will be provided in Section 6.

In specific, we assume:

Dt ∼ Ber(S(x⊤
t η∗ · pt − x⊤

t θ∗)), (1)

which adopts a generalized linear demand model (GLM)
and a Boolean-censored feedback simultaneously. From
the perspective of valuation model, it is equivalent to as-
sume

Dt = 1[pt ≤ yt]

where yt = 1
x⊤

t η∗ · (x
⊤
t θ∗ + Nt)

and CDFNt(w) = 1− S(w).

(2)

Although Eq. (1) seems more natural than Eq. (2), they are
equivalent to each other (with reasonable assumptions on
S). Notice that the random valuation yt is heteroscedastic,
which means its variance is not the same constant across a
variety of xt’s. We provide a detailed interpretation of this
linear fractional valuation model in appendix.

1.1. Contributions.
Our main results are twofold.

1. We propose a new demand model that assumes a feature-
dependent price elasticity on every product. Equivalently,
we model the heteroscedasticity on customers’ valuations
among different products. This model unifies the “linear
demand” and “linear valuation” camps.

2. We propose a “Pricing with Perturbation (PwP)” algo-
rithm that achieves O(

√
dT log T ) regret on this model,

which is optimal up to log T factors. This regret up-
per bound holds for both i.i.d. and adversarial {xt}
sequences.

1.2. Technical Novelty
To the best of our knowledge, we are the first to study a con-
textual pricing problem with heteroscedastic valuation and
Boolean-censored feedback. Some existing works, includ-
ing Javanmard & Nazerzadeh (2019); Miao et al. (2019);
Ban & Keskin (2021); Wang et al. (2021a), focus on related
topics and achieve theoretical guarantees. However, their
methodologies are not applicable to our settings due to sub-
stantial obstacles, which we propose novel techniques to
overcome.

Randomized surrogate regret. Xu & Wang (2021) solves
the problem with x⊤

t η∗ = 1, by taking the negative log-
likelihood as a surrogate regret and running an optimization
oracle that achieves a fast rate (i.e. an O(log T ) regret).
However, the log-likelihood is no longer a surrogate regret
in our setting, since it is not "convex enough" and there-
fore cannot provide sufficient (Fisher) information. In this
work, we overcome this challenge by constructing a random-
ized surrogate loss function, whose expectation is "strongly
convex" enough to upper bound the regret.

OCO for adversarial inputs. Javanmard & Nazerzadeh
(2019) and Ban & Keskin (2021) study the problem with
unknown or heterogeneous noise variances (i.e. elasticity
coefficients), but their techniques highly rely on the distribu-
tion of the feature distributions. As a result, their algorithm
could be easily attacked by an adversarial {xt} series. In
our work, we settle this issue by conducting an online con-
vex optimization (OCO) scheme while updating parameters.
Instead of estimating from the history that requires sufficient
randomness in the inputs, our algorithm can still work well
for adversarial inputs.

In addition, our algorithm has more advanced proper-
ties such as computational efficiency and information-
theoretical optimality. For more highlights of our algorithm,
please refer to Section 4.1.

2. Related Works
Here we present a review of the pertinent literature on con-
textual pricing and heteroscedasticity in machine learning,
aiming to position our work within the context of related
studies. For a detailed comparison on closely-related prob-
lem settings and regret bounds, please refer to Table 1. For
more related works on non-contextual pricing, contextual
pricing, contextual searching and contextual bandits, please
refer to Wang et al. (2021b), Xu & Wang (2021), Krishna-
murthy et al. (2021) and Zhou (2015) respectively.
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Pricing with (Generalized) Linear Demand. As we men-
tioned in Section 1.2, there are a large number of recent
works on contextual dynamic pricing problems, and we
refer to Ban & Keskin (2021) as a detailed introduction.
On the one hand, Qiang & Bayati (2016); Nambiar et al.
(2019); Miao et al. (2019); Wang et al. (2021a); Ban & Ke-
skin (2021); Bu et al. (2022) assume a (generalized) linear
demand model with noise, i.e. E[Dt] = g(αpt − β⊤xt).
Among those papers, Miao et al. (2019) worksl with a fixed
α while we assume α as context-dependent. Wang et al.
(2021a) and Ban & Keskin (2021) are the closest to our
problem setting, which consist of a generalized linear de-
mand model and noisy observations. On the one hand, Ban
& Keskin (2021) assumes independent add-on noises (while
we allow binary martingale observations). With the develop-
ment of a least-square estimator, they present an algorithm
that achieves Õ(s

√
T ) regret (with s being the sparsity fac-

tor). On the other hand, Wang et al. (2021a) further gets
rid of the independence among noises and allow them to be
idiosyncratic. They proposes a UCB-based algorithm with
Õ(d
√

T ) regret and another Thompson-Sampling-based
algorithm with Õ(d 3

2
√

T ) regret, both of which are sub-
optimal in d. Moreover, all works mentioned above assume
the context sequence {xt} to be i.i.d., whereas we consider
it "too good to be true" and work towards an algorithm
adaptive to adversarial input sequences.

Linear Valuation. Golrezaei et al. (2019); Shah et al.
(2019); Goyal & Perivier (2021) adopts the linear valuation
model yt = x⊤

t θ∗ + Nt, which is a special case of our
model as x⊤

t η∗ = 1. However, existing works diverge on
the assumption whether the seller has precise knowledge on
the noise distribution. On the one hand, Cohen et al. (2020);
Javanmard & Nazerzadeh (2019); Xu & Wang (2021) as-
sume Nt’s drawn from a known distribution. Specifically,
both Javanmard & Nazerzadeh (2019) and Xu & Wang
(2021) achieve an O(d log T ) regret for stochastic and ad-
versarial {xt} sequences, respectively. Javanmard & Naz-
erzadeh (2019) also studies the setting when x⊤

t η∗ is fixed
but unknown (in our model) and achieves O(d

√
T ) regret

for stochastic {xt} sequences. In comparison, we achieve
O(
√

dT log T ) on a more general problem and get rid of
those assumptions. On the other hand, Fan et al. (2021);
Luo et al. (2021); Xu & Wang (2022); Luo et al. (2022)
study the problem with unspecified noise distributions. Fan
et al. (2021) introduces an exploration-first algorithm with
carefully-designed unbiased Method-of Moment estimators.
Luo et al. (2021; 2022) proposes UCB-style algorithms with
optimistic plug-in estimators, and Xu & Wang (2022) adopts
an EXP-4 algorithm with hypothesis discretization. Their
methodologies could potentially be extended to a general-
ized version of our problem setting, where the valuation
noise (before scaling) Nt is drawn from an unknown distri-
bution. However, it is worth noting that our problem setting

is not a special case of theirs: The expected valuation in
their settings is still linear (E[yt] = x⊤

t θ∗), while our paper

assumes E[yt] = x⊤
t θ∗

x⊤
t η∗ that is a linear fractional mapping.

We have included more discussions in Appendix C (see
"Algorithm and analysis for unknown link function S(·)")
regarding this aspect.

Nonparametric Valuation. There are various studies on
nonparametric pricing problems. Specifically, Chen et al.
(2019) studies the contextual pricing problem with non-
parametric demand model and binary feedback, achiev-
ing a Õ(T

2+d
4+d ) regret for d-dimension covariates. Ye &

Jiang (2024) studies the non-contextual non-parametric pric-
ing problem with β-th order smooth demand curve but
without pre-knowledge on β, recovering the minimax rate
of Õ(T β+1

2β+1 ) given certain additional assumptions. per-
akis2023dynamic There are various studies on nonparamet-
ric pricing problems. Specifically, Chen et al. (2019) studies
the contextual pricing problem with non-parametric demand
model and binary feedback, achieving a Õ(T

2+d
4+d ) regret

for d-dimension covariates. Ye & Jiang (2024) studies the
non-contextual non-parametric pricing problem with β-th
order smooth demand curve but without pre-knowledge on
β, recovering the minimax rate of Õ(T β+1

2β+1 ) given certain
additional assumptions. Perakis & Singhvi (2023) studies a
non-contextual pricing problem with additive noises, where
they improve the switching cost while also maintaining the
optimal regret rate.

Heteroscedasticity. Since the valuation noise is scaled by
a 1

x⊤
t η∗ coefficient, the valuation is heteroscedastic, referring

to a situation where the variance is not the same constant
across all observations. Heteroscedasticity may lead to bias
estimates or loss of sample information. There are several
existing methods handling this problem, including weighted
least squares method (Cunia, 1964), White’s test (White,
1980) and Breusch-Pagan test (Breusch & Pagan, 1979).
Furthermore, Anava & Mannor (2016) and Chaudhuri et al.
(2017) study online learning problems with heteroscedastic
variances and provide regret bounds. For a formal and
detailed introduction, we refer the audience to the textbook
of Kaufman (2013).

3. Problem Setup
3.1. Notations
To formulate the problem, we firstly introduce necessary
notations and symbols used in the following sections. The
sales session contains T rounds with T known to the seller
in advance1. At each time t = 1, 2, . . . , T , a product with

1Here we assume T known for simplicity. For unknown T , we
may apply a “doubling epoch” trick as Javanmard & Nazerzadeh
(2019) without affecting the regret rate.
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Known α Unknown fixed α Heteroscedastic α = x⊤
t η∗

Features Stochastic
& Adversarial Stochastic Adversarial Stochastic Adversarial

Upper Bound d log T
[XW21]

d
√

T
[JN19]

? ⇒
√

dT
This Work

s
√

T (independent noises)
[BK21]
d
√

T (idiosyncratic noises)
[WTL21]

? ⇒
√

dT
This Work

Lower Bound d log T
[BR12]

√
T

[JN19]

√
T ⇒

√
dT

This Work

Table 1. Existing related literature and results on regret bounds, with Õ(·) dropped. Note that each adversarial setting covers the stochastic
setting under the same assumptions. Here [XW21] stands for Xu & Wang (2021), [JN19] for Javanmard & Nazerzadeh (2019), [BR12]
for Broder & Rusmevichientong (2012), [BK21] for Ban & Keskin (2021), and [WTL21] for Wang et al. (2021a).

feature xt ∈ Rd occurs and we propose a price pt ≥ 0. Then
the nature draws a demand Dt ∼ Ber(S(x⊤

t η∗ ·pt−x⊤
t θ∗)),

where θ∗, η∗ ∈ Rd are fixed unknown linear parameters and
the link function S : R → [0, 1] is non-increasing. By the
end of time t, we receive a reward rt = pt ·Dt.

Equivalently, this customer has a valuation yt = x⊤
t θ∗+Nt

x⊤
t η∗

with noise Nt ∈ R, and then make a decision 1t = 1[pt ≤
yt] = Dt after seeing the price pt. Similarly, we receive a
reward rt = pt ·1t. Assume Nt ∼ DF is independently and
identically distributed (i.i.d.), with cumulative distribution
function (CDF) F = 1 − S. Denote s := S′ and f :=
F ′.

3.2. Definitions
Here we define some key quantities. Firstly, we define an
expected reward function.

Definition 3.1 (expected reward function). Define

r(u, β, p) := E[rt|x⊤
t θ∗ = u, x⊤

t η∗ = β, pt = p] = p · S(β · p− u)
(3)

as the expected reward function.

Given this, we further define a greedy price function as the
argmax of r(u, β, p) over p.

Definition 3.2 (greedy price function). Define J(u, β) as
a greedy price function, i.e. the price that maximizes the
expected reward given u = x⊤

t θ∗ and β = x⊤
t η∗.

J(u, β) = argmax
p∈R

r(u, β, p) = argmax
p∈R

p · S(β · p− u)

(4)

Notice that

J(u, β) = argmax
p

p·S(βp−u) = 1
β
·argmax

βp
βp·S(βp−u) = 1

β
J(u, 1).

(5)
According to Xu & Wang (2021, Section B.1), we have the
following properties.

Lemma 3.3. Denote φ(w) := −S(w)
s(w) − w = 1−F (w)

f(w) − w,

and we have J(u, β) = u+φ−1(u)
β . Also, for u ≥ 0 and

β > 0, we have ∂J(u,β)
∂u ∈ (0, 1).

Then we define a negative log-likelihood function of param-
eter hypothesis (θ, η) given the results at time t.

Definition 3.4 (log-likelihood functions). Denote ℓt(θ, η)
as the negative log-likelihood at time t, and define Lt(θ, η)
as their summations:

−ℓt(θ, η) =1t · log S(xt⊤η · pt − x⊤
t θ)

+ (1− 1t) · log(1− S(x⊤
t η · pt − x⊤

t θ)).

Lt(θ, η) =
t∑

τ=1
ℓt.

(6)

Finally, we define a round-t expected regret and a cumula-
tive expected regret.

Definition 3.5 (regrets). Define Regt(pt) :=
r(x⊤

t θ∗, x⊤
t η∗, J(x⊤

t θ∗, x⊤
t η∗)) − r(x⊤

t θ∗, x⊤
t η∗, pt)

as the expected regret at round t, conditioning on price pt.
Also, define the cumulative regret as follows

Regret =
T∑

t=1
Regt(pt) (7)

3.3. Assumptions
We establish three technical assumptions to make our anal-
ysis and presentation clearer. Firstly, we assume that all
feature and parameter vectors are bounded within a unit
ball in Euclidean norm. This assumption is without loss of
generality as it only rescales the problem.

Assumption 3.6 (bounded feature and parameter spaces).
Assume features xt ∈ Hx and parameters θ ∈ Hθ, η ∈ Hη .
Denote Ud

p := {x ∈ Rd, ∥x∥p ≤ 1} as an Lp-norm unit
ball in Rd. Assume all Hx,Hθ,Hη ∈ Ud

p . Also, assume
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x⊤θ > 0,∀x ∈ Hx, θ ∈ Hθ and x⊤η > Cβ > 0,∀x ∈
Hx, η ∈ Hη for some constant Cβ ∈ (0, 1).

The positiveness of elasticity coefficient x⊤η > 0 comes
from the Law of Demand (Gale, 1955; Hildenbrand, 1983),
stating that the quantity purchased varies inversely with
price. This is derived from the Law of Diminishing Marginal
Utilities and has been widely accepted (Marshall, 2009).
We will show the necessity of assuming an elasticity lower
bound Cβ in Appendix C. In specific, we claim that any
algorithm will suffer a regret of Ω( 1

Cβ
). For the simplicity

of notation, we denote [θ; η] := [θ⊤, η⊤]⊤ ∈ R2d as the
combination of d-dimension column vectors θ and η. Since
we know that x⊤

t θ ∈ [0, 1] and x⊤
t η ∈ [Cβ , 1], we have

J(x⊤
t θ, x⊤

t η) ∈ [J(0, 1), J(1, Cβ)]. Later we will show
that the price perturbation is no more than J(0,1)

10 . Therefore,
we may have the following assumption.

Assumption 3.7 (bounded prices). For any price pt at each
time t = 1, 2, . . . , T , we require pt ∈ [c1, c2], where c1 =
J(0,1)

2 and c2 = 2J(1, Cβ).

Similar to Javanmard & Nazerzadeh (2019), we also assume
a log-concavity on the noise CDF.

Assumption 3.8 (log-concavity). Every Dt is indepen-
dently sampled according to Eq. (1), with S(ω) ∈ [0, 1] and
s(ω) = S′(ω) > 0,∀ω ∈ R. Equivalently, the valuation
noise Nt ∼ DF is independently and identically distributed
(i.i.d.), with CDF F = 1− S. Assume that S ∈ C2, and S
and (1− S) are strictly log-concave.

4. Main Results
To solve the contextual pricing problem with featurized
elasticity, we propose our “Pricing with Perturbation (PwP)”
algorithm. In the following, we firstly describe the algorithm
and highlight its properties, then analyze (and bound) its
cumulative regret, and finally prove a regret lower bound to
show its optimality.

4.1. Algorithm
The pseudocode of PwP is displayed as Algorithm 1, which
calls an ONS oracle (Algorithm 2).

At each time t, it inherits parameters θt and ηt from (t− 1)
and takes in a context vector xt. By trusting in θt and
ηt, it calculates a greedy price p̂t and outputs a perturbed
version pt = p̂t + ∆t. After seeing customer’s decision
1t, PwP calls an “Online Newton Step (ONS)” oracle (see
Algorithm 2) to update the parameters as θt+1 and ηt+1 for
future use.

Algorithm 1 Pricing with Perturbation (PwP)

1: Input: parameter spacesHθ,Hη , link function S, time
horizon T , dimension d

2: Initialization:parameters θ1 ∈ Hθ, η1 ∈ Hη, price
perturbation ∆, cumulative likelihood L0 = 0, matrix
A0 = ϵ · I2d and parameter ϵ, γ

3: for t = 1, 2, . . . , T do
4: Observe xt;
5: Calculate greedy price p̂t = J(x⊤

t θt, x⊤
t ηt)

6: Sample ∆t = ∆ with Pr = 0.5 and ∆t = −∆ with
Pr = 0.5;

7: Propose price pt = p̂t + ∆t;
8: Receive the customer’s decision 1t;
9: Construct negative log-likelihood ℓt(θ, η) and

Lt(θ, η) as eq. (6);
10: Update parameters:

[θt+1; ηt+1]← ONS([θt; ηt])

11: end for

Algorithm 2 Online Newton Step (ONS)

1: Input: current parameter [θt, ηt], likelihood ℓt(θ, η),
matrix At, parameter γ, parameter spacesHθ and
Hη .

2: Calculate∇t = ∇ℓt(θ, η);
3: Rank-1 update: At = At−1 +∇t∇⊤

t ;
4: Newton step: [θ̂t+1; η̂t+1] = [θ̂t; η̂t]− 1

γ A−1
t ∇t;

5: Projection: [θt+1; ηt+1] = ΠAt

Hθ×Hη
([θ̂t+1; η̂t+1]);

4.1.1. HIGHLIGHTS

We highlight the achievements of the PwP algorithm in the
following three aspects.

In this pricing problem. As we mentioned in Section 1.2,
the key to solving this contextual elasticity (or heteroscedas-
tic valuation) pricing problem is to construct a surrogate loss
function. Xu & Wang (2021) adopts negative log-likelihood
in their setting, which does not work for ours since it is not
"convex" enough. In our PwP algorithm, we overcome this
challenge by introducing a perturbation ∆ on the proposed
greedy price. This idea originates from the observation that
the variance of pt contributes positively to the "convexity"
of the expected log-likelihood, which helps "re-build" the
upper-bound inequality.

In online optimization. PwP perturbs the greedy action
(price) it should have taken. This idea is similar to a "Fol-
lowing the Perturbed Leader (FTPL)" algorithm (Hutter
et al., 2005) that minimizes the summation of the empirical
risk and a random loss function serving as a perturbation.
However, this might lead to extra computational cost as the
random perturbation is not necessarily smooth and therefore
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hard to optimize. In this work, PwP introduces a possible
way to overcome this obstacle: Instead of perturbing the
objective function, we may directly perturb the action to
explore its neighborhood. Our regret analysis and results in-
dicate the optimality of this method and imply a potentially
wide application.

In information theory. We show the following fact in the
regret analysis of PwP: By adding ∆ perturbation on pt,
we may lose O(∆2) in reward but will gain O(∆2) · I in
Fisher information (i.e. the expected Hessian of negative
log-likelihood function) in return. By Cramer-Rao Bound,
this leads to O( 1

∆2 ) estimation error. In this way, we quan-
tify the information (observing from exploration) on the
scale of reward, which shares the same idea with the Up-
per Confidence Bound (Lai & Robbins, 1985) method that
always maximizes the summation of empirical reward and
information-traded reward.

Besides, PwP is computationally efficient as it only calls
the ONS oracle for once. As for the ONS oracle, it updates
an A−1

t = (At−1 + ∇t∇⊤
t )−1 at each time t, which is

with O(d2) time complexity according to the following
Woodbury matrix identity

(A+xx⊤)−1 = A−1− 1
1 + x⊤A−1x

A−1x(A−1x)⊤. (8)

4.2. Regret Upper Bound
Now we analyze the regret of PwP and propose an upper
bound up to constant coefficients.

Theorem 4.1. Under Assumption 3.6, 3.7 and 3.8, by taking

∆ = min
{(

d log T
T

) 1
4

, J(0,1)
10 , 1

10

}
, the algorithm PwP

guarantees an expected regret at O(
√

dT log T ).

In the following, we prove Theorem 4.1 by stating a thread
of key lemmas. We leave the detailed proof of those lemmas
to Appendix A.

Proof. The proof overview can be displayed as the follow-
ing roadmap of inequalities:

E[Regret] =
T∑

t=1
Regt(pt)

≤E

[
T∑

t=1
O
(
(x⊤

t (θt − θ∗))2 + (x⊤
t (ηt − η∗))2 + ∆2)]

≤O

(∑T
t=1 E [ℓt(θt, ηt)− ℓt(θ∗, η∗)]

∆2 + T ·∆2

)

≤O

(
d log T

∆2 + T ·∆2
)

= O(
√

dT log T ).

(9)

Here the first inequality is by the smoothness of regret func-
tion (see Lemma 4.2), the second inequality is by a special
“strong convexity” of ℓt(θ, η) that contributes to the surro-
gate loss (see Lemma 4.3), the third inequality is by Online
Newton Step (see Lemma 4.4), and the last equality is by
the value of ∆. A rigorous version of Eq. (9) can be found
in Appendix A.4.

We firstly show the smoothness of Regt(pt):

Lemma 4.2 (regret smoothness). Denote p∗
t :=

J(x⊤
t θ∗, x⊤

t η∗). There exists constants Cr > 0 and CJ > 0
such that

Regt(pt) ≤ Cr · (pt − p∗
t )2

≤Cr · 2
(
CJ ·

[
(x⊤

t (θt − θ∗))2 + (x⊤
t (ηt − η∗))2]+ ∆2) .

(10)

While the first inequality of Eq. (10) is from the smoothness,
and the second inequality is by the Lipschitzness of function
J(u, β). Please refer to Appendix A.2 for proof details. We
then show the reason why the log-likelihood function can
still be a surrogate loss with carefully randomized pt.

Lemma 4.3 (surrogate expected regret). There exists a con-
stant Cl > 0 such that ∀θ ∈ Hθ, η ∈ Hη , we have

E[ℓt(θ, η)− ℓt(θ∗, η∗)|θt, ηt]

≥Cl∆
2

10 [(θ − θ∗)⊤, (η − η∗)⊤]
[

xtx
⊤
t 0

0 xtx
⊤
t

]
·
[

θ − θ∗

η − η∗

]
=Cl ·∆2

10

[(
x⊤

t (θ − θ∗)
)2 +

(
x⊤

t (η − η∗)
)2]

.

(11)

This lemma is crucial. We show a proof sketch here and
defer the detailed proof to Appendix A.3.

Proof sketch of Lemma 4.3. We show that there exist con-
stants Cl > 0, Cp > 0 such that

1. ∇2ℓt(θ, η) ⪰ Cl ·
[

xtx
⊤
t −ptxtx

⊤
t

−ptxtx
⊤
t p2

t xtx
⊤
t

]
, and

2. E
[

xtx
⊤
t −ptxtx

⊤
t

−ptxtx
⊤
t p2

t xtx
⊤
t
|θt, ηt

]
⪰ Cp∆2

[
xtx

⊤
t 0

0 xtx
⊤
t

]
.

The first property above relies on the exp-concavity of ℓt.
Notice that the second property does not hold without the
E notation, as the left hand side is a (a − b)2 form while
the right hand side is in a (a2 + b2) form. In general, there

6
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exist no constant c > 0 such that (a − b)2 ≥ c(a2 + b2).
However, due to the randomness of pt, we have

E[p2
t |p̂t] = E[pt|p̂t]2 + ∆2. (12)

In this way, the conditional expectation of the left hand side
turns to (a− b)2 + λ · b2 and we have

(a− b)2 + λb2

=( 1√
1 + λ

2

· a−
√

1 + λ

2 · b)2 + (1− 1
1 + λ

2
)a2 + λ

2 b2

≥
λ
2

1 + λ
2
· (a2 + b2).

(13)

Similarly, we upper bound
[

xtx
⊤
t 0

0 xtx
⊤
t

]
with

E[∇2ℓt(θ, η)|θt, ηt] up to a Cp ·∆2 coefficient.

With those two properties above, along with a property
of likelihood function that E[∇ℓt(θ∗, η∗)] = 0, we can
prove Lemma 4.3 by taking a Taylor expansion of ℓt at
[θ∗; η∗].

Finally, we cite a theorem from Hazan (2016) as our
Lemma 4.4 that reveals the surrogate regret rate on neg-
ative log-likelihood functions.

Lemma 4.4. With parameters G =
supθ∈Hθ,η∈Hη

∥∇lt(θ, η)∥2, D = sup ∥[θ1; η1] −
[θ2; θ2]∥ ≤ 2, α = Ce, γ = 1

2 min{ 1
4GD , α} and ϵ = 1

γ2D2

and T > 4, Keep running Algorithm 2 for t = 1, 2, . . . , T
guarantees:

sup
{xt}

{
T∑

t=1
ℓt(θt, ηt)− min

θ∈Hθ,η∈Hη

T∑
t=1

ℓt(θ, η)
}
≤ 5( 1

α
+ GD)d log T.

(14)

With all these lemma above, we have proved every line of
Eq. (9).

4.3. Lower Bounds
We claim that PwP is near-optimal in information theory, by
proposing a matching regret lower bound in Theorem 4.5.
We present the proof with valuation model to match with
existing results.

Theorem 4.5. Consider the contextual pricing problem
setting with Bernoulli demand model given in Eq. (1). With
all assumptions in Section 3 hold, any pricing algorithm
has to suffer a Ω(

√
dT ) worst-case expected regret for T ≥

2d2(1+log d), with T the time horizon and d the dimension
of context.

Proof Sketch. We defer the proof details to Appendix A.5.
The main idea is to reduce d numbers of 1-dimension prob-
lems to this problem setting. In fact, we may consider the
following problem setting:

1. Construct set X = {ei := [0, . . . , 0, 1, 0, . . . , 0]⊤ ∈
Rd with only ith place being 1, i = 1, 2, . . . , d}.

2. Let θ∗ = [ u1
σ1

, u2
σ2

, u3
σ3

, . . . , ud

σd
]⊤, η∗ =

[ 1
σ1

, 1
σ2

, 1
σ3

, . . . , 1
σd

]⊤, and therefore we have
e⊤

i θ∗+Nt

e⊤
i

η∗ = ui + σi ·Nt.

3. At each time t = 1, 2, . . . , T , sample xt ∼ X inde-
pendently and uniformly at random.

In this way, we divide the whole time series T into d sep-
arated sub-problems, where the Sub-Problem i has a val-
uation model yt(i) = ui + σi · Nt, for i = 1, 2, . . . , d.
Let Nt ∼ N (0, 1), t = 1, 2, . . . , T , and therefore yt(i) ∼
N (ui, σ2

i ) are independent Gaussian random variables. Ac-
cording to Hoeffding’s Inequality, each Sub-Problem i has
at least T

2d time periods with high probability. According to
Xu & Wang (2021, Theorem 12) (originated from Broder &
Rusmevichientong (2012, Theorem 3.1)), the regret lower

bound of each sub-problem is Ω(
√

T
2d ). Therefore, the total

expected regret lower bound is Ω(d·
√

T
2d ) = Ω(

√
Td).

5. Numerical Experiments
Here we conduct numerical experiments to validate the
low-regret performance of our algorithm PwP. Since we
are the first to study this heteroscadestic valuation model,
we do not have a baseline algorithm working for exactly
the same problem. However, we can modify the RMLP-
2 algorithm in Javanmard & Nazerzadeh (2019) by only
replacing their max-likelihood estimator (MLE) for θ∗ with
a new MLE for both θ∗ and η∗. This modified RMLP-2
algorithm does not have a regret guarantee in our setting,
but it may still serve as a baseline to compare with. n the
following part, we will compare the cumulative regrets of
our ONSPP algorithm with the (modified) RMLP-2 in the
following two scenarios:

1. The linear-fractional valuation yt = x⊤
t θ∗+Nt

x⊤
t η∗ .

2. A fully-linear valuation yt = x⊤
t θ∗ + x⊤

t η∗ ·Nt.

Notice that the second valuation model is also heteroscedas-
tic, but the linear scalar only multiplies with the noise. We
design the first experiment to show the regret performance
of our algorithm, and the second experiment to imply the
generality of our valuation model and our algorithm to
model-misspecified settings. In order to show the regret
dependence w.r.t. T , we plot all cumulative regret curves in
log-log plots, where an α slope indicates an O(T α) depen-
dence. We repeat each experiment for 20 times.
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(a) Stochastic {xt}’s
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Figure 1. The regret of PwP algorithm and a modified RMLP-2 algorithm on simulation data (generated according to Eq. (1)), plotted
in log-log scales to indicate the regret dependence on T . Figure 1a and Figure 1b are for stochastic and adversarial {xt} sequences
respectively. We also plot linear fits for those regret curves, where a slope-α line indicates an O(T α) regret. The error bands are drawn
with 0.95 coverage using Wald’s test. From the figures, we know that PwP performs closely to its O(

√
T log T ) regret regardless of the

types of input context sequences, whereas RMLP-2 fails in the attack of adversarial input.

5.1. Performances on well-assumed model
In this part, we test our algorithm ONSPP and the modi-
fied RMLP-2 on the correct demand model (as assumed in
Eq. (1)) with both stochastic and adversarial {xt} sequences,
respectively.

We test PwP and the modified RMLP-2 on the demand
model assumed in Eq. (1) with both stochastic and adver-
sarial {xt} sequences, respectively. Basically, we assume
T = 216 d = 2, Nt ∼ N (0, σ2) with σ = 0.5, and we re-
peatedly run each algorithm for 20 times in each experiment
setting. In order to show the regret dependence w.r.t. T , we
plot all cumulative regret curves in log-log plots, where an
α slope indicates an O(T α) dependence.

Stochastic {xt}. We implement and test PwP and RMLP-
2 on stochastic {xt}’s, where xt are iid sampled from
N (µx, Σx) (for µx = [10, 10, . . . , 10]⊤ and some ran-
domly sampled Σx) and then normalized s.t. ∥xt∥2 ≤ 1.
The numerical results are shown in Figure 1a. Numeri-
cal results show that both algorithms achieve ∼ O(T 0.56)
regrets, which is close to the theoretic regret rate at
O(
√

T log T ).

Adversarial {xt}. Here we design an adversarial {xt}
sequence to attack both algorithms. Since RMLP-2 divides
the whole time horizon T into epochs with length k =
1, 2, 3, . . . sequentially and then does pure exploration at the
beginning of each epoch, we may directly attack those pure-
exploration rounds in the following way: (1) In each pure-
exploration round (i.e. when t = 1, 3, 6, . . . , k(k+1)

2 , . . .),
let the context be xt = [1, 0]⊤; (2) In any other round, let the
context be xt = [0, 1]⊤. In this way, the RMLP-2 algorithm

will never learn θ∗[2] and η∗[2] since the inputs of pure-
exploration rounds do not contain this information. Under
this oblivious adversarial context sequence, we implement
PwP and RMLP-2 and compare their performance. The
results are shown in Figure 1b, indicating that PwP can still
guarantee O(T 0.513) regret (close to O(

√
T log T )) while

RMLP-2 runs into a linear regret.

As a high-level interpretation, the performance difference
is because PwP adopts a "distributed" exploration at every
time t while RMLP-2 makes it more "concentrated". Al-
though both PwP and RMLP-2 take the same amount of
exploration that optimally balance the reward loss and the
information gain (and that is why they both perform well in
stochastic inputs), randomly distributed exploration would
save the algorithm from being "attacked" by oblivious ad-
versary. In fact, this phenomenon is analog to ϵ-Greedy
versus Exploration-first algorithms in multi-armed bandits.
We will discuss more in Appendix C.

So far, we have presented the numerical results of running
PwP and a modified RMLP-2 on the well-assumed demand
model as Eq. (1) (or Eq. (2) equivalently). Besides of that,
we also conduct experiments on a model-misspecification
setting to show the robustness, where the true demand (or
valuation) distribution is not the same as Eq. (1) or Eq. (2).
The numerical results are presented in Appendix B.

6. Discussion
Here we discuss the motivation and the limitation of making
Assumption 3.6. We leave the majority of discussion to
Appendix C.

Assumption on linear elasticity. We assume that the price

8



Pricing with Contextual Elasticity and Heteroscedastic Valuation

elasticity α := x⊤
t η∗ is linear on xt. The reasons are three-

fold. First, in accordance with the parsimony principle,
we have opted for a linear model due to its simplicity and
causality. This principle suggests that, all else being equal,
the simpler model should be selected. Second, linear mod-
els provide a robust first-order approximation, are highly
interpretable, and are computationally efficient for dynamic
pricing where rapid decision-making is essential. Last but
not least, the use of linear models to represent price elastic-
ity is well-established in the literature, receiving empirical
support from studies such as those by Bijmolt et al. (2005);
Lijesen (2007) and Miller & Alberini (2016). While we
recognize that price elasticity can exhibit complex behav-
iors, the linear approximation provides a strong foundation
for initial analysis and has proven to be an effective tool in
comparable research endeavors.

Necessity of lower-bounding x⊤
t η∗ from 0. As we state

in Assumption 3.6, the price elasticity coefficient x⊤
t η∗ is

lower bounded by a constant Cβ > 0. On the one hand, this
is necessary since we cannot have an upper bound on the
optimal price without this assumption. On the other hand,
according to Eq. (3), we know that r(u, β, p) = r(u, 1, β ·
p) · 1

β , which indicates that the reward is rescaled by 1
β . As

a result, the regret should be proportional to 1
Cβ

. Although
a larger (i.e. closer to 0) elasticity would lead to a more
smooth demand curve, this actually reduce the information
we could gather from customers’ feedback and slow down
the learning process. We look forward to future researches
getting rid of this assumption and achieve more adaptive
regret rates. See more details in Appendix C.

Regret lower bounds for fixed unknown noise distribu-
tions. We claim a Ω(

√
dT ) regret lower bound in The-

orem 4.5 with customers’ demand model being Eq. (1).
However, this result does not imply a Ω(

√
dT ) lower bound

for customers’ valuation being yt = x⊤
t θ∗ + Nt adopted by

Javanmard & Nazerzadeh (2019); Cohen et al. (2020); Xu &
Wang (2021). This is because our problem setting is more
general than theirs, and our construction of Ω(

√
dT ) regret

lower bounds are substantially beyond the scope of this
specific subproblem. So far, the best existing regret lower
bound for the linear noisy model (yt = x⊤

t θ∗ + Nt) is still
Ω(
√

T ). However, we conjecture that this should also be
Ω(
√

dT ). The hardness of proving this lower bound comes
from the fact that the noises are iid over time, which pre-
vents a trivial separation into d independent sub-sequences
as we do.

7. Conclusion
In summary, our work focuses on the problem of contextual
pricing with highly differentiated products. We propose
a contextual elasticity model that unifies the “linear de-
mand” and “linear valuation” camps and captures the price

effect and heteroscedasticity. To solve this problem, we de-
velop an algorithm PwP, which utilizes Online Newton Step
(ONS) on a surrogate loss function and proposes perturbed
prices for exploration. Our analysis show that it guaran-
tees a O(

√
dT log T ) regret even for adversarial context se-

quences. We also provide a matching Ω(
√

dT ) regret lower
bound to show its optimality (up to log T factors). Besides,
our numerical experiments also validate the regret bounds of
PwP and its advantage over existing method. We hope this
work would shed lights on the research of contextual pricing
as well as online decision-making problems.
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This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here. Please refer to Appendix C
for a detailed discussion.
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A. Definition and Proof Details
Here we show the proof details of the lemmas we have stated in Section 4.2. Before that, let us clarify some terminologies
we mentioned in the main paper.

A.1. Definitions
Firstly, we rigorously define the concept of price elasticity occurring in Section 1.

Definition A.1 (Price Elasticity (Parkin et al., 2002)). Suppose D(p) is a demand function of price p. Then the price
elasticity Ed of demand is defined as

ED := ∆D(p)/D(p)
∆p/p

= ∂D(p)
∂p

· p

D(p) . (15)

With this definition, along with our generalized linear demand model given in Eq. (1), the price elasticity for the expected
demand S(x⊤

t η∗ · pt − x⊤
t θ∗) is

ED =∂S(x⊤
t η∗ · pt − x⊤

t θ∗)
∂pt

· pt

S(x⊤
t η∗ · pt − x⊤

t θ∗)

=x⊤
t η∗ · s(x⊤

t η∗ · pt − x⊤
t θ∗)

S(x⊤
t η∗ · pt − x⊤

t θ∗)
· pt.

(16)

Here s(·) = S′(·). Therefore, despite the effect of the link function and the price pt, the price elasticity is proportional to
the price coefficient x⊤

t η∗. This is why we call x⊤
t η∗ (or α in the general model D(p) = λ(α · p + xT

t β)) the elasticity
coefficient or coefficient of elasticity in Section 1.

A.2. Proof of Lemma 4.2
Proof. In order to prove Lemma 4.2, we show the following lemma that indicates the Lipschitzness of J(u, β):

Lemma A.2 (Lipschitz of optimal price). There exists a constant CJ > 0 such that

|J(u1, β1)− J(u2, β2)| ≤ CJ · (|u1 − u2|+ |β1 − β2|). (17)

With this lemma, we get the second inequality of Eq. (10). We will prove this lemma later in this subsection. Now, we focus
on the first inequality. Notice that

Regt(pt) =r(x⊤
t θ∗, x⊤

t η∗, p∗
t )− r(x⊤

t θ∗, x⊤
t η∗, pt)

≤− ∂r(u, β, p)
∂p

|u=x⊤
t θ∗,β=x⊤

t η∗,p=p∗
t
(p∗

t − pt)

− 1
2 · inf

p∈[c1,c2],β∈[Cβ ,1],u∈[0,1]

∂2r(u, β, p)
∂p2 |u=x⊤

t θ∗,β=x⊤
t η∗,p=p∗

t
(p∗

t − pt)2

=0 + 1
2 · sup

p∈[c1,c2],β∈[Cβ ,1],u∈[0,1]
{|2s(β · p− u) · β + p · s′(β · p− u) · β2|}(p∗

t − pt)2.

(18)

Here the first line is by the definition of Regt(pt), the second line is by smoothness, the third line is by the optimality of p∗
t ,

and the last line is by calculus. Since |2s(β ·p−u)·β+p·s′(β ·p−u)·β2| is continuous on p ∈ [c1, c2], β ∈ [Cβ , 1], u ∈ [0, 1],
we denote this maximum as 2Cr, which proves the first inequality of Eq. (10).

Now we show the proof of Lemma A.2.

Proof of Lemma A.2. Since J(u, β) = u+φ−1(u)
β where φ(w) = −S(w)

s(w) − w. Notice that

φ′(w) = −
d S(w)

s(w)

dw
− 1 = d2 log(S(w))

dw2 · S(w)2

s(w)2 − 1 < −1 (19)
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since S(w) is log-concave (as is assumed in Assumption 3.8). Given Eq. (19), we know that dφ−1(u)
d(u) = 1

dφ(w)
dw |w=φ−1(u)

∈

(−1, 0). Therefore, we have:

∂J(u, β)
∂u

=
1 + dφ−1(u)

du

β
∈ (0,

1
Cβ

)

∂J(u, β)
∂β

=
∂ J(u,1)

β

∂β
= −J(u, 1)

β2 ∈ [− c2

Cβ
,−c1].

(20)

Therefore, we know that J(u, β) is Lipschitz with respect to u and β respectively. Take CJ = max{ 1
Cβ

, c2
Cβ
} and we get

Eq. (17).

A.3. Proof of Lemma 4.3
Proof. We firstly show the convexity (and exp-concavity) of ℓt(θ, η) by the following lemma.

Lemma A.3 (exp-concavity). ℓt(θ, η) is convex and Ce-exp-concave with respect to [θ; η], where Ce > 0 is a constant
dependent on F and Cβ . Equivalently, ∇2ℓt(θ, η) ⪰ Ce · ∇ℓt(θ, η)∇ℓt(θ, η)⊤. Also, we have ∇2ℓt(θ, η) ⪰ Cl ·[

xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t v2

t · xtx
⊤
t

]
for some constant Cl > 0.

The proof of Lemma A.3 is mainly straightforward calculus, and we defer the proof to the end of this subsection. According

to Lemma A.3, we have ∇2ℓt(θ, η) ⪰ Cl ·
[

xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t p2

t · xtx
⊤
t

]
. Therefore, we know that

ℓt(θ, η) ≥ℓt(θ∗, η∗) +∇ℓt(θ∗, η∗)⊤
[

θ − θ∗

η − η∗

]
+ [(θ − θ∗)⊤, (η − η∗)⊤]Cl

[
xtx

⊤
t −ptxtx

⊤
t

−ptxtx
⊤
t p2

t xtx
⊤
t

] [
θ − θ∗

η − η∗

]
(21)

According to the property of likelihood, we have E[∇ℓt(θ∗, η∗)|θt, ηt] = 0 for any θt and ηt. Combining this with Eq. (21),
we get

E[ℓt(θ, η)− ℓt(θ∗, η∗)|θt, ηt] ≥ Cl[(θ − θ∗)⊤, (η − η∗)⊤]E
[

xtx
⊤
t −ptxtx

⊤
t

−ptxtx
⊤
t p2

t xtx
⊤
t
|θt, ηt

] [
θ − θ∗

η − η∗

]
(22)

Recall that p̂t = J(x⊤
t θt, x⊤

t ηt) and that pt = p̂t + ∆t. Therefore, we know that the conditional expectations E[pt|θt, ηt] =
p̂t and E[p2

t |θt, ηt] = p̂2
t + ∆2. Given this, we have

E
[

xtx
⊤
t −ptxtx

⊤
t

−ptxtx
⊤
t p2

t xtx
⊤
t
|θt, ηt

]
=

[
xtx

⊤
t −p̂txtx

⊤
t

−p̂txtx
⊤
t (p̂2

t + ∆2)xtx
⊤
t

]
=

[
xt

−p̂txt

] [
x⊤

t ,−p̂tx
⊤
t

]
+
[

0 0
0 ∆2xtx

⊤
t

]

=

 1√
1+ ∆2

2

· xt

−
√

1 + ∆2

2 p̂t · xt

 1√
1 + ∆2

2

· x⊤
t ,−

√
1 + ∆2

2 p̂t · x⊤
t

+
[

(1− 1
1+ ∆2

2
)xtx

⊤
t 0

0 ∆2

2 xtx
⊤
t

]
(23)

Since ∆ = min
{(

d log T
T

) 1
4

, J(0,1)
10 , 1

10

}
, we have 1− 1

1+ ∆2
2

=
∆2

2
1+ ∆2

2
≥ ∆2

10 . As a result, we have

E
[

xtx
⊤
t −ptxtx

⊤
t

−ptxtx
⊤
t p2

t xtx
⊤
t
|θt, ηt

]
≥ ∆2

10 ·
[

xtx
⊤
t 0

0 xtx
⊤
t

] (24)

This proves the lemma.
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Finally, we show the proof of Lemma A.3.

Proof of Lemma A.3. Recall that ℓt(θ, η) = −1t · log(S(x⊤
t (ptη − θ))) − (1 − 1t) · log(1 − S(x⊤

t (ptη − θ))). We first
calculate the gradient and Hessian of ℓt(θ, η) with respect to [θ; η]. For notation simplicity, denote wt := x⊤

t (ptη − θ).

∇ℓt = −
(
1t ·

s(wt)
S(wt)

− (1− 1t) ·
s(wt)

1− S(wt)

)
·
[
−xt

pt · xt

]
(25)

∇2ℓt =−
(
1t ·

s′(wt)S(wt)− s(wt)2

S(wt)2 + (1− 1t) ·
−s′(wt)(1− S(wt))− s(wt)2

(1− S(wt))2

)
·
[
−xt

pt · xt

] [
−x⊤

t , pt · x⊤
t

]
=−

(
1t ·

s′(wt)S(wt)− s(wt)2

S(wt)2 + (1− 1t) ·
−s′(wt)(1− S(wt))− s(wt)2

(1− S(wt))2

)
·
[

xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t p2

t · xtx
⊤
t

]
(26)

According to Assumption 3.8, we know that S(w) and (1− S(w)) are strictly log-concave, which indicates

d2 log(1− S(w))
dw2 =−s′(w)(1− S(w))− s(w)2

(1− S(w))2 < 0

d2 log(S(w))
dw2 =s′(w)S(w)− s(w)2

S(w)2 < 0,∀w ∈ R.

(27)

Since wt = pt · x⊤
t η − x⊤

t θ where pt ∈ [c1, c2], we know that wt ∈ [−1, c2]. Since d2 log(S(w))
dw2 and d2 log(1−S(w))

dw2 are
continuous on [−1, c2], we know that

1t ·
s′(wt)S(wt)− s(wt)2

S(wt)2 + (1− 1t) ·
−s′(wt)(1− S(wt))− s(wt)2

(1− S(wt))2

≤ sup
w∈[−1,c2]

max
{

s′(wt)S(wt)− s(wt)2

S(wt)2 ,
−s′(wt)(1− S(wt))− s(wt)2

(1− S(wt))2

}
< 0.

(28)

Denote Cl = − supw∈[−1,c2] max
{

s′(wt)S(wt)−s(wt)2

S(wt)2 , −s′(wt)(1−S(wt))−s(wt)2

(1−S(wt))2

}
> 0, and we know that

∇2ℓt(θ, η) ⪰ Cl ·
[

xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t p2

t · xtx
⊤
t

]
. (29)

Similarly, we know that s(w)
S(w) and −s(w)

1−S(w) are continuous on [−1, c2]. Therefore, we may denote CG =

supw∈[−1,c2] max
{
| s(w)

S(w) |, |
−s(w)

1−S(w) |
}

> 0 and get

∇ℓt(θ, η)∇ℓt(θ, η)⊤ ⪯ C2
G ·
[
−xt

pt · xt

] [
−x⊤

t , pt · x⊤
t

]
. (30)

Given all these above, we have

∇2ℓt(θ, η) ⪰ Cl ·
[

xtx
⊤
t −pt · xtx

⊤
t

−pt · xtx
⊤
t p2

t · xtx
⊤
t

]
= Cl

C2
G

· C2
G ·
[
−xt

pt · xt

] [
−x⊤

t , pt · x⊤
t

]
⪰ Cl

C2
G

· ∇ℓt(θ, η)∇ℓt(θ, η)⊤.

(31)

Denote Ce := Cl

C2
G

and we prove the lemma.
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A.4. Proof of Theorem 4.1
Proof. With all lemmas above, we have

E[Regret] =E[
T∑

t=1
E[Regt(pt)|θt, ηt]]

≤E[
T∑

t=1
Cr · 2 · CJ · E[(x⊤

t (θt − θ∗))2 + (x⊤
T (ηt − η∗))2|θt, ηt] + T · Cr · 2 ·∆2]

≤E[
T∑

t=1
2CrCJ ·

10
Cl ·∆2 · E[ℓt(θt, ηt)− ℓt(θ∗, η∗)|θt, ηt] + 2CrT∆2]

=20CrCJ

Cl∆2 E[
T∑

t=1
ℓt(θt, ηt)− ℓt(θ∗, η∗)] + 2CrT∆2

=O(d log T

∆2 + ∆2T )

=O(
√

dT log T ).

(32)

Here the first line is by the law of total expectation, the second line is by Lemma 4.2, the third line is by Lemma 4.3,
the fourth line is by equivalent transformation, the fifth line is by Lemma 4.4, and the sixth line is by the fact that

∆ = min
{(

d log T
T

) 1
4

, J(0,1)
10 , 1

10

}
. This holds the theorem.

A.5. Proof of Theorem 4.5
Proof. Denote θ∗ = [θ1, θ2, . . . , θd]⊤ and η∗ = [η1, η2, . . . , ηd]⊤. We firstly construct a context set X as

X = {ei, i = 1, 2, . . . , d|ei = [0, . . . , 0, 1, 0, . . . , 0]⊤ ∈ Rd, ei[i] = 1, ei[j] ̸= 1,∀j ̸= i}. (33)

Then we sample each xt ∼i.i.d. UX , where UX is a uniform distribution defined on each element of X (i.e. Pr[xt = ei] =
1
d ,∀i ∈ [d], t ∈ [T ]). Denote it := i if xt = ei. Now we decompose the indexes set [T ] of series {xt}T

t=1 into d subsets:

Si := {t|xt = ei, t = 1, 2, . . . , T}, i = 1, 2, . . . , d. (34)

From the perspective of customers’ valuations, we have yt = e⊤
i θ∗+Nt

e⊤
i

η∗ = θit

ηit
+ 1

ηit
·Nt where Nt is an i.i.d. noise with

known distribution. Let Nt ∼i.i.d. N (0, 1) as standard Gaussian noises. Therefore, each i ∈ [d] determines a sub-problem
(denoted as Pi) that only happens when t ∈ Si and has a fixed valuation distribution, i.e. yt = θi

ηi
+ 1

ηi
·Nt ∼i.i.d. N ( θi

ηi
, 1

η2
i
).

For any t /∈ Si, neither yt nor 1t is dependent on θi or ηi, which enables us to separately consider each Pi. Denote Ti := |Si|.
In the following, we bound the least possible regret of this sub-problem as Ω(

√
Ti).

Let θi = ui

σi
and ηi = 1

σi
where ui, σi > 0 are unknown parameters to be determined. Given this, customers’ valuation

distribution is yt ∼ N (ui, σ2
i ) for t ∈ Si. According to Theorem 12 of Xu & Wang (2021), let ui =

√
π
2 and σi ∈

{1, 1− T
− 1

4
i }, and any algorithm has to suffer at least 1

24000 ·
√

Ti regret.

Then we show that Ti ≥ T
2d with high probability. Notice that

E[Ti] =E[
T∑

t=1
1[xt = ei]]

=
T∑

t=1
Pr[xt = ei]

=T · 1
d

= T

d
.

(35)
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When RMLP-2 does not model the heteroscedasticity
PwP
PwP Linear fit, slope=0.536
RMLP-2
RMLP-2 Linear fit, slope=0.681

Figure 2. Regrets of PwP versus the original homoscedastic RMLP-2 algorithm. In this log-log diagram, a O(T α) regret curve is shown
as a straight line with slope α. From the figure, we notice that PwP is optimal while RMLP-2 is sub-optimal, indicating the necessity of
modeling homoscedasticity to achieve optimal regrets.

According to Hoeffding’s Inequality, we have:

Pr[|
T∑

t=1
1[xt = ei]−

T

d
| ≥ T

2d
] ≤ 2 exp{−2 T 2

4d2 ·
1
T
}

⇒ Pr[Ti ≥
T

2d
] ≤ 2 exp{− T

2d2 }.

(36)

According to a union bound on the failure probability, with Pr ≥ 1− 2d exp{− T
2d2 }, we have Ti ≥ T

2d ,∀i ∈ [d]. Therefore,
the expected regret satisfies

E[Regret] = E[
d∑

i=1
Regret(Pi)]

≥ E[
d∑

i=1

1
24000

√
Ti]

≥ E[
d∑

i=1

1
24000

√
T

2d
· (1− 2d exp{− T

2d2 })]

≥ 1
200000 ·

√
Td.

(37)

Here the last inequality comes from the assumption that T ≥ 2d2(1 + log d) and therefore 1− 2d exp{− T
2d2 } ≥ 1− 2

e >
1
4 .

B. More Experiments
B.1. Model Adaptivity
In this section, we show that it is necessary to model the heteroscedasticity. In specific, we compare PwP with the original
RMLP-2 algorithm from Javanmard & Nazerzadeh (2019) that ignores heteroscedasticity in a heteroscedastic environment.
We conduct both experiments for T = 214 rounds and repeat them for 10 epochs. The numerical results are displayed in
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Figure 3. Regrets of misspecified PwP with expanded contexts, in comparison with a baseline RMLP-2 knowing the correct model. The
results show that PwP still have a sub-linear regret in a certain period of time with context expansions, indicating that our linear demand
model as Eq. (1) can be generalized to a linear valuation model as Eq. (38) in practice.

the lower figure, plotted in log-log diagrams. From the figure, we notice that the regret of RMLP-2 is much larger than
PwP. Also, the slope of regrets of RMLP-2 is 0.681 >> 0.5, indicating that it does not guarantee a O(

√
T ) regret. In

comparison, PwP still performs well as it achieves a ∼ O(T 0.536) regret. This indicates that the algorithmic adaptivity of
PwP to both homoscedastic and heteroscedastic environments is highly non-trivial, and a failure of capturing it would result
in a substantial sub-optimality.

B.2. Model Misspecification
In Section 5, we compare the cumulative regrets of our PwP algorithm with the (modified) RMLP-2 on the linear demand
model (as Eq. (1) or equivalently, the linear fractional valuation model as Eq. (2)). In this section, we consider a model-
misspecific setting, where customer’s true valuation is given by the following equation

yt = x⊤
t θ∗ + x⊤

t η∗ ·Nt (38)

and the demand Dt = 1t = 1[pt ≤ yt]. As a result, Eq. (38) captures a linear valuation model with heteroscedastic
valuation.

Now, we design an experiment to show the generalizability of both our PwP algorithm and our demand model as Eq. (1).
In specific, we run the PwP algorithm that still models a customer’s valuation as ỹt = x⊤

t θ̃∗+Ñt

x̃⊤
t η̃∗ , where x̃t ∈ Rq is an

expanded version of the original context xt (i.e. x̃t = π(xt) for some fixed expanding policy π) and θ̃∗, η̃∗ ∈ Rq are some
fixed parameters2. Therefore, PwP is trying to learn those misspecified θ̃∗ and η̃∗ although there does not exist such an
underground truth.

We are curious whether the expansion of context (from xt to x̃t) would leverage the hardness of model misspecification. For
x = [x1, x2, . . . , xd]⊤, denote xn := [xn

1 , xn
2 , . . . , xn

d ]⊤. Then for any context x ∈ Rd, we specify each context-expanding
policy as follows:

π(x; x0, a)
:=[x; (x− x0)a1 ; (x− x0)a2 ; . . . ; (x− x0)am ]⊤ ∈ R(m+1)d.

(39)

The policy π in Eq. (39) is a polynomial expansion of x with index list a = [a1, a2, . . . , am] ∈ Zm, where x0 ∈ Rd is a
fixed start point of this expansion.

Now we consider the baseline to compare with. We claim that it is very challenging to solve the contextual pricing problem
with customers’ valuations being Eq. (38) with theoretic regret guarantees (although the Ω(

√
T ) lower bound given by

2We may assume q ≥ d without loss of generality.
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Javanmard & Nazerzadeh (2019) still holds), and there are no existing algorithms targeting at this problem setting. However,
there are still some straightforward algorithms that might approach it: For example, a max-likelihood estimate (MLE) of θ∗

and η∗. In fact, we may still reuse the framework of RMLP-2 by replacing its MLE oracle according to the distribution
given by Eq. (38). In the following, we will compare the performances of

1. PwP algorithm with the misspecified linear demand model as Eq. (1), with expanded context {xt}’s, and

2. RMLP-2 algorithm on the correct linear valuation model asEq. (38), with original context {xt}’s.

We implement PwP and RMLP-2 on stochastic {xt} sequences (since RMLP-2 has already failed in the adversarial setting)
and get numerical results shown as Figure 3. Here we choose x0 = [0.5, 0.5]⊤ and a = [0, 1]. For a model-misspecified
online-learning algorithm, there generally exists an O(ϵ · T ) term in the regret rate, where ϵ is a parameter measuring the
distance between the global optimal policy and the best proper policy (i.e. the best policy in the hypothesis set). However,
our numerical results imply that PwP may still achieve a sub-linear regret within a certain time horizon T , whereas the
baseline RMLP-2 that takes the correct model has a much worse regret. It is worth mentioning that PwP may still run into
Ω(T ) regret as T gets sufficiently large, due to model misspecification. These results imply that

1. Our linear demand model Eq. (1) can be generalized to a linear valuation model as Eq. (38) in practice.

2. Our PwP algorithm can still perform well in model-misspecification settings, and even better than a baseline MLE
algorithm with a correct model in a certain period of time.

For the first phenomenon that our demand model can be generalized with context expansion tricks, we may understand
it as a Taylor expansion (and we take a linear approximation) at x0 = [0.5, 0.5]⊤. For the second phenomenon that PwP
outperforms RMLP-2, it might be caused by the non-convexity of the log-likelihood function of the valuation model specified
in Eq. (38). As a result, while RMLP-2 is solving a non-convex MLE and getting estimates far from the true parameters,
PwP instead works on an online convex optimization problem within a larger space (which probably contain the underground
truth) due to context expansions. Unfortunately, we do not have a rigorous analysis of those two phenomenons.

C. More Discussions
As supplementary to Section 6, here we discuss some potential extensions and impacts of our work with more details.

Assumption on lower-bounding elasticity as Cβ > 0. Here we claim that the regret lower bound should have an Ω( 1
Cβ

)
dependence on Cβ . We prove this by contradiction. Without loss of generality, assume Cβ ∈ (0, 1). In specific, we construct
a counter example to show it is impossible to have an O(C−1+α

β ) regret for any α > 0:

Firstly, let β = Cβ . Suppose there exists an algorithm A that proposes a series of prices {pt}T
t=1 which achieve O(C−1+α

β )
regret in any pricing problem instance under our assumptions.

Now, we consider another specific problem setting where β = 1 while all other quantities θ∗, η∗, {xt}T
t=1 stay unchanged.

Notice that the reward function has the following property:

r(u, β, p) = p · S(βp− u) = 1
β
· (βp) · S(βp− u) = 1

β
· r(u, 1, βp) (40)

Therefore, we construct another algorithmA∗ which proposes Cβ ·pt at t = 1, 2, . . . , T . According to the O(C−1+α
β ) regret

bound of A, we know that A∗ will suffer Cβ ·O(C−1+α
β ) = O(Cα

β ) regret. Let Cβ → 0+ and observe the regret of A∗ on
the latter problem setting (where β = 1). On the one hand, this is a fixed problem setting with information-theoretic lower
regret bound at Ω(log T ). On the other hand, the regret will be bounded by limCβ→0+ O(Cα

β ) = 0. They are contradictory
to each other. Given this, we know that there does not exist such an α > 0 such that there exists an algorithm that can
achieve O(C−1+α

β ). As a result, it is necessary to lower bound the elasticities by Cβ from 0.

Adversarial attacks. Our PwP algorithm achieves near-optimal regret even for adversarial context sequences, while the
baseline (modified) RMLP-2 algorithm fails in an oblivious adversary and suffer a linear regret. This is mainly caused by
the fact that RMLP-2 takes a pure-exploration step at a fixed time series, i.e. t = 1, 1 + 2, 1 + 2 + 3, . . . , k(k+1)

2 . This issue
might be leveraged by randomizing the position of pure-exploration steps: In each Epoch k = 1, 2, . . ., it may firstly sample
one out of all k rounds in this epoch uniformly at random, and then propose a totally random price at this specific round.
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However, RMLP-2 still requires E[xx⊤] ⪰ c · Id even with this trick.

Nonstationarity in Pricing Although our PwP algorithm is applicable on heteroscedastic valuations, we still benchmark
with an optimal fixed pricing policy that knows η∗ and θ∗ in advance. In reality, customers’ valuations and elasticities might
fluctuate according to the market environment, causing θ∗

t and η∗ different over t ∈ [T ]. Existing work such as Leme et al.
(2021) and Baby et al. (2022) studies similar settings but assumes i.i.d. noises. It is worth to further investigate the setting
when heteroscedasticity and nonstationarity occur simultaneously.

Algorithm and analysis for unknown link function S(·). Unfortunately, our algorithm is unable to be generalized to the
online contextual pricing problem with linear valuation and unknown noise distribution that has been studied by Fan et al.
(2021). Indeed, the problem becomes substantially harder when the noise distribution is unknown to the agent. Existing
works usually adopt bandits or bandit-like algorithms to tackle that problem. For example, Fan et al. (2021) approaches it
with a combination of exploration-first and kernel method (or equivalently, local polynomial), and Luo et al. (2021) uses a
UCB-styled algorithm. However, none of them close the regret gap even under the homoscedastic elasticity environment as
they assumed, and the known lower bound is at least Ω(T 2

3 ), or Ω(T
m+1

2m+1 ) for smooth ones (Wang et al., 2021b). On the
other hand, we study a parametric model, and it is not quite suitable for a bandit algorithm to achieve optimality in regret. In
a nutshell, these two problems (known vs unknown noise distributions), although seem similar to each other, are indeed
substantially different.

Comparing with Linear Bandits We claim that no inclusion relationship exists between our setting and linear bandits
(Chu et al., 2011), and neither setting’s lower bound can imply the other. There are mainly two substantial differences.
On the one hand, it is our expected demand model (instead of the expected linear reward for linear bandits) that falls in a
generalized-linear model, with a link function bounded by [0, 1]. Consequently, the expected reward function in our model
(i.e., the multiplication of price and demand) is neither linear nor generalized linear. On the other hand, while each action in
linear bandits is represented by a vector of dimension d, our action, specifically the price p, is a scalar. This distinction
further prevents us from adopting the dependence on d in the linear bandits lower bound to our model.

Linear demand model vs linear valuation model. In this work, we adopt a generalized linear demand model with
Boolean feedback, as assumed in Eq. (1). As we have stated in Appendix B, there exists a heteroscedastic linear valuation
model as Eq. (38) that also captures a customer’s behavior. However, this linear valuation model is actually harder to
learn, as its log-likelihood function is non-convex. It is still an open problem to determine the minimax regret of an online
contextual pricing problem with a valuation model like Eq. (38).

Determination of price perturbation. In this work, we adopt a Rademacher-style perturbation with ∆ = 1√
T

, which
optimally balances the exploration cost T∆2 against the condition number 1

∆2 of the surrogate loss function. Notice
that this requires a pre-knowledge on T , which may not be available in real-world scenarios.To address this, we apply a
"doubling-epoch" trick as suggested by Javanmard & Nazerzadeh (2019). Specifically, we define each epoch k with a
length of τk = 2k, and we treat each epoch as an independent pricing problem instance with T = τk and run our PwP
algorithm accordingly. This approach allows our algorithm to adapt to an unknown T while preserving the O(

√
T ) regret

rate. Equivalently, we may set adaptive perturbations as ∆t = (2⌊log2 t⌋)− 1
2 in practice. It is reasonable to see a milder

perturbation imposed on the greedy price as the time index t goes larger.

Ethic issues. Since we study a dynamic pricing problem, we have to consider the social impacts that our methodologies
and results could have. The major concern in pricing is fairness, which attracts increasing research interests in recent years
(Cohen et al., 2021; 2022; Chen et al., 2023; Xu et al., 2023). In general, we did not enforce or quantify the fairness of our
algorithm. In fact, we might not guarantee an individual fairness since PwP proposes random prices, which means even the
same input xt’s would lead to different output prices. Despite the perturbations ∆t we add to the prices, the pricing model
(i.e. the parameters θ∗ and η∗) is updating adaptively over time. This indicates that customers arriving later would have
relatively fairer prices, since the model is evolving drastically at the beginning rounds and is converging to (local) optimal
after a sufficiently long time period. We claim that our PwP algorithm is still fairer than the baseline RMLP-2 algorithm we
compare with, since RMLP-2 takes pure explorations at some specific time. As a result, those customers who are given a
totally random price would have a either much higher or much lower expected price than those occurring in exploitation
rounds. However, it is still worth mentioning that RMLP-2 satisfies individual fairness within each pure-exploitation epoch,
since it does not update parameters nor adding noises then.
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